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ABSTRACT
Access-control policies are a key infrastructural technology for
computer security. However, a significant problem is that system
administrators need to be able to automatically verify whether their
policies capture the intended security goals. To address this im-
portant problem, researchers have proposed many automated ver-
ification techniques. Despite considerable progress in verification
techniques, scalability is still a significant issue. Hence, in this pa-
per we propose that error finding complements verification, and is
a fruitful way of checking whether or not access control policies
implement the security intent of system administrators. Error find-
ing is more scalable (at the cost of completeness), and allows for
the use of a wider variety of techniques.

In this paper, we describe an abstraction-refinement based tech-
nique and its implementation, the MOHAWK tool, aimed at finding
errors in ARBAC access-control policies. The key insight behind
our abstraction-refinement technique is that it is more efficient to
look for errors in an abstract policy (with successive refinements, if
necessary) than its complete counterpart.

MOHAWK accepts as input an access-control policy and a safety
question. If MOHAWK finds an error in the input policy, it termi-
nates with a sequence of actions that cause the error. We provide
an extensive comparison of MOHAWK with the current state-of-
the-art analysis tools. We show that MOHAWK scales very well
as the size and complexity of the input policies increase, and is
orders of magnitude faster than competing tools. The MOHAWK
tool is open source and available from the Google Code website:
http://code.google.com/p/mohawk/

1. INTRODUCTION
Specifying and managing access-control policies is a problem of

critical importance in system security. Researchers have proposed
access control frameworks (e.g., Administrative Role Based Access
Control — ARBAC [38]) that have considerable expressive power,
and can be used to specify complex policies.

However, a significant problem is that system administrators need
to be able to verify whether the policies managed by them cap-
ture their security intent or not. Manual inspection of such policies
is not sufficient. Access-control policies for reasonably large sys-
tems are simply too complex for manual inspection to be effective.
Hence, there is a clear need for automated tools that can verify the
correctness of access-control policies.

Automated analysis and verification of access-control policies is
an active area of research [11,15,19–23,28,29,31,41,43,46,49,50].
Model checking [8] has emerged as a promising, automated ap-
proach [15, 23, 46] to the verification problem. In this approach,
a model checker takes as input an access-control policy and a se-
curity property, and declares whether or not the policy adheres to

the input security property. The idea is similar to verifying com-
puter programs; the access-control policy is analogous to a com-
puter program, and the security property is analogous to a program
property. The user would like to use the model checker to check
whether the property always holds for all program behaviors (or
all possible authorizations allowed by the policy). However, the
model-checking problem for access-control policies is intractable
in general (PSPACE-complete [23, 41]), and scalability for practi-
cal verification tools remains a significant issue despite consider-
able progress (see Section 5).

In this paper, we propose a different approach to the problem
of checking whether or not access-control policies implement the
security intent of the system administrator. Instead of focusing on
complete verification of such policies, we propose that it is fruitful
to look for errors in them (the error-finding problem).

Error finding complements verification in many ways. Error-
finding tools can be used to find shallow, localized errors, while
verification can be used for checking global properties. Automatic
error-finding tools can also be used during the design and imple-
mentation of policies to help prune errors early, and refine the se-
curity intent of the system administrators, thus making subsequent
verification work easier. Finally, techniques developed in the con-
text of verification can often be adapted for error-finding.

In the context of access-control policies, an error constitutes al-
lowing an unauthorized user to access a resource. The question
posed by the system administrator remains the same irrespective
of whether complete verification or error finding is the goal. The
difference is in terms of the underlying technique used and the com-
pleteness of the technique.

There are several advantages in changing one’s point of view
from verification to finding errors:

• First, finding errors is in general more tractable than verify-
ing correctness, at the cost of completeness.

• Second, while it is true that verification tools can also be used
for the error-finding problem, changing the viewpoint from
verification to error finding allows us to leverage a wider
range of techniques. This has been observed in software reli-
ability research, where bounded model checking [6] and in-
complete/unsound program analysis have had a significant
impact in automatically exposing bugs that had been impos-
sible to find otherwise [47, 48].

• Third, automatic error-finding tools for access-control poli-
cies can serve a purpose similar to automated bug finding
tools [5, 13, 14] for computer programs. Just as computer
programmers use tests and automatic test generation tools to
not only reveal errors in their programs, but also to guide
the development process, error-finding tools can similarly be
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used by system administrators to not only find errors in their
access control policies, but also to refine their security intent.

Abstraction Refinement. The basic intuition behind abstraction-
refinement strategies is that it is more efficient to look for errors in
an abstract version of the input policy (with successive refinements,
as necessary) compared to the full input policy. A desirable prop-
erty of such an abstraction is that if an error is found in the abstract
version, it must be an error in the original input policy.

Abstraction refinement, a well-known paradigm in verification
and program analysis literature [7], has been successful in the con-
text of bug finding and verification in computer programs [2, 3, 7,
17,35]. We show here that the abstraction-refinement paradigm can
be successfully adapted to the context of finding errors in ARBAC
policies.

Key Insights. There are two key insights behind our abstraction-
refinement technique as applied to access-control policies. First,
it is often the case that, during analysis, we can abstract most of
the access-control policy, while preserving errors. The result is that
verification or error-finding on the abstract policy is much faster
compared to the complete original policy. Second, most errors tend
to be few refinements away from the initial state. Therefore, if
parts of the policy need to be refined, it can be done in very few
refinement steps subsequently. As we show in our experimental
evaluation (Section 5), model checking, bounded model-checking
and other analysis techniques are not able to leverage the above-
mentioned aspects of access-control policies.

1.1 Contributions
We make the following contributions in this paper:

1. We describe an abstraction-refinement based approach
for automatically finding errors in access-control policies
(specifically, ARBAC policies). The resulting technique, im-
plemented on top of a bounded model checker, scales very
well as the size and complexity of the policies increase.

Our technique can also be used for error finding in frame-
works other than ARBAC. The reason is that the sources of
complexity that we identify in Section 4 are not unique to
ARBAC. They exist in other access control schemes as well,
such as administrative scope [9] and even the original access
matrix scheme due to Harrison et al. [19].

Although we focus on error finding in this paper, our
abstraction-refinement technique can be used in conjunction
with model checking to perform verification. The combina-
tion of abstraction-refinement technique and bounded model
checker (with a pre-determined bound) that we present in
this paper is incomplete, i.e., it may not find all the errors
in buggy input policies.

2. An implementation of our technique in a tool called MO-
HAWK, and an evaluation of the tool using a variety of
complex access-control policies obtained from previous lit-
erature, as well as ones developed by us. The MOHAWK
tool is available from the Google Code website: http:
//code.google.com/p/mohawk/

MOHAWK accepts as input an access-control policy and a
safety question, and outputs whether or not it found an er-
ror. Following similar techniques from software verification,
our technique constructs an approximation (and successive
refinements, if necessary) of the input policy, and checks

for errors. It terminates when an error has been found or
the underlying bounded model checker has reached a pre-
determined bound.

3. We provide a detailed comparison of MOHAWK against
NuSMV [36], a well known model checking and bounded
model checking tool, and RBAC-PAT [15, 46], a tool specif-
ically designed for analyzing ARBAC policies. Unlike these
other approaches, MOHAWK scales very well as the size and
complexity of the input policies increase.

We also provide a policy-generation tool that automatically
generates complex policies, and a benchmark suite compris-
ing large, complex, and expressive ARBAC policies that
capture all the known sources of complexity. The tool and
the benchmark suite can be downloaded from the MOHAWK
website.

4. The abstraction-refinement implementation in MOHAWK is
configurable, i.e., the user can control the aggressiveness of
the abstraction and refinement steps using a run-time option.
We show that for small, relatively simple access-control poli-
cies it is better to abstract less, while for larger, more com-
plex policies it is better to abstract more aggressively.

Organization: The remainder of our paper is organized as follows.
In Section 2, we discuss access control models and schemes. In
Section 3, we describe the architecture of MOHAWK. In Section 4,
we describe how MOHAWK deals with the sources of complexity
from the standpoint of error finding. In Section 5, we present em-
pirical results that demonstrate the efficacy of our approach. We
discuss related work in Section 6 and conclude with Section 7.

2. PRELIMINARIES
In this section we provide basic definitions and concepts relating

to access-control policies, in particular the ARBAC framework. We
also introduce the error-finding problem for access-control systems.

An access-control policy is a state-change system, 〈γ, ψ〉, where
γ ∈ Γ is the start or current state, and ψ ∈ Ψ is a state-change rule.
The pair 〈Γ,Ψ〉 is an access control model or framework.

The state, γ, specifies the resources to which a principal has a
particular kind of access. For example, γ may specify that the prin-
cipal Alice is allowed to read a particular file. Several different
specifications have been proposed for the syntax for a state. Two
well-known ones are the access matrix [16,19] and Role-Based Ac-
cess Control (RBAC) [10, 40]. In this paper, we focus on the latter
to make our contributions concrete.

In RBAC, users are not assigned permissions directly, but via
a role. Users are assigned to roles, as are permissions, and a user
gains those permissions that are assigned to the same roles to which
he is assigned. Consequently, given the setU of users, P of permis-
sions and R of roles, a state γ in RBAC is a pair, 〈UA,PA〉 where
UA ⊆ U×R is the user-role assignment relation, and PA ⊆ P×R
is the permission-role assignment relation.

RBAC also allows for roles to be related to one another in a par-
tial order called a role hierarchy. However, as we point out in Sec-
tion 2.2 under “The role hierarchy,” in the context of this paper, we
can reduce the error-finding problems of interest to us to those for
which the RBAC state has no role hierarchy.

Figure 1 contains a example of an RBAC state for a hypothetical
company with 7 roles and 2 users, namely Alice and Bob. Alice is
assigned to the Admin role. Bob is assigned to the Acct and Audit
roles. For the sake of illustration we have only a limited number of
roles in the example. We explain how to interpret the state-change
rules in the next section.
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RBAC STATE

Roles {BudgetCommitee, Finance, Acct, Audit,

TechSupport, IT, Admin}

Users {Alice, Bob}

UA {〈Bob, Acct〉, 〈Bob, Audit〉, 〈Alice, Admin〉}
STATE-CHANGE RULE

can_assign {〈Admin, Finance, BudgetCommittee〉,
〈Admin, Acct ∧ ¬Audit, Finance〉,
〈Admin, TRUE, Acct〉, 〈Admin, TRUE, Audit〉
〈Admin, TechSupport, IT〉,
〈Admin, TRUE, TechSupport〉}

can_revoke {〈Admin, Acct〉, 〈Admin, Audit〉,
〈Admin, TechSupport〉}

Figure 1: RBAC state and state-change rule for a simple AR-
BAC policy

2.1 ARBAC
The need for a state-change rule, ψ, arises from a tension be-

tween security and scalability in access control systems. Realistic
access control systems are used to manage the accesses of tens of
thousands of users to millions of resources. Allowing only a few
trusted administrators to handle changes to the state (e.g., remove
read access from Alice) does not scale. A state-change rule allows
for the delegation of some state changes to users that may not be
fully trusted.

ARBAC [38] and administrative scope [9] are examples of such
schemes for RBAC. To our knowledge, ARBAC is the first and
most comprehensive state-change scheme to have been proposed
for RBAC. This is one of the reasons that research on policy veri-
fication in RBAC [15,31,46], including this paper, focuses on AR-
BAC.

An ARBAC specification comprises three components, URA,
PRA, and RRA. URA is the administrative component for the
user-role assignment relation, UA, PRA is the administrative com-
ponent for the permission-role assignment relation, PA, and RRA
is the administrative component for the role hierarchy.

Of these, URA is of most practical interest from the standpoint
of error finding. The reason is that in practice, user-role rela-
tionships are the most volatile [27]. Permission-role relationships
change less frequently, and role-role relationships change rarely.
Furthermore, as role-role relationships are particularly sensitive to
the security of an organization, we can assume that only trusted
administrators are allowed to make such changes.

PRA is syntactically identical to URA except that the rules ap-
ply to permissions and not users. Consequently, all our results in
this paper for URA apply to PRA as well. We do not consider
analysis problems that relate to changes in role-role relationships
for the reasons we cited above.

In the remainder of this paper, when we refer to ARBAC, we
mean the URA component that is used to manage user-role rela-
tionships.

URA. A URA specification comprises two relations, can_assign
and can_revoke. The relation can_assign is used to specify under
what conditions a user may be assigned to a role, and can_revoke
is used to specify the roles from which users’ memberships may be

revoked. We call a member of can_assign or can_revoke a rule.
A rule in can_assign is of the form 〈ra, c, rt〉, where ra is an

administrative role, c is a precondition and rt is the target role. An
administrative role is a special kind of role associated with users
that may administer (make changes) to the RBAC policy. The first
component of a can_assign rule identifies the particular adminis-
trative role whose users may employ that rule as a state change.

A precondition is a propositional logic formula of roles in which
the only operators are negations and conjunctions. Figure 1 con-
tains the can_assign and can_revoke rules for our example RBAC
state. An example of c is Acct ∧¬Audit in the can_assign rule
that has Finance as the target role. For an administrator, Alice, to
exercise the rule to assign a user Bob to Finance, Alice must be a
member of Admin, Bob must be a member of Acct and must not
be a member of Audit.

A can_revoke rule is of the form 〈ra, rt〉. The existence of such
a rule indicates that users may be revoked from the role rt by an ad-
ministrator that is a member of ra. For example, roles Acct, Audit,
and TechSupport can be revoked from a user by the administrator
Alice.

We point out that so long as ra has at least one user, the rule can
potentially fire as a state change. If ra has no users, we remove the
corresponding can_assign rule from the system as it has no effect
on error finding. One of the consequences of this relates to what
has been called the separate administration restriction. We discuss
this in Section 2.2 below.

We have omitted some other details that are in the original spec-
ification for URA [38] because those details are inconsequential
to the error-finding problem we address in this paper. For example,
the original specification allows for the target role to be specified as
a set or range of roles. We assume that it is a single role, rt. A rule
that has a set or range as its component for the target role can be
rewritten as a rule for every role in that set or range. We know that
roles in a range do not change, as we assume that changes to roles
may be effected only by trusted administrators. Policy verification
is not used for such changes.

2.2 The error-finding problem
The error-finding problem in the context of access-control poli-

cies arises because state changes may be effected by users that are
not fully trusted, but an organization still wants to ensure that de-
sirable security properties are met. The reason such problems can
be challenging is that state-change rules are specified procedurally,
but security properties of interest (e.g., Alice should never be able
to read a particular file) are declarative [26].

A basic error-finding problem is safety analysis. In the context of
RBAC and ARBAC, a basic safety question is: can a user u become
a member of a role r? We call such a situation (in which the safety
question is true), an error.

There are two reasons that the basic safety question such as the
one from above has received considerable attention in the litera-
ture [23, 31, 41, 46]. One is that it is natural in its own right. The
reason for asking such a question is that u should not be authorized
to r. If the analysis reveals that he may be, by some sequence of
state changes, then we know that there is a problem with the secu-
rity policy. Another reason is that several other questions of interest
can be reduced to the basic safety question. This observation has
been made before [23, 46].

We consider only such basic safety questions. An instance of
an error-finding problem, in the context of this paper, specifies an
ARBAC access control system, a user, and a role. It is of the
form 〈γ, ψ, u, r〉. We ask whether u may become a member of
r given the initial state γ = 〈U ,R,UA〉, and state-change rule
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Figure 2: Architecture of MOHAWK illustrating abstraction-refinement-based technique for error finding in ARBAC policies.

ψ = 〈can_assign, can_revoke〉.

The separate administration restriction
Previous work [15,41,46] considers what is called the separate ad-
ministration restriction in the context of such error-finding prob-
lems. In this context, the question that is asked is whether the roles
we consider in an error finding instance include roles that pertain
to administration. We recall our discussions from Section 2.1 in
which we mention that one of the components of can_assign and
can_revoke we omit is an administrative role, ra.

If our state changes allow for memberships in ra to change, then
a consequence is that ra may, in some state, have no members. This
would result in a change to the state-change rules, as any rule that
has ra as its administrative role cannot fire.

The original specification on ARBAC [38] clearly specifies that
administrative roles are not administered by the same rules as “reg-
ular” roles. We adopt this assumption. In other words, we adopt
the separate administration restriction in this paper. Some previous
work [46] has considered subcases of when this restriction is lifted.
We do not consider those subcases in this paper.

The role hierarchy. We assume that an RBAC state has no role
hierarchy. The reason is that there is a straightforward reduction
that has been presented in prior work from an error finding instance
that has a role hierarchy to an error finding instance with no role
hierarchy [41].

3. ARCHITECTURE OF MOHAWK
In the following, we describe MOHAWK’s architecture (§3.2-
§3.5), and illustrate our approach using an example (§3.6). Figure
2 illustrates the architecture of MOHAWK.

MOHAWK accepts an ARBAC Policy 〈U,R,UA,
can_assign, can_revoke〉 and a safety query 〈u, r〉 as input.
MOHAWK reports on error, if it finds one. Otherwise, MOHAWK
terminates and reports that it could not find any errors. In the
following, we will refer to the role in the safety query as the query
role. Briefly, MOHAWK works on the input as follows:

• Input Transformation (§3.2): MOHAWK transforms the in-
put policy and safety query into an intermediate representa-
tion.

• Abstraction Step (§3.3): MOHAWK performs an initial ab-
straction step to produce an abstract policy.

• Verification (§3.4): In this step, MOHAWK invokes the
NuSMV bounded model checker on the finite-state machine
representation of the current abstract policy. If a counter ex-
ample is produced by NuSMV, MOHAWK terminates and re-
ports the error found. A counter example, in model-checking
parlance, is a sequence of state transitions from the initial
state to an error state of the input finite-state machine. For
MOHAWK, the counter example reported corresponds to an
error in the policy and is essentially a sequence of actions
that enable the unauthorized user referred in the safety query
to reach the query role.

• Refinement Step (§3.5): If no counter example is found in
the previous step, MOHAWK refines the abstract policy. If no
further refinements are possible, MOHAWK terminates and
reports that it could not find any errors (Note that this does
not necessarily imply there are no errors in the input policy).
MOHAWK may execute the verify-refine loop multiple times,
until either MOHAWK identifies an error or no further refine-
ments are possible.

3.1 Abstraction Refinement in Mohawk
Abstraction refinement in MOHAWK is goal oriented and driven

by the safety question. MOHAWK creates a priority queue of roles
based on their Related-by-Assignment relationship with the query
role (See Section 3.2). MOHAWK uses this stratification to incre-
mentally add roles, can_assign, and can_revoke rules to the ab-
stract policy for verification. The resulting strategy helps MO-
HAWK efficiently identify shallow errors without burdening the
model checker with extraneous input.

Configurability of Abstraction-Refinement:. MOHAWK’s
abstraction-refinement strategy is configurable. In abstraction-
refinement techniques, there is an interplay between three
factors, namely aggressiveness of the abstraction step, verifi-
cation efficiency, and number of refinement steps. Aggressive
abstraction-refinement makes the verification efficient at the
cost of increasing the number of refinements. A less aggressive
abstraction-refinement may reduce the number of refinements
at the cost of making the verification harder. A key aspect of
our approach is that, MOHAWK enables the user to control the
aggressiveness of the abstraction and refinement steps. A con-
figurable parameter k determines the number of queues of roles
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from the priority queues that are added to the abstract policy at
each refinement step. The default value for k is one (The most
aggressive setting for k).

3.2 Input Transformation
Figure 3 illustrates how a policy is specified in MOHAWK’s input

language. The “Roles”, “Users”, “UA”, “CA”, and “CR” keywords
identify the lists of roles, users, user-role assignments, can_assign
rules, and can_revoke rules respectively. The “ADMIN” key word
identifies the list of admin users. In the example, Alice is the admin
user and is assigned to Admin, which is the administrative role as-
sumed in all the can_assign and can_revoke rules. The SPEC key-
word identifies the safety query. In the example, the safety query
is asking whether user Bob can be assigned to BudgetCommittee.
In the intended policy, Bob cannot be assigned to BudgetCommit-
tee. However, he can be assigned to the role in policy specified in
Fig 3 because of the error we introduced in the can_assign rule. In
Section 3.6, we show how MOHAWK identifies the error.

MOHAWK transforms the policy in the input into an intermediate
representation, which enables efficient querying of the policy to
facilitate the abstraction and refinement steps.

Related-by-Assignment. A role r1 is said to be Related-by-
Assignment to a role r2, if r2 = r1 or r2 appears in the precon-
dition of atleast one of the can_assign rules that have r1 as their
target role. Related-by-Assignment does not distinguish between
positive and negative preconditions. The Related-by-Assignment
relationship describes whether a user’s membership to one role can
affect the membership to another role. The Related-by-Assignment
relationship between roles can be modeled using a tree as shown
in Figure 4, in which all nodes correspond to roles and a role r2
appears as a child node of role r1, if and only if the r2 is Related-
by-Assignment to r1.

MOHAWK identifies all the roles Related-by-Assignment to the
query role by performing a breadth-first analysis of the associated
can_assign rules. The algorithm first assigns the highest priority to
the query role and adds it to a work queue. While the work queue is
not empty, the algorithm picks the next role in the work queue, and
analysis the can_assign rules that have the role being analyzed as
their target role. All the roles involved in the preconditions in the
can_assign rules are added to the work queue, and also added to the
priority queue at the next lower priority compared to the role being
analyzed. Roles that directly affect the membership to the query
role have the highest priority, while roles affecting the membership
to roles that are Related-by-Assignment to the query role have a
lesser priority. At the end of the analysis, we have a priority queue,
in which all the roles Related-by-Assignment to the query role are
inserted in the queues based on their priorities.

3.3 Abstraction Step
In the initial abstraction step, MOHAWK constructs an abstract

policy 〈U ′, R′, UA′, can_assign′, can_revoke′〉, where

• U ′ contains the user in the safety query and admin users.

• R′ contains the administrative roles, and roles from the first
k queues in the priority queue.

• UA′ = {(u, r) | (u, r) ∈ UA ∧ u ∈ U ′ ∧ r ∈ R′}

• can_assign′ contains only can_assign rules in the input pol-
icy whose precondition roles and target roles are members of
R′.

• can_revoke′ contains only can_revoke rules from the input
policy whose target roles are members of R′.

3.4 Verification
In the verification step, MOHAWK verifies the safety query in

the abstract policy. On each verification step, MOHAWK translates
the abstract policy to finite-state-machine specification in the SMV
language and the safety query to a LTL (Linear Temporal Logic)
formula. If the model checker identifies a state in which the user is
assigned to the role, it provides a counter example. The counter ex-
ample corresponds to a sequence of assignment and revocation ac-
tions from initial authorization state that will result in the user being
assigned to the role. On identifying a counter example, MOHAWK
reports the error and terminates. Otherwise, MOHAWK refines the
abstract policy in the refinement step.

In each step, the abstract policy contains a subset of the roles,
UA, can_assign, and can_revoke rules in the complete policy.
Therefore, the abstract policy permits only a subset of the adminis-
trative action sequences accepted in the full policy. Each action in
the action-sequence identified by the counterexample corresponds
to a can_assign or can_revoke rule that exists in both the abstract
and original policies. Therefore, the counter example is true in the
original policy also.

3.5 Refinement Step
An abstract policy verified in the previous step is refined as fol-

lows. (We use “←” to represent instantiation.)

• R′ ← R′ ∪R′′, where R′′ is the set of roles from the next k
queues from the priority queue.

• UA′ ← UA′ ∪ UA′′, where UA′′ is the user’s membership
for the roles in R′′, if there are any.

• can_assign′ ← can_assign′ ∪ can_assign′′, where
can_assign′′ is the additional set of can_assign rules from
the input policy whose preconditions and target roles are
members of the updated R′.

• can_revoke′ ← can_revoke′ ∪ can_revoke′′, where
can_revoke′′ is the additional set of can_revoke rules from
the input policy whose target roles are members of R′′.

If no additional refinements are possible, MOHAWK reports that
no error was found.

3.6 Example
To illustrate Mohawk’s operations, we introduce an error in

the policy of our running example in Fig 1. In the can_assign
rule with target role Finance, we change c from Acct∧¬Audit to
Acct∧Audit. The intent of the original policy is to assign the role
Finance only to users who are in the Acct role and not in the Au-
dit role. The error we introduced in the example by changing the
can_assign rule will enable users who are in both Acct and Audit
roles to be assigned to Finance. Figure 3 contains the erroneous
policy in MOHAWK’s input language.

Table 1 contains the abstraction-refinement steps for the exam-
ple policy in Figure 3. Figure 4 contains the tree for for the
roles Related-by-Assignment with respect to the BudgetCommit-
tee, which is the query role. In the priority queue, BudgetCommit-
tee has priority 0, Finance has priority 1, and finally Acct and Audit
have priority 2 (lower numbers indicate better priorities).

In the abstraction step, MOHAWK adds the users Alice and Bob,
and roles BudgetCommittee and Admin. Bob is the user in the
query, and Alice is the admin user. BudgetCommittee is the role
from the queue with priority 0 and Admin is the admin role. The
UA membership, (Alice, Admin), is added to the abstract policy.
No can_assign or can_revoke rules are added because all of them
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Roles BudgetCommitee Finance Acct Audit
TechSupport IT Admin;

Users Alice Bob;

UA <Alice, Admin> <Bob, Acct> <Bob, Audit>;

CR <Admin, Acct> <Admin, Audit>
<Admin, TechSupport>;

CA <Admin, Finance, BudgetCommittee>
<Admin, Acct&Audit, Finance> <Admin, TRUE, Acct>
<Admin, TRUE, Audit> <Admin, TechSupport, IT>
<Admin, True, TechSupport>;

ADMIN Alice;

SPEC Bob BudgetCommittee;

Figure 3: An ARBAC policy in the MOHAWK’s input language
Figure 4: Related-by-assignment (RBA) relationship be-
tween roles with respect to BudgetCommittee.

Steps Users Roles UA can_assign can_revoke Result

Abstraction step Alice, Bob BudgetCommittee, (Alice, Admin) No counterexample

Admin

Refinement 1 Alice, Bob BudgetCommittee (Alice, Admin) 〈Admin, Finance, BudgetCommittee〉 No counterexample

Admin, Finance

Refinement 2 Alice, Bob BudgetCommittee, (Alice, Admin) 〈Admin, Finance, BudgetCommittee〉 〈Admin, Acct〉 Counterexample
Admin, Finance, (Bob, Acct) 〈Admin, Acct∧Audit, Finance〉 〈Admin, Audit〉 found
Acct, Audit (Bob, Audit) 〈Admin, TRUE, Acct〉

〈Admin, TRUE, Audit〉

Table 1: Illustrating abstraction-refinement steps for the running example in Figure 3

involve roles other than roles added to the abstract policy. NuSMV
does not identify a counter example for the abstract policy. There-
fore, MOHAWK refines the policy.

In the first refinement step, MOHAWK adds Finance from
the queue with priority 1. There are no changes to the users,
UA, and can_revoke. The can_assign rule 〈Admin, Finance,
BudgetCommittee〉 is added to the abstract policy. NuSMV still
does not identify a counterexample. Therefore, MOHAWK further
refines the abstract policy.

In the second refinement step, MOHAWK adds roles Audit and
Acct, 2 UA memberships for Bob, 3 can_assign rules, and 2
can_revoke rule. Bob membership to roles Acct and Audit are
added to the abstract policy. The three additional can_assign rules
added are 〈Admin, Acct∧Audit, Finance〉, 〈Admin, TRUE, Audit〉,
and 〈Admin, TRUE, Acct〉. The additional can_revoke rules added
are 〈Admin, Acct 〉 and 〈Admin, Audit〉. NuSMV identifies a
counter example that has the following sequence of administrative
actions:

1. Alice assigns Bob to Finance. This action is allowed because
of the can_assign rule 〈Admin, Acct∧Audit, Finance〉.

2. Alice assigns Bob to BudgetCommittee. This action is al-
lowed because of the can_assign rule 〈Admin, Finance,
BudgetCommittee〉.

As a result of seeing this counter example, the administrator can fix
the erroneous can_assign rule to enforce the correct policy.

As we have illustrated in the example, the abstract policy veri-
fied in each step is more constrained compared to the original pol-
icy. For example, the initial abstract policy does not allow any
assignment and revocation actions. The subsequent two refinement
steps add additional roles, can_assign, and can_revoke roles from

the original policy. In effect, the abstraction step aggressively con-
strains the policy and the subsequent refinement steps relax the con-
straints to make the policy more precise compared to the earlier
step, illustrating our under-approximation strategy.

3.7 Implementation
We implemented MOHAWK using Java. In addition to the

abstraction-refinement approach, we implemented several support-
ing tools for MOHAWK. We have a tool for automatically convert-
ing a policy in the MOHAWK language to NuSMV specification.
Also, we implemented a tool for creating complex ARBAC poli-
cies.

We also implemented two well-known static slicing techniques
for ARBAC policies [23, 46]. The basic idea behind static slicing
is to remove users, roles, can_assign, and can_revoke rules from
the policies that are irrelevant to the safety question. There are
two types of static slicing techniques, namely forward pruning [23]
and backward pruning [23, 46]. Both techniques retain only the
admin users and the user involved in the safety question. Forward
pruning removes can_assign rules that can never be applied in the
current UA. Backward pruning computes two sets of roles, namely
Rpo andRne. Rpo is the set of roles on which r positively depends,
and Rne is the set of roles on which r negatively depends. The
sliced policy retains only the assignment rules associates with roles
in Rpo, and revocation rules associated with roles in Rne.

We implemented these techniques and analyzed the effect of
static slicing on the ARBAC policies used in our experiments. We
found that static slicing helps, but does not scale with the size and
complexity of policies.

4. SOURCES OF COMPLEXITY FOR ER-
ROR FINDING
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In this section, we discuss how we deal with sources of complex-
ity in ARBAC polices from the standpoint of error-finding. These
sources of complexity are discussed in previous work in the con-
text of verification [23, 41, 46]. There are four such sources of
complexity: (1) disjunctions — these are introduced by multiple
can_assign rules with the same target role, (2) irrevocable roles —
these are roles for which there is no can_revoke rule with that role
as the target, (3) mixed roles — these are roles that appear with
and without negation in can_assign rules, and, (4) positive precon-
dition roles — these are roles that appear without negation only in
can_assign rules. In Appendix A, we discuss in more detail why
these introduce complexity in the verification and error-finding of
ARBAC policies.

We point out that in the worst-case, the change in perspec-
tive from verification to error finding is inconsequential. Indeed,
we may end up doing more work as we go through additional
abstraction-refinement steps. However, we argue that in practice,
our approach is effective.

One aspect from our approach that assuages the compexity is
that we are goal-oriented in our abstraction-refinement algorithm
(see Section 3). Our stratification of roles begins with the role from
the safety instance. A consequence of this is that a number paths
from the start-state that do not lead to the error-state are removed.

Another aspect is that we optimistically look for short paths that
lead from the start state to the error state, while not burdening
the model checker with a lot of extraneous input. We first check
whether we can reach the error state in zero transitions. In doing
so, we ensure that the model checker is provided no state-change
rules. We then check whether we can reach it in only a few transi-
tions. In doing so, we provide the model checker with only those
state-change rules that may be used for those few transitions. And
so on.

Every source of complexity is associated with an intractable
problem. For example, disjunctions are associated with satisfiabil-
ity of boolean expressions in Conjunctive Normal Form (CNF) (see
Appendix A). For a model-checker to check whether there is an er-
ror requires it to check whether a boolean expression in CNF that is
embedded in the broader problem instance is satisfiable. The two
aspects we discuss above result in fewer clauses in the correspond-
ing boolean expression in the abstract policy and its refinements.

The numbers of irrevocable, mixed and positive precondition
roles are fewer in the abstract policy and its refinements as well.
Also, they pertain to fewer target roles. Consequently, the corre-
sponding instances of intractable problems are smaller, and there
are fewer possible paths for the model checker to explore than if
such roles are strewn across rules for several target roles. Our em-
pirical assessment that we discuss in the following section bears out
these discussions.

5. RESULTS
The objective of our experiments was to ascertain the effective-

ness of the abstraction-refinement technique implemented in MO-
HAWK, and compare it with existing state-of-the-art methods for
finding errors in access-control policy, namely symbolic model
checking, bounded model checking, and RBAC-PAT [46]. We
chose NuSMV [36] as the reference implementation for both sym-
bolic and bounded model checking. Note that although all the com-
peting techniques were developed in the verification context, they
can also be used for the purposes of error finding. In the following,
we will use the terms MC and BMC to refer to NuSMV’s symbolic
model checker and NuSMV’s bounded model checker respectively.
All the experiments were conducted on Macbook Pro laptop with

Intel Core 2 Duo 2.4GHz processor and 4GB RAM.

5.1 Benchmarks Used
We have used two sets of policies to evaluate the various tools.

Both are based on prior work [15, 23, 33, 42, 46]. The first set has
not been used previously; we built it based on data from RBAC
deployments [42], and benchmarks used in role mining [33]. The
second has been used in the context of verification of ARBAC poli-
cies in prior work [15, 46] (These policies are simpler compared to
the policies in the first set).

Complex Policies (Set 1): We built three test suites of policies
that were designed to factor in the known sources of complexity,
be reflective of the sizes of policies we expect to see in real de-
ployments, and exercise the full expressiveness of ARBAC. As ex-
plained in section 4 and Appendix A, the four known sources of
complexity in ARBAC policies are disjunctions in the can_assign
rules, number of positive preconditions, number of mixed precon-
ditions, and number of irrevocable roles. Jha et al. [23] provides the
restrictions under which safety analysis for ARBAC, which is the
error-finding problem in our context, is PSPACE-Complete, NP-
Complete, and solvable in polynomial time. Accordingly, we cre-
ated three test suites:

• Test suite 1: Policies with positive conjunctive can_assign
rules and non-empty can_revoke rules. Error-finding prob-
lem is solvable in polynomial time for these policies.

• Test suite 2: Policies with mixed conjunctive can_assign
rules and empty can_revoke rules. Error-finding problem is
NP-Complete for these policies.

• Test suite 3: Policies with mixed conjunctive can_assign
rules and non-empty can_revoke rules. Error-finding prob-
lem is PSPACE-Complete for these policies.

The preconditions for the can_assign rules were randomly cre-
ated. Unlike the policies in Set 2 obtained from [15,46], these poli-
cies may have more than one positive precondition per can_assign
rule.

We implemented a policy-generation tool that accepts the fol-
lowing inputs, namely number of users, number of roles, number of
can_assign rules, number of can_revoke rules, type of can_assign
rules, and type of UA, and dumps an ARBAC policy into an out-
put file. The generated policies have an administrative role and
an administrative user assigned to administrative role, by default.
The administrative role is used in all the can_assign rules. The
can_revoke rules can be chosen to be either positive conjunctive or
mixed. The initial UA can be either empty or randomly assigned.
For each policy, the reachability of a role by a user is random. Also,
for each policy, the tool creates a safety question at random. The
safety question asks whether a role is reachable by a user.

In these policies we are hoping to capture the typical security
intent of a system administrator, namely, a subset of users may not
reach a subset of roles. Since the policies are randomly built, it
is possible that some randomly generated rules allow for a user
to eventually reach a designated role, i.e., the policy may have an
error. It is these kind of policies that interest us.

Simple Policies (Set 2): We used three ARBAC policies used
in previous work for the evaluation of the verification tool, RBAC-
PAT [15, 41, 46]. The first policy is an ARBAC policy for a hypo-
thetical hospital, while the second policy is for a hypothetical uni-
versity. The third policy from [15] is a test case having mixed pre-
conditions. The first two policies were used in [46] for case studies.
The third policy was used in [15], and a complete state-space ex-
ploration took 8.6 hours in RBAC-PAT. An important restriction in
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Num. of Roles, Rules MC BMC RBAC-PAT MOHAWK
Forward
reachability

Backward
reachability

1. 3, 15 0.097s 0.016s 0.625s 0.240s 0.382s
2. 5, 25 0.050s 0.025s 0.695s 0.281s 0.431s
3. 20, 100 M/O 0.103s 0.806s Err 0.733s
4. 40, 200 M/O 0.110s 0.780s Err 0.379s
5. 200, 1000 M/O 0.624s 1.471s Err 0.477s
6. 500, 2500 M/O 3.2s 2.177s Err 0.531s
7. 4000, 20000 M/O 414s 7.658s Err 3.138s
8. 20000, 80000 M/O M/O 110s Err 53s

m - minutes MC - NuSMV symbolic model checking T/O - Time out after 60 mins
s - seconds BMC - NuSMV bounded model checking M/O - Memory out
ms - milliseconds RBAC-PAT - Tool from Stoller et al. [15, 46] Err - Segmentation fault

Table 2: Evaluation of error-finding tools on positive conjunctive ARBAC policies. (Test suite 1)

Number of Roles, Rules MC BMC RBAC-PAT MOHAWK
Forward
reachability

Backward
reachability

1. 3, 15 0.022s 0.021s 0.513s 0.241s 0.442s
2. 5, 25 0.064s 0.026s 0.519s 0.252s 0.501s
3. 20, 100 M/O 0.048s 0.512s Err 0.436s
4. 40, 200 M/O 0.122s 0.534s Err 1.303s
5. 200, 1000 M/O 0.472s 0.699s Err 0.504s
6. 500, 2500 M/O 1.819s 2.414s Err 0.597s
7. 4000, 20000 M/O 109s 311s Err 2.753s
8. 20000, 80000 M/O M/O T/O Err 40s

m - minutes MC - NuSMV symbolic model checking T/O - Time out after 60 mins
s - seconds BMC - NuSMV bounded model checking M/O - Memory out
ms - milliseconds RBAC-PAT - Tool from Stoller et al. [15, 46] Err - Segmentation fault

Table 3: Evaluation of error-finding tools on mixed conjunctive ARBAC policies with no can_revoke rules. (Test suite 2)

these policies is that they have atmost one positive pre-condition
per can_assign rule. As we will explain later, answering the safety
question for these policies was fairly easy for all the tools.

5.2 Experimental Methodology
In all the experiments, the input to the error-finding tools con-

sisted of an ARBAC policy and a safety question. We applied
the static slicing techniques on all the policies prior to the exper-
iments. The policies were encoded using the input language of the
respective tools. MC and BMC use the SMV finite state machine
language, while RBAC-PAT and MOHAWK have their own input
language. We implemented a translation tool to convert policies
in MOHAWK’s input language to both SMV and RBAC-PAT input
languages. We expected the tools to conclude that the role is reach-
able and provide the sequence of administrative actions that lead to
the role assignment. In our evaluation, we had two users for each
policy, namely the user in the safety question and the administrator.
These are the only users required for answering the safety question.
Moreover, static slicing techniques also remove the users who are
not connected to the safety question.

5.3 Results Explained
We explain the results of our experimental evaluation below.

Whenever we refer to MOHAWK below, we mean MOHAWK con-
figured with aggressive abstraction-refinement, unless specified
otherwise.

5.3.1 Results on Complex Policies
The results of our evaluation on complex policies (Set 1) are tab-

ulated in Table 2 (Test suite 1), Table 3 (Test suite 2), and Table 4
(Test suite 3). Static slicing was not effective for the policies in our
test suite. This is because the randomly built preconditions for the
can_assign rules may relate a majority of the roles in the policies
to one another.

Our results indicate that MOHAWK scales better than all the com-
peting tools, irrespective of the complexity of the input policy.
BMC scales better than MC, but still runs out of memory for policy
#8 in all the test suites. RBAC-PAT’s forward reachability, although
slower compared to BMC, is effective for test suite 1, whose poli-
cies are verifiable in polynomial time. However, RBAC-PAT’s for-
ward reachability times out for policy #8 in test suites 2 and 3. The
forward reachability algorithm in RBAC-PAT can be considered as
a specialized model checking algorithm for ARBAC policies, and
scales better than symbolic model checking. RBAC-PAT’s back-
ward reachability algorithm was faster compared RBAC-PAT’s for-
ward algorithm for policies 1 and 2 in all the test suites, but gave
a segmentation fault for all policies 3-8 in all the test suites. It is
unclear whether this is because of a bug in the implementation or
if the tool ran out of memory. MOHAWK scales better compared to
all the tools, and is orders of magnitude faster than competing tools
for the larger and more complex policies.

MOHAWK is very efficient in finding errors in all the three test
suites, although each of them belong to a different complexity
class. This further underlines the effectiveness of the abstraction-
refinement based technique in MOHAWK. Also, having a single
technique that can perform well on large real-world policies that
belong to different complexity classes is also useful from the point
of view maintainability and extensibility of the tool.
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Num. of Roles, Rules MC BMC RBAC-PAT MOHAWK
Forward
reachability

Backward
reachability

1. 3, 15 0.030s 0.102s 1.452s 0.665s 0.380s
2. 5, 25 0.044s 0.033s 1.666s 0.881s 0.431s
3. 20, 100 M/O 0.056s 1.364s Err 0.381s
4. 40, 200 M/O 0.169s 1.476s Err 0.984s
5. 200, 1000 M/O 0.972s 2.258s Err 0.486s
6. 500, 2500 M/O 2.422s 7.350s Err 0.487s
7. 4000, 20000 M/O 109s 511s Err 2.478s
8. 20000, 80000 M/O M/O T/O Err 41s

m - minutes MC - NuSMV symbolic model checking T/O - Time out after 60 mins
s - seconds BMC - NuSMV bounded model checking M/O - Memory out
ms - milliseconds RBAC-PAT - Tool from Stoller et al. [15, 46] Err - Segmentation fault

Table 4: Evaluation of error-finding tools on mixed conjunctive ARBAC policies. (Test suite 3)

Num. of Roles, Rules MC BMC RBAC-PAT MOHAWK
Forward
reachability

Backward
reachability

1. 12, 19 0.025s 0.022s 0.531s 0.238s 0.300s
2. 20, 266 0.023s 0.026s 0.559s 0.247s 0.400s
3. 32, 162 M/O 0.182s 1.556s 0.568s 0.830s

m - minutes MC - NuSMV symbolic model checking T/O - Time out after 60 mins
s - seconds BMC - NuSMV bounded model checking M/O - Memory out
ms - milliseconds RBAC-PAT - Tool from Stoller et al. [15, 46] Err - Segmentation fault

Table 5: Evaluation of error-finding tools on ARBAC policies obtained from previous literature.

MOHAWK, although slower compared to MC and BMC for small
size policies, can be reliably used to analyze policies of very large
sizes. Moreover, MOHAWK’s abstraction-refinement step can be
configured based on the policy size and complexity. We ran MO-
HAWK with less aggressive abstraction-refinement for the smaller
policies and got performance comparable to BMC. Furthermore,
since our technique is not tied to specific model-checking algo-
rithms, it can used in conjunction with other algorithms such as
RBAC-PAT’s forward reachability.

5.3.2 Results on Simple Policies
We first analyzed three ARBAC policies that were used in prior

work [15, 46], and the results are summarized in Table 5. The first
and second policies did not satisfy separate administration restric-
tion, so we removed can_assign roles that have the administrative
roles as target and used the modified policies in our evaluation.

BMC, RBAC-PAT, and MOHAWK were effective for all the three
policies. The absolute differences in time taken to verify are not
very significant because they are less than a second.

MOHAWK with aggressive abstraction-refinement (Note that the
degree of abstraction-refinement can be configured by the user) is
faster compared to RBAC-PAT’s forward reachability, but slower
compared to BMC and RBAC-PAT’s backward reachability. How-
ever, the absolute slow down in each case is less than a second
and is imperceptible to the user. The reason for the slowdown
experienced by MOHAWK with aggressive abstraction-refinement
for these policies is that these policies are so small that BMC can
analyze them easily, while MOHAWK takes multiple iterations to
arrive at the same answer. In other words, the policies are too sim-
ple, and the abstraction-refinement step creates unnecessary over-
head. For the third test case, MC timed out. Both RBAC-PAT
and MOHAWK with aggressive abstraction-refinement are slower
compared to BMC, and MOHAWK is faster compared to RBAC-
PAT’s forward reachability algorithm and slightly slower compared

to RBAC-PAT’s backward reachability.
We also ran MOHAWK with different configuration of

abstraction-refinement on these policies. It turns out that the less
aggressive the abstraction-refinement step, the faster MOHAWK
gets for these small policies. In the limit it has similar performance
as BMC.

6. RELATED WORK
We can classify verification problems in the context of access

control broadly into two categories: state-only, and with state
changes. The work that falls in state-only considers only a given
state, and verification of properties within that state. Examples of
work that fall in this category include those of Jha et al. [24, 25],
Hughes et al. [22], Hu et al. [20], Martin and Xie [32], Rao et
al. [37], Kolovski [28], Zhao et al. [50], and Fisler et al. [11].

Model checking has been proposed in some of the state-only
contexts. For example, the work of Jha et al. [24, 25] proposes
modeling the distributed authorization framework SPKI/SDSI us-
ing push-down systems. The intent is to leverage efficient model-
checking algorithms for authorization checks. This is different
from the state-reachability problem that we recast as error-finding
in this paper. Furthermore, the problems considered there are in P.

It is conceivable that our approach can be used in state-only con-
texts. Indeed, the work of Martin and Xie [32] considers testing of
XACML policies by introducing what they call faults that are used
to simulate common errors in authoring such policies. However, in
this paper, we focus on access control systems that are character-
ized as state-change systems. Consequently, we focus on work that
considers verification of such systems.

Plain model-checking approach has also been proposed for some
state-change schemes [49]. As we have shown in Section 5, plain
model checking does not scale adequately for verifying policies of
very large sizes.

Work on safety analysis dates back to the mid-1970’s; the work
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by Harrison et al. [19] is considered foundational work in access
control. They were the first to provide a characterization of safety.
They show also, that safety analysis for an access matrix scheme
with state changes specified as commands in a particular syntax is
undecidable. Since then, there has been considerable interest and
work in safety, and more generally, security analysis in the context
of various access control schemes.

Safety analysis in monotonic versions of the HRU scheme has
been studied in [18]. Jones et al. [26] introduced the Take-
Grant scheme, in which safety is decidable in linear time. Am-
man and Sandhu consider safety in the context of the Extended
Schematic Protection Model (ESPM) [1] and the Typed Access
Matrix model [39]. Budd [4] and Motwani et al. [34] studied gram-
matical protection systems. Soshi et al. [45] studied safety analysis
in Dynamic-Typed Access Matrix model. These models all have
subcases where safety is decidable. Solworth and Sloan [44] in-
troduced discretionary access control model in which safety is de-
cidable. This thread of research has proposed many new access
control schemes, but has had limited impact on access control sys-
tems used in practice. This is potentially because the proposals
were either too simplistic or too arcane to be useful. The focus of
this paper is ARBAC, which was primarily proposed to meet the
need of expressive access control schemes required for large-scale
real-world deployments.

To our knowledge, Li and Tripunitara [30] were the first to con-
sider security analysis in the context of ARBAC. Jha et al. [23] were
the first to consider the use of model checking to for the verification
problem of ARBAC. That work also identifies that the verification
problem for ARBAC is PSPACE-complete. Subsequently, Stoller
et al. [46] established that user-role reachability analysis is fixed pa-
rameter tractable with respect to number of mixed roles, irrevocable
roles, positive preconditions, and goal size. Furthermore, they have
proposed new model-checking algorithms for similar verification
problems and implemented them in a tool called RBAC-PAT [15].

Comparison to RBAC-PAT. RBAC-PAT contains two algorithms
for analysing ARBAC policies, namely forward reachability and
backward reachability. As we have shown in Section 5, for-
ward reachability algorithm scales better compared to plain model
checking, is effective for polynomial time verifiable policies, but
does not scale adequately with complexity of the policies. We could
not extensively evaluate the backward reachability algorithm be-
cause the implementation gave a segmentation fault for even mod-
erately sized policies. In contrast, MOHAWK scales better and is
efficient for identifying errors irrespective of the complexity of the
policies.

Abstraction Refinement and Bugfinding in Programs. The idea
of counter-example guided abstraction refinement was originally
developed in the context of model checking [7]. Since then the
basic idea has been adapted in different ways in the context of
bounded model-checking and program analysis to find errors in
computer programs [3]. The idea of abstraction refinement has
also been adapted in the context of solvers for various theories
such as modular and integer linear arithmetic [12]. To the best of
our knowledge, MOHAWK is the first tool to adapt the paradigm of
abstraction-refinement for finding errors in access-control policies.

7. CONCLUSION
We presented an abstraction-refinement based technique, and its

implementation, the MOHAWK tool, for finding errors in ARBAC
access-control policies. MOHAWK accepts an access-control pol-

icy and a safety question as input, and outputs whether or not an
error is found. The abstraction-refinement technique in MOHAWK
is configurable, thereby enabling users to adapt the technique based
on the nature of the input policies. We extensively evaluated MO-
HAWK against current state-of-the-art tools for policy analysis. Our
experiments show that in comparison with the current tools, MO-
HAWK scales very well with the size of policies and is also orders
of magnitude faster. Analysis tools such as MOHAWK enable pol-
icy administrators to quickly analyze policies prior to deployment,
thereby increasing the assurance of the system.
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APPENDIX
A. SOURCES OF COMPLEXITY

In this appendix, we identify the aspects that make error finding
in the context of access control systems a difficult problem. We call
these “sources of complexity.” For each source of complexity, we
give some intuition as to why it is a source of complexity. Previous
work [23, 41, 46] on the verification problem alludes to some of
these sources of complexity.

There are three broad aspects that can bring complexity to veri-
fication in access control systems. (1) The syntax for the state, (2)
the state-change rules, and, (3) the verification question of interest.
In our context, (1) is not a source of complexity. Indeed, access
control schemes are often designed so that the syntax for the state
lends itself to efficient access enforcement. In RBAC, for example,
enforcement can be performed in worst-case time linear in the size
of the state.

The potential source (3) is not a source of complexity either, in
our context. We study the basic question of safety. Given a state,
checking whether the question is true or false is equivalent to an
access-check. It has been observed in previous work [23] that more
complex questions can be reduced to this rather basic notion of
safety. Consequently, it appears that even more complex questions
will not make the verification problem any more difficult.

Our main source of complexity, then, are the state-change rules.
The component within the state-change rules that is relevant is the
precondition. We now discuss the specific aspects of preconditions
in ARBAC that are the sources of complexity.

We point out, however, that these are not unique to ARBAC. The
access matrix scheme due to Harrison et al. [19], for example, has
preconditions in its state-change rules as well. Similarly, in the
context of RBAC, the work of Crampton and Loizou [9] on the
scoped administration of RBAC, has what they call conditions on
state-changes that are very similar to the preconditions of ARBAC.

Disjunctions. Given a safety instance, 〈γ, ψ, u, r〉 (see Sec-
tion 2.2), we observe that determining whether the answer is true or
not can be equivalent to determining the satisfiability of a boolean
expression in Conjunctive Normal Form (CNF). This problem is
known to be NP-complete.

Consider the following example. We have as target roles
in can_assign, r1, . . . , rn. The rule that corresponds to ri in
can_assign is 〈ra, ci ∧ ri−1, ri〉 where ci is a disjunction of roles
or their negations1, and contains no roles from among r1, . . . , rn.
The only can_assign rule with r as the target role is 〈ra, rn, r〉, and
u is assigned to r0 in the start state.

In our example, the verification instance 〈γ, ψ, u, r〉 is true if and
only if the boolean expression c1∧ . . .∧ cn is satisfiable via the fir-
ing of can_assign and can_revoke rules. Indeed, this construction
that we use as an example is similar to an NP-hardness reduction in
previous work [23].

Irrevocable roles. A role br is irrevocable if it is not a member
of can_revoke. Once u is assigned to br, u’s membership in br cannot
be revoked. Consider the case that an irrevocable role br appears
1As we discuss in Section 2.1, disjunctions are disallowed in an in-
dividual can_assign rule. However, multiple rules with the same
target role results in a disjunction of the preconditions of those
rules. In our example, if ci = ri,1∨ . . .∨ri,m, then we assume that
we have the following can_assign rules with ri as the target role:
〈ra, ri,1 ∧ ri−1, ri〉, . . ., 〈ra, ri,m ∧ ri−1, ri〉.

as a negated role in some can_assign rules. The challenge for a
“forward-search” algorithm that decides the verification question
〈u, r〉 is that it is not obvious when u should be assigned to br.

In a path in the state-transition graph, if u is assigned to br quite
close to the start state, then it is possible that that action causes u to
never be authorized to r on that path. Given a set of roles I , all of
which appear negated in preconditions of can_assign rules and are
irrevocable, such an algorithm must consider paths that correspond
to every subset of I .

Stoller et al. [46] capture this requirement in what they call Stage
2 (“forward analysis”) of their backward-search algorithm. The
algorithm maintains a subset of I as an annotation in the state-
reachability graph (or “plan,” as they call it). They observe that
their algorithm is doubly-exponential in the size of I .

Mixed roles. A mixed role is one that appears with negation and
without in preconditions of can_assign rules2. Stoller et al. [46]
prove that the verification problem is fixed parameter tractable in
the number of mixed roles. To see why the number of mixed roles
is a source of complexity, consider the case that no role is mixed.

An algorithm can simply adopt the greedy approach of maxi-
mally assigning u to every role rp that appears without negation,
and revoking u from every role rn that appears negated. Such an
approach will not work for a mixed role. Given a mixed role rm, it
is possible that we may need to repeatedly assign u to it, and revoke
u from it on a path to a state in which u is assigned to r.

A search algorithm must decide whether to revoke u from rm in
every state in which he is assigned to rm, and whether to assign u
to rm in every state in which he is not assigned to rm. In the worst
case, every such combination must be tried for every mixed role.

Positive precondition roles. A positive precondition role is a
role that appears without negation in a precondition. The number
of positive precondition roles is a source of complexity. Sasturkar
et al. [41] and Stoller et al. [46] observe that if we restrict each
can_assign rule to only one positive precondition role, then the ver-
ification problem becomes fixed parameter tractable in the number
of irrevocable roles.

An intuition behind this is that if there is at most one positive
precondition role in every precondition of the can_assign rules,
then the resultant CNF expression for which the model checker
checks satisfiability comprises only of Horn clauses. We know
that Horn Satisfiability is in P. If this restriction is lifted, then the
corresponding satisfiability problem is NP-complete, as we discuss
above under “Disjunctions.”

2We point out that a role does not appear with and without negation
in the same can_assign rule. This is because conjunction and nega-
tion are the only operators in a rule (see Section 2.1), and therefore
such a precondition is always false.
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