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ABSTRACT
Virtualized infrastructures and clouds present new challenges
for security analysis and formal verification: they are complex
environments that continuously change their shape, and that
give rise to non-trivial security goals such as isolation and
failure resilience requirements. We present a platform that
connects declarative and expressive description languages
with state-of-the art verification methods. The languages
integrate homogeneously descriptions of virtualized infras-
tructures, their transformations, their desired goals, and
evaluation strategies. The different verification tools range
from model checking to theorem proving; this allows us to
exploit the complementary strengths of methods, and also to
understand how to best represent the analysis problems in
different contexts. We consider first the static case where the
topology of the virtual infrastructure is fixed and demonstrate
that our platform allows for the declarative specification of a
large class of properties. Even though tools that are special-
ized to checking particular properties perform better than
our generic approach, we show with a real-world case study
that our approach is practically feasible. We finally consider
also the dynamic case where the intruder can actively change
the topology (by migrating machines). The combination of
a complex topology and changes to it by an intruder is a
problem that lies beyond the scope of previous analysis tools
and to which we can give first positive verification results.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security,Verification
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1. INTRODUCTION
Virtualized infrastructures and clouds form complex and

rapidly evolving environments that can be impacted by a
variety of security problems. Manual configuration as well
as security analysis often capitulate in face of these ever-
changing complex systems. The need for automated security
assurance analysis is immediate. Given the volatility of vir-
tualized infrastructure configurations as well as the diversity
of desired security goals, specialized analysis tools—even
though having performance advantages—have limited bene-
fits.
As a general approach, we propose to first specify abstract

security goals as desired state for a virtualized infrastruc-
ture in a formal language. For instance, goals can be in the
areas operational correctness (e.g., “Are all VMs deployed
on their intended clusters?”), failure resilience (e.g., “Does
the infrastructure provide enough redundancy for critical
components?”) or isolation (e.g., “Are VMs of different se-
curity zones isolated from each other?”). Second, we employ
a generic analysis tool to evaluate the actual state, i.e., the
virtualized infrastructure configuration, against this desired
state. Thus, we obtain an automated analysis mechanism
that can check the configuration—and configuration changes—
against a high-level security policy.
Such an automated analysis can cover two scopes: in

the static case, we analyze a single state of a virtualized
infrastructure against the desired properties. In the dynamic
case, we consider the actual configuration as a start state
and consider transitions that can change this configuration.
In our example, we consider in particular changes that an
intruder can make to the network (within the limits of his
access rights), e.g., by migrating VMs to other security zones.
The question is whether we can reach an attack state in
this way, i.e., a current configuration of the system that
violates the required security properties. The dynamic case
is a generalization of the static case that can only be handled
by the model-checking tools.
From engagements with customers running large-scale vir-

tualized infrastructures, we learned that they are interested
in a broad range of security goals. Specialized tools can be
applied to a subset of these security goals, as we already
demonstrated in previous research (cf. [7]) for security zone
isolation. However, a general approach is desired that can
cover this broad range of security requirements.
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Our goal is to establish general-purpose verification meth-
ods as an automated tool for security assurance of virtualized
infrastructures. We present a platform that connects declar-
ative and expressive description languages with state-of-the
art verification methods. With such a platform we can bene-
fit from the variety of existing methods and recent advances
such as those in the field of SMT solving. As desired state
specification, we take security assurance goals in the formal
language VALID [6] as inputs. As actual state, we lift the
configuration of a heterogeneous virtualized infrastructure
to a unified graph model. For this, we employ a security
assurance analysis tool called SAVE [7], which also computes
graph coloring overlays, that model, e.g., information flow.
We develop a translator that connects these descriptions with
the various state-of-the art verification tools. The translation
involves adapting the verification problem to the domain of
the respective tool, and property-preserving simplifications
and abstractions to support the verification. In particular,
the translation does not add false positives or false negatives
to the model.
In this paper we demonstrate that model-checking of cloud

infrastructures is in general possible, and we exemplify our
approach by studying three examples: zone isolation, secure
migration, and absence of single point of failure on the net-
work level. The first example is a static case, which asks
whether machines from different security zones are somehow
connected in an information flow graph. The relevancy of
this case was confirmed in a case study with a financial insti-
tution. The second example is of dynamic nature, and asks
whether an intruder with rights to migrate VMs can reach an
attack state, either by migrating the machine through an in-
secure network (thereby modifying the VM) or to a physical
machine he controls. Secure migration as an example is used
to show our first result in verifying dynamic problems, which
are in our future interest. The last example belongs to the
static case, and we consider that between certain machines
we must have redundant network links. Studying a broader
range of scenarios using our proposed general approach is
left as future work.

1.1 Contributions
We are the first to apply general-purpose model-checking

for the analysis of general security properties of virtualized
infrastructures. We propose the first analysis machinery
that can check the actual state of arbitrary heterogeneous
infrastructure clouds against abstract security goals specified
in a formal language. Our approach covers static analysis
as well as dynamic analysis and uses a versatile portfolio
of problem solver back-ends to benefit from their different
solution strategies (fix-point evaluation, resolution, etc.).
We believe that our experiments with different analysis

strategies (Horn clauses, transition rules) are of independent
interest, because the problem instances for security assurance
of virtualized infrastructures are structured differently than
traditional application domains of model checkers, notably
security protocols. In addition, we gained some insights on
the complexity relations of different problem classes.
As a case study, we successfully model checked a sizable1

production infrastructure of a global financial institution
against the zone isolation goal. We have previously analyzed
this infrastructure extensively with specialized tools and
found the same problems with this generic approach. We
1approximately 1,300 VMs, 25,0000 nodes and 30,000 edges

Figure 1: Architecture for model checking of general
security properties of virtualized infrastructures.

report that our different optimizations allowed us to improve
the performance by several orders of magnitude: whereas
the unoptimized problem instances did not terminate within
several hours, the optimized problem instances completed
the analysis in the order of seconds.
We note that some of the authors have already made contri-

butions in this area, upon which this work builds. Bleikertz
et al. [7] introduced an analysis system for virtualized in-
frastructures, called SAVE, which models configurations in
a graph representation and runs graph-coloring based infor-
mation flow analysis on this representation. Bleikertz and
Groß introduced a domain-specific language, called VALID,
which allows us to specify security goals for virtualized in-
frastructures in formal terms. This work makes distinct
new contributions by introducing analysis based on general-
purpose model checking on SAVE’s graph representation
against VALID specifications. The system presented in this
paper goes far beyond information flow analysis of [7] by
enabling validation of a wide range of security goals.

1.2 Architecture
We aim at the evaluation of an actual state against a

desired state, for which we employ a tool architecture illus-
trated in Figure 1. To specify a desired state, we formulate
general security goals in VALID [6], a language for security
assurance of virtualized infrastructures.
To obtain the actual state of a virtualized infrastructure,

we employ a tool for assurance analysis of virtualized infras-
tructures, called SAVE [7]. It comes with discovery probes
for heterogeneous clouds such as VMware, Xen, pHyp, etc.
and takes their proprietary configuration data as inputs. It
lifts the configuration data to a unified graph representation
of the virtualized infrastructure (the realization model) and
computes transitive closures over a graph coloring model for
information flow tracing. SAVE outputs its graph represen-
tations as the actual state of our analysis.
We use and compare several state-of-the-art tools for auto-

mated verification. The first is the AVANTSSAR platform2;
it consists of three verification backends, OFMC [4], CL-
Atse [18], and SAT-MC [1], that all have the common input
language ASLan (AVANTSSAR Specification Language). We
have focused here on OFMC and made initial experiments
with the other two; due to lack of source code availability
and lack of support of Horn clauses in current SAT-MC, we
could not run CL-AtSe and SAT-MC on the large scale case
2http://www.avantssar.eu/
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study through their web-interface. The particular strength of
AVANTSSAR is that we can model a dynamic network and
check whether a property holds in all reachable states of the
network. For the simpler case of analyzing a static network,
a broader range of tools is applicable as we can express veri-
fication as deducibility problems in first-order Horn clauses.
We consider here the automatic first-order theorem prover
SPASS [19]3 and the protocol verifier ProVerif [5]4. We also
made initial experiments with the SuccinctSolver [14]5. In
general, our hope is that tools based on different methods can
have complementary strengths and connecting them allows
us to benefit from all advances of the tools.
As the key component for the actual/desired state analysis,

we develop a compiler that takes the graph representation
of the actual state and the desired state specification in
VALID as inputs and compiles problem instances for the
solver back-ends. It refines the graph representation (e.g.,
by abstracting from nodes that cannot affect the analysis
goal or by introducing “fast lanes”), compiles a term algebra
from it, and enhances this problem instance with an analysis
strategy (such as, Horn clauses or intruder transition rules)
and the goal specified in VALID6.

2. INFORMATION FLOW ANALYSIS TOOL
PRELIMINARIES

We use an analysis tool for information flow analysis of
virtualized infrastructures [7] to discover the actual config-
uration of a virtualized infrastructure, abstract it into a
unified graph model and determine potential information
flow by transitive closure over graph coloring. This tool will
provide the bases for the term algebra to describe the actual
state. It proceeds in the following phases7: The first phase
of building a graph model is realized using a discovery step
that extracts configuration information from heterogeneous
virtualized systems, and a translation step that unifies the
configuration aspects in one graph model. For the subsequent
analysis, we apply the graph coloring algorithm defined in [7]
parametrized by a set of traversal rules and a zone defini-
tion. The resulting colored graph model is the actual state
input for the compiler to be verified against the desired state
security polices.

Discovery.
The goal of the discovery phase is to retrieve sufficient

information about the configuration of the target virtual-
ized infrastructure. For this matter, platform-specific data
is obtained through APIs such as VMware VI, XenAPI, or
libVirt, and then aggregated in one discovery XML file. It
contains information, among others, about the virtual ma-
chines, virtual networks, and storage in a platform-specific
representation. The target virtualized infrastructure, for
which we will discover its configuration, is specified either as
a set of individual physical machines and their IP addresses,
or as one management host that is responsible for the infras-
tructure. Additionally, associated API or login credentials
3http://www.spass-prover.org/
4http://www.proverif.ens.fr/
5http://www.imm.dtu.dk/cs_SuccinctSolver/
6The AVANTSSAR tools accept VALID goals out of the box,
we translate the goals for the other tools
7For further details about this process we refer the reader
to [7].

need to be specified. For each physical or management host
given in the infrastructure specification, we will employ a set
of discover probes that are able to gather different aspects
of the configuration.
We illustrate the discovery procedure with VMware as

example. Here, the discovery probe connects to vCenter
to extract all configuration information of the managed re-
sources. It does so by querying the VMware API with the
retrieveAllTheManagedObjectReferences() call, which provides
a complete iteration of all instances of ExtensibleManage-
dObject, a base class from which other managed objects are
derived. We ensure completeness by fully serializing the
entire object iteration into the discovery XML file, including
all attributes.

Transformation into a Graph Model.
We translate the discovered platform-specific configura-

tion into a unified graph representation of the virtualization
infrastructure, the realization model (cf. [7] for the formal
specification of the graph model). It expresses the detailed
configuration of the various virtualization systems and in-
cludes the physical machine, virtual machine, storage, and
network details as vertices. We generate the realization
model by a translation of the platform-specific discovery
data. This is done by so-called mapping rules that obtain
platform-specific configuration data and output elements of
our cross-platform realization model. Our tool then stitches
these fragments from different probes into a unified model
that embodies the fabric of the entire virtualization infras-
tructure and configuration.
Again, we illustrate this process for a VMware discovery.

Each mapping rule embodies knowledge of VMware’s on-
tology of virtualized resources to configuration names, for
instance, that VMware calls storage configuration entries
storageDevice. We have a mapping rule that maps VMware-
specific configuration entries to the unified type and, there-
fore, establishes a node in the realization model graph. We
obtain a complete iteration of elements of these types as
graph nodes. The mapping rules also establish the edges in
the realization model. In the VMware case, the edges are
encoded implicitly by XML hierarchy (for instance, that a
VM is part of a physical host) as well as explicitly by Man-
aged Object References (MOR). The mapping rules establish
edges in the realization model for all hierarchy-links and for
all MOR-links between configuration entries for realization
model types.
This approach obtains a complete graph with respect to

realization model types. Observe that configuration entries
that are not related to realization model types are not repre-
sented in the graph. This may introduce false negatives if
there exist unknown devices that yield further information
flow edges. To test this, we can introduce a default map-
ping rule to include all unrecognized configuration entries as
dummy node and all respective MOR links as edges.

Coloring Through Graph Traversal.
The graph traversal phase obtains a realization model and a

set of information source vertices with their designated colors
as input. The graph coloring outputs a colored realization
model, where a color is added to a node if permitted by
an appropriate traversal rule. We apply a first-matching
algorithm to select the appropriate traversal rule for a given
pair of vertices.

http://www.spass-prover.org/
http://www.proverif.ens.fr/
http://www.imm.dtu.dk/cs_SuccinctSolver/


We use the following three type of traversal rules that are
stored in a ordered list. Flow rules model the knowledge
that information can flow from one type of node to another
if an edge exists. E.g., a VM can send information onto a
connected network. We represent these rules by “follow”. Iso-
lation rules model the knowledge that certain edges between
trusted nodes do not allow information flow. E.g., a trusted
firewall is known to isolate, i.e., information does not flow
from the network into the firewall. We represent these rules
by “stop”. Default rule Whenever two types are not covered
by an isolation or flow rule, then we default to “follow”. In
order to be on the safe side, we assume that flow is possible
along this unknown type of edges. An example of a set of
traversal rules can be found in [7].

Output Actual State.
As actual state formulation for our subsequent analysis,

the tool outputs different kinds of unified graph models of
the infrastructure. We call the graph with the topology of
the entire infrastructure realization model; as we will see in
Section 3, this models the graph type real of the desired state
specification in VALID. In addition, we obtain subgraphs of
the topology that are reachable by a color in the information
flown analysis; they model the graph type info of the desired
state specification.

3. LANGUAGE PRELIMINARIES
We give a brief overview of the languages VALID and

ASLan which are at the core of our formal models. ASLan
stands for AVANTSSAR Specification Language [2], a set-
rewriting based formalism for specification of infinite state
transition systems dedicated to security of distributed sys-
tems. ASLan is an extension of the AVISPA Intermediate
Format [3]; one of the key extensions of ASLan is the inte-
gration of Horn-clauses that allow for complex evaluations
within every state of the transition system.

The Virtualization Assurance Language for Isolation and
Deployment (VALID) [6] is a formal language building upon
ASLan/IF for specifying security assurance goals of virtual-
ized infrastructures. It is a domain-specific extension and
customization of ASLan, in particular introducing a typing
system tailored to the needs of virtualized infrastructures and
graph-based analysis. Being close to ASLan, it is relatively
well-suited for the connection with the model-checking tools
of the AVANTSSAR platform.
We describe the two languages along-side (as their struc-

ture and meaning is very similar) and highlight the differ-
ences.

Term Algebra.
At the core of ASLan and VALID is a term algebra over

a signature Σ and variable symbols V. In concrete syntax,
all constant and function symbols of Σ are alphanumeric
identifiers that start with a lower-case letter, while variable
symbols of V start with upper-case letters. We typeset
ASLan/VALID elements in sans−serif. We interpret terms
in the free algebra, i.e., syntactically different terms represent
different values. In particular, two different constants always
represent different entities. We use standard notions of terms
such as ground (terms without variables), substitution, and
matching.
In ASLan, terms represent usually (cryptographic) mes-

sages where constants can be the identifiers of participants,
cryptographic keys, etc., and functions represent crypto-
graphic operations like symmetric encryption. In VALID,
in contrast, the constants denote the elements of the virtu-
alized infrastructure such as virtual and physical machines,
switches, and zones. We rarely deal with composed terms,
and use only constants and variables.

VALID’s Type System.
All constants in VALID have a type, according to the

following type system:

Definition 1 (Type System). We have a finite set of
type symbols (disjoint from variable and constant symbols)
that include for this paper the following:

T := {node,machine, host, network, zone}

We also have an acyclic subtype relation between types; here,
all the types machine, host, and network are subtypes of type
node.
A valid specification must contain one type declaration for

every used constant symbol, and at most one for every used
variable. All variables without type declaration are untyped.
Compound terms are always untyped. A typed variable can
only be matched against a constant of the same type or of a
subtype. A type declaration that term t has type τ is denoted
by t : τ .

To analyze topologies, we model virtualized infrastructure
configurations as graphs. Whereas the basic graph, called
realization, is a unification of vendor-specific elements into
abstract nodes, we introduce further graph transformations
to model information flow and dependencies.

Definition 2 (Graph Types). A graph type
G ∈ {real, info, depend, net} is a constant identifier for a type
of a graph model:

• real denotes a realization graph unification of resources
and connections thereof.
• info denotes a realization graph augmented with color-
ings modeling topology information flow.
• depend denotes a realization graph augmented with col-
orings modeling sufficient connections to fulfill a re-
source’s dependencies.
• net denotes a realization graph augmented with color-
ings modeling network topology information flow.

Facts and States.
The next layer of ASLan and VALID are facts (aka pred-

icates) expressing relationships between terms. We use in
this work the following (untyped) signature of facts symbols
(disjoint from constant, variable, and type symbols) with
their intuitive meaning:

• contains(Z,M) where typically Z and M are constant
or variable symbols of type zone and machine, respec-
tively. This denotes that machine M belongs to zone
Z.
• edge([G : real];A,B) is a predicate, which denotes the

existence of a single edge between A and B with respect
to an (optional) graph type G.
• connected([G : real];A,B) is a predicate, which denotes
existence of a path between A and B, respect to an
(optional) graph type G.



The notation [A : v] denotes an optional argument A with
default constant value v.
There are further predicate symbols used in VALID that

we do not discuss here for brevity, such as paths used to
iterate over all paths, and matches used to relate ideal and
real nodes.
A state is a finite set of ground facts that hold true in

the state (and all other facts are false). We denote states
using the an enumeration of facts separated by “.” (which
technically can be regarded as a commutative, associative,
and idempotent operator).

Rules and Goals.
An ASLan specification consists of an initial state, a set

of rules that give rise to a transition relation, and a set of
goals that describe a set of states, usually the violations of
the security properties.8 The security analysis shall then
determine whether a goal state is reachable from the initial
state by using the rules. Moreover, one may add Horn clauses
to specify immediate consequences within a single state which
we discuss in more detail below.
The rules have the form PF.NF.C ⇒ RF where PF

and RF are sets of facts, NF is a set of negative facts
(denoted using the ASLan operator not(·)), and C is a set
of inequalities on terms. The variables of RF must be a
subset of the variables of PF . Such a rule is interpreted as
follows: we can make a transition from state S to state S′ if
S contains a match for all “positive” facts of PF , does not
contain any instance that can match a negative fact of RF ,
and the inequalities of C do hold under the given match.
(More formally, the variables of PF are thus existentially
quantified, and the ones that only occur in NF and C are
universally quantified.) The successor state is obtained by
removing the matched positive facts of PF and adding the
RF under the matching substitution.
For example, the following rule expresses that, if an in-

truder resides at a node N and there is an edge from N to
another node M and M is not contained in a particular zone
z, then the intruder can move to M:

intruderAt(N).edge(N,M).not(contains(z,M))
⇒ edge(N,M).intruderAt(M)

Upon this transition, the fact intruderAt(N) is deleted (be-
cause it is not repeated on the right-hand side); the fact
edge(N,M) remains in the graph because it is repeated on
the right-hand side.
Goals are quite similar to rules in that have the form

PF.NF.C (like a rule without right-hand side) and by the
same semantics as rules characterize a set of states, usually
“bad” states for state-based safety properties. In VALID,
goal specifications are also labeled with a graph type G.

Horn Clauses.
ASLan introduced the specification of Horn clauses to the

transition system to allow for specifying immediate conse-
quences within a state. One of the main application is the
formalization of access control policies: access rights can be
expressed as a direct consequence of other facts that express
for instance that an employee is a member of particular
group. Horn clauses and the state transition system can
8Alternatively, ASLan allows for specifying goals also as
LTL properties, a feature that we do not use in this paper,
however.

mutually interact. First, a transition can change the facts
that currently hold (e.g., an employee changes to another
group) which has immediate consequences for the access
rights via the Horn clauses. Second, the fact representing
the (current) access decision can be the condition of another
transition rule (where an employee requests access to a re-
source). In our context, we can also use the Horn clauses to
formalize properties of the current graph. E.g., to formalize
that connected() is the symmetric transitive closure of the
edge() predicate we can simply specify:

connected(A,B) :− edge(A,B)
connected(B,A) :− edge(A,B)
connected(A,C) :− edge(A,B).connected(B,C)

Introducing or removing edges upon transitions would auto-
matically change the connected() relation.

4. PROBLEM CLASSES
During our analysis, we found that the analysis goals for

virtualized infrastructures can be structured into orthogonal
problem classes, and that different problem classes exhibit
consistent complexity tendencies for the solver-backends. We
consider problem classes with respect to three (syntactical)
criteria on attack states and intruder rules: locality, positivity,
and dynamics.

4.1 Local vs. Global

Definition 3 (Locality). We call an attack state lo-
cal if it only exhibits state facts that will be part of the initial
state, e.g., edge() and contains(). We call an attack state
global if it exhibits state facts that must be derived by an eval-
uation over the topology (e.g., connected()). We use these
terms for the corresponding problem instances, as well.

Secure migration—in the sense that the intruder cannot reach
a state in which he controls the physical host to which a VM
was migrated—is a local problem, because the attack state
will be formulated on the edge() statement between these
components.9 Zone isolation mentioned in the introduction is
an example of a global problem, because it needs to consider
the connections through-out the topology.
All other factors equal, we conjecture that local problems

can be consistently checked more efficiently than global prob-
lems. We also conjecture a positive performance correlation
between Horn clause based models and problem solvers with
local problems, and between transition based models and
problem solvers with global problems.

4.2 Positive vs. Negative Attack States
Attack states formulated in VALID can contain positive

as well as negative facts.

Definition 4 (Positivity). We call an attack state
positive if it exclusively contains positive state facts. We
call an attack state negative if it contains at least one neg-
ative state fact. We use these terms for the corresponding
problem instances, as well.
9Another example for a local problem is machine placement
specified in [6], the question whether each VM in the actual
state has an edge to the physical host specified in the desired
state.



The secure migration and zone isolation examples are posi-
tive problems. A negative attack state is, for instance, the
guardian mediation introduced in [6], which is fulfilled if there
exists any connection between a machine and a network that
is not mediated by a guardian (firewall).
All other factors equal, we conjecture that positive prob-

lems can be checked more efficiently than negative problems.

4.3 Static vs. Dynamic
We consider problems that are statically checking whether

the actual state fulfills a desired state. By introducing addi-
tional transition rules we can allow the intruder to transform
the virtualized infrastructure to reach an attack state, and
therefore introduce dynamics.

Definition 5 (Dynamics). We call a problem instance
static if its transition rules and Horn clauses only include
topology traversal over the initial state. We call a problem
instance dynamic if it contains transition rules or Horn
clauses that model intruder capabilities to change the initial
state.

Many example problems presented in [6] (machine placement,
zone isolation, guardian mediation) are static in first instan-
tiation. As soon as we extend the intruder rules/clauses
with rights to, e.g., start, stop or migrate machines or to
reconnect networks/storage, we obtain dynamic problems.
Secure migration introduced above is a dynamic problem.
All other factors equal, we conjecture that static problems

can be checked more efficiently than dynamic problems. In
the static case, it is more efficient to check for several attack
states than in the dynamic case. We conjecture that first-
order logic models and tools will have an advantage at static
problems, whereas transition based models and tools will
have an advantage at dynamic problems.

5. COMPILING PROBLEM INSTANCES
This section discusses how we compile problem instances

for the solver back-ends, thus, explains the compiler which
is a key component of the architecture in Section 1.2. The
compiler receives the following inputs: the realization model
or derivatives as a graph representation of the actual state
and a VALID policy as representation of the desired state.
The success and efficiency of the solver back-ends are

largely determined by the initial size of the problem instance,
by solution strategies that limit the search tree complexity,
and by problem formulations that match the solvers’ capa-
bilities. Therefore, the compiler must strive for a significant
complexity reduction while maintaining generality. Because
we target sizable real-world infrastructures, the initial prob-
lem size may easily be in the order of tens of thousands of
nodes and the compiler’s pruning prove crucial.
The compiler works in multiple phases:

• Graph Transformation: Reducing the complexity of
the graph and representing it as term algebra facts.

• Strategy Amendment: Introducing sensible analysis
strategies into the problem instance that match the
solver’s strengths’.

5.1 Graph Transformation
A (colored) realization model input consists of high-level

nodes, such as machine, and low-level nodes, such has ipInterface,

as well as edges that model the connections between these
components. In general, we aim at representing the edges of
this graph as edge() facts in term algebra and give the prob-
lem solvers means to derive graph facts, notably connected().
Real-world virtualized infrastructures consist of tens of

thousands low-level components and similarly many edges,
an initial complexity that could easily overwhelm the solver
back-ends. Therefore, we support the solver back-ends in
traversing these graphs efficiently by either abstracting from
low-level nodes not impacting the analysis or introducing
“fast lanes” into the graph:

Definition 6 (Optimization: Graph Refinement).
For all adjacent high-level components, such as machine or
host, connected though a sub-graph with low-level components
with degree smaller than three, we replace the subgraph by
edges maintaining the same connectivity. Similarly, “fast
lanes” added to the graph allow the solver back-ends to reach
other segments of the graph with fewer steps.

The graph refinement maintains analysis generality if the
pruned node types do neither occur in attack states nor in
intruder or topology transformation rules/clauses.

5.2 Strategy Amendment

Graph Traversal.
Amajor part of the solver’s strategy will depend on how the

graph traversal is modeled, which we express by connected()
facts derived from the edge() facts:

edge(A,B)⇒ edge(A,B).connected(A,B).connected(B,A)
edge(A,B).connected(B,C)
⇒ edge(A,B).connected(B,C).connected(A,C)

Observe that this formulation to compute the connected()
relation does not change the graph, i.e., edge() facts are
neither introduced or removed by these rules. While this is a
necessity for all evaluations of the graph in the dynamic case,
in the static case, we can formalize evaluation procedures that
do change the graph, for instance rules that remove edges
from the graph as soon as they were visited by the evaluation.
Our benchmarks show that such changes can improve the
performance of our zone isolation example, however only
slightly. Moreover, such “graph-consuming” strategies are
helpful for formalizing some advanced properties below.
We propose an additional translation, which reduces the

state complexity significantly. In this case, we imagine an
intruder tries to traverse the topology from some start-point
and “obtain” nodes he has access to. This avoids the binary
fact connected and instead uses a unary fact intruderHas to
represent all members of the largest connected subgraph that
contains the intruder start point.
The transition rules are as follows:

intruderHas(A).edge(A,B).not(intruderHas(B))
⇒ intruderHas(A).intruderHas(B).edge(A,B)
intruderHas(A).edge(B,A).not(intruderHas(B))
⇒ intruderHas(A).intruderHas(B).edge(B,A)

For large graphs, the restriction of analyzing such chunks
rather than the full connected-relation means substantial
savings: roughly speaking, the number of derivable facts is in
the worst case linear for the intruderHas strategy, while the
number of connected facts is quadratic. This optimization
requires, however, that we have to select one start point for



the intruderHas() computation and thus get the verification
of isolation from other zones only for that selected start point.
In case a connected(A,B) fact is used in a security goal, we
can translate it to intruderHas(A).intruderHas(B) for certain
goals (e.g. zone isolation).
Depending on the used solver or back-end, the evaluation

which nodes the intruder can obtain can either be expressed
by a means of transition rules (as above) or as first-order
Horn clauses (omitting the not(intruderHas(B)) condition on
the left-hand sides).

Dynamic Problems.
In addition to the graph analysis model, we need to intro-

duce intruder rules for the dynamic analysis to model his
capabilities to modify the infrastructure. They are highly
dependent on the scenario, but can easily be modeled by
introducing new facts as well as transition rules or Horn
clauses. We exemplify this by modeling the secure migration
problem in Section 6.

Encoding Static Problems into FOL.
In case of static problems, such as zone isolation, we do not

need to consider transition systems but can rather encode the
problem into “static” formalisms like first-order logic (FOL)
and alternation-free least fixed point logic (ALFP) for which
mature tools exists. We now show that we can effectively use
such tools as an alternative to the model-checking approach
in the static case. We study the use of the SuccintSolver for
(ALFP) [14], the FOL theorem prover SPASS [19] and the
protocol verifier ProVerif [5].
The example of zone isolation can be expressed as an initial

set of facts representing the graph structure, a set of Horn
clauses expressing the graph traversal as shown previously,
and a predicate that an intruder can reach a machine in
another different security zone.
The SuccintSolver [14] is an effective tool for computing

the least fixedpoint (i.e., all facts that are derivable by the
ALFP clauses from the given facts) of an ALFP specification.
(This fixedpoint is in our case always finite.)

The next tool we use is the generic first-order theorem
prover SPASS [19] which is based on resolution. The problem
is here that we want a Herbrand model of the symbols (e.g.,
different constants always represent different elements) which
cannot be enforced directly. We thus formulate as a proof
goal that an isolation breach can be reached; such a proof
exists if and only if this is true in the Herbrand model. For
the inequality of zones, we need to specify this as axioms for
zones to properly handle the negation w.r.t. the “Herbrand-
trick”.
We finally consider the ProVerif tool [5] which is also based

on resolution but dedicated to security problems formulated
by Horn clauses, and therefore often faster than SPASS.
Like in SPASS, we have to axiomatically introduce here the
inequality of zones, albeit using an uninterpreted predicate
symbol (because negation is not possible in ProVerif).

Static Problems beyond FOL.
We now discuss static problems that are beyond the ex-

pressiveness of FOL. Consider the goal of the absence of
single point of failures for network links, i.e., that a network
contains sufficient redundancies, so that failure of a single

node does not disrupt communication.10 More formally,
let us consider a network and the dependability constraint
depend(n1, n2) between two nodes n1 and n2. Then we re-
quire that there is are at least two disjoint paths (using
disjoint nodes) in the network from n1 to n2. Even in the
static case (when the network topology cannot change) this
problem is beyond the expressiveness of first-order logic (as a
consequence of the Löwenheim-Skolem theorem, see e.g. [10]).
As a consequence, we cannot use the solvers SPASS, ProVerif,

and Succinct Solver. Also, the standard approach to specify
the security property as a set of VALID or ASLan goals
(even using Horn clauses to evaluate the graph) is not appli-
cable, because that would also be FOL expressible relations.
However, we can specify a transition system in ASLan to
express a game that has a solution (expressed as a set of goal
states) if and only if there exists no single point of failure.
We demonstrate this game for the absence of single point

of failure in Section 6.

6. MODEL-CHECKING A VIRTUALIZED
INFRASTRUCTURE

In this section, we study three example problems, namely
zone isolation, secure migration, and absence of single point of
failure, and demonstrate how these problems can be analyzed
using model-checking. We apply model-checking on small
infrastructure examples to demonstrate the approach, and
we will analyze a large-scale infrastructure with regard to
zone isolation in Section 7.
We structure this section analogously to the architecture

Section 1.2 where for each example problem, we first specify
the desired state in VALID or ASLan goals along with the
required language primitives. Second, we introduce the
actual state, that is the infrastructure examples we analyze.
Third, we discuss specialties of compiling the corresponding
problem instance, the problem solvers employed and their
output for the analysis.

6.1 Zone Isolation
We consider the following scenario to illustrate the zone

isolation security goal: an enterprise network consists of
three security zones, namely a high security zone containing
confidential information, a base security zone for regular IT
infrastructure, and a test security zone. Any machine in
one zone should not be able to communicate with a machine
from a different zone, and network isolation is realized using
VLANs.

Desired State.
To have the solvers check violations of zone isolation, we

define an attack state isolation_breach, which asks the ques-
tion whether any two machines of any two different security
zones are connected.

Definition 7 (Goal: Zone Isolation). The isolation
breach attack state matches if any two disjoint zones ZA and
ZB contain machines MA and MB respectively, and in which
there exists an information flow path between these two ma-
chines. It is determined as information flow goal by the graph
type info.

10[6] considers another goal for single point of failure that
can be expressed as a goal state: when a node depends on a
particular resource, then it is connected to more than one
node to provide that resource.



g o a l i s o l a t i o n _ b r e a c h ( i n f o ; ZA, ZB,MA,MB) :=
c o n t a i n s (ZA,MA) . c o n t a i n s (ZB,MB) .

connected (MA,MB) & not ( e q u a l (ZA, ZB) )

Furthermore, the VALID policy requires a specification of
the membership of machines to specific zones. For example,
contains(high, vm1) denotes that vm1 is part of the high
security zone.

Actual State.
As discussed in Section 2, SAVE discovers the given in-

frastructure and captures all low-level configuration details
and resource associations. SAVE performs an information
flow analysis with the different security zones as informa-
tion sources and produces an information flow graph for the
infrastructure.

Model-Checking.
Based on the actual state provided by SAVE, our compiler

will generate a representation of the (potentially refined)
information flow graph in edge() facts and node constants.
Since we are dealing with a static problem, we use the efficient
intruderHas modeling for graph traversal, and transform the
goal accordingly. The output is ASLan for OFMC and
a variety of first-order logic languages used by the static
problem solvers.
Suppose the VLAN identifier of a machine vm2 in the test

zone was misconfigured and is identical to the VLAN ID
of a machine vm1 from the high security zone. OFMC will
provide us with such an attack state (reduced for brevity)
indicating a zone isolation breach:

SUMMARY
UNSAFE

PROTOCOL
z o n e _ i s o l a t i o n . i f

GOAL
i s o l a t i o n _ b r e a c h

% c o n t a i n s ( zone ( h igh ) , node ( machine (vm1) ) )
% c o n t a i n s ( zone ( t e s t ) , node ( machine (vm2) ) )
% i n t r u d e r H a s ( node ( machine (vm1) ) , i )
% i n t r u d e r H a s ( node ( machine (vm2) ) , i )

6.2 Secure Migration
Secure migration is a problem often encountered in practise

which was also highlighted by Oberheide et al. [15]. Secure
Migration is an interesting problem as its very nature requires
a dynamic modeling. However, we do not claim to solve
it completely with this work, as is a complex endeavor in
which many factors (network and storage connections, VLAN
associations, correct configuration of VMs, machine contracts,
etc.) need to be considered. Still, we want to demonstrate
the principles of dynamic analysis with a simplified example
of this problem class. We leave a full-scale analysis of secure
migration of a production system for future work.
We consider the topology depicted in Figure 2 for our

scenario: five hosts, where one is controlled by a malicious
administrator, are connected to two networks. The malicious
administrator can migrate virtual machines between hosts
as indicated by the migrate edges. There is one VM running
on host HostA.

NetAHostA

HostB

NetB

HostC

HostD HostE

VMA

migrate

migrate

migrate

migrate

Figure 2: Migration Scenario Topology

Desired State.
We study two exemplary instantiations of the problem of

secure migration. The attack state vm_breach asks whether
the intruder can migrate a virtual machine from a secure
environment to a physical host to which he has root access (in
order to perform attacks demonstrated by Rocha et al. [17]).
The attack state insecure_migration asks whether an intruder
can migrate a VM through an insecure network in order to
manipulate the VM (cf. attacks demonstrated by Oberheide
et al. [15]).
We define these goals in VALID, for which we introduce

the unary facts intruderAccess() and root(), and the binary
fact migrate(). These model the intruder’s access capability
set of root access (typically to a given host) and machine
migration between two hosts. These facts have the following
signature:

intruderAccess : fact→ fact
migrate : host ∗ host→ fact
root : node→ fact

The fact intruderAccess() models the set of all access rights
the intruder has, that is, it has the semantic that any term
enclosed by the fact belongs to the intruder’s access capa-
bilities. The fact root() models administrator rights on the
enclosed node.
We model virtual machine migration in the following way.

Definition 8 (Migration). The capability of migrat-
ing a VM MA from host HA to HB is expressed as Horn
clause canMig that incorporates the intruder access to mi-
grate between these two hosts, that both hosts are connected
to the same network NA, and one host is running the VM.
Migration is a transition rule that removes the association

of a VM MA to a host HA, and adds an association to a new
host HB in case fact canMig matches.

canMig(MA,HA,HB,NA) :− edge(HA,MA).edge(HA,NA)
.edge(HB,NA).intruderAccess(migrate(HA,HB))

edge(MA,HA).canMig(MA,HA,HB)⇒ edge(MA,HB)

The goals are defined in VALID in the following way:

Definition 9 (Goal: VM Security). The VM breach
attack state matches if there is a root() fact on a host HA
in the intruder’s access capability set and a VM MA being
connected to the host.

g o a l vm_breach ( r e a l ;HA,MA) :=
i n t r u d e r A c c e s s ( r o o t (HA) ) .
edge (MA, HA)

Definition 10 (Goal: Secure Migration). The at-
tack state for insecure migration is the following. The in-
truder can migrate a VM MA from host HA to HB, and he



has root access to a host HC that is connected to the same
network.

g o a l i n s e c u r e _ m i g r a t i o n ( net ;HA,HB,HC,MA,NA) :=
canMig (MA, HA, HB) .
i n t r u d e r A c c e s s ( r o o t (HC) ) .
edge (HA, NA) . edge (HB, NA) . edge (HC, NA)

Actual State.
We model the access capabilities of the intruder for our

scenario in the following way.

• intruderAccess(root(hostC))
• intruderAccess(migrate(hostA, hostB))
• intruderAccess(migrate(hostA, hostD))
• intruderAccess(migrate(hostB, hostC))
• intruderAccess(migrate(hostD, hostE))

The network information flow graph for the scenario is gen-
erated by SAVE.

Model-Checking.
Unlike in the previous static example, we had to explicitly

model the dynamic behavior of the intruder, i.e., machine
migration, and its effects on the infrastructure. We modeled
that as transition rules with restrictions based on access priv-
ileges of the intruder. Since we are dealing with a dynamic
problem, we have to use a tool from the AVANTSSAR tool
chain, for instance OFMC.
OFMC found the following attack states (reduced for

brevity) for our scenario.

INPUT
m i g r a t i o n . i f

SUMMARY
ATTACK_FOUND

GOAL: vm_breach

% Reached S t a t e :
%
% i n t r u d e r A c c e s s ( r o o t ( node ( hos t ( hostC ) ) ) , i )
% edge ( node ( machine (vma) ) . node ( hos t ( hostC ) ) , i )

OFMC finds this attack state for vm_breach due to the mi-
gration of VMA to HostB, and then to HostC.

INPUT
m i g r a t i o n . i f

SUMMARY
ATTACK_FOUND

GOAL: i n s e c u r e _ m i g r a t i o n

% Reached S t a t e :
%
% canMig ( node ( machine (vma) ) . node ( hos t ( hostD ) ) . node (←↩

hos t ( hostE ) ) , i )
% i n t r u d e r A c c e s s ( r o o t ( node ( hos t (mc) ) ) , i )
% edge ( node ( hos t ( hostD ) ) . node ( network ( netB ) ) , i )
% edge ( node ( hos t ( hostE ) ) . node ( network ( netB ) ) , i )
% edge ( node ( hos t ( hostC ) ) . node ( network ( netB ) ) , i )

This attack state for insecure_migration is reached by the
migration of VMA to HostD, then to HostE and intercepted
by HostC due to the connection to the same network NetB.

6.3 Absence of Single Point of Failure
We consider the topology illustrated in Figure 3 for our

scenario to demonstrate the absence of single points of failure

for network links. We have two hosts that are depended on
each other and connected through a combination of three
networks.

HostA

NetA

NetB

NetC HostB

Figure 3: Single Point of Failure Scenario Topology

Desired State.
The goal of the absence of single point of failure for network

links is not expressible in FOL, or VALID or ASLan goals.
Therefore, we construct a game using transitions in ASLan
that has a solution if and only if there exists no single point
of failure.
This game works as follows for a single dependency con-

straint depend(n1, n2) (if there are several such constraints,
one must start each as a separate game). We have two phases
in which sets S1 and S2 of nodes are collected. In the first
phase we start with S1 = {n1} and non-deterministically fol-
low edges from a member of S1 to a non-member that we then
add, until we have reached n2 and start the second phase.
We begin similarly with S2 = {n1} and non-deterministically
follow an edge from a member of S2 to a node that is not
part of either S1 and S2 that we add to S2 until we have
reached n2. Then S1 and S2 represent nodes for two disjoint
(except for start and end nodes) paths from n1 to n2. Since
the transition system allows to non-deterministically choose
the edge to follow, the goal state n2 ∈ S2 is reachable if and
only if such disjoint paths exist.
In the following are the transition rules modeling this game.

The first one starts the first phase, the second one traverses
nodes in the first phase, and the third one terminates the
first phase and starts the second phase. The fourth rule
traverses nodes in the second phase.

not(round1).not(round2).depend(A,B)
⇒ round1.depend(A,B).inS1(A)

round1.depend(A,B).inS1(X).edge(X,Y).not(inS1(Y))
.not(equal(Y,B))
⇒ round1.depend(A,B).inS1(X).inS1(Y)

round1.depend(A,B).inS1(X).edge(X,B)
⇒ round2.depend(A,B).inS1(X).inS1(B).inS2(A)

round2.depend(A,B).inS2(X).edge(X,Y).not(inS1(Y))
.not(inS2(Y)).not(equal(Y,B))
⇒ round2.depend(A,B).inS2(X).inS2(Y)

Here we use special facts round1 and round2 to separate the
different phases and inS1 and inS2 to denote the members of
S1 and S2.
The following goal is reached when the second phase termi-

nates, and thereby identified a second disjoint path between
A and B.

s e c t i o n g o a l s :
a t t a c k _ s t a t e spo f_absence (A, B,X) :=

round2 . depend (A,B) . inS2 (X) . edge (X,B)



Edge symmetry is not handled by the previously shown
transitions and the goal, and has to be modeled explicitly
with another set of transitions and a goal.

For our scenario, we also have to specify the dependency
between HostA and HostB using the depend term.

Actual State.
The network information flow graph for the scenario is

generated by SAVE.

Model-Checking.
Since we are dealing with a static problem that cannot be

encoded in first-order logic, we modeled this goal in such a
way that an attack state is actually a satisfaction of the goal,
namely there are no single point of failures. This is contrary
to the previous two examples, where an attack state always
denoted a breach of a security goal.
For our scenario, the model-checker OFMC will not reach

an “attack state”, therefore the infrastructure contains a sin-
gle point of failure. Now we consider connecting HostB also
to NetB, therefore we get a second disjoint path from HostA
to HostB. OFMC produces the following output showing
the two disjoint paths (reduced to inS1 and inS2 facts, and
re-ordered):

INPUT
s p o f . i f

SUMMARY
ATTACK_FOUND

GOAL: spo f_absence

% Reached S t a t e :
%
% inS1 ( node ( hos t ( hostA ) ) , i )
% inS1 ( node ( network ( netB ) ) , i )
% inS1 ( node ( hos t ( hostB ) ) , i )
% inS2 ( node ( hos t ( hostA ) ) , i )
% inS2 ( node ( network ( netA ) ) , i )
% inS2 ( node ( network ( netC ) ) , i )

7. CASE STUDY FOR ZONE ISOLATION
In this section, we analyze a real and large-scale production

environment of a global financial institution. The infrastruc-
ture consists of approximately 1,300 VMs and its realization
model modeling all networking and storage resources con-
sists of approximately 25,000 nodes and 30,000 edges. The
infrastructure is divided into several security zones, each
containing multiple clusters, and models networking up to
Layer 2 separation on VLANs and storage providers up to
separation on file level. We have already analyzed this virtu-
alized infrastructure extensively with specialized tools and
know which attack states to expect. Given the large initial
size of the actual state, this case study provides a suitable
test environment for the subsequent performance analysis.
Whereas our compiler translates the problem instances to

the different static and dynamic problem solvers introduced
in Section 1.2, we focus the performance evaluation on three
tools SPASS and ProVerif for the static case and OFMC for
both the static and dynamic case. We have also performed
initial experiments with SAT-MC, CL-AtSe, and Succint-
Solver, but could not apply them to the large case study.
We analyze various optimization and modeling techniques
introduced in Section 5 to establish their effects in practice.
We are focusing in this evaluation on two specific clusters (we
call them Cluster1 and Cluster2 ) and their corresponding

information flow graphs, for which we know that Cluster1
has an isolation problem and Cluster2 is safe.

Graph Refinement.
We first measure the simplification of the information flow

graphs for the different clusters in terms of the number of
edges and nodes. The information flow graph of Cluster1
consists of 14386 nodes and 17817 edges. We achieve a
reduction of the graph by 13428 nodes and 16860 edges,
resulting in a graph with only 958 nodes and 957 edges.
The algorithm performs this simplification in 0.18 seconds.
Cluster2 has a smaller information flow graph with 6218
nodes and 7543 edges. The graph reduction completes within
0.06 seconds and results in a graph with 359 nodes and 358
edges.

Zone Isolation.
We are now evaluating the analysis of the zone isolation

goal for the large-scale infrastructure. For our evaluation,
we consider all analysis cases for the following parameters:
attack/safe, simplified/non-simplified graph, and different
graph traversal models. Attack denotes an isolation breach
and Safe denotes secure isolation.
For the graph traversal modeling using connected() in

form of Horn clauses or transition rules, all tools we are
evaluating either run out of memory (OFMC) or do not
terminate within our time limit of 4 hours. We therefore
focus our detailed performance analysis on our intruderHas
graph traversal model with the following analysis cases.
• Simplified Graph: Attack 1, Safe 2
• Non-Simplified: Attack 3, Safe 4

The time measurements of the analysis cases for the different
tools are depicted in Figure 7.
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Figure 4: Time measurements (on logarithmic scale)
for analysis cases of zone isolation.

The measurements show that ProVerif is only able to
analyze the Safe configuration, because in the other case it
does not terminate within our time frame of 4 hours. Since
ProVerif is based similarly on resolution as SPASS (which
terminates within the time limit for all problems), we suspect
that the pre-processing of rules in ProVerif may be the cause.
OFMC yields good performance results and is very fast

for analyzing such a large-scale infrastructure. We noticed



a problem in analyzing the vulnerable cluster with the non-
simplified graph, that is OFMC runs out of memory. SPASS
terminates for all analysis cases and is faster for case 1 as
OFMC.

Discussion.
The analysis of a large-scale infrastructure with regard to

the zone isolation goal gave us insights into the efficiency of
our modeling and the employed problem solvers. We learned
that our initial modeling of connected() facts using Horn
clauses or transitions were only applicable for small infras-
tructures and not for such real-world scenarios. Therefore, we
developed the more efficient modeling of using intruderHas()
facts for graph traversal, which made the analysis in a rea-
sonable time frame possible. The complexity of this graph
traversal is only linear to the number of edges, whereas the
graph traversal using connected() yields a quadratic complex-
ity.
Furthermore, we learned that problem solvers were over-

whelmed by the detailed modeling of the infrastructure in
form of our realization model. In case of security goals
concerned with graph connectivity, we developed a graph
refinement algorithm that simplifies the realization graph,
but preserves its connectivity properties. The combination
of efficient graph traversal modeling and graph simplification
yielded results in the order of seconds for the analysis of our
scenario infrastructure.
In terms of employed problem solvers, SPASS and OFMC

performed best for our scenario.

8. RELATED WORK
Virtual systems introduce several new security challenges

[9]. Two important drivers that inspired our work is the
increase of scale as well as the transient nature of configu-
rations that render continuous validation with a variety of
security goals more important.
Narain et al. [13] analyze network infrastructures with

regard to single point of failure using a formal modeling
language. In contrast, our approach focuses on a variety of
high-level security goals, among them the absence of single
point of failure, that can be evaluated using general-purpose
model-checkers. Previous work has also analyzed network
reachability in an automated way using specialized tools,
for example, [20] for IP networks, [11] for VLANs, and
[8] for Amazon cloud configurations. Narain [12] proposes
modeling a network configuration using a formal language
and do automated reasoning on this formal model. We are
extending this concept by considering the entire virtualization
infrastructure, not just networking resources. Ritchey et
al. [16] employ model-checkers to check for vulnerabilities in
networks.
The main differentiation of our work to previous ones

is two-fold. First, we have a generic way to specify and
verify security goals for virtualized infrastructures rather
than specialized analysis. Second, our framework includes
the modeling of a dynamic infrastructure, in particular one
where the intruder can influence the topology (for instance
by migrating machines) to mount an attack. This paper is
the first to formally verify security properties of virtualized
infrastructures with this dynamic behavior.

9. CONCLUSION AND FUTURE WORK
In this paper we demonstrated our novel approach for the

automated verification of virtualized infrastructures. We are
able to specify a variety of security goals in a formal language
and validate heterogeneous infrastructure against them. We
are the first to employ general-purpose model-checker and
theorem provers for this matter.
We studied three examples of static and dynamic prob-

lems, namely zone isolation, secure migration, and single
point of failure. For each problem, we showed how to specify
goals in the formal languages and proposed efficient model-
ing strategies. We successfully demonstrated the automated
verification of these examples against small infrastructures.
Finally, we also validated a large-scale infrastructure against
the zone isolation secure goal and showed the practical feasi-
bility of our approach.
Future work includes the further study of dynamic prob-

lems in virtualized infrastructure and their efficient analysis
on large-scale infrastructures.
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