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Abstract

Time plays a crucial role in the performance of computing systems. The
accurate modelling of logical devices, and of their physical implementations,
requires an appropriate representation of time and of all properties that de-
pend on this notion. The need for a proper model, particularly acute in the
design of clockless delay-insensitive (DI) circuits, leads one to reconsider
the classical descriptions of time and of the resulting order and causal rela-
tions satisfied by logical operations. This questioning meets the criticisms of
classical spacetime formulated by Einstein when founding relativity theory
and is answered by relativistic conceptions of time and causality. Apply-
ing this approach to clockless circuits and considering the trace formalism,
we rewrite Udding’s rules which characterize communications between DI
components. We exhibit their intrinsic relation with relativistic causality.
For that purpose, we introduce relativistic generalizations of traces, called
R-traces, which provide a pertinent description of communications and com-
positions of DI components.

1 Introduction

Regular and important advances in semiconductor technology allow more and more
complex processors to be designed. Meanwhile, progress in computing capacity is
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accompanied by a need for good representations of physical devices, which are
required to remain pertinent at smaller and smaller scales. This trend naturally
increases the number of physical properties to be accounted for when implementing
logical devices. Appropriate models become mandatory prerequisites for develop-
ing new techniques. This particularly is the case when adopting the approach of
distributed systems or clockless circuits.

Obviously, time plays an important part in the operation of computing sys-
tems. The significant effects induced by time delays in modern electronic circuits
point at limits that one rapidly reaches in a classical framework when looking for
physically precise models. The only way to go beyond these limits is to adopt a
new framework, able to match physical reality at a more fundamental level.

Practical difficulties met in disseminating and managing clock signals over com-
plex designs have made the approach of clockless circuits particularly interesting
and promising. But removing the clock does not mean that designs are freed from
all the constraints associated with time. Time is by itself a very complex notion,
which is hardly captured in totality, even in most advanced physical theories. De-
signing circuits around a single clock appears as a convenient way to implement
known and classical properties related to time. In the absence of a clock, other
solutions have to be found to ensure the proper time evolution of a circuit. To this
end, one must reconsider the classical models of time that have been useful when
designing existing electronic circuits.

Important progress in the control of time constraints in clockless circuits has
been made with the notion of delay insensitivity [12, 22, 24, 2, 26]. By removing
any dependence on time lapses due to signal propagation, one becomes able, with
a simple set of rules, to ensure the correct functioning of clockless logical devices.
With this efficient trick comes a new concept of the way distributed systems can
synchronize their actions, by means of communication, in order to realize specified
computations.

Remarkably, this approach follows, in the context of logical devices, a line
which is very close to that followed by Einstein, in the general context of physics,
when introducing the founding concepts of relativity theory [4, 5]. The necessity of
constructing a new framework emerges from the remark that no physical system
exists that can deliver time over all space simultaneously. Physical time, as it
can be observed, is necessarily a spatially localized quantity. To promote time to
a physical quantity that can be shared by remote observers, propagation signals
must be used. Resulting propagation delays must be taken into account when
synchronizing different “local times”, that profoundly change the relations between
space and time assumed in classical theories.

A change of the notion of time has major consequences for the expression
of causality [17, 18]. As causality clearly depends on a notion of order in time,
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a drastic change in the possibility of time ordering, as raised by the relativistic
framework, implies a revision of the dependence of all operations, including logical
ones, on causal relations.

The effect of the change in the properties of time induced by relativity on dis-
tributed systems has already been discussed in the literature ([7, 8, 10, 9]). Many
formalisms also exist that describe computing concurrency and have provided ef-
ficient models for designing and analyzing asynchronous circuits. On one hand,
Petri networks [14, 13] and their interpretation called signal transition graphs
(STG) [16, 1] have provided powerful representations of partial orders and causal
relations in logic circuits. On the other hand, trace semantics, communicating
sequential processes (CSP) [6], and related approaches [22, 24, 2, 11, 15], are pre-
ferred in modelling complex systems. A formalism sharing both qualities would
be particularly helpful for efficiently simulating and implementing causal relations
in asynchronous circuits of high complexity.

We shall show here that a closer account of physical causality, based on the rel-
ativistic notion of time ordering, provides a way to modify the formalism of traces
so that causal relations can be represented in a natural way. This representation
should make them easier to implement in arbitrarily complex designs. In order
to fulfill that aim, a key step is to give communications between components a
representation that naturally satisfies the constraints imposed by relativistic time
orders. Remarkably, Udding’s rules [22], which are used to define communications
within DI systems, appear to suit this purpose. Rewriting these rules in terms of
R-traces, we shall exhibit their intrinsic connection with relativistic causality.

In the first two sections we recall the profound changes brought by the rela-
tivistic framework to the notions of time, time-ordering and causal relations. In
the following sections, we introduce generalizations of traces, called R-traces, and
use them to rewrite Udding’s rules. We also briefly describe how R-traces map
onto the usual traces in a classical environment. In conclusion, we point at some
properties and other potential applications of R-traces.

2 Relativity and time-ordering

In this section, we briefly recall the properties of time according to relativity theory
[4, 5, 17, 18], in contrast to those which are implicitly assumed in a classical
framework. We discuss the new status given by relativity theory to simultaneity
in time, and the notion of order in time that follows. Consequently, the notion
of causality used in a relativistic framework significantly differs from its classical
analog.

Although time and space can be treated as distinct concepts in classical the-
ory, this can no longer be the case in a relativistic framework, where these no-
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tions cannot be considered as being independent. To be precise, within a classical
framework, time is not affected by a change of frame (or observer). For instance,
coordinates (t, x) in an inertial frame are related to coordinates (t′, x′) in another
frame, with relative velocity v, according to the usual Galilean transformation (for
simplicity, expressions are written here for a single spatial dimension):

x′ = x− vt

t′ = t (1)

On the other hand, the same change of inertial frame within a relativistic frame-
work introduces a dependence of time on spatial positions (light propagates at a
finite velocity c):

x′ =
x− vt
√

1− v2

c2

t′ =
t− v

c2
x

√

1− v2

c2

(2)

This fundamental property is in fact a direct consequence of the definition of time
in terms of physical observables and of the existence of a maximum propagation
speed, c. No physical system exists that can provide time simultaneously within
a whole extended area in space. Time can only be obtained from a clock locally,
that is at a given place in space [4, 5]. Time can then only be defined over all space
by comparing clocks located at different spatial positions. These comparisons are
made by means of propagating signals. As a consequence of the delays due to
propagation at finite speed (even at light velocity c) the notion of simultaneity
is frame dependent. For instance, in contrast to its classical analog (1), the rel-
ativistic transformation of time (2) shows that two events A and B that occur
simultaneously but at different places in a given frame, loose their simultaneity
when they are seen in a relatively moving frame.

classical (1) : tB = tA, xB 6= xA ⇒ t′B = t′A
relativistic (2) : tB = tA, xB 6= xA ⇒ t′B 6= t′A (3)

The existence of an absolute global time, independent of space, is ruined by
the impossibility of defining simultaneity over all space in a frame-independent
way. This however excludes neither the possibility of defining simultaneity, but in
a frame-dependent way, nor the existence of frame-independent properties of time.
The last possibility appears to be easier to realize. Following that option, one
remarks that expressions (2) describe the transformations of space and time under
the action of the Lorentz group. These transformations generalize to spacetime
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the action of the group of spatial rotations. It corresponds to transformations that
preserve the spacetime interval IAB between two events A and B.

IAB = c2(tA − tB)
2 − (xA − xB)

2 (4)

Spacetime intervals (4) are invariant under frame transformations (2) and allow
one to define spacetime relations and subsets that are independent of the observer.
In particular, a null spacetime interval (IAB = 0) characterizes a pair of events
(A,B) that can be joined by a motion at the maximum speed c, i.e. which lie on
the same light ray. The light rays that are incident on a same event A define a
subset CA, the light cone from event A (see Equation (4)).

CA ≡ {B : IAB = 0} (5)

CA bounds the part of spacetime which can be reached by signals sent or received
at A: it realizes a partition of spacetime into three subsets.

CA>
≡ {B : IAB > 0}

CA ≡ {B : IAB = 0}

CA<
≡ {B : IAB < 0} (6)

The interior of a light cone CA>
consists of all spacetime events B that are separated

from event A by a time-like interval (IAB > 0), while the exterior of the same light
cone CA<

consists of all events B that are separated from event A by a space-like
interval (IAB < 0). The interior of light cone CA>

furthermore consists of two
disjoint parts which describe the future of event A (C+

A>
), and the past of event A

(C−
A>

).

C+

A>
≡ {B : IAB > 0, tB − tA > 0}

C−
A>

≡ {B : IAB > 0, tB − tA < 0} (7)

All the latter properties are frame-independent. Let us note that as opposed
to the interior CA>

, the exterior of a light cone CA<
cannot be partitioned in a

frame-independent way into two parts corresponding to a positive (tB − tA > 0)
or negative (tB − tA < 0) time interval. Indeed, for events B in CA<

, the sign
of the time interval tB − tA depends on the observer. These properties exhibit
a major difference due to the relativistic framework: given a particular event A,
there exists a subset of events B that have a definite position in time with respect
to A (CA>

), but also a large subset of events B that cannot have a definite position
in time relative to event A (CA<

).
Equations (7) show that, although two arbitrary events cannot be ordered in

time, due to the frame dependence of the simultaneity property (3), nonetheless
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Figure 1: A spacetime diagram

all events belonging to C+

A>
are posterior to A while all events belonging to C−

A>

are anterior to A, both properties being frame-independent. One remarks that the
existence of a time order between two events is a symmetric property:

B ∈ C±
A>

⇔ A ∈ C∓
B>

(8)

C ∈ CA<
⇔ A ∈ CC<

(9)

Two events A and B satisfying conditions (8) are ordered in time and can thus be
causally related. Moreover, this property is easily seen to be transitive.

B ∈ C±
A>

∧ C ∈ C±
B>

⇒ C ∈ C±
A>

(10)

In other words, although not allowing a total time ordering of events, the rela-
tivistic framework still allows one to define a partial time-ordering that does not
depend on the observer. This property is necessary and sufficient for formulating
causality in physics.

Time-order relations are advantageously illustrated on spacetime diagrams. In
Figure 1, D represents an event with vanishing interval with respect to event A,
i.e. located on the light cone CA from A. Note that, up to now, we have used
the term ‘event’ in accordance with its physical meaning, i.e. to denote a point
in spacetime. In contrast, in the context of logic devices, the term ‘event’ usually
denotes a transition or a pulse, propagating through a wire or an electromagnetic
channel [21]. According to previous discussions, the latter rather corresponds to
a ray, connecting points located on a same light cone (Figure 1). But, it is easily
seen that, when sent or received, such a logical ‘event’ also corresponds to a tran-
sition that is localized in time, and which can thus be identified with a spacetime
‘event’ [17, 18, 19, 21]. These two characteristic properties, namely localization
in time and spreading over space, are precisely the ones that are necessary for
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synchronizing actions performed at different locations in space. They also allow
the local notion of ‘logical event’, defined as a logical action occurring in a device
in coincidence with a spacetime ‘event’, to be extended to communications, i.e.:
logical actions occurring in different devices in a correlated way. In the latter case,
‘logical events’ are associated with propagations rather than points in spacetime.
As previously discussed, they must respect the constraints fixed by the existence of
a bound on propagation speeds, hence the light cone partitions of spacetime. They
may alternatively be seen as a minimal description, regarding logical properties,
of events occurring at the boundary between two devices with different spatial lo-
cations. For simplicity and when no confusion may arise, we shall in the following
use the same term ‘event’ for denoting both concepts.

Figure 1 also shows an event B that lies in the future light cone of A (B ∈ C+

A>
).

This property is equivalent to the possibility for a physical system to travel from
event A to event B with a speed that is lower than light velocity c, the largest
allowed velocity. Event B can then be said to occur after event A. In contrast, as
no definite time order can be attributed to an event C lying outside of the light
cone from A (C ∈ CA<, IAC < 0 is space-like), C is said to be ‘contemporary
with A’.

These properties can be used to express relativistic causality. Two actions
occurring at different locations in spacetime can be causally related only if the two
events A and B at which they occur are ordered in time, i.e. satisfy relation (8).
In that case, these two actions may produce a result that depends on the time-
order of events A and B. Conversely, two actions occurring at two events A and
C that are contemporary, i.e. A and C satisfy (9), produce a result that cannot
depend on their order, as the latter cannot be identified with an order in time.
One deduces that the result of two actions occurring at two different events A and
B can depend on the order of these actions if and only if A and B can be ordered
in time (8). Otherwise, two actions occurring at events satisfying Equations (9)
must be considered to be independent of each other and hence cannot satisfy a
causal relation.

3 Causality and time delays

Computation reduces, in present realizations, to chaining elementary operations
performed on Boolean variables, linking these operations through a finite set of
prescribed logical relations. This occurs in logic devices performing successive op-
erations ruled by a clock or in asynchronous (clockless) circuits as well. In all
cases, specifications are satisfied by linking the prescribed logical rules to causal
relations constraining the physical systems in which they are realized. Not surpris-
ingly, logic devices can be designed in a satisfactory way only when an appropriate
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representation of causal relations is available.
Modern logic devices are implemented in highly integrated components, push-

ing the limits of transport properties. Due to clocks operating at high frequen-
cies and despite small dimensions, the limits affecting the propagation of signals
within a chip, due to bounded propagation speeds, cannot be ignored. A ma-
jor consequence, as discussed in previous section, is a breakdown of the classical
(Newtonian or Galilean) representation of time-ordering, pointing at the necessity
of a genuinely relativistic representation. Obviously, the same remarks apply to
distributed systems–to systems made of components with large separations (mea-
sured as propagation times) when compared with their internal period [7, 8, 10].
Distributed systems or asynchronous circuits can be seen to involve two different
kinds of logical processes:

• transitions associated with changes of state of a local component,

• communications associated with exchanges of data between components.

Both kinds of processes must be considered when defining the specifications of dis-
tributed systems or asynchronous circuits and when setting their communication
protocols. Moreover, these logical processes should be associated with implemen-
tations corresponding to two different kinds of events, this notion being understood
according to the two different conceptions discussed in the previous section.

The implementation of logical processes relies on the existence of causal rela-
tions, hence on the possibility of ordering in time, the corresponding events. More
precisely, the time order of two events becomes an objective property as soon as
each event belongs to the interior of the other’s light cone (8), or else as soon as
they define a time-like interval (6). Two different kinds of time-like intervals can
be seen to be involved in the definition of distributed systems or asynchronous
circuits:

• intervals between two events characterizing the successive states of one local
component;

• intervals between two events characterizing the emission and reception of
communication signals.

The fact that the second case also corresponds to a time-like interval rather than
to a light-like interval is due to the fact that, depending on the technology and
implementation choices, signals may propagate at a maximum speed smaller than
or equal to, the light velocity. This entails no fundamental consequences, as all
properties due to the existence of a maximum propagation speed still hold.

Figure 1 shows two events A and B, with B occurring after A (B ∈ C+

A>
).

Although different observers may attribute different dates to these two events,
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corresponding to different time delays undergone by a signal propagating from A
to B, all observers will nonetheless agree on the time-like character of the interval
IAB (IAB > 0) and on the time-order of the two events (B ∈ C+

A>
, A ∈ C−

B>
). The

corresponding physical time delay coincides with the delay accounted for when
designing electronic circuits. As opposed to the time delay itself, the time-like
character of the interval between two events A and B and their time order (here
B after A), are objective properties. As illustrated by this simple example, the
time-ordering properties of logical events, when physically implemented in logic
devices, correspond to delay insensitive (DI) properties.

When implementing logical operations in physical devices, the dependence of
physical causality on time-ordering imposes constraints that tend to limit their
performance. In practice, one must either control time-orders, hence time delays,
at the level required by the operation frequency and size of the device, or design
processors so that their operation can resist arbitrary variations of time delays.
These options are not exclusive and solutions adopted in existing processors take
advantage of both possibilities. Timing methods significantly help improve the
performance of clocked circuits, and nowadays, processors routinely include self-
timed asynchronous parts to benefit from a locally enhanced level of performance
[20]. The increasing cost in both complexity and power consumption, entailed by
monitoring time lapses over highly integrated circuits, however leads one to favor
approaches that can escape, as much as possible, time delay constraints. The for-
malization of delay insensitivity (DI) [12, 22, 2, 26] provides a powerful conceptual
framework for designing asynchronous circuits. Confronting this approach to the
relativistic background of physical processes, we shall try in the following to un-
derstand DI rules as the result of general and fundamental constraints imposed by
physical causality on the implementation of logic devices.

4 Partial order relations

We now focus on logical operations and on their implementations as processes in
physical devices. In general, the result of two successive logical operations depends
on the order in which they are performed. At the level of physical processes, the
ordering of logical operations is given by the time-ordering of the events at which
they occur. For that reason, we shall identify in the following, the time-ordering of
logical operations with the ordering of the corresponding events. Upper case letters
denoting events will just be replaced by lower case letters when denoting logical
operations. We also introduce some simplifying notations to represent ordering
when expressed on logical operations rather than events.

Definition: When the event associated with a logical operation b is in the
future of the event associated with a logical operation a, we say that a and b are

9



ordered (in time) and write this relation with the following three symbols

a ⊳ b (11)

This relation is irreflexive, anti-symmetric and transitive. We say that a is before
b or b is after a.

Definition: When two logical operations a and c are such that neither relation
a ⊳ c nor relation c ⊳ a holds, we say that a and c are contemporary and write

a ⊲⊳ c

This relation is symmetric but not transitive, for a ⊲⊳ c and c ⊲⊳ b can both hold
without a ⊲⊳ b being satisfied (see Figure 1).

Relations ⊳ and ⊲⊳, which are based on relations between events, admit simple
repesentations on spacetime diagrams. Let us note that relations ⊳, ⊲⊳ can also
be seen as a particular case of the relations −→, 99K introduced by Lamport [8] to
provide a general formalization of logical time in distributed computations. These
definitions however differ in an important way: ⊳ and ⊲⊳ refer here to an ordering
with respect to ‘physical time’, although −→, 99K refer to a constructed ‘logical
time’ [8]. One could alternatively say that the choice to model implementations
of logic devices at the level of electronic components leaves less freedom for a
representation of time.

As already stated, the expression of causality in physics strongly depends on
the notion of time ordering. It should be clear however that causal relations do
not reduce to time-order relations. Obviously, two physical actions, in particular
two logical operations, can happen to be ordered in time without being causally
related. In other words, two logical operations can only be causally related if they
are ordered in time, the latter condition being necessary but not sufficient. For
that reason, a further notation must be introduced to describe causal relations.

Definition: To express “a is the cause of b”, we write

a → b (12)

The constraint between causal and time-order relations may then be written

(a → b) ⇒ (a ⊳ b)

The converse implication does not hold and a configuration showing the difference
between causal and time-order relations is illustrated in Figure 2, where E and
R represent two components, and a, b and c communications between E and R.
Figure 2 illustrates a case where a is the cause of b and c, with no relation of
causality between b and c. This gives an example of relation b ⊳ c holding without
relation b → c being true.
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Figure 2: Partial causal order

The causal situation illustrated in Figure 2 is also compatible with another
configuration in time, a ⊳ (b ⊲⊳ c). Such a configuration happens when the
environment E is placed farther on the left. This results from the fact that when
c is emitted by R one does not know, in the absence of acknowledge, whether b
has already been received by E. The time-order realized between operations b
and c in Figure 2 is an example of a delay sensitive relation. The causal order
specified in Figure 2 can be realized with different time orders, (a ⊳ b ⊳ c),
(a ⊳ c ⊳ b) or (a ⊳ (b ⊲⊳ c)). This example shows that a total time-order is not
necessary to satisfy all causal relations required by specifications. On the other
hand, delay insensitivity forbids situations such as the one illustrated in Figure 2.
Delay insensitivity expresses the compatibility of arbitrary timing configurations
with the causal order specified by a computation. Hence, it appears as a general
and simple way to account for the arbitrariness in time ordering that remains once
causal orders are satisfied. Using only DI circuits then allows one to replace the
causal order → defined in Equations (12) by the time-order ⊳ defined in Equations
(11) when describing the logical constraints associated with specifications.

5 Structures of relativistic traces

In this section, we describe a formalism of relativistic traces (R-traces) for elec-
tronic circuits, generalizing standard traces used for DI systems [22, 24, 2, 26] so
as to account for the orders defined in the previous section.

For simplicity, in the following, we identify logical operations with the events
at which they occur. Symbols consist of lower case letters of the beginning of the
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alphabet (a, b, c, ...), thus denoting events, while referring to logical operations.
The concatenation operator “;” (concatenation of symbols or of strings of symbols)
is replaced by operators describing time-ordering, which we choose to be “⊳” and
“⊲⊳”. We also add parentheses “(” and “)”. Note that R-traces do not represent
the causal order (denoted by “→”) which will appear later.

R-trace structures for a component are defined as triples S = < iS, oS, tS >,
where:

• iS is a finite set of symbols denoting propagation events from the environ-
ment to the component (inputs),

• oS is a finite set of symbols denoting propagation events from the component
to the environment (outputs),

• tS denotes a set (finite or not) of finite length strings (named R-traces)
written with symbols in the set aS, where aS (alphabet of S) is
iS ∪ oS ∪ {⊳, ⊲⊳, (, )} and obeys the following syntax.

R-trace structures are denoted by upper case letters (R, S, T , ...) and R-traces
are denoted by the lower case letters (s, t, u, ...) of the end of the alphabet.
Moreover, the following properties are assumed to hold.

• The empty R-trace, denoted by “ε”, belongs to the structure S: ε ∈ tS.

• A single symbol can be an R-trace, for example: a ∈ tS.

• An R-trace s can be extended with a new symbol a when s is entirely in the
past of a (s ⊳ a ∈ tS).

• By definition: ⊳ ⊳ = ⊳ and for any R-trace s, s ⊳ = s = ⊳ s.

• An event symbol in a R-trace can be replaced by two event symbols with no
time order between them; this will be written: (a ⊲⊳ b).

• By definition: a = (a) = (⊳ a) = (a ⊳) = (a ⊲⊳) = (⊲⊳ a).

• When an order symbol “⊳” precedes parentheses, each symbol within the
parentheses denotes an event that is in the future of the sequence preced-
ing the order symbol. For example, s ⊳ (a ⊲⊳ b) means that, both and
independently, s is before a and s is before b.

• When an order symbol “⊳” follows parentheses, each symbol within paren-
theses denotes an event that is in the past of the sequence following the order
symbol. For example, (a ⊲⊳ b) ⊳ t means that t is both after a and after b.
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• In an R-trace, an event symbol can be replaced by an R-trace, put inside
parentheses. For example, s ⊳ ((a ⊳ b) ⊲⊳ c) ⊳ t is an R-trace. This R-trace
means that s is before a and before c, and that t is after b and after c.

• Associativity follows: (a ⊲⊳ (b ⊲⊳ c)) ≡ ((a ⊲⊳ b) ⊲⊳ c), even if the relation “⊲⊳”
is non-transitive, as this expression means that a, b and c can only satisfy a
time-order relation with symbols lying outside the parentheses.

As an example, the following R-trace can be part of the history of a Muller
C-element

(a ⊲⊳ b) ⊳ c ⊳ a ⊳ b ⊳ c ⊳ b ⊳ a ⊳ c ⊳ (a ⊲⊳ b) ⊳ c (13)

5.1 Operations on R-Traces

We define the concatenation of two R-traces t and u as t ⊳ u. This operation will
be extended to concatenation of sets of R-traces. For example, tR ⊳ tS denotes
the set of R-traces formed by concatenating one R-trace from tR and one R-trace
from tS.

We define the star operation of R-trace t, written [t]∗, as the set of finite
numbers of concatenations of t

[t]∗ = {ε, t, t ⊳ t, t ⊳ t ⊳ t, t ⊳ t ⊳ t ⊳ t, ...}

Applied to a set of R-traces, the star operator produces the set of all traces ob-
tained from a finite number of concatenations of R-traces of the set.

We define the prefix operator in the following way. Let t be an R-trace such
that t ∈ tS; the string u is a prefix of t if u ∈ tS and if there exists v ∈ tS such
that t = u ⊳ v. We will also consider that ε and t are prefixes of t. The pref

operator applied to t produces the set of all prefixes of t. Applied to a set of traces,
it produces the set of prefixes of all R-traces of the set.

Let t be an R-trace, and A a set of symbols including {⊳, ⊲⊳, (, )}. We define
t ↓ A, called the projection of t on A, as the R-trace obtained by only keeping
symbols of t belonging to A.

• If t = a and a ∈ A, then t ↓ A = a

• If t = a and a /∈ A, then t ↓ A = ε

• If t = uv and u ↓ A = u′ 6= ε and v ↓ A = v′ 6= ε,
then t ↓ A = u′v′

• If t = uv and u ↓ A = u′ 6= ε and v ↓ A = ε,
then t ↓ A = u′

13



• If t = uv and u ↓ A = ε and v ↓ A = v′ 6= ε,
then t ↓ A = v′

• If t = uv and u ↓ A = ε and v ↓ A = ε,
then t ↓ A = ε

As an example of such a projection, R-trace (13), projected on {a, c,⊳, ⊲⊳, (, )}
produces the following R-trace

a ⊳ c ⊳ a ⊳ c ⊳ a ⊳ c ⊳ a ⊳ c

which is a concatenation of a ⊳ c and can be rewritten

[a ⊳ c]4

Similar operations can be defined for the following R-trace structures.

• Concatenation:

R;S =< iR ∪ iS, oR ∪ oS, tR ⊳ tS >

• Union:
R|S =< iR ∪ iS, oR ∪ oS, tR ∪ tS >

• Star:
∗[R] =< iR, oR, [tR]∗ >

• Prefix:
prefR =< iR, oR,pref [tR] >

(If prefR = R, R is called “prefix-closed”.)

• Projection (on the set A):

R ↓ A =< iR ∩ A, oR ∩A, {t ↓ A | t ∈ tR} >

• Weave:

R‖S =< iR ∪ iS, oR ∪ oS, {t∈(tR ∪ tS) | t ↓ aR ∈ tR ∧ t ↓ aS ∈ tS} >

For instance: R = < {a}, {c}, {a ⊳ c} > and S = < {b}, {c}, {b ⊳ c} >

R‖S =< {a, b}, {c}, {(a ⊲⊳ b) ⊳ c, a ⊳ b ⊳ c, b ⊳ a ⊳ c} >
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5.2 Component and Environment

The dialog between a component and its environment is specified by an R-trace
structure S (named command), which is non-empty (tS 6= ∅), and such that
iS∩oS = ∅. Symbols in iS denote signals emitted by the environment and received
by the component. Symbols in oS denote signals emitted by the component and
received by the environment.

One does not make any distinction between the specification of the component
on one hand and the specification of the environment on the other hand. One
only specifies the pair component-environment, defined by a dialog described by
a single R-trace structure.

For instance, the dialog between a Muller C-element and its environment is
described in the following way

pref∗ < {a, b}, {c}, {(a ⊲⊳ b) ⊳ c, a ⊳ b ⊳ c, b ⊳ a ⊳ c} > (14)

One can define atomic commands as particular R-trace structures

a? = < {a}, ∅, {a} >
b? = < {b}, ∅, {b} >
c! = < ∅, {c}, {c} >

so that Equation (14) can then be rewritten

pref ∗ [(a?‖b?); c!]

As a consequence of the definition of the projection of R-traces, the logical
operation a‖b corresponds to the three possible time relations a ⊲⊳ b, a ⊳ b, and
b ⊳ a. The previous notation “‖” for a DI-component is compatible with the
classical weave notation (as for example in [6, 2]), but one must note that it now
has a different meaning: R-trace structures are a description of a partial order,
the time-order relation for events that are propagations in relativistic spacetime.
Let us remark that propagation delays are already included in this description, in
contrast to the classical description. Also, a? is not an input port of a component,
but the propagation of a signal that travels from the environment to the component
(see the discussion at the end of Section 2).

6 Relativistic rules

Udding’s rules [23] are a formalization of the intuitive idea underlying DI-systems,
which was previously introduced under the form of the Foam Rubber Wrapper
(FRW) metaphor [12]. The FRW metaphor discusses how a change of propagation
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delays can change the order of signals in time, and suggests ways to protect com-
ponent specifications against such changes in time-ordering. Udding translated the
notion of FRW into a set of logical constraints, to be imposed on trace structures
specifying components, so that specifications become invariant under changes of
time-ordering due to propagation delays.

In the classical framework of traces [24], a trace is understood to describe a
total time-order. When the latter changes as a result of propagation delays, one
interprets this property by saying that “the order at the environment boundary
is not the same as the order at the component boundary”. One can alternatively
say in a relativistic framework that the notion of time-order becomes ambiguous
for events at the boundary. This is due to the spatial extension of the bound-
ary between a component and its environment, which entails the impossibility of
ascribing a definite time-order to events occurring in this area. In this context,
R-traces, which preserve the notion of trace while describing a partial order, ap-
pear as a natural generalization. Meanwhile, R-traces bring another important
semantic change, as they are not only associated with events occuring at a single
location in space, but also with propagation events.

Adapting Udding’s rules, we consider R-traces as constraints imposed on the
syntax of component specifications. R-traces now constrain the specification of a
single object that is a component-environment pair and express the dialog between
a component and its environment, and more precisely causality relations satisfied
by propagations between them. Let us note that as they are compatible with
time-ordering in relativistic spacetime, these causality relations make DI-systems
compatible, not only with a change in place&route on a chip at the design stage,
but also with changes due to process variations or to motions of components during
computation.

In the following, we rewrite Udding’s rules and discuss them using spacetime
diagrams. Components and environments (respectively denoted by R and E) are
represented by vertical lines. Propagation events are illustrated by slanted arrows
which represent bounded and non-vanishing speeds (as in Figure 2). R also denotes
the R-trace structure describing the dialog specification of a pair (R,E). The R0

rule is a special case of the R1 rule and is discussed after the latter (we keep for
rules, the names introduced by Udding [23]).

6.1 The R1 Rule

The R1 rule concerns two successive symbols of the same type (two inputs or two
outputs). Classically, in a context of total ordering, the two possible relative orders
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have to be taken into account and have to produce the same result

∀s, t ∈ tR, (a, b ∈ iR) ∨ (a, b ∈ oR) ;
sabt ∈ tR ⇔ sbat ∈ tR

(15)

E RE R

t

a

b

a

b

Figure 3: About the R1 rule (two inputs case)

Let us discuss this rule using Figure 3. On the left, signal a has a lower speed
than signal b (a lower speed may be the consequence of indirect communications
causing further delays). On the right, signal b is sent at such a date that it lies in
the future of a (a ⊳ b). In a classical framework, this order appears differently for
E and R in the first case (on the left), while being identical in the second case (on
the right). The independence on this relative order of the string following events
a and b justifies the classical formulation of the R1 rule (15). On the other hand,
within a relativistic framework, no time order, hence no causal order, can exist
between a and b. Consequently, a relativistic version of the R1 rule should read

∀s, t ∈ tR, (a, b ∈ iR) ∨ (a, b ∈ oR) ;
( s ⊳ a ⊳ b ⊳ t ∈ tR ∨ s ⊳ (a ⊲⊳ b) ⊳ t ∈ tR )

⇒ s ⊳ (a‖b) ⊳ t ∈ tR

where (a‖b) is a shorthand notation for all possible time-orders a ⊳ b, (a ⊲⊳ b) and
b ⊳ a (see the discussion at the end of previous section). This is the case that was
discussed in Section 4. When no signal (acknowledge) can inform E that a has
been received before the emission of b, no consensus can be reached by E and R
on the order of a and b. This is acceptable if the order between a and b has no
consequence on subsequent computations.

6.2 The R0 Rule

The R0 rule states that two successive events cannot be identical, i.e. transmitted
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on the same channel and of the same type. This rule aims to avoid confusing or
loosing events. Classically, it reads

∀s ∈ tR, a ∈ aR ; saa 6∈ tR

In relativistic spacetime, one must replace saa in the R1 rule by s ⊳ (a‖a). How
should one interpret the rule R0? In fact, two events a with no causal relation are
independently caused by the same preceding event s. If one insists on repeating
an event a, the second one has to come after an acknowledgement of the first one,
in order to avoid any confusion. The R0 rule may then be rewritten

∀s ∈ tR, a ∈ aR ; s ⊳ (a‖a) 6∈ tR

6.3 The R2 Rule

The R2 rule concerns two symbols of opposite type (one input and one output).
In general, these two events may be causally ordered and this order may have a
meaning. No ambiguity arises in that case. This corresponds to a → b, which we
implement by a ⊳ b. But if these two events are not ordered, or if they are ordered
while the two different orders remain possible, then these possibilities have to entail
the same consequences, as propagation delays can change the order. Classically,
this rule reads

∀s, t ∈ tR, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR) ;
(sab ∈ tR ∧ sba ∈ tR) ⇒ (sabt ∈ tR ⇔ sbat ∈ tR)

Let us discuss this rule using Figure 4. On the right, a and b signals are clearly
not ordered (a ⊲⊳ b holds). But on the left, which represents a ⊳ b, one cannot
determine whether a causal order holds (a → b) or whether it is a special case of
absence of order (a‖b).

The purpose of the R2 rule is to force one, when implementing (a‖b), to make
the case a ⊳ b have the same consequences as b ⊳ a or a ⊲⊳ b. The R2 rule may
then be rewritten

∀s, t ∈ tR, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR) ;
[

( s ⊳ a ⊳ b ∈ tR ∧ s ⊳ b ⊳ a ∈ tR )

∨ s ⊳ (a ⊲⊳ b) ∈ tR
]

⇒
[

( s ⊳ a ⊳ b ⊳ t ∈ tR ∨ s ⊳ (a ⊲⊳ b) ⊳ t ∈ tR )

⇒ s ⊳ (a‖b) ⊳ t ∈ tR
]
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Figure 4: About the R2 rule

6.4 The R′
2 Rule

The R2 rule, under the form just discussed, may be too constraining in some cases.
This is better seen again using Figure 4. Let us assume that the two drawings
represent the same non-ordered case s ⊳ (a‖b). On the left, R can be seen to have
more information than E on the time ordering of a and b. R also knows that E has
to see the same order. On the other hand, E cannot infer the time order seen by
R, as it has no knowledge of the propagation delays. For instance, E could infer
(a ⊲⊳ b). In that case, only R can be authorized to make a decision. For instance,
R can emit d if a and b are not causally ordered while a ⊳ b holds (see Figure 5).

E R

a

E R

t

b

c

b

a

c

d

Figure 5: About the R′
2 rule
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If an event c is emitted with the same type as a, c must exist whatever the
order seen by R, because c is emitted by E, which has less information than R.
This is ensured by the R′

2 rule, which classically reads

∀s, t ∈ tR, (a, c ∈ iR ∧ b ∈ oR)
∨ (a, c ∈ oR ∧ b ∈ iR) ;

(sabtc ∈ tR ∧ sbat ∈ tR) ⇒ sbatc ∈ tR

R′
2 may then be rewritten

∀s, t ∈ tR, (a, c ∈ iR ∧ b ∈ oR)
∨ (a, c ∈ oR ∧ b ∈ iR) ;

[

( s ⊳ a ⊳ b ⊳ t ⊳ c ∈ tR ∧ s ⊳ b ⊳ a ⊳ t ∈ tR )

∨ s ⊳ (a ⊲⊳ b) ⊳ t ⊳ c ∈ tR
]

⇒ s ⊳ (a‖b) ⊳ t ⊳ c ∈ tR

6.5 The R3 Rules

The R3 rules concern the possibility (or impossibility) for two symbols to be mutu-
ally exclusive. For instance, the design of a logic device may result in the following
property. If a and b are respectively input and output symbols, sharing no causal
order (a‖b), a reception of a prevents b from being emitted as soon as a precedes b
(a ⊳ b). If the design has to avoid such a possibility, the latter must be excluded
by a rule. Classically, the corresponding rule reads

sa ∈ tR ∧ sb ∈ tR ⇒ sab ∈ tR (16)

Extended to any combination of symbols of the same type, this rule can be used
to classify logic devices:

• Two input symbols can be mutually exclusive if the environment has to make
a choice (data communication devices).

• Two output symbols can be mutually exclusive if the component has to make
a choice (arbitration devices).

The R3 rules aim at forbidding such choices. For instance, data communication
devices are excluded with the following rule: ∀s ∈ tR, a ∈ iR∧ b ∈ iR ; then (16).
In a relativistic framework, the second part of expression (16) must be replaced
by the following s ⊳ (a‖b) ∈ tR
so that expression (16) should be rewritten

[

s ⊳ (a ⊲⊳ b) ∈ tR ∨ (s ⊳ a ∈ tR ∧ s ⊳ b ∈ tR)
]

⇒ s ⊳ (a‖b) ∈ tR (17)
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Inserting conditions bearing on different types of symbols before expression (17)
generates a group of three different R3 rules.

R′
3 rule: this first rule defines the most constrained class of components, where

neither the environment, nor the component can make a choice (Muller-C is in this
class)

∀s ∈ tR, a 6= b ∈ aR ; then (17).

R′′
3 rule: this second rule accepts data communication devices, as the corre-

sponding condition does not constrain two inputs (a choice can be made on two
inputs only)

∀s ∈ tR, a 6= b ∈ aR a /∈ iR ∨ b /∈ iR ; then (17).

R′′′
3 rule: according to this third rule, not only two inputs but also two outputs

can be mutually exclusive (arbiters are in this class)

∀s ∈ tR, (a ∈ iR ∧ b ∈ oR) ∨ (a ∈ oR ∧ b ∈ iR) ; then (17).

The three R3 rules have been ordered according to decreasing constraints put
on specifications. They allow one to generalize Udding’s classes of DI-components
to the relativistic case.

6.5.1 Relativistic DI-components

By definition, relativistic DI-components have specifications that obey R0, R1, R
′
2

and R′′′
3 rules.

7 Classical rules

We now discuss how relativistic traces reduce to classical traces when communica-
tions can be considered to occur in a classical spacetime (i.e. assuming that prop-
agations and time delays are totally controlled, at the level of elementary logical
operations). Accordingly, relativistic rules reduce to their classical analogs. This
reduction amounts to a mapping that transforms R-traces into classical traces.
In particular, the set of symbols a, b, ⊳, ⊲⊳ is reduced when operations are re-
stricted to a classical environment which is more constraining, as symbol ⊲⊳ is not
supported any more.

Let us note that an R-trace describes a partial time-ordering that applies in
particular to propagations, although a classical trace describes a total time-ordering
which refers to points in spacetime. Both notions however coincide when applied
to events, i.e. to signals at the input or output ports of a component. Hence,
although a symbol a does not a priori denote the same object in a R-trace as in
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a trace, it is legitimate to define its mapping from a R-trace to a classical trace.
One obtains the following mapping.

• a ⊳ b ∈ tR is mapped onto ab ∈ tR.

• (a ⊲⊳ b) ∈ tR is mapped onto ab ∈ tR ∧ ba ∈ tR.

• a‖b ∈ tR is mapped onto ab ∈ tR ∧ ba ∈ tR.

This mapping amounts to replacing the absence of time-order, unavoidable in a
relativistic framework, by the two possible orders, as imposed by the syntax of
classical traces. As illustrated by spacetime diagrams, one R-trace maps onto a
pair of classical traces. This corresponds to the two different geometrical situations
that can result when two intersecting slanted arrows are made to separately in-
tersect the two vertical lines representing a component and its environment. Both
resulting traces have to be present in the specification of the component. Indeed,
all relativistic rules end with the form

⇒ (a‖b) ∈ tR

which is mapped onto the expression

⇒ ab ∈ tR ∧ ba ∈ tR

In other words, all these rules concern the absence of causal order and their restric-
tion to classical spacetime amounts to imposing the presence of the two opposite
orders. The resulting rules are easily seen to correspond to the standard ones. In
fact, one can note that it is precisely because Udding’s rules have the property
of imposing the presence of the two opposite orders that they can be obtained as
restrictions of relativistic rules. This is the reason why the notion of DI-systems
can be generalized to relativistic spacetime with its partial time-ordering.

8 Conclusion

The relativistic and classical frameworks lead to conceptions of time that differ
in a significant way. Time-simultaneity and total ordering in time are classical
properties. In contrast, relativistic time can only satisfy a partial ordering to re-
main compatible with observer-dependent propagation delays. Practical methods
depending on the classical properties of time may reach a point where they cease
to be sufficient for a circuit to properly function, due to propagation delays. The
models used to design logic devices can then be improved by releasing these proper-
ties and looking for a better implementation of relativistic causality. In particular,
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causal relations can be made compatible with the impossibility for some events to
satisfy a time order [9].

Delay Insensitivity represents an efficient criterion for designing functional
clockless circuits in a simple way. But usual models, such as the trace formal-
ism, rely on a classical representation of time-ordering and causality. Nonetheless,
traces can be generalized to R-traces which provide a similar description of the
dialog between a DI component and its environment while being compatible with
relativistic causality. The usual formalism [22, 23, 24] is recovered when imple-
mentations of components are restricted to a classical environment.

An R-trace structure describes the specification of a component-environment
pair as the list of all time orders that can hold between the communication events of
the pair dialog. When rewritten, Udding’s rules keep a simple form that clarifies
their relation with causality properties. Although the R-trace formalism, when
applied to specifications of DI components, takes a form similar to its classical
analog [2, 3], interpretations differ significantly. R-trace structures describe the
time-order and causality relations of all events, including signal propagations, while
classical structures only refer to events that are localized in time.

The biggest merit of the R-trace formalism is to clarify the semantics under-
lying Udding’s rules by exhibiting their intrinsic relation with time-ordering and
physical causality. Further theoretical insight, with potential consequences for ap-
plications, could be gained by comparing R-traces to other existing formalisms
dealing with Delay Insensitivity. Criteria have indeed been developed to perform
such comparisons as, for instance, the strength of semantic properties in equiva-
lence relationships [25].

Besides a clear representation of causal relations, another merit of the R-trace
formalism is to replace the description of a distributed system as a set of individual
components that communicate by a composition of component-environment pairs.
This rather describes the composition of interfaces, where interface means the
dialog between the two members of a pair. In contrast to alternative descriptions
of causality, such as Petri nets, this conception allows a simple composition of
multiple components, by considering the latter as a multiplication of interfaces.
This approach also opens new and interesting possibilities for solving questions
raised by the synchronization of complex distributed systems [7, 8, 10]. A further
advantage of the formalism is its ability to include in the description, with minor
changes, components in motion. This could also allow the treatment of distributed
algorithms on a network of mobile computers within the formalism of DI systems.
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