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ABSTRACT
As penetration testing frameworks have evolved and have
become more complex, the problem of controlling automati-
cally the pentesting tool has become an important question.
This can be naturally addressed as an attack planning prob-
lem. Previous approaches to this problem were based on
modeling the actions and assets in the PDDL language, and
using off-the-shelf AI tools to generate attack plans. These
approaches however are limited. In particular, the plan-
ning is classical (the actions are deterministic) and thus not
able to handle the uncertainty involved in this form of at-
tack planning. We herein contribute a planning model that
does capture the uncertainty about the results of the ac-
tions, which is modeled as a probability of success of each
action. We present efficient planning algorithms, specifically
designed for this problem, that achieve industrial-scale run-
time performance (able to solve scenarios with several hun-
dred hosts and exploits). These algorithms take into account
the probability of success of the actions and their expected
cost (for example in terms of execution time, or network
traffic generated). We thus show that probabilistic attack
planning can be solved efficiently for the scenarios that arise
when assessing the security of large networks. Two “prim-
itives” are presented, which are used as building blocks in
a framework separating the overall problem into two levels
of abstraction. We also present the experimental results ob-
tained with our implementation, and conclude with some
ideas for further work.
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puting and Information Systems]: Miscellaneous—Se-
curity
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1. INTRODUCTION
Penetration testing has become one of the most trusted

ways of assessing the security of networks large and small.
The result of a penetration test is a repeatable set of steps
that result in the compromise of particular assets in the
network. Penetration testing frameworks have been devel-
oped to facilitate the work of penetration testers and make
the assessment of network security more accessible to non-
expert users [6]. The main tools available are the commercial
products Core Impact (since 2001), Immunity Canvas (since
2002), and the open source project Metasploit (launched
in 2003, owned by Rapid7 since 2009). These tools have
the ability to launch actual exploits for vulnerabilities, con-
tributing to expose risk by conducting an attack in the same
way an external attacker would [3].

As pentesting tools have evolved and have become more
complex – covering new attack vectors, and shipping in-
creasing numbers of exploits and information gathering tech-
niques – the problem of controlling the pentest framework
successfully has become an important question. A computer-
generated plan for an attack would isolate the user from
the complexity of selecting suitable exploits for the hosts in
the target network. In addition, a suitable model to repre-
sent these attacks would help to systematize the knowledge
gained during manual penetration tests performed by ex-
pert users, making pentesting frameworks more accessible
to non-experts.

A natural way to address this issue is as an attack planning
problem. This problem was introduced to the AI planning
community by Boddy et al. as the “Cyber Security” domain
[5]. In the pentesting industry, Lucangeli et al. proposed
a solution based on modeling the actions and assets in the
PDDL language,1 and using off-the-shelf planners to gen-
erate attack plans [16]. Herein we are concerned with the
specific context of regular automated pentesting, as in “Core
Insight Enterprise” tool. We will use the term “attack plan-
ning” in that sense.

1PDDL stands for Planning Domain Definition Language.
Refer to [10] for a specification of PDDL 2.1.
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Recently, a model based on partially observable Markov
decision processes (POMDP) was proposed, in part by one
of the authors [25]. This grounded the attack planning prob-
lem in a well-researched formalism, and provided a precise
representation of the attacker’s uncertainty with respect to
the target network. In particular, the information gather-
ing phase was modeled as an integral part of the planning
problem. However, as the authors show, this solution does
not scale to medium or large real-life networks.

In this paper, we take a different direction: the uncer-
tainty about the results of the actions is modeled as a prob-
ability of success of each action, whereas in [25] the uncer-
tainty is modeled as a distribution of probabilities over the
states. This allows us to produce an efficient planning algo-
rithm, specifically designed for this problem, that achieves
industrial-scale runtime performance.

Of course planning in the probabilistic setting is far more
difficult than in the deterministic one. We do not propose
a general algorithm, but a solution suited for the scenar-
ios that need to be solved in a real world penetration test.
The computational complexity of our planning solution is
O(n logn), where n is the total number of actions in the
case of an attack tree (with fixed source and target hosts),
and O(M2 · n logn) where M is the number of machines in
the case of a network scenario. With our implementation,
we were able to solve planning in scenarios with up to 1000
hosts distributed in different networks.

We start with a brief review of the attack model in Sec-
tion 2, then continue with a presentation of two “primitives”
in Sections 3 and 4. These primitives are applied in more
general settings in Sections 5 and 6. Section 7 shows experi-
mental results from the implementation of these algorithms.
We conclude with some ideas for future work.

2. THE ATTACK MODEL
We provide below some background on the conceptual

model of computer attacks that we use, for more details
refer to [4, 11, 22, 24]. This model is based on the concepts
of assets, goals, agents and actions. In this description, an
attack involves a set of agents, executing sequences of ac-
tions, obtaining assets (which can be information or actual
modifications of the real network and systems) in order to
reach a set of goals.

An asset can represent anything that an attacker may
need to obtain during the course of an attack, including
the actual goal. Examples of assets: information about the
Operating System (OS) of a host H; TCP connectivity with
host H on port P ; an Agent installed on a given host H.
To install an agent means to break into a host, take control
of its resources, and eventually use it as pivoting stone to
continue the attack by launching new actions based from
that host.

The actions are the basic steps which form an attack.
Actions have requirements (also called preconditions) and a
result: the asset that will be obtained if the action is success-
ful. For example, consider the exploit IBM Tivoli Storage
Manager Client Remote Buffer Overflow2 for the vulnerabil-
ities in dsmagent described by CVE-2008-4828. The result

2The particular implementations that we have studied are
the exploit modules for Core Impact and Core Insight En-
terprise, although the same model can be applied to other
implementations, such as Metasploit.

of this action is to install an agent, and it requires that the
OS of the target host is Windows 2000, Windows XP, Solaris
10, Windows 2003, or AIX 5.3. In this model, all the ex-
ploits (local, remote, client-side, webapps) are represented
as actions. Other examples of actions are: TCP Network
Discovery, UDP Port Scan, DCERPC OS Detection, TCP
Connectivity Probe.

The major differences between the attack model used in
this work and the attack graphs used in [2, 14, 15, 20, 23,
27] are twofold: to improve the realism of the model, we
consider that the actions can produce numerical effects (for
example, the expected running time of each action); and
that the actions have a probability of success (which models
the uncertainty about the results of the action).

Deterministic Actions with Numerical Effects
In the deterministic case, the actions and assets that com-

pose a specific planning problem can be successfully repre-
sented in the PDDL language. This idea was proposed in
[26] and further analyzed in [16]. The assets are represented
as PDDL predicates, and the actions are translated as PDDL
operators. The authors show how this PDDL representation
allowed them to integrate a penetration testing tool with an
external planner, and to generate attack plans in realistic
scenarios. The planners used – Metric-FF [13] and SGPlan
[7] – are state-of-the-art planners able to handle numerical
effects.

Fig. 1 shows an example of a PDDL action: an exploit
for the IBM Tivoli vulnerability, that will attempt to install
an agent on target host t from an agent previously installed
on the source host s. To be successful, this exploit requires
that the target runs a specific OS, has the service mil-2045-

47001 running and listening on port 1581.

(:action IBM_Tivoli_Storage_Manager_Client_Exploit
:parameters (?s - host ?t - host)
:precondition (and
(compromised ?s)
(and (has_OS ?t Windows)
(has_OS_edition ?t Professional)
(has_OS_servicepack ?t Sp2)
(has_OS_version ?t WinXp)
(has_architecture ?t I386))

(has_service ?t mil-2045-47001)
(TCP_connectivity ?s ?t port1581)

)
:effect(and
(installed_agent ?t high_privileges)
(increase (time) 4)

))

Figure 1: Exploit represented as PDDL action.

The average running times of the exploits are measured
by executing all the exploits of the penetration testing tool
in a testing lab. More specifically, in Core’s testing lab there
are more than 748 virtual machines with different OS and
installed applications, where all the exploits of Core Impact
are executed every night [21].

Actions’ Costs
The execution of an action has a multi-dimensional cost.

We detail below some values that can be measured (and
optimized in an attack):

Execution time: Average running time of the action.



Network traffic: The amount of traffic sent over the net-
work increases the level of noise produced.

IDS detection: Logs lines generated and alerts triggered
by the execution of the action increase the noise pro-
duced.

Host resources: The execution of actions will consume re-
sources of both the local and remote host, in terms of
CPU, RAM, hard disc usage, etc.

Traceability of the attack: Depends on the number of
intermediate hops and topological factors.

Zero-day exploits: Exploits for vulnerabilities that are not
publicly known are a valuable resource, that should be
used only when other exploits have failed (the attacker
usually wants to minimize the use of “0-days”).

In our experiments, we have chosen to optimize the ex-
pected execution time. In the context of regular penetration
tests, minimizing the expectation of total execution time
is a way of maximizing the amount of exploits successfully
launched in a fixed time frame (pentests are normally exe-
cuted in a bounded time period).

However, the same techniques can be applied to any other
scalar cost, for example to minimize the noise produced by
the actions (and the probability of being detected).

Probabilistic Actions
Another way to add realism to the attack model is to

consider that the actions are nondeterministic. This can be
modeled by associating probabilities to the outcomes of the
actions. In the case of an exploit, the execution of the exploit
can be successful (in that case the attacker takes control of
the target machine) or a failure. This is represented by
associating a probability of success to each exploit.

The probability of success is conditional: it depends on
the environment conditions. For example, the IBM Tivoli
exploit for CVE-2008-4828 is more reliable (has a higher
probability of success) if the OS is Solaris since it has no heap
protection, the stack is not randomized and is executable
by default. Alternatively, the exploit is less reliable (has a
lower probability of success) if the OS is Windows XP SP2 or
Windows 2003 SP1, with Data Execution Prevention (DEP)
enabled. On Windows Vista, the addition of Address Space
Layout Randomization (ASLR) makes the development of
an exploit even more difficult, and diminishes its probability
of success. In practice, the probability of success of each
exploit is measured by exhaustively executing the exploit
against a series of targets, covering a wide range of OS and
application versions.

Although it improves the realism of the model, consider-
ing probabilistic actions also makes the planning problem
more difficult. Using general purpose probabilistic planners
did not work as in the deterministic case; for instance, we
experimented with Probabilistic-FF [8] with poor results,
since it was able to find plans in only very small cases.

In the rest of this paper, we will study algorithms to find
optimal attack paths in scenarios of increasing difficulty. We
first describe two primitives, and then apply them in the
context of regular automated pentesting. In these scenar-
ios we make an additional hypothesis: the independence of
the actions. Relaxing this hypothesis is a subject for future
work.

3. THE CHOOSE PRIMITIVE
We begin with the following basic problem. Suppose that

the attacker (i.e. pentester) wants to gain access to the
credit cards stored in a database server H by installing a
system agent. The attacker has a set of n remote exploits
that he can launch against that server. These exploits result
in the installation of a system agent when successful (see
Fig. 2).

Exploit 1 Exploit 2 Exploit n

System Agent

Figure 2: Multiple exploits may install a System
agent (on the target host).

In this scenario, the attacker has already performed in-
formation gathering about the server H, collecting a list
of open/closed ports, and running an OS detection action
such as Nmap. The pentesting tool used provides statistics
on the probability of success and expected running time for
each exploit in the given conditions.3 The attacker wants to
minimize the expected execution time of the whole attack.
A more general formulation follows:

Problem 1. Let g be a fixed goal, and let {A1, . . . , An}
be a set of n independent actions whose result is g. Each
action Ak has a probability of success pk and expected cost
tk. Actions are executed until an action is successful and
provides the goal g (or all the actions fail).
Task: Find the order in which the actions must be executed
in order to minimize the expected total cost.

We make the simplifying assumption that the probability
of success of each action is independent from the others. If
the actions are executed in the order A1, . . . , An, using the
notation pi = 1− pi, the expected cost can be written as

T{1...n} = t1 + p1 t2 + . . . + p1 p2 . . . pn−1 tn. (1)

The probability of success is given by

P{1...n} = p1 + p1 p2 + p1 p2 p3 + . . . + p1 . . . pn−1 pn,

and the complement P{1...n} = p1 p2 . . . pn. In particular
this shows that the total probability of success does not de-
pend on the order of execution.

Even though this problem is very basic, we didn’t find
references to its solution. This is why we give below some
details on the solution that we found.

Lemma 1. Let A1, . . . , An be actions such that t1/p1 6
t2/p2 6 . . . 6 tn/pn. Then

T{1...n−1}

P{1...n−1}
6

tn
pn

.

Proof. We prove it by induction. The case with two
actions is trivial, since we know by hypothesis that t1/p1 6
t2/p2. For the inductive step, suppose that the proposition

3In our experiments we used the database of tests of Core
Impact and Core Insight Enterprise.



holds for n − 1 actions. Consider the first three actions
A1, A2, A3. The inequality

T{12}
P{12}

6
t3
p3

holds if and only if t2/p2 6 t3/p3. So the first two actions
can be considered as a single action A12 with expected cost
(e.g. running time) T{12} and probability of success P{12}.
We have reduced to the case of n − 1 actions, and we can
use the induction hypothesis to conclude the proof.

Proposition 1. A solution to Problem 1 is to sort the
actions according to the coefficient tk/pk (in increasing or-
der), and to execute them in that order. The complexity of
finding an optimal plan is thus O(n logn).

Proof. We prove it by induction. We begin with the
case of two actions Ai and Aj such that ti/pi 6 tj/pj . It
follows easily that −pitj 6 −pjti and that

ti + (1− pi) tj 6 tj + (1− pj) ti.

For the inductive step, suppose for the moment that the
actions are numbered so that t1/p1 6 . . . 6 tn/pn, and that
the proposition holds for all sets of n − 1 actions. We have
to prove that executing A1 first is better that executing any
other action Ak for all k 6= 1. We want to show that

t1 +
∑

26i6n

ti ·
∏

16j6i−1

pj

6 tk +
∑

16i6n, i 6=k

ti · pk ·
∏

16j6i−1, j 6=k

pj .

Notice that in the two previous sums, the coefficients of
tk+1, . . . , tn are equal in both expressions. They can be
simplified, and using notations previously introduced, the
inequality can be rewritten

T{1...k−1} + P{1...k−1} tk 6 tk + pk T{1...k−1}

which holds if and only if

T{1...k−1}

P{1...k−1}
6

tk
pk

which is true by Lemma 1. We have reduced the problem
to sorting the coefficients tk/pk. The complexity is that of
making the n divisions tk/pk and sorting the coefficients.
Thus it is O(n + n logn) = O(n logn).

We call this the choose primitive because it tells you, given
a set of actions, which action to choose first: the one that has
the smallest t/p value. In particular, it says that you should
execute first the actions with smaller cost (e.g. runtime)
or higher probability of success, and precisely which is the
trade-off between these two dimensions.

The problem of choosing the order of execution within a
set of exploits is very common in practice. In spite of that,
the automation methods currently implemented in penetra-
tion testing frameworks offer an incomplete solution,4 over
which the one proposed here constitutes an improvement.
4As of July 2011, Immunity Canvas [1] doesn’t provide au-
tomated execution of exploits; Metasploit [17] has a fea-
ture called “autopwn” that launches all the exploits available
for the target ports in arbitrary order; Core Impact Pro
launches first a set of “fast” exploits and then “brute-force”
exploits [26], but arbitrary order is used within each set;
Core Insight Enterprise uses planning techniques based on a
PDDL description [16] that takes into account the execution
time but not the probability of success of the exploits.

4. THE COMBINE PRIMITIVE

Predefined Strategies
We now consider the slightly more general problem where

the goal g can be obtained by predefined strategies. We
call strategy a group of actions that must be executed in a
specific order. The strategies are a way to incorporate the
expert knowledge of the attacker in the planning system (cf.
the opening moves in chess). This idea has been used in the
automation of pentesting tools, see [26].

Agent with SYSTEM privileges

NtUserMessageCall 

Kernel Privilege 

Escalation

Verify OS edition and 

Service Pack

Refine OS detection

Get applications

Refine OS detection

Local Exploit n

Figure 3: Multiple strategies for a Local Privilege
Escalation.

For example consider an attacker who has installed an
agent with low privileges on a host H running Windows XP,
and whose goal is to obtain system privileges on that host.
The attacker has a set of n predefined strategies to perform
this privilege escalation (see Fig. 3). An example of a strat-
egy is: refine knowledge of the OS version; verify that the
edition is Home or Professional, with SP2 installed; get users
and groups; then launch the local exploit Microsoft NtUser-
MessageCall Kernel Privilege Escalation that (ab)uses the
vulnerability CVE-2008-1084. More generally:

Problem 2. Let g be a fixed goal, and {G1, . . . , Gn} a set
of n strategies, where each strategy Gk is a group of ordered
actions. For a strategy to be successful, all its actions must
be successful. As in Problem 1, the task is to minimize the
expected total cost.

In this problem, actions are executed sequentially, choos-
ing at each step one action from one group, until the goal
g is obtained. Considering only one strategy G, we can cal-
culate its expected cost and probability of success. Suppose
the actions of G are {A1, . . . , An} and are executed in that
order. Then the expected cost (e.g. expected runtime) of
the group G is

TG = t1 + p1 t2 + p1 p2 t3 + . . . + p1 p2 . . . pn−1 tn

and, since all the actions must be successful, the probability
of success of the group is simply PG = p1 p2 . . . pn.

Proposition 2. A solution to this problem is to sort the
strategies according to the coefficient TG/PG (smallest value
first), and execute them in that order. For each strategy
group, execute the actions until an action fails or all the
actions are successful.

Proof. In this problem, an attack plan could involve
choosing actions from different groups without completing



all the actions of each group. But it is clear that this cannot
happen in an optimal plan.5

So an optimal attack plan consists in choosing a group and
executing all the actions of that group. Since the actions of
each group G are executed one after the other, they can
be considered as a single action with probability PG and
expected time TG. Using the choose primitive, it follows
that groups should be ordered according to the coefficients
TG/PG.

Multiple Groups of Actions
We extend the previous problem to consider groups of

actions bounded by an AND relation (all the actions of the
group must be successful in order to obtain the result g),
but where the order of the actions is not specified. The
difference with Problem 2 is that now we must determine
the order of execution within each group.

System Agent

SQL injection

OS

OS 

Detection

OS

Crawler
Groups 

Crawler

WebApp

Detect 

App

Get 

credentials

Host 

probe

Port 

probe

Credentials

SQLi to System 

conversion

EmailPortHost

Remote 

Exploit
Client-side 

Exploit

Figure 4: Probabilistic attack tree (with two layers).

Fig. 4 shows an example of this situation. A System Agent
can be installed by using a Remote exploit, a Client-side
exploit or a SQL injection in a web application. Each of
these actions has requirements represented as assets, which
can be fulfilled by the actions represented on the second
layer. For example, before executing the Remote exploit,
the attacker must run a Host probe (to verify connectivity
with the target host), Port probe (to verify that the target
port of the exploit is open), and an OS Detection module
(to verify the OS of the target host).

Problem 3. Same as Problem 2, except that we have n
groups {G1, . . . , Gn} of unordered actions. If all the actions
in a group are successful, the group provides the result g.

Proposition 3. Let G = {A1, . . . , An} be a group of ac-
tions bounded by an AND relation. To minimize the expected
total cost, the actions must be ordered according to the coef-
ficient tk/(1− pk).

5Suppose that there are only two groups GA and GB ,
whose actions are {A1, . . . , As} and {B1, . . . , Bt} respec-
tively. Suppose that in the optimal plan As precedes Bt.
Suppose also that the execution of an action Bj 6= Bt pre-
cedes the execution of As. Executing Bj will not result in
success (that requires executing Bt as well), and it will de-
lay the execution of As by the expected running time of Bj .
Thus to minimize the expected total running time, a better
solution can be obtained by executing Bj after the execu-
tion of As. This contradiction shows that all the actions of
GB must be executed after As in an optimal solution. This
argument can be easily extended to any number of groups.

Proof. If the actions are executed in the order A1, . . . , An,
then the expected cost is

TG = t1 + p1 t2 + . . . + p1 p2 . . . pn−1 tn (2)

This expression is very similar to equation (1). The only
difference is that costs are multiplied by pk instead of pk.
So in this case, the optimal solution is to order the actions
according to the coefficient tk/pk = tk/(1− pk).

Intuitively the actions that have higher probability of fail-
ure have higher priority, since a failure ends the execution of
the group. The coefficient tk/(1− pk) represents a trade-off
between cost (time) and probability of failure.

Wrapping up the previous results, to solve Problem 3, first
order the actions in each group according to the coefficient
t/(1− p) in increasing order. Then calculate for each group
G the values TG and PG. Order the groups according to
the coefficient TG/PG, and select them in that order. For
each group, execute the actions until an action fails or all
the actions are successful.

We call it the combine primitive, because it tells you how
to combine a group of actions and consider them (for plan-
ning purposes) as a single action with probability of success
PG and expected running time TG.

5. USING THE PRIMITIVES IN AN ATTACK
TREE

We apply below the choose and the combine primitives to
a probabilistic attack tree, where the nodes are bounded by
AND relations and OR relations. The tree is composed of
two types of nodes, distributed in alternating layers of asset
nodes and action nodes (see Fig. 5).

Asset

Action Action Action

Figure 5: Attack tree with alternating layers of As-
sets and Actions.

An asset node is connected by an OR relation to all the
actions that provide this asset: for example, an Agent asset
is connected to the Exploit actions that may install an agent
on the target host.

An action node is connected by an AND relation to its re-
quirements: for example, the local exploit Microsoft NtUser-
MessageCall Kernel Privilege Escalation requires an agent
asset (with low level privileges) on the target host H, and a
Windows XP OS asset for H.

The proposed solution is obtained by composing the prim-
itives from previous sections. In the AND-OR tree, the
leaves that are bounded by an AND relation can be con-
sidered as a single node. In effect, using the combine primi-
tive, that group G can be considered as a single action with
compound probability of success PG and execution time TG.



The leaves that are bounded by an OR relation can also
be (temporarily) considered as a single node. In effect, in an
optimal solution, the node that minimizes the t/p coefficient
will be executed first (using the choose primitive), and be
considered as the cost of the group in a single step plan.

By iteratively reducing groups of nodes, we build a single
path of execution that minimizes the expected cost. After
executing a step of the plan, the costs may be modified and
the shape of the graph may vary. Since the planning algo-
rithm is very efficient, we can replan after each execution
and build a new path of execution. We are assured that
before each execution, the proposed attack plan is optimal
given the current environment knowledge.

Constructing the Tree
We briefly describe how to construct a tree beginning with

an agent asset (e.g. the objective is to install an agent on
a fixed machine). Taking this goal as root of the tree, we
recursively add the actions that can complete the assets that
appear in the tree, and we add the assets required by each
action.

To ensure that the result is a tree and not a DAG, we make
an additional independence assumption: the assets required
by each action are considered as independent (i.e. if an asset
is required by two different actions, it will appear twice in
the tree).

That way we obtain an AND-OR tree with alternating
layers of asset nodes and action nodes (as the one in Fig. 5).
The only actions added are Exploits, TCP/UDP Connectiv-
ity checks, and OS Detection modules. These actions don’t
have as requirements assets that have already appeared in
the tree, in particular the tree only has one agent asset (the
root node of the tree). So, by construction, we are assured
that no loops will appear, and that the depth of the tree is
very limited.

We construct the tree in this top-down fashion, and as we
previously saw, we can solve it bottom-up to obtain as out-
put the compound probability of success and the expected
running time of obtaining the goal agent.

6. THE GRAPH OF DISTINGUISHED AS-
SETS

In this section we use the previous primitives to build
an algorithm for attack planning in arbitrary networks, by
making an additional assumption of independence between
machines. First we distinguish a class of assets, namely the
assets related with agents. We refer to them as distinguished
assets. At the PDDL level, the predicates associated with
the agents are considered as a separate class.

Planning is done in two different abstraction levels: in the
first level, we evaluate the cost of compromising one target
distinguished asset from one fixed source distinguished as-
set. More concretely, we compute the cost and probability
of obtaining a target agent given a source agent. At this
level, the attack plan must not involve a third agent. The
algorithm at the first level is thus to construct the attack
tree and compute an attack plan as described in Section 5.

At the second level, we build a directed graph G = (V, E)
where the nodes are distinguished assets (in our scenario, the
hosts in the target network where we may install agents),
and the edges are labeled with the compound probability
and expected time obtained at the first level. Given this

graph, an initial asset s ∈ V (the local agent of the attacker)
and a final asset g ∈ V (the goal of the attack), we now
describe two algorithms to find a path that approximates
the minimal expected time of obtaining the goal g.

The first algorithm is a modification of Floyd-Warshall’s
algorithm to find shortest paths in a weighted graph. Let
M = |V| be the number of machines in the target network.
By executing M2 times the first level procedure, we obtain
two functions: the first is Prob(i, j) which returns the com-
pound probability of obtaining node j from node i (without
intermediary hops), or 0 if that is not possible in the target
network; the second is T ime(i, j) which returns the expected
time of obtaining node j directly from node i, or +∞ if that
is not possible. The procedure is described in Algorithm 1.

Algorithm 1 Modified Floyd-Warshall

P [i, j]← Prob(i, j) ∀ 1 ≤ i, j ≤M

T [i, j]← T ime(i, j) ∀ 1 ≤ i, j ≤M

for k = 1 to M do

for i = 1 to M do

for j = 1 to M do

T ′ ← T [i, k] + P [i, k]× T [k, j]

P ′ ← P [i, k]× P [k, j]

if T ′/P ′ < T [i, j]/P [i, j] then

T [i, j]← T ′

P [i, j]← P ′

return 〈T, P 〉

When the execution of this algorithm finishes, for each i, j
the matrices contain the compound probability P [i, j] and
the expected time T [i, j] of obtaining the node j starting
from the node i. This holds in particular when i = s (the
source of the attack) and j = g (the goal of the attack). The
attack path is reconstructed just as in the classical Floyd-
Warshall algorithm.

In a similar fashion, Dijkstra’s shortest path algorithm
can be modified to use the choose and combine primitives.
See the description of Algorithm 2.

Algorithm 2 Modified Dijkstra’s algorithm

T [s] = 0, P [s] = 1

T [v] = +∞, P [v] = 0 ∀v ∈ V, v 6= s

S ← ∅
Q← V (where Q is a priority queue)

while Q 6= ∅ do

u← arg minx∈Q T [x]/P [x]

Q← Q\{u}, S ← S ∪ {u}
for all v ∈ V\S adjacent to u do

T ′ = T [u] + P [u]× T ime(u, v)

P ′ = P [u]× Prob(u, v)

if T ′/P ′ < T [v]/P [v] then

T [v]← T ′

P [v]← P ′

return 〈T, P 〉

When execution finishes, the matrices contain the com-
pound probability P [v] and the expected time T [v] of obtain-
ing the node v starting from the node s. Using the modified
Dijkstra’s algorithm has the advantage that its complexity is



O(M2) instead of O(M3) for Floyd-Warshall. Let n be the
number of actions that appear in the attach trees, this gives
us that the complexity of the complete planning solution is
O(M2 · n logn + M2) = O(M2 · n logn).

7. OUR IMPLEMENTATION
We have developed a proof-of-concept implementation of

these ideas in the Python language. This planner takes as
input a description of the scenario in the PPDDL language,
an extension of PDDL for expressing probabilistic effects
[28].

Our main objective was to build a probabilistic planner
able to solve scenarios with 500 machines, which was the
limit reached with classical (deterministic) planning solu-
tions in [16]. Additionally we wanted to tame memory com-
plexity, which was the limiting factor. The planner was in-
tegrated with the pentesting framework Core Impact, using
the procedures previously developed for the work [16]. The
architecture of this solution is described in Fig. 6.

PlannerPlan

PDDL Description

Actions

Initial conditions

Pentesting Framework

Exploits & Attack Modules

Attack Workspace

transform

transform

execution

Figure 6: Architecture of our solution.

This planner solves the planning problem by breaking it
into two levels as described in Section 6. On the higher
level, a graph representation of goal objects is built. More
concretely, there is a distinguished node for each host. The
directed edges in this graph are obtained by carrying out the
tree procedure described in Section 5, obtaining a value for
the probability and the cost of obtaining the predicate rep-
resented by the target node, when the predicate represented
by the source node is true.

The final plan can then be determined by using the mod-
ified versions of Dijkstra and Floyd-Warshall algorithms.
The figures that follow show the planner running time using
the modified Dijkstra’s algorithm.

Testing and Performance
The experiments were run on a machine with an Intel

Core2 Duo CPU at 2.4 GHz and 8 GB of RAM. We focused
our performance evaluation on the number of machines M in
the attacked network. We generated a network consisting of
five subnets with varying number of machines, all joined to
one main network to which the attacker initially has access.

Fig. 7 shows the memory consumption of this planning
solution, which clearly grows linearly with M . Our current
implementation manages to push the network size limit up
to 1000 machines, and brings memory consumption under
control.6 For M = 1000, we are using less than 1 GB of

6By contrast, in [16] the hard limit was memory: in scenarios
with 500 machines we ran out of memory in a computer with
8 GB of RAM. The memory consumption growth was clearly
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Figure 8: Solver runtime vs number of machines.

RAM, with a planner completely written in Python (not
optimized in terms of memory consumption).

Fig. 8 shows the growth of solver running time, which
seems clearly quadratic, whereas in [16] the growth was ex-
ponential. It should be noted however that, comparing only
up to 500 machines, running times are slightly worse than
those of the solution based on deterministic planners. This
can be improved: since our planner is written in Python, a
reasonable implementation in C of the more CPU intensive
loops should allow us to lower significantly the running time.

And of course we added a notion of probability of success
that wasn’t present before. As a comparison, in another ap-
proach that accounts for the uncertainty about the attacker’s
actions [25], the authors use off-the-shelf solvers, managing
to solve scenarios with up to 7 machines – and are thus still
far from the network sizes reached here.

Both curves are compared in Fig. 9 showing the quadratic
growth of solver runtime. In the testing scenarios, the nodes
are fully connected, so we have to solve a quadratic number
of attack trees. This figure also confirms in practice the
computed complexity.

An interesting characteristic of the solution proposed is
that it is inherently parallelizable. The main workload are
the M2 executions of the first level procedure of Section 6.
This could be easily distributed between CPUs or GPUs to
obtain a faster planner. Another possible improvement is to

exponential, for instance 400 machines used 4 GB of RAM.
This was difficult to scale up.
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Figure 9: Time and memory relatives to the 100
machines case.

run the planner “in the cloud” with the possibility of adding
processors on demand.

8. RELATED WORK
Early work on attack graph solving relied on model check-

ing techniques [15, 27], with their inherent scalability re-
strictions; or on monotonicity assumptions [2, 18, 19] that
are not able to express situations in which compromised re-
sources are lost due to crashes, detection or other unforeseen
circumstances.

The first application of planning techniques and PDDL
solving for the security realm was [5], however this appli-
cation was not focused on finding actual attack paths or
driving penetration testing tools. In [12] attack paths are
generated from PDDL description of networks, hosts and
exploits, although the scenarios studied do not cover realis-
tic scales. Previous work by the authors [16] addresses this
limitation by solving scenarios with up 500 machines, and
feeding the generated attack plans to guide a penetration
testing tool. However, this work does not include prob-
abilistic considerations. Recent work [9] also manages to
provide attack paths to a penetration testing tool, in this
case the Metasploit Framework, but again does not include
probabilistic considerations.

Previous work by one of the authors [25] takes into ac-
count the uncertainty about the result of the attacker’s ac-
tions. This POMDP-based model also accounts for the un-
certainty about the target network, addressing information
gathering as an integral part of the attack, and providing a
comprehensive notion of attack planning under uncertainty.
However, as previously stated, this solution does not scale
to medium or large real-life networks.

9. SUMMARY AND FUTURE WORK
We have shown in this paper an extension of established

attack graphs models, that incorporates probabilistic effects,
and numerical effects (e.g. the expected running time of the
actions). This model is more realistic than the deterministic
setting, but introduces additional difficulties to the planning
problem. We have demonstrated that under certain assump-
tions, an efficient algorithm exists that provides optimal at-
tack plans with computational complexity O(n logn), where
n is the number of actions and assets in the case of an attack

tree (between two fixed hosts), and O(M2 ·n logn) where M
is the number of machines in the case of a network scenario.

Over the last years, the difficulties that arose in our re-
search in attack planning were related to the exponential na-
ture of planning algorithms (especially in the probabilistic
setting), and our efforts were directed toward the aggrega-
tion of nodes and simplification of the graphs, in order to
tame the size and complexity of the problem. Having a very
efficient algorithm in our toolbox gives us a new direction of
research: to refine the model, and break down the actions
in smaller parts, without fear of producing an unsolvable
problem.

A future step in this research is thus to analyze and di-
vide the exploits into basic components. This separation
gives a better probability distribution of the exploit execu-
tion. For example, the Debian OpenSSL Predictable Random
Number Generation Exploit – which exploits the vulnerabil-
ity CVE-2008-0166 reported by Luciano Bello – brute forces
the 32,767 possible keys. Each brute forcing iteration can be
considered as a basic action, and be inserted independently
in the attack plan. Since the keys depend on the Process ID
(PID), some keys are more probable than others.7 So the
planner can launch the Debian OpenSSL PRNG exploit, ex-
ecute brute forcing iterations for the more probable keys,
switch to others exploits and come to back to the Debian
PRNG exploit if the others failed. This finer level of control
over the exploit execution should produce significant gains
in the total execution time of the attack.

Other research directions in which we are currently work-
ing are to consider actions with multidimensional numeric
effects (e.g. to minimize the expected running time and gen-
erated network traffic simultaneously); and to extend the
algorithm to solve probabilistic attack planning in Directed
Acyclic Graphs (DAG) instead of trees. In this setting, an
asset may influence the execution of several actions. This
relaxes the independence assumption of Sections 4 and 5.
Although finding a general algorithm that scales to the net-
work sizes that we consider here seems a difficult task, we
believe that efficient algorithms specifically designed for net-
work attacks scenarios can be found.
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and K. Prole. Advances in Topological Vulnerability
Analysis. In Proceedings of the 2009 Cybersecurity
Applications & Technology Conference for Homeland
Security, pages 124–129. IEEE Computer Society,
2009.

[19] S. Noel and S. Jajodia. Understanding complex
network attack graphs through clustered adjacency
matrices. In Proceedings of the 21st Annual Computer
Security Applications Conference, pages 160–169,
2005.

[20] C. A. Phillips and L. P. Swiler. A graph-based system
for network-vulnerability analysis. In Workshop on
New Security Paradigms, pages 71–79, 1998.

[21] M. Picorelli. Virtualization in software development
and QA, 2006. WMWorld 2006.

[22] G. Richarte. Modern intrusion practices. In Black Hat
Briefings, 2003.

[23] R. Ritchey and P. Ammann. Using model checking to
analyze network vulnerabilities. In IEEE Symposium
on Security and Privacy, pages 156–165. IEEE
Computer Society, 2000.

[24] F. Russ and D. Tiscornia. Zombie 2.0. In Hack.lu
Conference, Luxembourg, 2007.

[25] C. Sarraute, O. Buffet, and J. Hoffmann. Penetration
testing == POMDP planning? In SecArt’11, 2011.

[26] C. Sarraute and A. Weil. Advances in automated
attack planning. In PacSec Conference, Tokyo, Japan,
2008.

[27] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and
J. Wing. Automated generation and analysis of attack
graphs. In IEEE Symposium on Security and Privacy,
pages 273–284. IEEE Computer Society, 2002.

[28] H. Younes and M. Littman. PPDDL 1.0: The
language for the probabilistic part of IPC-4. In Proc.
International Planning Competition, 2004.


	1 Introduction
	2 The Attack Model
	Deterministic Actions with Numerical Effects
	Actions' Costs
	Probabilistic Actions

	3 The Choose Primitive
	4 The Combine Primitive
	Predefined Strategies
	Multiple Groups of Actions

	5 Using the Primitives in an Attack Tree
	Constructing the Tree

	6 The Graph of Distinguished Assets
	7 Our implementation
	Testing and Performance

	8 Related Work
	9 Summary and Future Work
	10 References

