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ABSTRACT
Digital rights management (DRM) of integrated circuits (ICs)
is a crucially important task both economically and strate-
gically. Several IC metering techniques have been proposed,
but until now their effectiveness for royalty management has
not been quantified. IC auditing is an important DRM step
that goes beyond metering; it not only detects that a pirated
IC has been produced but also determines the quantity of pi-
rated ICs. Our strategic objective is to create a new intrinsic
passive metering technique as well as the first IC auditing
technique, and to maximize and quantify their effectiveness
using statistical analysis and IC characterization techniques.
Our main technical innovations include physical level gate
characterization, a Bayesian approach for coincidence anal-
ysis, and an adaptation of animal counting techniques for
IC production estimation. We evaluate the accuracy of the
IC metering and auditing approach using simulations on a
set of ISCAS benchmarks.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Physical Security

General Terms
Security

Keywords
Digital rights management, IC metering, IC auditing, phys-
ical level characterization, animal counting

1. INTRODUCTION
Digital rights management (DRM) [1] [2] of integrated

circuits (ICs) has drawn a great deal of attention in the
recent years with the fast growth of outsourcing in the IC
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industry. In the current model of IC manufacturing, the
IC design companies deliver their designs to IC foundries
without having any control over the manufacturing process.
In this process, it is likely that an untrusted IC foundry
fabricates a larger number of ICs than it was authorized to
produce. Such misconduct of unauthorized IC production
has become a crucial concern in the IC industry, with illegal
copies of ICs costing the design companies billions of dollars
annually.

IC metering approaches [1] [3] [4] [5] have been proposed
to deter or detect the unauthorized IC production. More
formally, IC metering or hardware metering refers to tools,
methodologies, and protocols that enable post-fabrication
tracking of the ICs. The metering approaches proposed thus
far are classified into two categories, passive and active. In
passive metering, the ICs are individually identified, either
in terms of their functionality, or by other forms of unique
identification. The identified ICs may be matched against
their record in a pre-formed database that could reveal un-
registered ICs or overbuilt ICs (in case of collisions). A
beauty of passive metering is that the intrinsic process vari-
ation of the legacy chips, without any modifications, can be
exploited to identify and to track each individual chip [5].
For a more comprehensive review of hardware metering, we
refer the readers to recent surveys on the topic [6] [7]. In
active metering, not only the ICs are specifically identified,
but also parts of the IC functionality can be only accessed,
locked (disabled), or unlocked (enabled) by the design house
or IP owners by exploiting the design details that are not
transferred to the foundry.

The existing IC metering approaches can detect intellec-
tual property (IP) violations in IC manufacturing. However,
no exact quantification of the number of chips that have been
produced illegally was proposed, beyond the collision prob-
abilities that were computed by variations of the Birthday
paradox. This renders the royalty management and charging
of the parties using the IP extremely challenging.

To address this issue, we propose the new concept of IC
auditing, which aims to provide a quantified estimation of
the number of chips produced and released to the IC market.
Our strategic objective is to create a new intrinsic passive
metering technique and the first IC auditing technique us-
ing a combination of statistical, majorization, and IC char-
acterization techniques. In particular, we propose a new
intrinsic passive metering scheme based on physical level IC
characteristics, such as threshold voltage (Vth) and effective

3



channel length (Leff ). The reason why we use physical level
properties is that they are more stable than the properties
are used in manifestational tests (e.g., delay and power) in
the sense that they do not depend on the environmental
factors (e.g., temperatures) and thus, they can serve as sta-
ble IDs for the chips. We analyze the uniqueness of our
generated IDs by conducting coincidence estimation, which
verifies the uniqueness of IDs over a large number of chips.

Based on the IC metering and coincidence estimation, we
propose a systematic way of conducting IC auditing, which
is to predict the total number of chips produced and released
to the market. Our auditing scheme is based on an animal
counting model that predicts the total population from a
partial sampling and labeling of the chips in the market.
Our main contributions in this paper include the following:

• We propose a new intrinsic passive metering scheme
based on physical level characterization which provides
stable and unique IDs for the chips in the market with-
out instrumentations to the IC during the design.

• We introduce a statistical method of estimating the co-
incidence among the IC physical characteristics based
on Bayesian analysis and majorization techniques.

• We develop an IC auditing approach based on the clas-
sic animal counting model and statistical sampling.

The remainder of this paper is organized as follows. In
Section 2, we summarize the existing research work regard-
ing IC metering and digital rights management. Section 3
introduces the system models we use in this work. In Sec-
tion 4, we introduce the overall flow of our IC metering and
auditing scheme. The IC metering approach we are using is
discussed in Section 5, followed in Section 6 by our method of
estimating the coincidence in the IC metering process. Sec-
tion 7 gives a complete solution for predicting the number
of chips, based on the animal counting model. We show our
simulation results for our IC metering and auditing scheme
in Section 8. We conclude the paper in Section 9.

2. RELATED WORK
Metering and auditing have been recently studied in the

area of WWW, such as for client counting for client/server
management [16] and click fraud prevention [17]. Similarly,
in the area of IC design and manufacturing, there are several
active or passive IC metering schemes that have been pro-
posed. Some of them require instrumentation in the design
and manufacturing process, which are called extrinsic me-
tering; the others utilize the existing IC characteristics for
metering purpose without modifying the design flow, which
are called intrinsic metering. Intrinsic IC metering methods
are all passive.

2.1 Extrinsic IC Metering
Extrinsic IC metering introduces extra hardware/software

components to the chips, in order to make a unique identi-
fication for each chip and use it to detect IP violation. Ex-
trinsic IC metering methods maybe either active or passive.
Fingerprinting schemes [8] [9] assign a unique fingerprint on
each IP that the manufacturer is allowed to use. The manu-
facturer is supposed to use each IP once when producing the
chips. Therefore, each chip would have a unique fingerprint
compared to the other chips. Then, the design company

can detect the IP violation by finding out the chips with the
same unique fingerprint. Another extrinsic metering scheme
[3] adds a small programmable component in each design
which can be configured in a unique way for each chip dur-
ing the manufacturing process. The foundry reports to the
design company all the IDs of the manufactured chips. To
detect IP violation, the design company would conduct a
random sampling in the market and record the number of
unreported chips. From a statistical analysis based on col-
lision probabilities computed by the Birthday paradox, the
number of unauthorized chips can be estimated.

Extrinsic metering approaches can detect IP violations
but they require a high instrumentation to either the de-
sign or manufacturing process. It complicates the IC design
process and increases the cost of each chip. Also, there are
still security concerns in this scheme, because the design
company do not have control over the manufacturing pro-
cess, it is possible that untrusted manufacturers modify the
assigned fingerprint or ID and compromise the IP protection
scheme.

2.2 Intrinsic IC Metering
Intrinsic IC metering approaches do not interrupt the IC

design and manufacturing process. Instead, they character-
ize the existing properties of the chips and assign a unique
ID obtained from the characterization results of each chip.
The IDs are used in the same way as in the extrinsic me-
tering scheme. [1] proposed a CAD-based intrinsic passive
IC metering approach. It characterizes each gate of an IC
in terms of its delay on critical path. Because of the exis-
tence of process variation, the delay values of the gates are
different even if they are from the same design. Therefore,
the delay value can be used as a unique ID of the IC. Paper
[5] proposed a nondestructive approach for gate-level char-
acterization and a hardware metering protocol based on the
characteristics. They analyze the probability of collision of
IDs in presence of intra- and inter-chip correlations.

The intrinsic metering approaches avoid the instrumen-
tation to the IC design and manufacturing process and are
still able to generate unique IDs for the chips. However, they
would require high accuracy in the gate-level characteriza-
tion results. Also, the existing approaches did not provide
quantified solutions in terms of the number of chips that a
foundry may have produced.

3. PRELIMINARIES
In this section, we introduce the system models we use in

the IC metering and auditing process, including power/delay
models and process variation model.

3.1 Power and Delay Models
In our IC metering and auditing approach, we use leak-

age power (Pleakage), switching power(Pswitching), and de-
lay (Delay) as the conventional structural test parameters
of an IC, which provide a manifestation of the physical prop-
erties such as effective channel length (Leff ) and threshold
voltage (Vth). We call these the manifestational properties.
This subsection introduces the power and delay models we
use in this paper, which are obtained from [10].

There are typically two possible sources for power dissipa-
tion on an IC. One is from gate switching, in which the ICs
dissipate power by charging the load capacitances wire and
gates. The other source is leakage power, where even if the
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gates do not switch, they dissipates power due to the leakage
current. Equation (1) is the gate-level subthreshold leakage
power model [10], where L is effective channel length, Vth is
threshold voltage, and T is temperature. The other param-
eters are considered as constants in the discussion of this
paper and can be found in paper [10].

Pleakage = 2 ·n ·µ ·Cox ·
W

L
· (kT

q
)2 ·D ·Vdd · e

σ·Vdd−Vth
n·(kT/q) (1)

We note that the leakage power has a nonlinear (expo-
nential) relation with the temperature T , which provides us
with a method to vary the leakage power. In particular, if
we apply a set of input vectors to the circuit that switch
a subset of gates, the gates can be heated up and the heat
will be transferred to other gates on the circuit, which causes
the temperatures of the gates to vary over time. In this way,
we can condition the temperatures of the circuit and utilize
the exponential relation between temperature and leakage
power for our IC metering purpose.

Equation (2) describes the gate-level switching power model
[20], where the switching power is dependent on switching
probability α, load capacitance CL, gate width W , gate
length L, and supply voltage Vdd.

Pswitching = α · CL ·W · L · V 2
dd (2)

Equation (3) shows the gate-level delay model [10] that
depends on L and Vth in a non-linear manner.

Delay =
ktp · kfit · L2

2 · n · µ · φ2
t

· Vdd

(ln(e
(1+σ)Vdd−Vth

2·n·φt + 1))2

·γi ·Wi +Wi+1

Wi

(3)

where subscripts i and i + 1 represent the driver and load
gates, respectively; γ is the ratio of gate parasitic to input
capacitance; and ktp and kfit are delay-fitting parameter
and model-fitting parameter, respectively.

The power and delay models connect the manifestational
properties with the physical level properties. We employ
these models in our physical level characterization approach
under the consideration that gate-level physical properties
(e.g., L and Vth) would naturally serve as a unique ID of an
IC because of process variation.

3.2 Process Variation Model
Process variation (PV) in IC manufacturing is the devi-

ation of IC parameter values from nominal specifications,
due to the nature of the manufacturing process [11] [12] [13].
PV causes major variations in gate-level physical properties
such as Leff and Vth, which are two major sources of PV. In
the discussion of this paper, we follow the quad-tree model
presented in paper [14] for the variation of Leff (∆L). In
particular, ∆L is distributed into multiple levels where there
are different number of grids allocated on each level. The
grids on each level are assigned variation values that follow a
Gaussian distribution. Then, the total ∆L can be calculated
as the sum of variation values on each level of the grids to
which the corresponding gate belongs. Equation (4) shows
the total variation in the effective channel length of gate j,

where ∆Lij is the variation in the ith level grid to which
gate j belongs, and µi and σi are parameters of the Gaussian
distribution at level i.

∆Lj =
∑
i

∆Lij , where ∆Lij ∼ N(µi, σi) (4)

For Vth, we use the model proposed in [15], where the
distribution of Vth is obtained by the simulation study of
random dopant. Vth in this model is fit into a Gaussian
distribution, where the parameters are determined by the
dopant number and dopant position.

4. IC METERING AND AUDITING MODEL
Our IC auditing approach is based on physical level char-

acterization and IC process characterization, by which we
identify the physical level properties of each gate accurately
and use them as the IDs. Next, we conduct IC counting
using sampling and labeling based techniques. Fig. 1 shows
the overall flow of our IC metering and auditing model. We
first sample a set of chips and conduct physical level IC
characterizations. In particular, we take in the power/delay
measurements of the gates and use Equations (1) to (3) to
formulate a nonlinear equation with variables Vth and Leff .
By conditioning the temperatures of the IC and characteriz-
ing the power and delay values at the manifestation-level, we
can formulate a system of nonlinear equations. The solution
to the system of nonlinear equations would provide us with
estimated values of Vth and Leff for each gate on the sam-
pled chips. After that, we begin our process characterization
step, in which our goal is to generate the PV model for all
the chips that the foundry may have produced. We use the
PV model discussed in Section 3 in this step and characterize
the distribution parameters (mean and variance) by using a
fitting algorithm. Then, we use the calculated physical level
PV distribution in the coincidence estimation process, where
we estimate the probability of coincidence, i.e., the probabil-
ity of false positives that we identify a chip as of our design
but indeed it is not, as well as the probability of false neg-
atives that we identify our chips as from other designs by
mistake. Based on the coincidence estimation, we conduct
IC counting by sampling and labeling the chips in the mar-
ket to obtain a prediction of the number of manufactured
chips.

Figure 1: Overall flow of our IC metering and
auditing scheme.
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5. IC METERING BASED ON PHYSICAL
LEVEL CHARACTERIZATION

5.1 Overview
In order to predict the number of chips produced by the

foundry, we must first uniquely identify an IC and distin-
guish it from other ICs. We call this process IC metering
or IC identification. Our goal in IC metering is to char-
acterize the physical level properties of the sampled chips
and quantify the PV model for all the manufactured chips.
By accomplishing this, we can have an accurate method to
uniquely identify the chips, as well as a global statistical
view of all the chips in the market.

In IC metering, we take into account both the manifesta-
tional test properties (e.g., power and delay) and physical
device properties (e.g., threshold voltage and effective chan-
nel length). From Equations (1) to (3) we know that the
conventional gate level manifestational properties are im-
pacted by many variables, which make the property values
unstable and unpredictable. For example, the temperature
(T ) impacts leakage power exponentially, which means that
the leakage power would have a large variation when the
temperature varies due to IC activities or environmental fac-
tors. Therefore, unless one is in very controlled settings, the
manifestational properties are not appropriate for the pur-
pose of IC identification and, therefore, we consider using
physical level properties as the IDs for the chips.

Our flow of IC metering is shown in Fig. 2. We first con-
duct gate-level characterization to determine the power/delay
of each gate on the sampled chips, which is done by solving
a system linear equations using linear programming. Then,
we conduct physical level characterization to calculate the
Vth and Leff of each gate, based on the manifestational
properties and the models shown in Equations (1) to (3).
This is a nonlinear programming process since the models
of power and delay are nonlinear with Vth and Leff . Fi-
nally, we conduct process characterization to determine the
parameter values in the PV model of all the manufactured
chips.

Figure 2: Flow of IC metering.

5.2 Manifestation-level Characterization
We use the GLC method proposed in [18] and [19] to char-

acterize the manifestational properties in the presence of
PV. In the GLC method, the power and delay models are
expressed in a linear format assuming that the variation of
all the physical level properties is represented by a single PV
scaling factor K. Then, the value of K can be obtained by
solving a system of linear equations. For example, Equation
(5) shows the linear model of using leakage power.

p̃j = esj + erj +
∑

∀gate i=1,...,n

Kij si (5)

where p̃j is the full-chip leakage power at input state j; si
is the PV scaling factor of gate i; Kij is the nominal leak-

age power for the gate at input state j, which is dependent
on the constant parameters in Equation (1) and the input
states; and esj and erj are systematic and random measure-
ment errors, respectively. We can obtain a system of linear
equations by varying the primary input vectors and measur-
ing the leakage power of the entire circuit for each of them.

5.3 Physical Level Characterization based on
Thermal Conditioning

From the characterization results from the manifestational
properties, we are able to formulate a nonlinear equation
based on Equation (1) in the following format:

Pleakage =
A

L
· T 2 · e

C−Vth
BT (6)

where L and Vth are the two variables that we are charac-
terizing. A, B and C are transistor level parameters in the
leakage power model that we assume as constant values.

Equation (6) provides us with a nonlinear equation that
relates Leff and Vth to the manifestational properties (leak-
age power). We can obtain the leakage power value from
the characterization as discussed in Section 5.2. However,
with only one nonlinear equation, we are not able to solve
two variables Leff and Vth. Therefore, we must find a way
to add additional variations to the leakage power model, so
that a system of nonlinear equations can be obtained. We
achieve this goal by varying the temperatures of the circuit
using thermal conditioning. As discussed in Section 3, leak-
age power has an exponential relation with temperature T ,
and we can use thermal conditioning to control the temper-
atures and obtain multiple leakage power nonlinear equa-
tions for each single gate. By applying different T to the IC
and repeat the manifestational property characterization in
terms of leakage power, we can formulate a system of nonlin-
ear equations. Then, we solve the nonlinear equations using
a nonlinear program solver and obtain characterization re-
sults for Vth and Leff .

5.4 Process Characterization
In process characterization we aim to find out the quan-

tified PV model parameters as discussed in Section 3 for
all the manufactured chips. In particular, for the quad-tree
model of Leff , we characterize the Gaussian distribution pa-
rameters µi and σi for all the ∆Li. For the model of Vth, we
find out the mean and variance in the Gaussian distribution.

For the Vth distribution, we can refer to a Gaussian fit-
ting tool that can provide distribution parameters (mean
and variance). Then, we use the obtained parameters as
the estimation of those for the entire chip population. For
the quad-tree model of Leff , the problem becomes more
complicated because it is a sum of multiple Gaussian dis-
tributions on multiple levels, and there is no direct way to
break down the compound distribution and obtain param-
eter values for each single distribution. In order to solve
the problem, we develop a decomposition algorithm and use
a divide-and-conquer approach to keep fitting the sampled
Leff (compound distribution) to individual distributions.
The objective in this process is to fit the individual distribu-
tions to Gaussian distributions as accurate as possible, i.e.,
optimize the approximation error provided by the Gaussian
fitting tool for each individual distribution. Our solution is
based on the fact that a Gaussian distribution is infinitely
divisible, i.e., a Gaussian distribution X with mean µ and
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variance σ can be decomposed to multiple Gaussian distri-
butions Xi with mean of µi and variance of σi, where the
following equations hold:

∑
i

µi = µ (7)

∑
i

σ2
i = σ2 (8)

Based on this divisibility feature of Gaussian distribution,
we design a decomposition algorithm of process characteriza-
tion. We start from the highest level (root) of the quad-tree
and conduct a breadth-first search of the tree. At each node,
we guess and verify the constant component of the leaf node
with the requirement that the remainder obtained by sub-
tracting this constant component from the Leff value should
follows a Gaussian distribution, which is the Leff value of
the lower level nodes of the current node.

6. COINCIDENCE ESTIMATION
An important and difficult step in IC auditing is to be

able to distinguish each chip from the others. Due to possi-
ble measurement and characterization errors in the IC me-
tering process, there are possibilities of false positives and
false negatives. The former means that we count chips that
are not of our design as ours, and the latter means the op-
posite. Our goal in coincidence estimation is to measure the
probabilities of false positives and false negatives, so that we
can estimate their impacts on the accuracy of IC auditing.

We develop a Bayesian-based approach to calculate the
probability of coincidence when only a single gate on each
chip is considered. Then, we employ a majorization tech-
nique to conduct worst case analysis, which assumes that
all the gates on the circuit have the same probability of co-
incidence as the gate with the largest possible probability.
From this analysis, we obtain an upper bound of the proba-
bility of coincidence and use it for analyzing the impact on
IC auditing.

6.1 Bayesian-based coincidence analysis
Since our IC metering is based on the characterization re-

sults of Leff and Vth, there is a possibility that two gates
that are not from the same chip would have the same mea-
sured Leff and Vth due to either measurement errors or
characterization errors.

Our IC auditing process works in the following way. We
take a sample of chip from the market and conduct IC meter-
ing to obtain Leff and Vth, and we label this chip according
to the Leff and Vth values. Then, we put this chip back to
the market and continue to take other samples. When we
take the next sample in, it is possible that it is not the same
chip as the previous labeled chip but we characterize them
as similar Leff and Vth (i.e., false positives), or it is the same
chip as the previous labeled chip, but we have different Leff

and Vth measurements (i.e., false negatives).
We employ Bayesian-based probability analysis [21] to cal-

culate the probability of coincidence. Taking the false pos-
itive case as an example, we have the following Bayesian-
based calculation:

P (H|D) =
P (D|H) · P (H)

P (D)
(9)

Figure 3: Probability that a gate has coincidence
with other gates in terms of Leff (benchmark C432
with 160 gates; mean value of Leff is 1.2).

where H is the event that a gate matches with at least one
other gate according to either Leff or Vth measurement. D
represents the event that we have a certain set of Leff or
Vth measurements for N sampled chips. Therefore, P (H|D)
represents that the probability that a gate matches with
other gates under the condition that we have that certain
set of measurements; and P (D|H) is the probability of hav-
ing the certain set of measurements under the condition that
the gate matches with some other gates. We assume that
P (D|H)/P (D) forms a normalization constant that does not
vary with the variation of D. We calculate P (H) in the fol-
lowing way by using the rationale in the well known birthday
paradox problem [25]:

P (H) = 1−
N∏
1

(1− Pi) (10)

where Pi is the probability that a certain gate i matches with
one another gate j. The value of Pi depends on the position
of the Leff or Vth in the whole distribution. Fig. 3 shows
our simulation results of Pi in terms of Leff . We can see
that the gates with Leff around the mean value (Leff = 1.2
in the figure) of the distribution have a relatively large Pi.

Putting it all together, we have the following estimate for
P (H|D):

P (H|D) ∝ 1−
N∏
1

(1− Pi) (11)

We use two approaches for determining whether two chips
match with each other: (i) an extreme method, in which we
claim two chips are identical as long as there is an over-
lap between the distributions of their measured values; and
(ii) a threshold approach, in which only when the overlap
between two distributions exceeds a threshold value do we
assume they are identical. We conduct simulations on IS-
CAS benchmarks for the false negatives and false positives
in each approach. The results are shown in Table 1 and
discussed in details in Section 8.
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6.2 Majorization and Worst Case Analysis
As mentioned in the previous subsection, the probabil-

ity Pi varies over the absolute value of Leff or Vth, and it
reaches the highest value if the sampled chip is at the mean
value of the entire distribution. In order to conduct coin-
cidence estimation considering all gates on a chip, we must
take into account the variations of Pi for all the gates. In our
coincidence estimation process, we approximate the value of
each Pi using a majorization technique. In other words, we
use the highest possible Pi (that of the mean value Leff

or Vth) to represent all the Pi values. In this way, we in-
deed overestimate the probability of coincidence and aim to
obtain an upper bound value for the worst case analysis.

6.3 Summary of Coincidence Estimation
From the results in Table 1 that we will discuss in Section

8 in details, we can conclude that the worst case probability
of coincidence is small enough to hold a large number of chips
(e.g., in millions), and the probabilities of false positives and
false negatives are close to zero. This conclusion enables us
to assume that all the chips are distinguishable from each
other and we can label them uniquely without overlaps. This
is important in the next step of our IC auditing process,
because the sampling and re-sampling in the IC auditing
approach are based on replacement.

7. IC AUDITING USING SAMPLING
Based on the IC metering with near-zero false positives

and false negatives, we are able to conduct IC auditing us-
ing a sampling approach. Our IC auditing scheme is based
on the animal counting techniques proposed in the statis-
tical field [22] [23]. The main idea is to predict the total
population of a kind of animals by capturing and recaptur-
ing samples. In this section, we show how our IC auditing
problem is adapted to the animal counting model and how
we solve the IC counting problem based on the model.

7.1 Animal Counting Model
The animal counting problem was first studied for esti-

mating the dynamic of biological populations. One of the
widely used approaches is the capture-recapture method [22]
[23], in which samples are taken and labeled at periodic in-
tervals. Then, the total population can be predicted from
the number of captured, and more importantly, recaptured
animals in each sample. For example, in the fish count-
ing problem discussed in [22], the following information is
recorded for each sample i: (i) the total number of fish (ti);
(ii) the number of new fish (di); and (iii) the number of
recaptures (ri). Next, the probability of obtaining such a
sample can be calculated by using binomial distribution:

pi =

(
ti
ri

)
(
Mi

N
)ri(1− Mi

N
)di (12)

where N is the total number of fish, and Mi is the number
of labeled fish when the ith sample is drawn. Assuming
all the samples are taken randomly and independently, the
probability of obtaining n samples with specific ti, di, and ri
is the product of pi: P =

∏n
i=1 pi. Then, by using maximum

likelihood analysis, paper [22] gives the equation that holds
for N and Mi:

n∑
i=1

diMi

N −Mi
=

n∑
i=1

ri; (13)

Paper [22] solves the equation and gives an approximation
solution of N as the following:

N =

∑n
i=1 tiMi∑n
i=1 ri

(14)

Equation (14) indicates that the predicted number of fish
is a function of ti, Mi, and ri. All of these parameters can
be obtained easily from the sampling and labeling process.

7.2 IC Auditing
Our IC auditing problem is similar with the animal count-

ing problem, in both required inputs and outputs. However,
we must analyze the assumptions behind the problem and
verify that our IC counting problem still makes the assump-
tions hold. We note that the fundamental assumptions that
are required by the animal counting model include the fol-
lowing: (i) there must be a method to uniquely label the
captured samples; and (ii) the sampling model must be with
replacement so that the captured samples can be recaptured,
which provides an indicator on how large the total popula-
tion is.

From the discussion in Section 6, the first assumption
holds because the probability of coincidence becomes ex-
tremely small when we consider all the gates on the chip.
For the second assumption, we make our IC auditing pro-
cess spread into the IC marketing period. In other words,
we collect IC samples periodically and put them back into
the market after each sampling period. This would make
our auditing process long, but it is doable. Furthermore,
the number of samples can be adjusted according to the re-
quired accuracy of the prediction results. Section 8 gives an
analysis of the prediction accuracy in terms of the number of
samples taken, which can serve as a reference of how many
samples are needed and an estimation of how long the entire
IC auditing process would take.

Based on the above analysis, we apply the animal counting
technique to our IC auditing problem. We use the same
symbols of ti, di, and ri as in Section 7.1 for chips. The
number of chips can be predicted by Equation (14).

7.3 Post-processing
The accuracy of the prediction results can be impacted

by many factors, such as the degree of independence of the
samples and the approximation errors in the animal counting
model. In order to improve the accuracy of IC auditing, we
employ a statistical method, namely maximum likelihood
estimation to post-process the data after many runs of the
sampling experiments have been conducted. Then, we apply
goodness-of-fit tests [24] on the data from each run, and
estimate the statistical distribution of the predicted results
over different runs. According to the distribution that each
result follows, we obtain its approximate density function,
i.e., p(N), and set our estimated value of N to be the one
that maximizes the likelihood function:

Ñ = argmaxN log p(N) (15)
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(a) (b)

Figure 4: Validation of our IC auditing scheme: (a) on known sets of chips; N varies from 1
to 1500; (b) on 500 runs of the analytical simulation; N is fixed to 800.

(a) Benchmark C432 (160 gates) (b) Benchmark C499 (202 gates)

(c) Benchmark C880 (383 gates) (d) Benchmark C1355 (546 gates)

Figure 5: Accuracy of Leff characterization on a set of ISCAS benchmarks.
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(a) Benchmark C432 (160 gates) (b) Benchmark C499 (202 gates)

(c) Benchmark C880 (383 gates) (d) Benchmark C1355 (546 gates)

Figure 6: Accuracy of Vth characterization on a set of ISCAS benchmarks

Table 1: Accuracy of Coincidence Estimation

Benchmark Relative GLC Error (%)
Extreme Method Threshold Method

False Positive (%) False Negative (%)) False Positive (%) False Negative (%)
C432 -2.0 ∼ +1.5 6.9 0 5.5 64
C499 -2.0 ∼ +3.0 9.8 0 7.8 64
C880 -6.0 ∼ +4.0 19.0 0 15.4 64
C1355 -6.0 ∼ +2.0 15.4 0 12.4 64
C1908 -3.2 ∼ +3.2 12.4 0 10.0 64
C2670 -3.0 ∼ +3.0 11.6 0 9.4 64
C3540 -3.0 ∼ +3.0 11.6 0 9.4 64
C5315 -3.0 ∼ +3.0 11.6 0 9.4 64
C6288 -2.0 ∼ +3.0 9.8 0 7.8 64
C7552 -3.2 ∼ +2.4 11.6 0 8.6 64
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7.4 Validation
We can validate our prediction results in two ways. One is

to experiment it directly on a known set of chips. By com-
paring the actual number of chips and our predicted results,
a conclusion can be drawn on how accurate our prediction
model is. Fig. 4(a) shows one of validation results, in which
we apply our IC auditing approach to unknown sets of chips
with up to 1500 chips. For each set of chips, we plot and
compare our prediction results with the actual number of
chips. We observe from Fig. 4(a) that the estimated N
is close to the actual N , but the distance between them is
increasing as the actual N grows. This is due to the fixed
number of samples and sample sizes, which are not enough
when the population is large. We analyze this problem in
more details in Section 8 by simulating a varying number of
samples in the IC auditing process.

Another method for validation is to conduct statistical
analysis on multiple runs of the sampling process. In partic-
ular, we repeat the experiment many times and compare the
results of each run in terms of the variance of the predicted
results. If the variance is within a small enough range, it
indicates that our prediction model converges and is stable.
Fig. 4(b) shows our validation results based on this method.
We repeat the experiment 500 times for a known set (800)
of chips. The plotted results of predicted number of chips
indicate that they are within the range of 25% of the actual
number of chips.

8. SIMULATION RESULTS
We simulate our IC metering and auditing schemes on a

set of ISCAS benchmarks. We use leakage power as the man-
ifestational test properties in the simulation because every
gate on the circuit has leakage power regardless of its activ-
ities. This provides us with more variabilities in metering
and labeling the gates.

8.1 IC Metering
We use the manifestation-level characterization results as

well as thermal conditioning to formulate a system nonlinear
equations. In this simulation, we use 20 nonlinear equations
(temperatures) per gate and obtain Vth and Leff for each
gate by solving the system of nonlinear equations. We solve
the nonlinear equations by using the Gauss-Newton method
provided by Matlab. The PV model we use in the simulation
is the quad-tree model as discussed in Section 3.

Fig. 5 and Fig. 6 show the accuracy of our characteriza-
tion results for Leff and Vth, respectively. In each bench-
mark, we characterize each gate and compare the charac-
terization results with the actual values to calculate the ac-
curacy of our characterization. We plot the relative char-
acterization errors for all gates in histograms and fit them
into a distribution as shown in the curves. We can see from
the curves that we have less than 1% of average errors and
less than 5% of maximum errors except for few outliers. We
consider these error distributions in the next steps where we
conduct coincidence estimation and IC auditing.

8.2 Coincidence Estimation
We perform coincidence estimation on the same set of IS-

CAS benchmarks and characterize the probabilities of false
positives and false negatives when using both the extreme
method and the threshold method (with a 20% threshold).
Table 1 shows the results when considering one single gate

on each chip. The extreme method gives zero false negatives
and false positives from 6.9% to 19.0%, while the threshold
method has lower false positives from 5.5% to 15.4% and
constant false negative values depending on the threshold
value.

Given the coincidence estimation for having only one sin-
gle gate considered on each chip, we can calculate the prob-
abilities of false negatives and false positives that consider
all gates on the chip by using Equation (11). We find that
the probability of coincidence becomes extremely small (e.g.,
10−95 for benchmark C432) because of the large number
(e.g., at least 160) of gates in the benchmark circuits. Con-
sidering the fact that there are many more (in millions or
more) gates on a single chip in modern IC design, the proba-
bility of coincidence is very low even if there are huge number
of chips in the market.

8.3 IC Auditing
In our IC auditing simulation, we evaluate the IC counting

model in terms of the prediction accuracy. Also, we estimate
the impact of the sampling parameters, such as the number
of samples and the sample size, as well as the impact of the
total number of chips on the prediction accuracy.

8.3.1 Prediction Error vs. Number of Chips
We simulate our IC auditing scheme on different num-

bers of chips in order to find out how the total number of
chips would impact the prediction accuracy. In Fig. 7 we
show the relative prediction errors when the number of chips
varies from 1 to 2000, the number of samples is fixed at 20,
and the size of each sample is 20. We observe that the
relative prediction error becomes higher as the number of
chips increases, but it is always below 15%. Also, we ob-
serve that the variance of the prediction error grows as the
number of chips increases. This is due to the insufficient
samples compared to the total number of chips. We will
discuss the impact of the number of samples later in Sec-
tion 8.3.2. Also note that the results in Fig. 7 are obtained
without post-processing, i.e., each experiment is conducted
only once, which is another reason why the variance of the
prediction error increases.

Figure 7: IC auditing results: prediction error vs.
total number of chips (the number of samples is fixed
to 20; the sample sizes are fixed to 20; the total
number of chips varies from 1 to 2000; and no post-
processing of the prediction results is performed).

Table 2 shows our simulation results on a large number
of chips (up to 100 million). In this set of simulation, we
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set the sample rate (the ratio between the number of sam-
pled chips and the total number of chips) as 0.1%, 0.5%,
or 1.0% of the total number of chips. Also, we repeat each
experiment 100 times and conduct MLE post-processing to-
wards the collected results. We observe that the estimation
error decreases as the increase of the number of chips with
the same sample rate. Also, a sample rate of 0.5% can pro-
vide us with estimation errors below 5% for large numbers
of chips (107 or 108).

Table 2: IC auditing on large numbers of ICs.
Number of ICs Total Sample Rate Estimation Error

106 0.5% 15.0%

106 1% 3.77%

107 0.1% 29.9%

107 0.5% 2.16%

108 0.1% 6.34%

108 0.5% 5.04%

8.3.2 Prediction Error vs. Number of Samples
We find in our simulation results that the number of sam-

ples taken plays an important role in the eventual prediction
accuracy. In order to find out more about the impact of the
number of samples, we perform simulations on 1600 chips
while varying the number of samples from 10 to 50, with 20
chips in each sample. We show the results in Fig. 8. We
can observe that the prediction accuracy keeps improving
as the number of samples increases. This verifies our intu-
ition that the prediction becomes more accurate with more
information from the samples.

Figure 8: IC auditing results: prediction error vs.
number of samples (the number of chips is 1600;
the number of samples varies from 10 to 50; and the
sample sizes are fixed to 20 chips.)

8.3.3 Prediction Error vs. Size of Samples
We further investigate the possible impact of the sample

sizes by conducting a set of simulations on 1600 chips, with
a fixed number of samples (e.g., 20) and varied sample sizes
(e.g., from 10 to 50). We show the results in Fig. 9, where
there are no improvements in the prediction accuracy as we
increase the sample sizes.

Figure 9: IC auditing results: prediction error vs.
sample sizes (the number of chips is 1600; the num-
ber of samples is fixed to 20; and the sample sizes
vary from 10 to 50.)

9. CONCLUSION
We have developed a new intrinsic passive IC metering

scheme based on physical level IC characterization, which
provides a new labeling method to identify different chips.
Our estimation of coincidence proves the uniqueness of the
IC labeling for large numbers of chips. Based on the IC me-
tering scheme, we audit the number of manufactured chips
in the market by employing a statistical method, namely
the animal counting model. We evaluate the accuracy of
our IC metering and monitoring schemes on several ISCAS
benchmarks, and the simulation results show that both IC
metering and auditing are accurate even for small circuits
and huge numbers of chips in the market.
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