
42

A Hardware Abstraction Layer in Java1

MARTIN SCHOEBERL, Vienna University of Technology2
STEPHAN KORSHOLM, Aalborg University3
TOMAS KALIBERA, Purdue University4
ANDERS P. RAVN, Aalborg University5

Embedded systems use specialized hardware devices to interact with their environment, and since they6
have to be dependable, it is attractive to use a modern, type-safe programming language like Java to de-7
velop programs for them. Standard Java, as a platform-independent language, delegates access to devices,8
direct memory access, and interrupt handling to some underlying operating system or kernel, but in the9
embedded systems domain resources are scarce and a Java Virtual Machine (JVM) without an underlying10
middleware is an attractive architecture. The contribution of this article is a proposal for Java packages11
with hardware objects and interrupt handlers that interface to such a JVM. We provide implementations12
of the proposal directly in hardware, as extensions of standard interpreters, and finally with an operating13
system middleware. The latter solution is mainly seen as a migration path allowing Java programs to co-14
exist with legacy system components. An important aspect of the proposal is that it is compatible with the15
Real-Time Specification for Java (RTSJ).16

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—Real-time17
systems and embedded systems; D.3.3 [Programming Languages]: Language Constructs and Features—18
Input/output19

General Terms: Languages, Design20

Additional Key Words and Phrases: Device driver, embedded system, Java, Java virtual machine21

ACM Reference Format:22
Schoeberl, M., Korsholm, S., Kalibera, T., and Ravn, A. P. 2011. A hardware abstraction layer in Java. ACM23
Trans. Embed. Comput. Syst. 10, 4, Article 42 (November 2011), 40 pages.24
DOI = 10.1145/2043662.2043666 http://doi.acm.org/10.1145/2043662.204366625

1. INTRODUCTION26

When developing software for an embedded system, for instance an instrument, it is27
necessary to control specialized hardware devices, for instance a heating element or an28
interferometer mirror. These devices are typically interfaced to the processor through29
device registers and may use interrupts to synchronize with the processor. In order30
to make the programs easier to understand, it is convenient to introduce a Hardware31
Abstraction Layer (HAL), where access to device registers and synchronization through32
interrupts are hidden from conventional program components. A HAL defines an in-33
terface in terms of the constructs of the programming language used to develop the34

The research leading to these results received funding from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under grant agreement number 216682 (JEOPARD).
Authors’ addresses: M. Schoeberl (corresponding author), Vienna University of Technology, Austria; email:
mschoebe@mail.tuwien.ac.at; S. Korsholm, Aalborg University, Denmark; T. Kalibera, Purdue University,
U.S.A.; A. P. Ravn, Aalborg University, Denmark.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© 2011 ACM 1539-9087/2011/11-ART42 $10.00
DOI 10.1145/2043662.2043666 http://doi.acm.org/10.1145/2043662.2043666

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:2 M. Schoeberl et al.

application. Thus, the challenge is to develop an abstraction that gives efficient ac-35
cess to the hardware, while staying within the computational model provided by the36
programming language.37

Our first ideas on a HAL for Java have been published in Schoeberl et al. [2008] and38
Korsholm et al. [2008]. This article combines the two papers, provides a much wider39
background of related work, gives two additional experimental implementations, and40
gives performance measurements that allow an assessment of the efficiency of the41
implementations. The remainder of this section introduces the concepts of the Java-42
based HAL.43

1.1 Java for Embedded Systems44

Over the nearly 15 years of its existence Java has become a popular programming45
language for desktop and server applications. The concept of the Java Virtual Ma-46
chine (JVM) as the execution platform enables portability of Java applications. The47
language, its API specification, as well as JVM implementations have matured; Java48
is today employed in large-scale industrial applications. The automatic memory man-49
agement takes away a burden from the application programmers and together with50
type safety helps to isolate problems and, to some extent, even run untrusted code. It51
also enhances security; attacks like stack overflow are not possible. Java integrates52
threading support and dynamic loading into the language, making these features eas-53
ily accessible on different platforms. The Java language and JVM specifications are54
proven by different implementations on different platforms, making it relatively easy55
to write platform-independent Java programs that run on different JVM implemen-56
tations and underlying OS/hardware. Java has a standard API for a wide range of57
libraries, the use of which is thus again platform-independent. With the ubiquity of58
Java, it is easy to find qualified programmers who know the language, and there is59
strong tool support for the whole development process. According to an experimental60
study [Phipps 1999], Java has lower bug rates and higher productivity rates than C++.61
Indeed, some of these features come at a price of larger footprint (the virtual machine62
is a nontrivial piece of code), typically higher memory requirements, and sometimes63
degraded performance, but this cost is accepted in industry.64

Recent real-time Java virtual machines based on the Real-Time Specification for65
Java (RTSJ) provide controlled and safe memory allocation. Also there are platforms66
for less critical systems with real-time garbage collectors. Thus, Java is ready to make67
its way into the embedded systems domain. Mobile phones, PDAs, or set-top boxes run68
Java Micro Edition, a Java platform with a restricted set of standard Java libraries.69
Real-time Java has been and is being evaluated as a potential future platform for70
space avionics both by NASA and ESA space agencies. Some Java features are even71
more important for embedded than for desktop systems because of missing features72
of the underlying platform. For instance, the RTEMS operating system used by ESA73
for space missions does not support hardware memory protection even for CPUs that74
do support it (like LEON3, a CPU for ESA space missions). With Java’s type safety75
hardware protection is not needed to spatially isolate applications. Moreover, RTEMS76
does not support dynamic libraries, but Java can load classes dynamically.77

Many embedded applications require very small platforms, therefore it is interest-78
ing to remove as much as possible of an underlying operating system or kernel, where79
a major part of code is dedicated to handling devices. Furthermore, Java is considered80
as the future language for safety-critical systems [Henties et al. 2009]. As certifica-81
tion of safety-critical systems is very expensive, the usual approach is to minimize the82
code base and supporting tools. Using two languages (e.g., C for programming device83
handling in the kernel and Java for implementing the processing of data) increases84

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:3

Fig. 1. The hardware: a bus connects a processor to device registers and memory, and an interrupt bus
connects devices to a processor.

the complexity of generating a safety case. A Java-only system reduces the complexity85
of the tool support and therefore the certification effort. Even in less critical systems86
the same issues will show up as decreased productivity and dependability of the soft-87
ware. Thus it makes sense to investigate a general solution that interfaces Java to the88
hardware platform; that is the objective of the work presented here.89

1.2 Hardware Assumptions90

The hardware platform is built up along one or more buses (in small systems typically91
only one) that connect the processor with memory and device controllers. Device con-92
trollers have reserved some part of the address space of a bus for its device registers.93
They are accessible for the processor as well, either through special I/O instructions or94
by ordinary instructions when the address space is the same as the one for addressing95
memory, a so called memory mapped I/O solution. In some cases the device controller96
will have Direct Memory Access (DMA) as well, for instance for high-speed transfer of97
blocks of data. Thus the basic communication paradigm between a controller and the98
processor is shared memory through the device registers and/or through DMA. With99
these facilities only, synchronization has to be done by testing and setting flags, which100
means that the processor has to engage in some form of busy waiting. This is elim-101
inated by extending the system with an interrupt bus, where device controllers can102
generate a signal that interrupts the normal flow of execution in the processor and di-103
rect it to an interrupt handling program. Since communication is through shared data104
structures, the processor and the controllers need a locking mechanism; therefore in-105
terrupts can be enabled or disabled by the processor through an interrupt control unit.106
The typical hardware organization is summarized in Figure 1.107

1.3 A Computational Model108

In order to develop a HAL, the device registers and interrupt facilities must be mapped109
to programming language constructs, such that their use corresponds to the computa-110
tional model underlying the language. In the following we give simple device examples111
which illustrate the solution we propose for doing it for Java.112

1.3.1 Hardware Objects. Consider a simple Parallel Input/Output (PIO) device control-113
ling a set of input and output pins. The PIO uses two registers: the data register and114

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:4 M. Schoeberl et al.

Fig. 2. The parallel port device as a simple Java class.

Fig. 3. Computational model: several threads of execution communicate via shared state variables and
receive signals.

the control register. Writing to the data register stores the value into an internal latch115
that drives the output pins. Reading from the data register returns the value that is116
present on the input pins. The control register configures the direction for each PIO117
pin. When bit n in the control register is set to 1, pin n drives out the value of bit n of118
the data register. A 0 at bit n in the control register configures pin n as input pin. At119
reset the port is usually configured as input port, a safe default configuration.120

In an object-oriented language the most natural way to represent a device is as an121
object: the hardware object. Figure 2 shows a class definition, object instantiation,122
and use of the hardware object for the simple parallel port. An instance of the class123
ParallelPort is the hardware object that represents the PIO. The reference myport points124
to the hardware object. To provide this convenient representation of devices as objects,125
a JVM internal mechanism is needed to access the device registers via object fields126
and to create the device object and receive a reference to it. We elaborate on the idea127
of hardware objects in Section 3.1 and present implementations in Section 4.128

1.3.2 Interrupts. When we consider an interrupt, it must invoke some program code129
in a method that handles it. We need to map the interruption of normal execution to130
some language concept, and here the concept of an asynchronous event is useful. The131
resulting computational model for the programmer is shown in Figure 3. The signals132
are external, asynchronous events that map to interrupts.133

A layered implementation of this model with a kernel close to the hardware and134
applications on top has been very useful in general-purpose programming. Here one135
may even extend the kernel to manage resources and provide protection mechanisms136
such that applications are safe from one another, as for instance when implementing137

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:5

Fig. 4. An example interrupt handler for an RS232 interface. On an interrupt the method handle() is in-
voked. The private objects rs232 and interruptControl are hardware objects that represent the device registers
and the interrupt control unit.

trusted interoperable computing platforms [Group 2008]. Yet there is a price to pay138
which may make the solution less suitable for embedded systems: adding new device139
drivers is an error-prone activity [Chou et al. 2001], and protection mechanisms impose140
a heavy overhead on context switching when accessing devices.141

The alternative we propose is to use Java directly since it already supports multi-142
threading and use methods in the special InterruptHandler objects to handle interrupts.143
The idea is illustrated in Figure 4, and the details, including synchronization and in-144
teraction with the interrupt control, are elaborated in Section 3.2. Implementations145
are found in Section 4.146

1.4 Mapping Between Java and the Hardware147

The proposed interfacing from hardware to Java does not require language extensions.148
The Java concepts of packages, classes, and synchronized objects turn out to be power-149
ful enough to formulate the desired abstractions. The mapping is done at the level of150
the JVM. The JVM already provides typical OS functions handling:151

— address space and memory management;152
— thread management;153
— interprocess communication.154

These parts need to be modified so they cater for interfaces to the hardware.155
Yet, the architectures of JVMs for embedded systems are more diverse than on156

desktop or server systems. Figure 5 shows variations of Java implementations in157
embedded systems and an example of the control flow for a Web server application.158
The standard approach with a JVM running on top of an Operating System (OS) is159
shown in Figure 5(a).160

A JVM without an OS is shown in Figure 5(b). This solution is often called running161
on the bare metal. The JVM acts as the OS and provides thread scheduling and low-162
level access to the hardware. In this case the network stack can be written entirely in163

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:6 M. Schoeberl et al.

Fig. 5. Configurations for an embedded JVM: (a) standard layers for Java with an operating system, equiv-
alent to desktop configurations; (b) a JVM on the bare metal; and (c) a JVM as a Java processor.

Java. JNode1 is an approach to implement the OS entirely in Java. This solution has164
become popular even in server applications.2165

Figure 5(c) shows an embedded solution where the JVM is part of the hardware166
layer: it is implemented in a Java processor. With this solution the native layer can167
be completely avoided and all code (application and system code) is written entirely in168
Java.169

Figure 5 shows also the data and control flow from the application down to the170
hardware. The example consists of a Web server and an Internet connection via Ether-171
net. In case (a) the application Web server talks with java.net in the Java library. The172
flow goes down via a native interface to the TCP/IP implementation and the link-layer173
device driver within the OS (usually written in C). The device driver talks with the174
Ethernet chip. In (b) the OS layer is omitted: the TCP/IP layer and the link-layer de-175
vice driver are now part of the Java library. In (c) the JVM is part of the hardware layer,176
and direct access from the link-layer driver to the Ethernet hardware is mandatory.177

With our proposed HAL, as shown in Figure 6, the native interface within the JVM178
in (a) and (b) disappears. Note how the network stack moves up from the OS layer179
to the Java library in example (a). All three versions show a pure Java implemen-180
tation of the whole network stack. The Java code is the same for all three solutions.181
Version (b) and (c) benefit from hardware objects and interrupt handlers in Java as182
access to the Ethernet device is required from Java source-code. In Section 5 we show183
a simple Web server application implemented completely in Java as evaluation of our184
approach.185

1.5 Contributions186

The key contribution of this article is a proposal for a Java HAL that can run on the187
bare metal while still being safe. This idea is investigated in quite a number of places188
which are discussed in the related work section where we comment on our initial ideas189
as well. In summary, the proposal gives an interface to hardware that has the following190
benefits.191

1http://www.jnode.org/
2BEA System offers the JVM LiquidVM that includes basic OS functions and does not need a guest OS.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:7

Fig. 6. Configurations for an embedded JVM with hardware objects and interrupt handlers: (a) standard
layers for Java with an operating system, equivalent to desktop configurations; (b) a JVM on the bare metal;
and (c) a JVM as a Java processor.

Object-oriented. An object representing a device is the most natural integration into192
an object-oriented language, and a method invocation to a synchronized object is a193
direct representation of an interrupt.194

Safe. The safety of Java is not compromised. Hardware objects map object fields to195
device registers. With a correct class that represents the device, access to it is safe.196
Hardware objects can be created only by a factory residing in a special package.197

Generic. The definition of a hardware object and an interrupt handler is independent198
of the JVM. Therefore, a common standard for different platforms can be defined.199

Efficient. Device register access is performed by single bytecodes getfield and putfield.200
We avoid expensive native calls. The handlers are first-level handlers; there is no delay201
through event queues.202

The proposed Java HAL would not be useful if it had to be modified for each partic-203
ular kind of JVM; thus a second contribution of this article is a number of prototype204
implementations illustrating the architectures presented in Figure 6: implementa-205
tions in Kaffe [Wilkinson 1996] and OVM [Armbruster et al. 2007] represent the206
architecture with an OS (Figure 6(a)), the implementation in SimpleRTJ [RTJ Com-207
puting 2000] represents the bare metal solution (Figure 6(b)), and the implementation208
in JOP [Schoeberl 2008] represents the Java processor solution (Figure 6(c)).209

Finally, we must not forget the claim for efficiency, and therefore the article ends210
with some performance measurements that indicate that the HAL layer is generally211
as efficient as native calls to C code external to the JVM.212

2. RELATED WORK213

Already in the 1970’s it was recognized that an operating system might not be the214
optimal solution for special-purpose applications. Device access was integrated into215
high-level programming languages like Concurrent Pascal [Hansen 1977; Ravn 1980]216
and Modula (Modula-2) [Wirth 1977, 1982] along with a number of similar languages,217
for example, UCSD Pascal. They were meant to eliminate the need for operating sys-218
tems and were successfully used in a variety of applications. The programming lan-219
guage Ada, which has been dominant in defence and space applications to this day,220

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:8 M. Schoeberl et al.

may be seen as a continuation of these developments. The advent of inexpensive mi-221
croprocessors, from the mid 1980’s and on, lead to a regression to assembly and C222
programming. The hardware platforms were small with limited resources and the de-223
velopers were mostly electronic engineers, who viewed them as electronic controllers.224
Program structure was not considered a major issue in development. Nevertheless, the225
microcomputer has grown, and is now far more powerful than the minicomputer that226
it replaced. With powerful processors and an abundance of memory, the ambitions for227
the functionality of embedded systems grow, and programming becomes a major issue228
because it may turn out to be the bottleneck in development. Consequently, there is a229
renewed interest in this line of research.230

An excellent overview of historical solutions to access hardware devices from and231
implement interrupt handlers in high-level languages, including C, is presented in232
Chapter 15 of Burns and Wellings [2001]. The solution to device register access in233
Modula-1 (Chapter 15.3) is very much like C; however, the constructs are safer because234
they are encapsulated in modules. Interrupt handlers are represented by threads that235
block to wait for the interrupt. In Ada (Chapter 15.4) the representation of individual236
fields in registers can be described precisely by representation classes, while the corre-237
sponding structure is bound to a location using the Address attribute. An interrupt is238
represented in the current version of Ada by a protected procedure, although initially239
represented (Ada 83) by task entry calls.240

The main ideas in having device objects are thus found in the earlier safe languages,241
and our contribution is to align them with a Java model, and in particular, as discussed242
in Section 4, implementation in a JVM. From the Ada experience we learn that direct243
handling of interrupts is a desired feature.244

2.1 The Real-Time Specification for Java245

The Real-Time Specification for Java (RTSJ) [Bollella et al. 2000] defines a JVM exten-246
sion which allows better timeliness control compared to a standard JVM. The core fea-247
tures are: fixed priority scheduling, monitors which prevent priority inversion, scoped248
memory for objects with limited lifetime, immortal memory for objects that are never249
finalized, and asynchronous events with CPU time consumption control.250

The RTSJ also defines an API for direct access to physical memory, including hard-251
ware registers. Essentially one uses RawMemoryAccess at the level of primitive data252
types. Although the solution is efficient, this representation of physical memory is not253
object-oriented, and there are some safety issues: When one raw memory area rep-254
resents an address range where several devices are mapped to, there is no protection255
between them. Yet, a type-safe layer with support for representing individual registers256
can be implemented on top of the RTSJ API.257

The RTSJ specification suggests that asynchronous events are used for interrupt258
handling. Yet, it neither specifies an API for interrupt control nor semantics of the259
handlers. Any interrupt handling application thus relies on some proprietary API260
and proprietary event handler semantics. Second-level interrupt handling can be261
implemented within the RTSJ with an AsyncEvent that is bound to a happening.262
The happening is a string constant that represents an interrupt, but the meaning263
is implementation-dependent. An AsyncEventHandler or BoundAsyncEventHandler can264
be added as handler for the event. Also an AsyncEventHandler can be added via a265
POSIXSignalHandler to handle POSIX signals. An interrupt handler, written in C, can266
then use one of the two available POSIX user signals.267

RTSJ offers facilities very much in line with Modula or Ada for encapsulating268
memory-mapped device registers. However, we are not aware of any RTSJ implemen-269
tation that implements RawMemoryAccess and AsyncEvent with support for low-level270

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:9

device access and interrupt handling. Our solution could be used as specification of271
such an extension. It would still leave the first-level interrupt handling hidden in an272
implementation; therefore an interesting idea is to define and implement a two-level273
scheduler for the RTSJ. It should provide the first-level interrupt handling for asyn-274
chronous events bound to interrupts and delegate other asynchronous events to an275
underlying second-level scheduler, which could be the standard fixed priority preemp-276
tive scheduler. This would be a fully RTSJ-compliant implementation of our proposal.277

2.2 Hardware Interface in JVMs278

The aJile Java processor [aJile 2000] uses native functions to access devices. Inter-279
rupts are handled by registering a handler for an interrupt source (e.g., a GPIO pin).280
Systronix suggests3 to keep the handler short, as it runs with interrupts disabled,281
and delegate the real handling to a thread. The thread waits on an object with ceil-282
ing priority set to the interrupt priority. The handler just notifies the waiting thread283
through this monitor. When the thread is unblocked and holds the monitor, effectively284
all interrupts are disabled.285

Komodo [Kreuzinger et al. 2003] is a multithreaded Java processor targeting real-286
time systems. On top of the multiprocessing pipeline the concept of interrupt service287
threads is implemented. For each interrupt one thread slot is reserved for the interrupt288
service thread. It is unblocked by the signaling unit when an interrupt occurs. A289
dedicated thread slot on a fine-grain multithreading processor results in a very short290
latency for the interrupt service routine. No thread state needs to be saved. However,291
this comes at the cost to store the complete state for the interrupt service thread in the292
hardware. In the case of Komodo, the state consists of an instruction window and the293
on-chip stack memory. Devices are represented by Komodo-specific I/O classes.294

Muvium [Caska 2009] is an ahead-of-time compiling JVM solution for very resource-295
constrained microcontrollers (Microchip PIC). Muvium uses an Abstract Peripheral296
Toolkit (APT) to represent devices. APT is based on an event-driven model for inter-297
action with the external world. Device interrupts and periodic activations are repre-298
sented by events. Internally, events are mapped to threads with priority dispatched by299
a preemptive scheduler. APT contains a large collection of classes to represent devices300
common in embedded systems.301

In summary, access to device registers is handled in both aJile, Komodo, and Mu-302
vium by abstracting them into library classes with access methods. This leaves the im-303
plementation to the particular JVM and does not give the option of programming them304
at the Java level. It means that extension with new devices involves programming at305
different levels, which we aim to avoid. Interrupt handling in aJile is essentially first306
level, but with the twist that it may be interpreted as RTSJ event handling, although307
the firing mechanism is atypical. Our mechanism would free this binding and allow308
other forms of programmed notification, or even leaving out notification altogether.309
Muvium follows the line of RTSJ and has a hidden first-level interrupt handling. Ko-310
modo has a solution with first-level handling through a full context switch; this is very311
close to the solution advocated in Modula 1, but it has in general a larger overhead312
than we would want to incur.313

2.3 Java Operating Systems314

The JX Operating System [Felser et al. 2002] is a microkernel system written mostly315
in Java. The system consists of components which run in domains, each domain316

3A template can be found at http://practicalembeddedjava.com/tutorials/aJileISR.html.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:10 M. Schoeberl et al.

having its own garbage collector, threads, and a scheduler. There is one global preemp-317
tive scheduler that schedules the domain schedulers which can be both preemptive318
and nonpreemptive. Inter-domain communication is only possible through commu-319
nication channels exported by services. Low-level access to the physical memory,320
memory-mapped device registers, and I/O ports are provided by the core (“zero”)321
domain services, implemented in C. At the Java level ports and memory areas are322
represented by objects, and registers are methods of these objects. Memory is read and323
written by access methods of Memory objects. Higher layers of Java interfaces provide324
type-safe access to the registers; the low-level access is not type safe.325

Interrupt handlers in JX are written in Java and are run through portals; they can326
reside in any domain. Interrupt handlers cannot interrupt the garbage collector (the327
GC disables interrupts), run with CPU interrupts disabled, must not block, and can328
only allocate a restricted amount of memory from a reserved per-domain heap. Execu-329
tion time of interrupt handlers can be monitored: on a deadline violation the handler330
is aborted and the interrupt source disabled. The first-level handlers can unblock a331
waiting second-level thread either directly or via setting a state of a AtomicVariable332
synchronization primitive.333

The Java New Operating System Design Effort (JNode4) [Lohmeier 2005] is an OS334
written in Java where the JVM serves as the OS. Drivers are written entirely in Java.335
Device access is performed via native function calls. A first-level interrupt handler,336
written in assembler, unblocks a Java interrupt thread. From this thread the device337
driver-level interrupt handler is invoked with interrupts disabled. Some device drivers338
implement a synchronized handleInterrupt(int irq) and use the driver object to signal the339
upper layer with notifyAll(). During garbage collection all threads are stopped including340
the interrupt threads.341

The Squawk VM [Simon et al. 2006], now available open-source,5 is a platform for342
wireless sensors. Squawk is mostly written in Java and runs without an OS. Device343
drivers are written in Java and use a form of peek and poke interface to access the344
device registers. Interrupt handling is supported by a device driver thread that waits345
for an event from the JVM. The first-level handler, written in assembler, disables the346
interrupt and notifies the JVM. On a rescheduling point the JVM resumes the device347
driver thread. It has to reenable the interrupt. The interrupt latency depends on the348
rescheduling point and on the activity of the garbage collector. For a single device349
driver thread an average case latency of 0.1 ms is reported. For a realistic workload350
with an active garbage collector a worst-case latency of 13 ms has been observed.351

Our proposed constructs should be able to support the Java operating systems. For352
JX we observe that the concepts are very similar for interrupt handling, and actually353
for device registers as well. A difference is that we make device objects distinct from354
memory objects which should give better possibilities for porting to architectures with355
separate I/O buses. JNode is more traditional and hides first-level interrupt handling356
and device accesses in the JVM, which may - be less portable than our implementation.357
The Squawk solution has to have a very small footprint, but on the other hand it can358
probably rely on having few devices. Device objects would be at least as efficient as the359
peeks and pokes, and interrupt routines may eliminate the need for multithreading360
for simple systems, for example, with cyclic executives. Overall, we conclude that our361
proposed constructs will make implementation of a Java OS more efficient and perhaps362
more portable.363

4http://jnode.org/
5https://squawk.dev.java.net/

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:11

2.4 TinyOS and Singularity364

TinyOS [Hill et al. 2000] is an operating system designed for low-power, wireless sen-365
sor networks. TinyOS is not a a traditional OS, but provides a framework of compo-366
nents that are linked with the application code. The component-based programming367
model is supported by nesC [Gay et al. 2003], a dialect of C. TinyOS components pro-368
vide following abstractions: commands represent requests for a service of a component;369
events signal the completion of a service; and tasks are functions executed nonpreemp-370
tive by the TinyOS scheduler. Events also represent interrupts and preempt tasks. An371
event handler may post a task for further processing, which is similar to a second-level372
interrupt handler.373

I/O devices are encapsulated in components and the standard distribution of374
TinyOS includes a rich set of standard I/O devices. A Hardware Presentation Layer375
(HPL) abstracts the platform-specific access to the hardware (either memory or port376
mapped). Our proposed HAL is similar to the HPL, but represents the I/O devices377
as Java objects. A further abstraction into I/O components can be built above our378
presented Java HAL.379

Singularity [Hunt et al. 2005] is a research OS based on a runtime managed lan-380
guage (an extension of C#) to build a software platform with the main goal to be de-381
pendable. A small HAL (IoPorts, IoDma, IoIrq, and IoMemory) provides access to PC382
hardware. C# style attributes (similar to Java annotations) on fields are used to define383
the mapping of class fields to I/O ports and memory addresses. The Singularity OS384
clearly uses device objects and interrupt handlers, thus demonstrating that the ideas385
presented here transfer to a language like C#.386

2.5 Summary387

In our analysis of related work we see that our contribution is a selection, adapta-388
tion, refinement, and implementation of ideas from earlier languages and platforms389
for Java. A crucial point, where we have spent much time, is to have a clear interface390
between the Java layer and the JVM. Here we have used the lessons from the Java391
OS and the JVM interfaces. Finally, it has been a concern to be consistent with the392
RTSJ because this standard and adaptations of it are the instruments for developing393
embedded real-time software in Java.394

3. THE HARDWARE ABSTRACTION LAYER395

In the following section the hardware abstraction layer for Java is defined. Low-level396
access to devices is performed via hardware objects. Synchronization with a device397
can be performed with interrupt handlers implemented in Java. Finally, portability398
of hardware objects, interrupt handlers, and device drivers is supported by a generic399
configuration mechanism.400

3.1 Device Access401

Hardware objects map object fields to device registers. Therefore, field access with402
bytecodes putfield and getfield accesses device registers. With a correct class that rep-403
resents a device, access to it is safe; it is not possible to read or write to an arbitrary404
memory address. A memory area (e.g., a video frame buffer) represented by an array405
is protected by Java’s array bounds check.406

In a C-based system the access to I/O devices can either be represented by a C407
struct (similar to the class shown in Figure 2) for memory-mapped I/O devices or needs408
to be accessed by function calls on systems with a separate I/O address space. With409
the hardware object abstraction in Java the JVM can represent an I/O device as a410
class independent of the underlying low-level I/O mechanism. Furthermore, the strong411

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:12 M. Schoeberl et al.

Fig. 7. The marker class for hardware objects.

Fig. 8. A serial port class with device methods.

typing of Java avoids hard to find programming errors due to wrong pointer casts or412
wrong pointer arithmetic.413

All hardware classes have to extend the abstract class HardwareObject (see414
Figure 7). This empty class serves as type marker. Some implementations use it to415
distinguish between plain objects and hardware objects for the field access. The416
package-visible-only constructor disallows creation of hardware objects by the appli-417
cation code that resides in a different package. Figure 8 shows a class representing a418
serial port with a status register and a data register. The status register contains flags419
for receive register full and transmit register empty; the data register is the receive420
and transmit buffer. Additionally, we define device-specific constants (bit masks for the421
status register) in the class for the serial port. All fields represent device registers that422
can change due to activity of the hardware device. Therefore, they must be declared423
volatile.424

In this example we have included some convenience methods to access the hardware425
object. However, for a clear separation of concerns, the hardware object represents only426
the device state (the registers). We do not add instance fields to represent additional427
state, that is, mixing device registers with heap elements. We cannot implement a com-428
plete device driver within a hardware object; instead a complete device driver owns a429
number of private hardware objects along with data structures for buffering, and it430
defines interrupt handlers and methods for accessing its state from application pro-431
cesses. For device-specific operations, such as initialization of the device, methods in432
hardware objects are useful.433

Usually each device is represented by exactly one hardware object (see Sec-434
tion 3.3.1). However, there might be use cases where this restriction should be re-435
laxed. Consider a device where some registers should be accessed by system code only436
and some other by application code. In JOP there is such a device: a system device437
that contains a 1 MHz counter, a corresponding timer interrupt, and a watchdog port.438
The timer interrupt is programmed relative to the counter and used by the real-time439
scheduler, a JVM internal service. However, access to the counter can be useful for the440
application code. Access to the watchdog register is required from the application level.441
The watchdog is used for a sign-of-life from the application. If not triggered every442
second the complete system is restarted. For this example it is useful to represent one443

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:13

Fig. 9. System and application classes, one with visibility protection and one with setter and getter
methods, for a single hardware device

hardware device by two different classes: one for system code and one for application444
code. We can protect system registers by private fields in the hardware object for445
the application. Figure 9 shows the two class definitions that represent the same446
hardware device for system and application code respectively. Note how we changed447
the access to the timer interrupt register to private for the application hardware object.448

Another option, shown in class AppGetterSetter, is to declare all fields private for449
the application object and use setter and getter methods. They add an abstraction on450
top of hardware objects and use the hardware object to implement their functionality.451
Thus we still do not need to invoke native functions.452

Use of hardware objects is straightforward. After obtaining a reference to the object453
all that has to be done (or can be done) is to read from and write to the object fields.454
Figure 10 shows an example of client code. The example is a Hello World program455
using low-level access to a serial port via a hardware object. Creation of hardware456
objects is more complex and described in Section 3.3. Furthermore, it is JVM-specific457
and Section 4 describes implementations in four different JVMs.458

For devices that use DMA (e.g., video frame buffer, disk, and network I/O buffers) we459
map that memory area to Java arrays. Arrays in Java provide access to raw memory460
in an elegant way: the access is simple and safe due to the array bounds checking461
done by the JVM. Hardware arrays can be used by the JVM to implement higher-level462
abstractions from the RTSJ such as RawMemory or scoped memory.463

Interaction between the Garbage Collector (GC) and hardware objects needs to be464
crafted into the JVM. We do not want to collect hardware objects. The hardware object465

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:14 M. Schoeberl et al.

Fig. 10. A “Hello World” example with low-level device access via a hardware object.

Table I. Dispatching Properties of Different
ISR Strategies

ISR Context switches Priorities

Handler 2 Hardware
Event 3–4 Software

should not be scanned for references.6 This is permissible when only primitive types466
are used in the class definition for hardware objects; the GC scans only reference fields.467
To avoid collecting hardware objects, we mark the object to be skipped by the GC. The468
type inheritance from HardwareObject can be used as the marker.469

3.2 Interrupt Handling470

An Interrupt Service Routine (ISR) can be integrated with Java in two different ways:471
as a first-level handler or a second-level event handler.472

ISR handler. The interrupt is a method call initiated by the device.473
Usually this abstraction is supported in hardware by the processor and called a474

first-level handler.475

ISR event. The interrupt is represented by an asynchronous notification directed to476
a thread that is unblocked from a wait-state. This is also called deferred interrupt477
handling.478

An overview of the dispatching properties of the two approaches is given in Table I.479
The ISR handler approach needs only two context switches and the priority is set480
by the hardware. With the ISR event approach, handlers are scheduled at software481
priorities. The initial first-level handler, running at hardware priority, fires the event482

6If a hardware coprocessor, represented by a hardware object, itself manipulates an object on the heap and
holds the only reference to that object it has to be scanned by the GC.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:15

for the event handler. Also the first-level handler will notify the scheduler. In the best483
case three context switches are necessary: one to the first-level handler, one to the ISR484
event handler, and one back to the interrupted thread. If the ISR handler has a lower485
priority than the interrupted thread, an additional context switch from the first-level486
handler back to the interrupted thread is necessary.487

Another possibility is to represent an interrupt as a thread that is released by the488
interrupt. Direct support by the hardware (e.g., the interrupt service thread in Ko-489
modo [Kreuzinger et al. 2003]) gives fast interrupt response times. However, standard490
processors support only the handler model directly.491

Direct handling of interrupts in Java requires the JVM to be prepared to be inter-492
rupted. In an interpreting JVM an initial handler will reenter the JVM to execute the493
Java handler. A compiling JVM or a Java processor can directly invoke a Java method494
as response to the interrupt. A compiled Java method can be registered directly in the495
ISR dispatch table.496

If an internal scheduler is used (also called green threads) the JVM will need some497
refactoring in order to support asynchronous method invocation. Usually JVMs control498
the rescheduling at the JVM level to provide a lightweight protection of JVM internal499
data structures. These preemption points are called pollchecks or yield points; also500
some or all can be GC preemption points. In fact the preemption points resemble501
cooperative scheduling at the JVM level and use priority for synchronization. This502
approach works only for uniprocessor systems; for multiprocessors explicit synchro-503
nization has to be introduced.504

In both cases there might be critical sections in the JVM where reentry cannot505
be allowed. To solve this problem the JVM must disable interrupts around critical506
nonreenterable sections. The more fine-grained this disabling of interrupts can be507
done, the more responsive to interrupts the system will be.508

One could opt for second-level handlers only. An interrupt fires and releases an509
associated schedulable object (handler). Once released, the handler will be sched-510
uled by the JVM scheduler according to the release parameters. This is the RTSJ511
approach. The advantage is that interrupt handling is done in the context of a normal512
Java thread and scheduled as any other thread running on the system. The drawback513
is that there will be a delay from the occurrence of the interrupt until the thread gets514
scheduled. Additionally, the meaning of interrupt priorities, levels, and masks used by515
the hardware may not map directly to scheduling parameters supported by the JVM516
scheduler.517

In the following we focus on the ISR handler approach, because it allows program-518
ming the other paradigms within Java.519

3.2.1 Hardware Properties. We assume interrupt hardware as it is found in most com-520
puter architectures: interrupts have a fixed priority associated with them; they are521
set with a solder iron. Furthermore, interrupts can be globally disabled. In most522
systems the first-level handler is called with interrupts globally disabled. To allow523
nested interrupts (being able to interrupt the handler by a higher-priority interrupt524
as in preemptive scheduling) the handler has to enable interrupts again. However, to525
avoid priority inversion between handlers only interrupts with a higher priority will526
be enabled, either by setting the interrupt level or setting the interrupt mask. Soft-527
ware threads are scheduled by a timer interrupt and usually have a lower priority528
than interrupt handlers (the timer interrupt has the lowest priority of all interrupts).529
Therefore, an interrupt handler is never preempted by a software thread.530

Mutual exclusion between an interrupt handler and a software thread is ensured by531
disabling interrupts: either all interrupts or selectively. Again, to avoid priority inver-532
sion, only interrupts of a higher priority than the interrupt that shares the data with533

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:16 M. Schoeberl et al.

Fig. 11. Threads and shared data.

the software thread can be enabled. This mechanism is in effect the priority ceiling534
emulation protocol [Sha et al. 1990], sometimes called immediate ceiling protocol. It535
has the virtue that it eliminates the need for explicit locks (or Java monitors) on shared536
objects. Note that mutual exclusion with interrupt disabling works only in a unipro-537
cessor setting. A simple solution for multiprocessors is to run the interrupt handler538
and associated software threads on the same processor core. A more involved scheme539
would be to use spin-locks between the processors.540

When a device asserts an interrupt request line, the interrupt controller notifies the541
processor. The processor stops execution of the current thread. A partial thread con-542
text (program counter and processor status register) is saved. Then the ISR is looked543
up in the interrupt vector table and a jump is performed to the first instruction of the544
ISR. The handler usually saves additional thread context (e.g., the register file). It is545
also possible to switch to a new stack area. This is important for embedded systems546
where the stack sizes for all threads need to be determined at link time.547

3.2.2 Synchronization. Java supports synchronization between Java threads with the548
synchronized keyword, either as a means of synchronizing access to a block of state-549
ments or to an entire method. In the general case this existing synchronization support550
is not sufficient to synchronize between interrupt handlers and threads.551

Figure 11 shows the interacting active processes and the shared data in a scenario552
involving the handling of an interrupt. Conceptually three threads interact: (1) a hard-553
ware device thread representing the device activity, (2) the ISR, and (3) the application554
or device driver thread. These three share two types of data.555

Device data. The hardware thread and ISR share access to the device registers of the556
device signaling the interrupt.557

Application data. The ISR and application or device driver share access to, for exam-558
ple, a buffer conveying information about the interrupt to the application.559

Regardless of which interrupt handling approach is used in Java, synchronization560
between the ISR and the device registers must be handled in an ad hoc way. In gen-561
eral there is no guarantee that the device has not changed the data in its registers;562
but if the ISR can be run to completion within the minimum inter-arrival time of the563
interrupt the content of the device registers can be trusted.564

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:17

For synchronization between the ISR and the application (or device driver) the fol-565
lowing mechanisms are available. When the ISR handler runs as a software thread,566
standard synchronization with object monitors can be used. When using the ISR han-567
dler approach, the handler is no longer scheduled by the normal Java scheduler, but568
by the hardware. While the handler is running, all other executable elements are sus-569
pended, including the scheduler. This means that the ISR cannot be suspended, must570
not block, or must not block via a language-level synchronization mechanism; the ISR571
must run to completion in order not to freeze the system. This means that when the572
handler runs, it is guaranteed that the application will not get scheduled. It follows573
that the handler can access data shared with the application without synchronizing574
with the application. As the access to the shared data by the interrupt handler is not575
explicitly protected by a synchronized method or block, the shared data needs to be576
declared volatile.577

On the other hand the application must synchronize with the ISR because the ISR578
may be dispatched at any point. To ensure mutual exclusion we redefine the seman-579
tics of the monitor associated with an InterruptHandler object: acquisition of the monitor580
disables all interrupts of the same and lower priority; release of the monitor enables581
the interrupts again. This procedure ensures that the software thread cannot be in-582
terrupted by the interrupt handler when accessing shared data.583

3.2.3 Using the Interrupt Handler. Figure 12 shows an example of an interrupt handler584
for the serial port receiver interrupt. The method handle() is the interrupt handler585
method and needs no synchronization as it cannot be interrupted by a software thread.586
However, the shared data needs to be declared volatile as it is changed by the device587
driver thread. Method read() is invoked by the device driver thread and the shared588
data is protected by the InterruptHandler monitor. The serial port interrupt handler589
uses the hardware object SerialPort to access the device.590

3.2.4 Garbage Collection. When using the ISR handler approach it is not feasible to591
let interrupt handlers be paused during a lengthy stop-the-world collection. Using592
this GC strategy the entire heap is collected at once and it is not interleaved with593
execution. The collector can safely assume that data required to perform the collection594
will not change during the collection, and an interrupt handler shall not change data595
used by the GC to complete the collection. In the general case, this means that the596
interrupt handler is not allowed to create new objects, or change the graph of live597
objects.598

With an incremental GC the heap is collected in small incremental steps. Write bar-599
riers in the mutator threads and nonpreemption sections in the GC thread synchronize600
the view of the object graph between the mutator threads and the GC thread. With601
incremental collection it is possible to allow object allocation and changing references602
inside an interrupt handler (as it is allowed in any normal thread). With a real-time603
GC the maximum blocking time due to GC synchronization with the mutator threads604
must be known.605

Interruption of the GC during an object move can result in access to a stale copy606
of the object inside the handler. A solution to this problem is to allow for pinning of607
objects reachable by the handler (similar to immortal memory in the RTSJ). Concur-608
rent collectors have to solve this issue for threads anyway. The simplest approach is to609
disable interrupt handling during the object copy. As this operation can be quite long610
for large arrays, several approaches to split the array into smaller chunks have been611
proposed [Bacon et al. 2003; Siebert 2002]. A Java processor may support incremental612
array copying with redirection of the access to the correct part of the array [Schoeberl613
and Puffitsch 2008]. Another solution is to abort the object copy when writing to the614

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:18 M. Schoeberl et al.

Fig. 12. An interrupt handler for a serial port receive interrupt.

object. It is also possible to use replication; during an incremental copy operation,615
writes are performed on both from-space and to-space object replicas, while reads are616
performed on the from-space replica.617

3.3 Generic Configuration618

An important issue for a HAL is a safe abstraction of device configurations. A def-619
inition of factories to create hardware and interrupt objects should be provided by620
board vendors. This configuration is isolated with the help of Java packages; only the621
objects and the factory methods are visible. The configuration abstraction is indepen-622
dent of the JVM. A device or interrupt can be represented by an identical hardware623
or interrupt object for different JVMs. Therefore, device drivers written in Java are624
JVM-independent.625

3.3.1 Hardware Object Creation. The idea to represent each device by a single object or626
array is straightforward, the remaining question is: How are those objects created?627

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:19

Fig. 13. A factory with static methods for Singleton hardware objects.

An object that represents a device is a typical Singleton [Gamma et al. 1994]. Only628
a single object should map to one instance of a device. Therefore, hardware objects629
cannot be instantiated by a simple new: (1) they have to be mapped by some JVM630
mechanism to the device registers and (2) each device instance is represented by a631
single object.632

Each device object is created by its own factory method. The collection of these633
methods is the board configuration, which itself is also a Singleton (the application634
runs on a single board). The Singleton property of the configuration is enforced by635
a class that contains only static methods. Figure 13 shows an example for such a636
class. The class IOSystem represents a system with three devices: a parallel port,637
as discussed before to interact with the environment, and two serial ports: one for638
program download and one which is an interface to a GPS receiver.639

This approach is simple, but not very flexible. Consider a vendor who provides640
boards in slightly different configurations (e.g., with different number of serial ports).641
With the preceding approach each board requires a different (or additional) IOSystem642
class that lists all devices. A more elegant solution is proposed in the next section.643

3.3.2 Board Configurations. Replacing the static factory methods by instance methods644
avoids code duplication; inheritance then gives configurations. With a factory object645
we represent the common subset of I/O devices by a base class and the variants as646
subclasses.647

However, the factory object itself must still be a Singleton. Therefore the board-648
specific factory object is created at class initialization and is retrieved by a static649
method. Figure 14 shows an example of a base factory and a derived factory. Note650
how getBaseFactory() is used to get a single instance of the factory. We have applied651
the idea of a factory two times: the first factory generates an object that represents652
the board configuration. That object is itself a factory that generates the objects that653
interface to the hardware device.654

The shown example base factory represents the minimum configuration with a sin-655
gle serial port for communication (mapped to System.in and System.out) represented656
by a SerialPort. The derived configuration ExtendedBoard contains an additional serial657
port for a GPS receiver and a parallel port for external control.658

Furthermore, we show in Figure 14 a different way to incorporate the JVM mech-659
anism in the factory: we define well-known constants (the memory addresses of the660

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:20 M. Schoeberl et al.

Fig. 14. A base class of a hardware object factory and a factory subclass.

devices) in the factory and let the native function jvmHWOCreate() return the correct661
device type.662

Figure 15 gives a summary example of hardware object classes and the correspond-663
ing factory classes as an UML class diagram. The figure shows that all device classes664
subclass the abstract class HardwareObject. Figure 15 represents the simple abstrac-665
tion as it is seen by the user of hardware objects.666

3.3.3 Interrupt Handler Registration. We provide a base interrupt handling API that can667
be used both for non-RTSJ and RTSJ interrupt handling. The base class that is ex-668
tended by an interrupt handler is shown in Figure 16. The handle() method contains669
the device server code. Interrupt control operations that have to be invoked before670
serving the device (i.e., interrupt masking and acknowledging) and after serving the671
device (i.e., interrupt reenabling) are hidden in the run() method of the base Inter-672
ruptHandler, which is invoked when the interrupt occurs.673

The base implementation of InterruptHandler also provides methods for enabling and674
disabling a particular interrupt or all local CPU interrupts and a special monitor im-675
plementation for synchronization between an interrupt handler thread and an applica-676
tion thread. Moreover, it provides methods for non-RTSJ registering and deregistering677
the handler with the hardware interrupt source.678

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:21

Fig. 15. Device object classes and board factory classes.

Fig. 16. Base class for the interrupt handlers.

Registration of a RTSJ interrupt handler requires more steps (see Figure 17). The679
InterruptHandler instance serves as the RTSJ logic for a (bound) asynchronous event680
handler, which is added as handler to an asynchronous event which then is bound to681
the interrupt source.682

3.4 Perspective683

An interesting topic is to define a common standard for hardware objects and interrupt684
handlers for different platforms. If different device types (hardware chips) that do not685
share a common register layout are used for a similar function, the hardware objects686

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:22 M. Schoeberl et al.

Fig. 17. Creation and registration of a RTSJ interrupt handler.

Table II. Embedded Java Architectures

Direct (no OS) Indirect (OS)

Interpreted SimpleRTJ Kaffe VM
Native JOP OVM

will be different. However, if the structure of the devices is similar, as is the case687
for the serial port on the three different platforms used for the implementation (see688
Section 4), the driver code that uses the hardware object is identical.689

If the same chip (e.g., the 8250 type and compatible 16x50 devices found in all PCs690
for the serial port) is used in different platforms, the hardware object and the device691
driver, which also implements the interrupt handler, can be shared. The hardware ob-692
ject, the interrupt handler, and the visible API of the factory classes are independent of693
the JVM and the OS. Only the implementation of the factory methods is JVM-specific.694
Therefore, the JVM-independent HAL can be used to start the development of drivers695
for a Java OS on any JVM that supports the proposed HAL.696

3.5 Summary697

Hardware objects are easy to use for a programmer, and the corresponding definitions698
are comparatively easy to define for a hardware designer or manufacturer. For a stan-699
dardized HAL architecture we proposed factory patterns. As shown, interrupt han-700
dlers are easy to use for a programmer who knows the underlying hardware paradigm,701
and the definitions are comparatively easy to develop for a hardware designer or man-702
ufacturer, for instance using the patterns outlined in this section. Hardware objects703
and interrupt handler infrastructure have a few subtle implementation points which704
are discussed in the next section.705

4. IMPLEMENTATION706

We have implemented the core concepts on four different JVMs7 to validate the pro-707
posed Java HAL. Table II classifies the four execution environments according to two708
important properties: (1) whether they run on bare metal or on top of an OS and (2)709
whether Java code is interpreted or executed natively. Thereby we cover the whole710
implementation spectrum with our four implementations. Even though the suggested711
Java HAL is intended for systems running on bare metal, we include systems run-712
ning on top of an OS because most existing JVMs still require an OS, and in order for713
them to migrate incrementally to run directly on the hardware they can benefit from714
supporting a Java HAL.715

In the direct implementation a JVM without an OS is extended with I/O function-716
ality. The indirect implementation represents an abstraction mismatch; we actually717

7On JOP the implementation of the Java HAL is already in use in production code.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:23

Fig. 18. A simple hardware object.

remap the concepts. Related to Figure 6 in the Introduction, OVM and Kaffe represent718
configuration (a), SimpleRTJ configuration (b), and JOP configuration (c).719

The SimpleRTJ JVM [RTJ Computing 2000] is a small, interpreting JVM that does720
not require an OS. JOP [Schoeberl 2005, 2008] is a Java processor executing Java byte-721
codes directly in hardware. Kaffe JVM [Wilkinson 1996] is a complete, full-featured722
JVM supporting both interpretation and JIT compilation; in our experiments with723
Kaffe we have used interpretative execution only. The OVM JVM [Armbruster et al.724
2007] is an execution environment for Java that supports compilation of Java byte-725
codes into the C language, and via a C compiler into native machine instructions for726
the target hardware. Hardware objects have also been implemented in the research727
JVM, CACAO [Krall and Grafl 1997; Schoeberl et al. 2008].728

In the following we provide the different implementation approaches that are neces-729
sary for the very different JVMs. Implementing hardware objects was straightforward730
for most JVMs; it took about one day to implement them in JOP. In Kaffe, after famil-731
iarizing us with the structure of the JVM, it took about half a day of pair programming.732

Interrupt handling in Java is straightforward in a JVM not running on top of an733
OS (JOP and SimpleRTJ). Kaffe and OVM both run under vanilla Linux or the real-734
time version Xenomai Linux [Xenomai Developers 2008]. Both versions use a distinct735
user/kernel mode and it is not possible to register a user-level method as interrupt736
handler. Therefore, we used threads at different levels to simulate the Java handler737
approach. The result is that the actual Java handler is the third- or even fourth-level738
handler. This solution introduces quite a lot of overheads due to the many context739
switches. However, it is intended to provide a stepping stone to allow device drivers in740
Java; the goal is a real-time JVM that runs on the bare hardware.741

In this section we provide more implementation details than usual to help other742
JVM developers to add a HAL to their JVM. The techniques used for the JVMs can743
probably not be used directly. However, the solutions (or sometimes work-arounds)744
presented here should give enough insight to guide other JVM developers.745

4.1 SimpleRTJ746

The SimpleRTJ JVM is a small, simple, and portable JVM. We have ported it to run747
on the bare metal of a small 16-bit microcontroller. We have successfully implemented748
the support for hardware objects in the SimpleRTJ JVM. For interrupt handling we749
use the ISR handler approach described in Section 3.2. Adding support for hardware750
objects was straightforward, but adding support for interrupt handling required more751
work.752

4.1.1 Hardware Objects. Given an instance of a hardware object as shown in Figure 18753
one must calculate the base address of the I/O port range, the offset to the actual I/O754
port, and the width of the port at runtime. We have chosen to store the base address755
of the I/O port range in a field in the common superclass for all hardware objects756
(HardwareObject). The hardware object factory passes the platform- and device-specific757

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:24 M. Schoeberl et al.

Fig. 19. Creating a simple hardware object.

base address to the constructor when creating instances of hardware objects (see758
Figure 19).759

In the put/getfield bytecodes the base address is retrieved from the object instance.760
The I/O port offset is calculated from the offset of the field being accessed: in the761
example in Figure 18 status has an offset of 0 whereas data has an offset of 4. The762
width of the field being accessed is the same as the width of the field type. Using these763
values the SimpleRTJ JVM is able to access the device register for either read or write.764

4.1.2 Interrupt Handler. The SimpleRTJ JVM uses a simple stop-the-world garbage765
collection scheme. This means that within handlers, we prohibit use of the new key-766
word and writing references to the heap. These restrictions can be enforced at runtime767
by throwing a preallocated exception or at class loading by an analysis of the handler768
method. Additionally we have turned off the compaction phase of the GC to avoid the769
problems with moving objects mentioned in Section 3.2.4.770

The SimpleRTJ JVM implements thread scheduling within the JVM. This means771
that it had to be refactored to allow for reentering the JVM from inside the first-level772
interrupt handler. We got rid of all global state (all global variables) used by the JVM773
and instead allocate shared data on the C stack. For all parts of the JVM to still be774
able to access the shared data we pass around a single pointer to that data. In fact775
we start a new JVM for the interrupt handler with a temporary (small) Java heap and776
a temporary (small) Java stack. Currently we use 512 bytes for each of these items,777
which have proven sufficient for running nontrivial interrupt handlers so far.778

The major part of the work was making the JVM reentrant. The effort will vary779
from one JVM implementation to another, but since global state is a bad idea in any780
case JVMs of high quality use very little global state. Using these changes we have781
experimented with handling the serial port receive interrupt.782

4.2 JOP783

JOP is a Java processor intended for hard real-time systems [Schoeberl 2005, 2008].784
All architectural features have been carefully designed to be time-predictable with785
minimal impact on average case performance. We have implemented the proposed786
HAL in the JVM for JOP. No changes inside the JVM (the microcode in JOP) were787
necessary. Only the creation of the hardware objects needs a JOP-specific factory.788

4.2.1 Hardware Objects. In JOP, objects and arrays are referenced through an indirec-789
tion called handle. This indirection is a lightweight read barrier for the compacting790
real-time GC [Schoeberl 2006; Schoeberl and Vitek 2007]. All handles for objects in the791
heap are located in a distinct memory region, the handle area. Besides the indirection792
to the real object the handle contains auxiliary data, such as a reference to the class793
information, the array length, and GC-related data. Figure 20 shows an example with794
a small object that contains two fields and an integer array of length 4. The object and795
the array on the heap just contain the data and no additional hidden fields. This object796
layout greatly simplifies our object to device mapping. We just need a handle where797
the indirection points to the memory-mapped device registers instead of into the heap.798
This configuration is shown in the upper part of Figure 20. Note that we do not need799

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:25

Fig. 20. Memory layout of the JOP JVM.

the GC information for the hardware object handles. The factory, which creates the800
hardware objects, implements this indirection.801

As described in Section 3.3.1 we do not allow applications to create hardware objects;802
the constructor is private (or package visible). Figure 21 shows part of the hardware803
object factory that creates the hardware object SerialPort. Two static fields (SP PTR804
and SP MTAB) are used to store the handle to the serial port object. The first field is805
initialized with the base address of the I/O device; the second field contains a pointer806
to the class information.8 The address of the static field SP PTR is returned as the807
reference to the serial port object.808

The class reference for the hardware object is obtained by creating a normal instance809
of SerialPort with new on the heap and copying the pointer to the class information. To810
avoid using native methods in the factory class we delegate JVM internal work to a811
helper class in the JVM system package as shown in Figure 21. That helper method812
returns the address of the static field SP PTR as reference to the hardware object.813
All methods in class Native, a JOP system class, are native9 methods for low-level814
functions, the code we want to avoid in application code. Method toInt(Object o) defeats815
Java’s type safety and returns a reference as an int. Method toObject(int addr) is the816
inverse function to map an address to a Java reference. Low-level memory access817
methods are used to manipulate the JVM data structures.818

To disallow the creation with new in normal application code, the visibility is set819
to package. However, the package visibility of the hardware object constructor is a820
minor issue. To access private static fields of an arbitrary class from the system class821
we had to change the runtime class information: we added a pointer to the first static822
primitive field of that class. As addresses of static fields get resolved at class linking,823
no such reference was needed so far.824

8In JOP’s JVM the class reference is a pointer to the method table to speed-up the invoke instruction.
Therefore, the name is XX MTAB.
9There are no real native functions in JOP; bytecode is the native instruction set. The very few native
methods in class Native are replaced by special, unused bytecodes during class linking.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:26 M. Schoeberl et al.

Fig. 21. Part of a factory and the helper method for the hardware object creation in the factory.

4.2.2 Interrupt Handler. The original JOP [Schoeberl 2005, 2008] was a very puristic825
hard real-time processor. There existed only one interrupt: the programmable timer826
interrupt as time is the primary source for hard real-time events. All I/O requests were827
handled by periodic threads that polled for pending input data or free output buffers.828
During the course of this research we have added an interrupt controller to JOP and829
the necessary software layers.830

Interrupts and exact exceptions are considered the hard part in the implementa-831
tion of a processor pipeline [Hennessy and Patterson 2002]. The pipeline has to be832
drained and the complete processor state saved. In JOP there is a translation stage833
between Java bytecodes and the JOP internal microcode [Schoeberl 2008]. On a pend-834
ing interrupt (or exception generated by the hardware) we use this translation stage835
to insert a special bytecode in the instruction stream. This approach keeps the inter-836
rupt completely transparent to the core pipeline. The special bytecode that is unused837
by the JVM specification [Lindholm and Yellin 1999] is handled in JOP as any other838
bytecode: execute microcode, invoke a special method from a helper class, or execute839

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:27

Fig. 22. Interrupt dispatch with the static interrupt() method in the JVM helper class.

Fig. 23. An example Java interrupt handler as Runnable.

Java bytecode from JVM.java. In our implementation we invoke the special method840
interrupt() from a JVM helper class.841

The implemented Interrupt Controller (IC) is priority-based. The number of inter-842
rupt sources can be configured. Each interrupt can be triggered in software by a IC843
register write as well. There is one global interrupt enable and each interrupt line can844
be enabled or disabled locally. The interrupt is forwarded to the bytecode/microcode845
translation stage with the interrupt number. When accepted by this stage, the inter-846
rupt is acknowledged and the global enable flag cleared. This feature avoids immediate847
handling of an arriving higher-priority interrupt during the first part of the handler.848
The interrupts have to be enabled again by the handler at a convenient time. All inter-849
rupts are mapped to the same special bytecode. Therefore, we perform the dispatch of850
the correct handler in Java. On an interrupt the static method interrupt() from a system851
internal class gets invoked. The method reads the interrupt number and performs the852
dispatch to the registered Runnable as illustrated in Figure 22. Note how a hardware853
object of type SysDevice is used to read the interrupt number.854

The timer interrupt, used for the real-time scheduler, is located at index 0. The855
scheduler is just a plain interrupt handler that gets registered at mission start at index856
0. At system startup, the table of Runnables is initialized with dummy handlers. The857
application code provides the handler via a class that implements Runnable and regis-858
ters that class for an interrupt number. We reuse the factory presented in Section 3.3.1.859
Figure 23 shows a simple example of an interrupt handler implemented in Java.860

For interrupts that should be handled by an event handler under the control of the861
scheduler, the following steps need to be performed on JOP.862

(1) Create a SwEvent with the correct priority that performs the second-level interrupt863
handler work.864

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:28 M. Schoeberl et al.

(2) Create a short first-level interrupt handler as Runnable that invokes fire() of the865
corresponding software event handler.866

(3) Register the first-level interrupt handler as shown in Figure 23 and start the real-867
time scheduler.868

In Section 5 we evaluate the different latencies of first- and second-level interrupt869
handlers on JOP.870

4.3 Kaffe871

Kaffe is an open-source10 implementation of the JVM which makes it possible to add872
support for hardware objects and interrupt handlers. Kaffe requires a fully fledged OS873
such as Linux to compile and run. Although ports of Kaffe exist on uCLinux we have874
not been able to find a bare metal version of Kaffe. Thus even though we managed875
to add support of hardware objects and interrupt handling to Kaffe, it still cannot be876
used without an OS.877

4.3.1 Hardware Objects. Hardware objects have been implemented in the same man-878
ner as in the SimpleRTJ, described in Section 4.1.879

4.3.2 Interrupt Handler. Since Kaffe runs under Linux we cannot directly support the880
ISR handler approach. Instead we used the ISR event approach in which a thread881
blocks waiting for the interrupt to occur. It turned out that the main implementation882
effort was spent in the signaling of an interrupt occurrence from the kernel space to883
the user space.884

We wrote a special Linux kernel module in the form of a character device. Through885
proper invocations of ioctl() it is possible to let the module install a handler for an886
interrupt (e.g., the serial interrupt, normally on IRQ 7). Then the Kaffe VM can make887
a blocking call to read() on the proper device. Finally the installed kernel handler will888
release the user space application from the blocked call when an interrupt occurs.889

Using this strategy we have performed nontrivial experiments implementing a full890
interrupt handler for the serial interrupt in Java. Still, the elaborate setup requiring891
a special-purpose kernel device is far from our ultimate goal of running a JVM on the892
bare metal. Nevertheless the experiment has given valuable experience with interrupt893
handlers and hardware objects at the Java language level.894

4.4 OVM895

OVM [Armbruster et al. 2007] is a research JVM allowing many configurations; it is896
primarily targeted at implementing a large subset of RTSJ while maintaining rea-897
sonable performance. OVM uses ahead of time compilation via the C language: it898
translates both application and VM bytecodes to C, including all classes that might be899
later loaded dynamically at runtime. The C code is then compiled by GCC.900

4.4.1 Hardware Objects. To compile Java bytecode into a C program, the OVM’s Java-901
to-C compiler internally converts the bytecode into an Intermediate Representation902
(IR) which is similar to the bytecode, but includes more codes. Transformations at the903
IR level are both optimizations and operations necessary for correct execution, such as904
insertion of null-pointer checks. The produced IR is then translated into C, allowing905
the C compiler to perform additional optimizations. Transformations at the IR level,906
which is similar to the bytecode, are also typical in other JVM implementations, such907
as Sun’s HotSpot.908

10http://www.kaffe.org/

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:29

Fig. 24. Translation of bytecode for access to regular fields into bytecode for access to I/O port registers.

We base our access to hardware objects on IR instruction transformations. We in-909
troduce two new instructions outb and inb for byte-wide access to I/O ports. Then we910
employ OVM’s instruction rewriting framework to translate accesses to hardware ob-911
ject fields, putfield and getfield instructions, into sequences centered around outb and912
inb where appropriate. We did not implement word-wide or double-word-wide access913
modes supported by a x86 CPU. We discuss how this could be done at the end of this914
section.915

To minimize changes to the OVM code we keep the memory layout of hardware916
objects as if they were ordinary objects, and store port addresses into the fields repre-917
senting the respective hardware I/O ports. Explained with the example from Figure 18,918
the instruction rewriting algorithm proceeds as follows: SerialPort is a subclass of Hard-919
wareObject; hence it is a hardware object, and thus accesses to all its public volatile int920
fields, status and data, are translated to port accesses to I/O addresses stored in those921
fields.922

The translation (Figure 24) is very simple. In case of reads we append our new inb923
instruction after the corresponding getfield instruction in the IR: getfield will store the924
I/O address on the stack and inb will replace it by a value read from this I/O address.925
In case of writes we replace the corresponding putfield instruction by a sequence of926
swap, getfield, and outb. The swap rotates the two top elements on stack, leaving the927
hardware object reference on top of the stack and the value to store to the I/O port928
below it, The getfield replaces the object reference by the corresponding I/O address,929
and outb writes the value to the I/O port.930

The critical part of hardware object creation is to set I/O addresses into hardware931
object fields. Our approach allows a method to turn off the special handling of hard-932
ware objects. In a hardware object factory method accesses to hardware object fields933
are handled as if they were fields of regular objects; we simply store I/O addresses to934
the fields.935

A method can turn off the special handling of hardware objects with a marker936
exception mechanism which is a natural solution within OVM. The method declares to937
throw a PragmaNoHWIORegistersAccess exception. This exception is neither thrown938
nor caught, but the OVM IR-level rewriter detects the declaration and disables939

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:30 M. Schoeberl et al.

rewriting accordingly. As the exception extends RuntimeException, it does not need940
to be declared in interfaces or in code calling factory methods. In Java 1.5, not941
supported by OVM, a standard substitute to the marker exception would be method942
annotation.943

Our solution depends on the representation of byte-wide registers by 16-bit fields944
to hold the I/O address. However, it could still be extended to support multiple-width945
accesses to I/O ports (byte, 16-bit, and 32-bit) as follows: 32-bit I/O registers are rep-946
resented by Java long fields, 16-bit I/O registers by Java int fields, and byte-wide I/O947
registers by Java short fields. The correct access width will be chosen by the IR rewriter948
based on the field type.949

4.4.2 Interrupt Handler. Low-level support depends heavily on scheduling and preemp-950
tion. For our experiments we chose the uniprocessor x86 OVM configuration with951
green threads running as a single Linux process. The green threads, delayed I/O opera-952
tions, and handlers of asynchronous events, such as POSIX signals, are only scheduled953
at well-defined points (pollchecks) which are by default at back-branches at bytecode954
level and indirectly at Java-level blocking calls (I/O operations, synchronization calls,955
etc). When no thread is ready to run, the OVM scheduler waits for events using the956
POSIX select call.957

As OS we use Xenomai RT Linux [Gerum 2004; Xenomai Developers 2008]. Xeno-958
mai tasks, which are in fact user-space Linux threads, can run either in the Xenomai959
primary domain or in the Xenomai secondary domain. In the primary domain they are960
scheduled by the Xenomai scheduler, isolated from the Linux kernel. In the secondary961
domain Xenomai tasks behave as regular real-time Linux threads. Tasks can switch to962
the primary domain at any time, but are automatically switched back to the secondary963
domain whenever they invoke a Linux system call. A single Linux process can have964
threads of different types: regular Linux threads, Xenomai primary domain tasks, and965
Xenomai secondary domain tasks. Primary domain tasks can wait on hardware inter-966
rupts with a higher priority than the Linux kernel. The Xenomai API provides the967
interrupts using the ISR event handler approach and supports virtualization of basic968
interrupt operations – disabling and enabling a particular interrupt or all local CPU969
interrupts. These operations have the same semantics as real interrupts, and dis-970
abling/enabling a particular one leads to the corresponding operation being performed971
at the hardware level.972

Before our extension, OVM ran as a single Linux process with a single (native973
Linux) thread, a main OVM thread. This native thread implemented Java green974
threads. To support interrupts we add additional threads to the OVM process: for each975
interrupt source handled in OVM we dynamically add an interrupt listener thread run-976
ning in the Xenomai primary domain. The mechanism that leads to invocation of the977
Java interrupt handler thread is illustrated in Figure 25.978

Upon receiving an interrupt, the listener thread marks the pending interrupt in a979
data structure shared with the main OVM thread. When it reaches a pollcheck, it980
discovers that an interrupt is pending. The scheduler then immediately wakes-up and981
schedules the Java green thread that is waiting for the interrupt (IRQ server thread982
in the figure). To simulate the first-level ISR handler approach, this green thread983
invokes some handler method. In a non-RTSJ scenario the green thread invokes the984
run() method of the associated InterruptHandler (see Figure 16). In an RTSJ scenario985
(not shown in Figure 25), a specialized thread fires an asynchronous event bound to986
the particular interrupt source. It invokes the fire() method of the respective RTSJ’s987
AsyncEvent. As mentioned in Section 3.3.3 the RTSJ logic of AsyncEventHandler (AEH)988
registered to this event should be an instance of InterruptHandler in order to allow the989
interrupt handling code to access basic interrupt handling operations.990

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:31

Fig. 25. Invocation of a Java interrupt handler under OVM/Xenomai.

As just explained, our first-level InterruptHandlers virtualize the interrupt handling991
operations for interrupt enabling, disabling, etc. Therefore, we have two levels of inter-992
rupt virtualization, one is provided by Xenomai to our listener thread, and the other993
one, on top of the first one, is provided by the OVM runtime to the InterruptHandler994
instance. In particular, disabling/enabling of local CPU interrupts is emulated, hard-995
ware interrupts are disabled/enabled, and interrupt completion is performed at the996
interrupt controller level (via the Xenomai API), and interrupt start is emulated; it997
only tells the listener thread that the interrupt was received.998

The RTSJ scheduling features (deadline checking, interarrival time checking, de-999
laying of sporadic events) related to release of the AEH should not require any further1000
adaptations for interrupt handling. We could not test these features as OVM does not1001
implement them.1002

OVM uses thin monitors which means that a monitor is only instantiated (inflated)1003
when a thread has to block on acquiring it. This semantic does not match to what1004
we need: disable the interrupt when the monitor is acquired to prevent the handler1005
from interrupting. Our solution provides a special implementation of a monitor for1006
interrupt handlers and inflate it in the constructor of InterruptHandler. This way we1007
do not have to modify the monitorenter and monitorexit instructions and we do not slow1008
down regular thin monitors (noninterrupt-based synchronization).1009

4.5 Summary1010

Support for hardware objects (see Section 3.1) and interrupt handling (see Section 3.2)1011
to all four JVMs relies on common techniques. Accessing device registers through1012
hardware objects extends the interpretation of the bytecodes putfield and getfield or1013
redirects the pointer to the object. If these bytecodes are extended to identify the field1014
being accessed as inside a hardware object, the implementation can use this infor-1015
mation. Similarly, the implementation of interrupt handling requires changes to the1016
bytecodes monitorenter and monitorexit or preinflating a specialized implementation of1017
a Java monitor. In case of the bytecode extension, the extended codes specify if the1018

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:32 M. Schoeberl et al.

monitor being acquired belongs to an interrupt handler object. If so, the implemen-1019
tation of the actual monitor acquisition must be changed to disable/enable interrupts.1020
Whether dealing with hardware or interrupt objects, we used the same approach of let-1021
ting the hardware object and interrupt handler classes inherit from the superclasses1022
HardwareObject and InterruptHandler respectively.1023

For JVMs that need a special treatment of bytecodes putfield and getfield (Sim-1024
pleRTJ, Kaffe, and OVM) bytecode rewriting at runtime can be used to avoid the addi-1025
tional check of the object type. This is a standard approach (called quick bytecodes in1026
the first JVM specification) in JVMs to speed-up field access of resolved classes.1027

Historically, registers of most x86 I/O devices are mapped to a dedicated I/O ad-1028
dress space, which is accessed using dedicated instructions: port read and port writes.1029
Fortunately, both the processor and Linux allow user-space applications running with1030
administrator privileges to use these instructions and access the ports directly via1031
iopl, inb, and outb calls. For both the Kaffe and OVM implementations we have imple-1032
mented bytecode instructions putfield and getfield accessing hardware object fields by1033
calls to iopl, inb, and outb.1034

Linux does not allow user-space applications to handle hardware interrupts. Only1035
kernel space functionality is allowed to register interrupt handlers. We have overcome1036
this issue in two different ways.1037

— For Kaffe we have written a special-purpose kernel module through which the user-1038
space application (the Kaffe VM) can register interest in interrupts and get notified1039
about interrupt occurrence.1040

— For OVM we have used the Xenomai real-time extension to Linux. Xenomai extends1041
the Linux kernel to allow for the creation of real-time threads and allows user-space1042
code to wait for interrupt occurrences.1043

Both these work-arounds allow an incremental transition of the JVMs and the re-1044
lated development libraries into a direct (bare metal) execution environment. In that1045
case the work-arounds would no longer be needed.1046

If a compiling JVM is used (either as JIT or ahead-of-time) the compiler needs to be1047
aware of the special treatment of hardware objects and monitors on interrupt handlers.1048
One issue which we did not face in our implementations was the alignment of object1049
fields. When device registers are represented by differently sized integer fields, the1050
compiler needs to pack the data structure.1051

The restrictions within an interrupt handler are JVM-dependent. If an interrupt-1052
ible, real-time GC is used (as in OVM and JOP) objects can be allocated in the handler1053
and the object graph may be changed. For a JVM with a stop-the-world GC (SimpleRTJ1054
and Kaffe) allocations are not allowed because the handler can interrupt the GC.1055

5. EVALUATION AND CONCLUSION1056

Having implemented the Java HAL on four different JVMs we evaluate it on a sev-1057
eral test applications, including a tiny Web server, and measure the performance of1058
hardware accesses via hardware objects and the latency of Java interrupt handlers.1059

5.1 Qualitative Observations1060

For first tests we implemented a serial port driver with hardware objects and interrupt1061
handlers. As the structure of the device registers is exactly the same on a PC, the1062
platform for SimpleRTJ, and JOP, we were able to use the exact same definition of the1063
hardware object SerialPort and the test programs on all four systems.1064

Using the serial device we run an embedded TCP/IP stack, implemented completely1065
in Java, over a SLIP connection. The TCP/IP stack contains a tiny Web server and we1066

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:33

serve Web pages with a Java-only solution similar to the one shown in the Introduction1067
in Figure 6. The TCP/IP stack, the tiny Web server, and the hardware object for the1068
serial port are the same for all platforms. The only difference is in the hardware object1069
creation with the platform-dependent factory implementations. The Web server uses1070
hardware objects and polling to access the serial device.1071

5.1.1 A Serial Driver in Java. For testing the interrupt handling infrastructure in OVM1072
we implemented a serial interrupt-based driver in Java and a demo application that1073
sends back the data received through a serial interface. The driver part of the applica-1074
tion is a full-duplex driver with support for hardware flow control and with detection1075
of various error states reported by the hardware. The driver uses two circular buffers,1076
one for receiving and the other for sending. The user part of the driver implements1077
blocking getChar and putChar calls, which have (short) critical sections protected by1078
the interrupt-disabling monitor. To reduce latencies the getChar call sets the DSR flag1079
to immediately allow receiving more data and the putChar, after putting the charac-1080
ter into the sending buffer, initiates immediately the sending, if this is not currently1081
being done already by the interrupt machinery. The driver supports serial ports with1082
a FIFO buffer. The user part of the demo application implements the loop-back using1083
getChar and putChar. The user part is a RTSJ AsyncEventHandler which is fired when1084
a new character is received. From a Java perspective this is a second-level interrupt1085
handler, invoked after the corresponding serial event is fired from the first-level han-1086
dler. To test the API described in the article we implemented two versions that differ1087
in how the first-level handler is bound to the interrupt: (a) a RTSJ-style version where1088
the first-level handler is also a RTSJ event handler bound using bindTo to the JVM1089
provided first-level serial event, and (b) a non-RTSJ-style version where the first-level1090
handler is registered using a InterruptHandler.register call. We have stress-tested the1091
demo application and the underlying modified OVM infrastructure by sending large1092
files to it through the serial interface and checked that they were returned intact.1093

5.1.2 The HAL in Daily Use. The original idea for hardware objects evolved during de-1094
velopment of low-level software on the JOP platform. The abstraction with read and1095
write functions and using constants to represent I/O addresses just felt wrong with1096
Java. Currently hardware objects are used all over in different projects with JOP.1097
Old code has been refactored to some extent, but new low-level code uses only hard-1098
ware objects. By now low-level I/O is integrated into the language, for example, auto-1099
completion in the Eclipse IDE makes it easy to access the factory methods and fields1100
in the hardware object.1101

For experiments with an on-chip memory for thread-local scope caching [Wellings1102
and Schoeberl 2009] in the context of a chip-multiprocessor version of JOP, the hard-1103
ware array abstraction greatly simplified the task. The on-chip memory is mapped to1104
a hardware array and the RTSJ-based scoped memory uses it. Creation of an object1105
within this special scope is implemented in Java and is safe because the array bounds1106
checks are performed by the JVM.1107

5.1.3 JNI vs. Hardware Objects. JNI provides a way to access the hardware without1108
changing the code of the JVM. Nevertheless, with a lack of commonly agreed API,1109
using it for each application would be redundant and error prone. It would also add1110
dependencies to the application: hardware platform and the operating system (the C1111
API for accessing the hardware is not standardized). The build process is complicated1112
by adding C code to it as well. Moreover, the system needs to support shared libraries,1113
which is not always the case for embedded operating systems (an example is RTEMS,1114
used by ESA).1115

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:34 M. Schoeberl et al.

In addition, JNI is typically too heavyweight to implement trivial calls such as1116
port or memory access efficiently (no GC interaction, no pointers, no threads inter-1117
action, no blocking). Even JVMs that implement JNI usually have some other inter-1118
nal lightweight native interface which is the natural choice for hardware access. This1119
leads us back to a Java HAL as illustrated here.1120

5.1.4 OVM-Specific Experience. Before the addition of hardware objects, OVM did not1121
allow hardware access because it did not and does not have JNI or any other native1122
interface for user Java code. OVM has a simplified native interface for the virtual1123
machine code which indeed we used when implementing the hardware objects. This1124
native interface can as well be used to modify OVM to implement user-level access to1125
hardware via regular method calls. We have done this to implement a benchmark to1126
measure HWO/native overheads (later in this section). As far as simple port access1127
is concerned, none of the solutions is strictly better from the point of the JVM: the1128
bytecode manipulation to implement hardware objects was easy, as well as adding code1129
to propagate native port I/O calls to user code. Thanks to ahead-of-time compilation1130
and the simplicity of the native interface, the access overhead is the same.1131

The OVM compiler is fortunately not “too smart” so it does not get in the way of1132
supporting hardware objects: if a field is declared volatile side-effects of reading of1133
that field are not a problem for any part of the system.1134

The API for interrupt handling added to OVM allows full control over interrupts,1135
typically available only to the operating system. The serial port test application has1136
shown that, at least for a simple device; it really allows us to write a driver. An in-1137
teresting feature of this configuration is that OVM runs in user space and therefore it1138
greatly simplifies development and debugging of Java-only device drivers for embed-1139
ded platforms.1140

5.2 Performance1141

Our main objective for hardware objects is a clean object-oriented interface to hard-1142
ware devices. Performance of device register access is an important goal for relatively1143
slow embedded processors; thus we focus on that in the following. It matters less on1144
general-purpose processors where the slow I/O bus essentially limits the access time.1145

5.2.1 Measurement Methodology. Execution time measurement of single instructions1146
is only possible on simple in-order pipelines when a cycle counter is available. On1147
a modern superscalar architecture, where hundreds of instructions are in flight each1148
clock cycle, direct execution time measurement becomes impossible. Therefore, we1149
performed a bandwidth-based measurement. We measure how many I/O instructions1150
per second can be executed in a tight loop. The benchmark program is self-adapting1151
and increases the loop count exponentially until the measurement runs for more than1152
one second and the iterations per second are reported. To compensate for the loop1153
overhead we perform an overhead measurement of the loop and subtract that overhead1154
from the I/O measurement. The I/O bandwidth b is obtained as follows.1155

b =
cnt

ttest − tovhd

Figure 26 shows the measurement loop for the read operation in method test() and1156
the overhead loop in method overhead(). In the comment above the method the byte-1157
codes of the loop kernel are shown. We can see that the difference between the two1158
loops is the single bytecode getfield that performs the read request.1159

5.2.2 Execution Time. In Table III we compare the access time with native functions1160
to the access via hardware objects. The execution time is given in clock cycles. We1161

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:35

Fig. 26. Benchmark for the read operation measurement.

scale the measured I/O bandwidth b with the clock frequency f of the system under1162

test by n = f
b .1163

We have run the measurements on a 100 MHz version of JOP. As JOP is a sim-1164
ple pipeline, we can also measure short bytecode instruction sequences with the cycle1165
counter. Those measurements provided the exact same values as the ones given by our1166
benchmark, such that they validated our approach.1167

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:36 M. Schoeberl et al.

Table III. Access Time to a Device Register in Clock Cycles

JOP OVM SimpleRTJ Kaffe
read write read write read write read write

native 5 6 5517 5393 2588 1123 11841 11511
HW Object 13 15 5506 5335 3956 3418 9571 9394

On JOP the native access is faster than using hardware objects because a native ac-1168
cess is a special bytecode and not a native function call. The special bytecode accesses1169
memory directly where the bytecodes putfield and getfield perform a null pointer check1170
and indirection through the handle for the field access. Despite the slower I/O ac-1171
cess via hardware objects on JOP, the access is fast enough for all currently available1172
devices. Therefore, we will change all device drivers to use hardware objects. The1173
measurement for OVM was run on a Dell Precision 380 (Intel Pentium 4, 3.8 GHz,1174
3G RAM, 2M 8-way set associative L2 cache) with Linux (Ubuntu 7.10, Linux 2.6.24.31175
with Xenomai-RT patch). OVM was compiled without Xenomai support and the gen-1176
erated virtual machine was compiled with all optimizations enabled. As I/O port we1177
used the printer port. Access to the I/O port via a hardware object is just slightly faster1178
than access via native methods. This was expected as the slow I/O bus dominates the1179
access time. On the SimpleRTJ JVM the native access is faster than access to hard-1180
ware objects. The reason is that the JVM does not implement JNI, but has its own1181
proprietary, more efficient way to invoke native methods. It is done in a prelinking1182
phase where the invokestatic bytecode is instrumented with information to allow an1183
immediate invocation of the target native function. On the other hand, using hard-1184
ware objects needs a field lookup that is more time consuming than invoking a static1185
method. With bytecode-level optimization at class load time it would be possible to1186
avoid the expensive field lookup.1187

We measured the I/O performance with Kaffe on an Intel Core 2 Duo T7300,1188
2.00 GHz with Linux 2.6.24 (Fedora Core 8). We used access to the serial port for1189
the measurement. On the interpreting Kaffe JVM we notice a difference between the1190
native access and hardware object access. Hardware objects are around 20% faster.1191

5.2.3 Summary. For practical purposes the overhead on using hardware objects is1192
insignificant. In some cases there may even be an improvement in performance. The1193
benefits in terms of safe and structured code should make this a very attractive option1194
for Java developers.1195

5.3 Interrupt Handler Latency1196

5.3.1 Latency on JOP. To measure interrupt latency on JOP we use a periodic thread1197
and an interrupt handler. The periodic thread records the value of the cycle counter1198
and triggers the interrupt. In the handler the counter is read again and the differ-1199
ence between the two is the measured interrupt latency. A plain interrupt handler1200
as Runnable takes a constant 234 clock cycles (or 2.3 µs for a 100 MHz JOP system)1201
between the interrupt occurrence and the execution of the first bytecode in the han-1202
dler. This quite large time is the result of two method invocations for the interrupt1203
handling: (1) invocation of the system method interrupt() and (2) invocation of the ac-1204
tual handler. For more time-critical interrupts the handler code can be integrated in1205
the system method. In that case the latency drops down to 0.78 µs. For very low-1206
latency interrupts the interrupt controller can be changed to emit different bytecodes1207
depending on the interrupt number, then we avoid the dispatch in software and can1208
implement the interrupt handler in microcode.1209

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:37

Table IV. Interrupt (and polling) Latencies in Microseconds

Median (µs) 3rd Quartile (µs) 95% Quantile (µs) Maximum (µs)

Polling 3 3 3 8
Kernel 14 16 16 21
Hard 14 16 16 21
User 17 19 19 24
Ovm 59 59 61 203

We have integrated the two-level interrupt handling at the application level. We1210
set up two threads: one periodic thread, that triggers the interrupt, and a higher-1211
priority event thread that acts as second-level interrupt handler and performs the1212
handler work. The first-level handler just invokes fire() for this second-level handler1213
and returns. The second-level handler gets scheduled according to the priority. With1214
this setup the interrupt handling latency is 33 µs. We verified this time by measuring1215
the time between fire of the software event and the execution of the first instruction1216
in the handler directly from the periodic thread. This took 29 µs and is the overhead1217
due to the scheduler. The value is consistent with the measurements in Schoeberl and1218
Vitek [2007]. There we measured a minimum useful period of 50 µs for a high-priority1219
periodic task.1220

The runtime environment of JOP contains a concurrent real-time GC [Schoeberl1221
and Vitek 2007]. The GC can be interrupted at a very fine granularity. During sections1222
that are not preemptive (data structure manipulation for a new and write-barriers on1223
a reference field write) interrupts are simply turned off. The copy of objects and ar-1224
rays during the compaction phase can be interrupted by a thread or interrupt handler1225
[Schoeberl and Puffitsch 2008]. Therefore, the maximum blocking time is in the atomic1226
section of the thread scheduler and not in the GC.1227

5.3.2 Latency on OVM/Xenomai. For measuring OVM/Xenomai interrupt latencies, we1228
have extended an existing interrupt latency benchmark, written by Jan Kiszka from1229
the Xenomai team [Xenomai Developers 2008]. The benchmark uses two machines1230
connected over a serial line. The log machine, running a regular Linux kernel, toggles1231
the RTS state of the serial line and measures the time it takes for the target machine1232
to toggle it back.1233

To minimize measuring overhead the log machine uses only polling and disables lo-1234
cal CPU interrupts while measuring. Individual measurements are stored in memory1235
and dumped at shutdown so that they can be analyzed offline. We have made 400,0001236
measurements in each experiment, reporting only the last 100,000 (this was to warm-1237
up the benchmark, including memory storage for the results). The log machine toggles1238
the RTS state regularly with a given period.1239

We have tested 5 versions of the benchmark on the target machine: a polling version1240
written in C (polling), a kernel-space interrupt handler in C/Xenomai running out of1241
control of the Linux scheduler (kernel), a hard-realtime kernel-space interrupt handler1242
running out of control of both the Xenomai scheduler and the Linux scheduler (hard),1243
a user-space interrupt handler written in C/Xenomai (user), and finally an interrupt1244
handler written in Java/OVM/Xenomai (ovm).1245

The results are shown in Table IV. The median latency is 3 µs for polling, 14 µs for1246
both kernel-space handlers (hard and kernel), 17 µs for user-space C handler (user),1247
and 59 µs for Java handler in OVM (ovm). Note that the table shows that the overhead1248
of using interrupts over polling is larger than the overhead of handling interrupts1249
in user space over kernel space. The maximum latency of OVM was 203 µs, due to1250

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:38 M. Schoeberl et al.

infrequent pauses. Their frequency is so low that the measured 95% quantile is only1251
61 µs.1252

The experiment was run on Dell Precision 380 (Intel Pentium 4 3.8 GHz, 3G RAM,1253
2M 8-way set associative L2 cache) with Linux (Ubuntu 7.10, Linux 2.6.24.3 with1254
Xenomai-RT patch). As Xenomai is still under active development we had to use1255
Xenomai work-arounds and bugfixes, mostly provided by Xenomai developers, to make1256
OVM on Xenomai work.1257

5.3.3 Summary. The overhead for implementing interrupt handlers is very accept-1258
able since interrupts are used to signal relatively infrequently occurring events like1259
end of transmission, loss of carrier, etc. With a reasonable work division between1260
first-level and second-level handlers, the proposal does not introduce dramatic block-1261
ing terms in a real-time schedulability analysis, and thus it is suitable for embedded1262
systems.1263

5.4 Discussion1264

5.4.1 Safety Aspects. Hardware objects map object fields to the device registers. When1265
the class that represents a device is correct, access to it is safe; it is not possible to read1266
from or write to an arbitrary memory address. A memory area represented by an array1267
is protected by Java’s array bounds check.1268

5.4.2 Portability. It is obvious that hardware objects are platform-dependent; after all1269
the idea is to have an interface to the bare metal. Nevertheless, hardware objects give1270
device manufacturers an opportunity to supply supporting factory implementations1271
that fit into Java’s object-oriented framework and thus cater for developers of embed-1272
ded software. If the same device is used on different platforms, the hardware object is1273
portable. Therefore, standard hardware objects can evolve.1274

5.4.3 Compatibility with the RTSJ Standard. As shown for the OVM implementation, the1275
proposed HAL is compatible with the RTSJ standard. We consider it to be a very im-1276
portant point since many existing systems have been developed using such platforms1277
or subsets thereof. In further development of such applications existing and future in-1278
terfacing to devices may be refactored using the proposed HAL. It will make the code1279
safer and more structured and may assist in possible ports to new platforms.1280

5.5 Perspective1281

The many examples in the text show that we achieved a representation of the hard-1282
ware close to being platform-independent. Also, they show that it is possible to imple-1283
ment system-level functionality in Java. As future work we consider to add devices1284
drivers for common devices such as network interfaces11 and hard disc controllers.1285
On top of these drivers we will implement a file system and other typical OS-related1286
services towards our final goal of a Java-only system.1287

An interesting question is whether a common set of standard hardware objects is1288
definable. The SerialPort was a lucky example. Although the internals of the JVMs and1289
the hardware were different one compatible hardware object worked on all platforms.1290
It should be feasible that a chip manufacturer provides, beside the data sheet that1291
describes the registers, a Java class for the register definitions of that chip. This defi-1292
nition can be reused in all systems that use that chip, independent of the JVM or OS.1293

Another interesting idea is to define the interaction between the GC and hardware1294
objects. We stated that the GC should not collect hardware objects. If we relax this1295

11A device driver for a CS8900-based network chip is already part of the Java TCP/IP stack.

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

A Hardware Abstraction Layer in Java 42:39

restriction we can redefine the semantics of collecting an object: on running the1296
finalizer for a hardware object the device can be put into sleep mode.1297

ACKNOWLEDGMENTS1298

We wish to thank Andy Wellings for his insightful comments on an earlier version of the article. We also1299
thank the reviewers for their detailed comments that helped to enhance the original submission.1300

REFERENCES1301
AJILE. 2000. aj-100 real-time low power Java processor. Preliminary data sheet.1302
ARMBRUSTER, A., BAKER, J., CUNEI, A., FLACK, C., HOLMES, D., PIZLO, F., PLA, E., PROCHAZKA, M.,1303

AND VITEK, J. 2007. A real-time Java virtual machine with applications in avionics. Trans. Embed.1304
Comput. Sys. 7, 1, 1–49.1305

BACON, D. F., CHENG, P., AND RAJAN, V. T. 2003. A real-time garbage collector with low overhead and1306
consistent utilization. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of1307
Programming Languages (POPL’03). ACM Press, New York, 285–298.1308

BOLLELLA, G., GOSLING, J., BROSGOL, B., DIBBLE, P., FURR, S., AND TURNBULL, M. 2000. The Real-Time1309
Specification for Java. Java Series. Addison-Wesley.1310

BURNS, A. AND WELLINGS, A. J. 2001. Real-Time Systems and Programming Languages: ADA 95, Real-1311
Time Java, and Real-Time POSIX 3rd Ed. Addison-Wesley Longman Publishing.1312

CASKA, J. accessed 2009. micro [µ] virtual-machine. http://muvium.com/.1313
CHOU, A., YANG, J., CHELF, B., HALLEM, S., AND ENGLER, D. 2001. An empirical study of operating1314

systems errors. SIGOPS Oper. Syst. Rev. 35, 5, 73–88.1315
FELSER, M., GOLM, M., WAWERSICH, C., AND KLEINÖDER, J. 2002. The JX operating system. In Proceed-1316

ings of the USENIX Annual Technical Conference. 45–58.1317
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. M. 1994. Design Patterns: Elements of Reusable1318

Object-Oriented Software. Addison Wesley Professional.1319
GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER, E., AND CULLER, D. 2003. The nesC language:1320

A holistic approach to networked embedded systems. In Proceedings of the ACM SIGPLAN Conference1321
on Programming Language Design and Implementation (PLDI’03). ACM Press, New York, 1–11.1322

GERUM, P. 2004. Xenomai - Implementing a RTOS emulation framework on GNU/Linux.1323
http://www.xenomai.org/documentation/branches/v2.4.x/pdf/xenomai.pdf.1324

GROUP, T. C. 2008. Trusted computing. https://www.trustedcomputinggroup.org/.1325
HANSEN, P. B. 1977. The Architecture of Concurrent Programs. Prentice-Hall Series in Automatic Comput-1326

ing. Prentice-Hall.1327
HENNESSY, J. AND PATTERSON, D. 2002. Computer Architecture: A Quantitative Approach 3rd Ed. Morgan1328

Kaufmann Publishers, Palo Alto, CA.1329
HENTIES, T., HUNT, J. J., LOCKE, D., NILSEN, K., SCHOEBERL, M., AND VITEK, J. 2009. Java for safety-1330

critical applications. In Proceedings of the 2nd International Workshop on the Certification of Safety-1331
Critical Software Controlled Systems (SafeCert’09).1332

HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER, D. E., AND PISTER, K. S. J. 2000. System archi-1333
tecture directions for networked sensors. In Proceedings of the 9th International Conference on Archi-1334
tectural Support for Programming Languages and Operating Systems (ASPLOS IX). 93–104.1335

HUNT, G., LARUS, J. R., ABADI, M., AIKEN, M., BARHAM, P., FAHNDRICH, M., HAWBLITZEL, C., HODSON,1336
O., LEVI, S., MURPHY, N., STEENSGAARD, B., TARDITI, D., WOBBER, T., AND ZILL, B. D. 2005. An1337
overview of the singularity project. Tech. rep. MSR-TR-2005-135, Microsoft Research (MSR).1338

KORSHOLM, S., SCHOEBERL, M., AND RAVN, A. P. 2008. Interrupt handlers in Java. In Proceedings of1339
the 11th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed1340
Computing (ISORC’08). IEEE Computer Society.1341

KRALL, A. AND GRAFL, R. 1997. CACAO – A 64 bit JavaVM just-in-time compiler. In Proceedings of the1342
Workshop on Java for Science and Engineering Computation (PPoPP’97), G. C. Fox and W. Li Eds. ACM.1343

KREUZINGER, J., BRINKSCHULTE, U., PFEFFER, M., UHRIG, S., AND UNGERER, T. 2003. Real-Time event-1344
handling and scheduling on a multithreaded Java microcontroller. Microprocess. Microsyst. 27, 1, 19–31.1345

LINDHOLM, T. AND YELLIN, F. 1999. The Java Virtual Machine Specification 2nd Ed. Addison-Wesley,1346
Reading, MA.1347

LOHMEIER, S. 2005. Jini on the Jnode Java os. http://monochromata.de/jnodejini.html.1348

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

42:40 M. Schoeberl et al.

PHIPPS, G. 1999. Comparing observed bug and productivity rates for java and c++. Softw. Pract. Exper. 29, 4,1349
345–358.1350

RAVN, A. P. 1980. Device monitors. IEEE Trans. Softw. Engin. 6, 1, 49–53.1351
RTJ COMPUTING. 2000. SimpleRTJ a small footprint Java VM for embedded and consumer devices.1352

http://www.rtjcom.com/.1353
SCHOEBERL, M. 2005. Jop: A java optimized processor for embedded real-time systems. Ph.D. thesis, Vienna1354

University of Technology.1355
SCHOEBERL, M. 2006. Real-Time garbage collection for Java. In Proceedings of the 9th IEEE International1356

Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC’06). IEEE,1357
424–432.1358

SCHOEBERL, M. 2008. A Java processor architecture for embedded real-time systems. J. Syst. Archit. 54/1–2,1359
265–286.1360

SCHOEBERL, M. AND VITEK, J. 2007. Garbage collection for safety critical Java. In Proceedings of the 5th1361
International Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES’07). ACM1362
Press, 85–93.1363

SCHOEBERL, M. AND PUFFITSCH, W. 2008. Non-Blocking object copy for real-time garbage collection. In1364
Proceedings of the 6th International Workshop on Java Technologies for Real-Time and Embedded Sys-1365
tems (JTRES’08). ACM Press.1366

SCHOEBERL, M., KORSHOLM, S., THALINGER, C., AND RAVN, A. P. 2008. Hardware objects for Java. In1367
Proceedings of the 11th IEEE International Symposium on Object/Component/Service-Oriented Real-1368
Time Distributed Computing (ISORC’08). IEEE Computer Society.1369

SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. 1990. Priority inheritance protocols: An approach to real-1370
time synchronization. IEEE Trans. Comput. 39, 9, 1175–1185.1371

SIEBERT, F. 2002. Hard Realtime Garbage Collection in Modern Object Oriented Programming Languages.1372
aicas Books.1373

SIMON, D., CIFUENTES, C., CLEAL, D., DANIELS, J., AND WHITE, D. 2006. Java on the bare metal of1374
wireless sensor devices: The squawk Java virtual machine. In Proceedings of the 2nd International1375
Conference on Virtual Execution Environments (VEE’06). ACM Press, New York, 78–88.1376

WELLINGS, A. AND SCHOEBERL, M. 2009. Thread-local scope caching for real-time Java. In Proceedings of1377
the 12th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed1378
Computing (ISORC’09). IEEE Computer Society.1379

WILKINSON, T. 1996. Kaffe – A virtual machine to run java code. http://www.kaffe.org.1380
WIRTH, N. 1977. Design and implementation of modula. Softw. Pract. Exper. 7, 3–84.1381
WIRTH, N. 1982. Programming in Modula-2. Springer.1382
XENOMAI DEVELOPERS. 2008. Xenomai: Real-Time framework for Linux. http://www.xenomai.org.1383

Received August 2008; revised July 2009; accepted February 20101384

ACM Transactions on Embedded Computing Systems, Vol. 10, No. 4, Article 42, Publication date: November 2011.

