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ABSTRACT
Consider the problem of verifying security properties of a
cryptographic protocol coded in C. We propose an automatic
solution that needs neither a pre-existing protocol descrip-
tion nor manual annotation of source code. First, symboli-
cally execute the C program to obtain symbolic descriptions
for the network messages sent by the protocol. Second, ap-
ply algebraic rewriting to obtain a process calculus descrip-
tion. Third, run an existing protocol analyser (ProVerif)
to prove security properties or find attacks. We formalise
our algorithm and appeal to existing results for ProVerif to
establish computational soundness under suitable circum-
stances. We analyse only a single execution path, so our
results are limited to protocols with no significant branch-
ing. The results in this paper provide the first computation-
ally sound verification of weak secrecy and authentication
for (single execution paths of) C code.

1. INTRODUCTION
Recent years have seen great progress in formal verifica-

tion of cryptographic protocols, as illustrated by powerful
tools like ProVerif [13], CryptoVerif [12] or AVISPA [3].
There remains, however, a large gap between what we verify
(formal descriptions of protocols, say, in the pi calculus) and
what we rely on (protocol implementations, often in low-
level languages like C). The need to start the verification
from C code has been recognised before and implemented
in tools like CSur [26] and ASPIER [18], but the methods
proposed there are still rather limited. Consider, for exam-
ple, the small piece of C code in fig. 1 that checks whether
a message received from the network matches a message au-
thentication code. Intuitively, if the key is honestly chosen
and kept secret from the attacker then with overwhelming
probability the event will be triggered only if another honest
participant (with access to the key) generated the message.
Unfortunately, previous approaches cannot prove this prop-
erty: the analysis of CSur is too coarse to deal with authenti-
cation properties like this and ASPIER cannot directly deal
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

void ∗ key ; s i z e t keylen ;
readenv ( ”k” , &key , &keylen ) ;
s i z e t l en ;
read(&len , s izeof ( l en ) ) ;
i f ( l en > 1000) e x i t ( ) ;
void ∗ buf = mal loc ( l en + 2 ∗ MAC LEN) ;
read ( buf , l en ) ;
mac ( buf , len , key , keylen , buf + l en ) ;
read ( buf + l en + MAC LEN, MAC LEN) ;
i f (memcmp( buf + len ,

buf + l en + MAC LEN,
MAC LEN) == 0)

event ( ”accept ” , buf , l en ) ;

in(x1); in(x2); if x2 = mac(k, x1) then event accept(x1)

Figure 1: An example C fragment together with the
extracted model.

with code manipulating memory through pointers. Further-
more the previous works do not offer a definition of security
directly for C code, i.e. they do not formally state what it
means for a C program to satisfy a security property, which
makes it difficult to evaluate their overall soundness. The
goal of our work is to improve upon this situation by giv-
ing a formal definition of security straight for C code and
proposing a method that can verify secrecy and authentica-
tion for typical memory-manipulating implementations like
the one in fig. 1 in a fully automatic and scalable manner,
without relying on a pre-existing protocol specification.

Our method proceeds by extracting a high-level model
from the C code that can then be verified using existing
tools (we use ProVerif in our work). Currently we restrict
our analysis to code in which all network outputs happen on
a single execution path, but otherwise we do not require use
of any specific programming style, with the aim of applying
our methods to legacy implementations. In particular, we
do not assume memory safety, but instead explicitly verify
it during model extraction. The method still assumes that
the cryptographic primitives such as encryption or hashing
are implemented correctly—verification of these is difficult
even when done manually [2].

The two main contributions of our work are:

• formal definition of security properties for source code;
• an algorithm that computes a high-level model of the

protocol implemented by a C program.

We implement and evaluate the algorithm as well as give a
proof of its soundness with respect to our security definition.
Our definition of security for source code is given by linking
the semantics of a programming language, expressed as a
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transition system, to a computational security definition in
the spirit of [15, 25, 41]. We allow an arbitrary number
of sessions. We restrict our definition to trace properties
(such as weak secrecy or authentication), but do not consider
observational equivalence (for strong secrecy, say).

Due to the complexity of the C language we give the
formal semantics for a simple assembler-like language into
which C code can be easily compiled, as in other symbolic
execution approaches such as [19]. The soundness of this
step can be obtained by using well-known methods, as out-
lined in section 3.

Our model-extraction algorithm produces a model in an
intermediate language without memory access or destruc-
tive updates, while still preserving our security definition.
The algorithm is based on symbolic execution [30] of the
C program, using symbolic expressions to over-approximate
the sets of values that may be stored in memory during
concrete execution. The main difference from existing sym-
bolic execution algorithms (such as [17] or [24]) is that our
variables represent bitstrings of potentially unknown length,
whereas in previous algorithms a single variable corresponds
to a single byte.

We show how the extracted models can be further sim-
plified into the form understood by ProVerif. We apply the
computational soundness result from [4] to obtain conditions
where the symbolic security definition checked by ProVerif
corresponds to our computational security definition. Com-
bined with the security-preserving property of the model
extraction algorithm this provides a computationally sound
verification of weak secrecy and authentication for C.

Outline of our Method. The verification proceeds in sev-
eral steps, as outlined in fig. 2. The method takes as input:

• the C implementations of the protocol participants,
containing calls to a special function event as in fig. 1,

• an environment process (in the modelling language)
which spawns the participants, distributes keys, etc.,

• symbolic models of cryptographic functions used by
the implementation,

• a property that event traces in the execution are sup-
posed to satisfy with overwhelming probability.

We start by compiling the program down to a simple
stack-based instruction language (CVM) using CIL [34] to
parse and simplify the C input. The syntax and semantics
of CVM are presented in section 2 and the translation from
C to CVM is informally described in section 3.

In the next step we symbolically execute CVM programs
to eliminate memory accesses and destructive updates, thus
obtaining an equivalent program in an intermediate model
language (IML)—a version of the applied pi calculus ex-
tended with bitstring manipulation primitives. For each al-
located memory area the symbolic execution stores an ex-
pression describing how the contents of the memory area
have been computed. For instance a certain memory area
might be associated with an expression hmac(01|x, k), where
x is known to originate from the network, k is known to be
an environment variable, and | denotes concatenation. The
symbolic execution does not enter the functions that imple-
ment the cryptographic primitives, it uses the provided sym-
bolic models instead. These models thus form the trusted
base of the verification. An example of the symbolic execu-
tion output is shown at the bottom of fig. 1. We define the

C source

C virtual machine (CVM)

Intermediate model language (IML)

Applied pi

Verification Result

CIL

Symbolic execution

Message format abstraction

ProVerif + computational soundness

Figure 2: An outline of the method

syntax and semantics of IML in section 4 and describe the
symbolic execution in section 6.

Our definition of security for source code is given in sec-
tion 5. The definition is generic in that it does not assume
a particular programming language. We simply require that
the semantics of a language is given as a set of transitions of
a certain form, and define a computational execution of the
resulting transition system in the presence of an attacker
and the corresponding notion of security. This allows one
to apply the same security definition to protocols expressed
both in the low-level implementation language and in the
high-level model-description language, and to formulate a
correspondence between the two.

Given that the transition systems generated by different
languages are required to be of the same form, we can mix
them in the same execution. This allows us to use CVM to
specify a single executing participant, but at the same time
use IML to describe an environment process that spawns
multiple participants and allows them to interact. In par-
ticular, CVM need not be concerned with concurrency, thus
making symbolic execution easier. Given an environment
process PE with n holes, we write PE [P1, . . . , Pn] for a pro-
cess where the ith hole is filled with Pi, which can be either a
CVM or an IML process. The soundness result for symbolic
execution (theorem 1) states that if P1, . . . , Pn are CVM pro-

cesses and P̃1, . . . , P̃n are IML models resulting from their
symbolic execution then for any environment process PE the
security of PE [P̃1, . . . , P̃n] with respect to a trace property
ρ relates to the security of PE [P1, . . . , Pn] with respect to ρ.

To verify the security of an IML process, we replace its
bitstring-manipulating expressions by applications of con-
structor and destructor functions, thus obtaining a process
in the applied pi-calculus (the version proposed in [14] and
augmented with events). We can then apply a computa-
tional soundness result, such as the one from [4], to specify
conditions under which such a substitution is computation-
ally sound: if the resulting pi calculus process is secure in a
symbolic model (as can be checked by ProVerif) then it is
asymptotically secure with respect to our computational no-
tion of security. The correctness of translation from IML to
pi is captured by theorem 2 and the computational sound-
ness for resulting pi processes is captured by theorem 3. The
verification of IML (and these two theorems in particular)
is described in section 7.
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Theoretical and Practical Evaluation. Theorems 1 to 3
establish the correctness of our approach. In a nutshell, their
significance is as follows: given implementations P1, . . . , Pn

of protocol participants in CVM, which are automatically
obtained from the corresponding C code, and an IML pro-
cess PE that describes an execution environment, if P1, . . . , Pn

are successfully symbolically executed with resulting models
P̃1, . . . , P̃n, the IML process PE [P̃1, . . . , P̃n] is successfully
translated to a pi process Pπ, and ProVerif successfully ver-
ifies Pπ against a trace property ρ then P1, . . . , Pn form a
secure protocol implementation with respect to the environ-
ment PE and property ρ.

We are aiming to apply our method to large legacy code
bases like OpenSSL. As a step towards this goal we evaluated
it on a range of protocol implementations, including recent
code for smart electricity meters [37]. We were able to find
bugs in preexisting implementations or to verify them with-
out having to modify the code. Section 8 provides details.

The current restriction of analysis to a single execution
path may seem prohibitive at first sight. In fact, a great
majority of protocols (such as those in the extensive SPORE
repository [36]) follow a fixed narration of messages between
participants, where any deviation from the expected message
leads to termination. For such protocols, our method allows
us to capture and analyse the fixed narration directly from
the C code. In the future we plan to extend the analysis to
more sophisticated control flow.

Related Work. Wemention particularly relevant works here
and provide a broader survey in section 9. One of the first
attempts at cryptographic verification of C code is contained
in [26], where a C program is used to generate a set of Horn
clauses that are then solved using a theorem prover. The
method is implemented in the tool CSur. We improve upon
CSur in two ways in particular.

First, we have an explicit attacker model with a standard
computational attacker. The attacker in CSur is essentially
symbolic—it is allowed to apply cryptographic operations,
but cannot perform any arithmetic computations.

Second, we handle authentication properties in addition
to secrecy properties. Adding authentication to CSur would
be non-trivial, due to a rather coarse over-approximation of
C code. For instance, the order of instructions in CSur is ig-
nored, and writing a single byte into an array with unknown
length is treated the same as overwriting the whole array.
Authentication, however, crucially depends on the order of
events in the execution trace as well as making sure that the
authenticity of a whole message is preserved and not only of
a single byte of it.

ASPIER [18] uses model checking to verify implementa-
tions of cryptographic protocols. The model checking oper-
ates on a protocol description language, which is rather more
abstract than C; for instance, it does not contain pointers
and cannot express variable message lengths. The transla-
tion from C to the protocol language is not described in the
paper. Our method applies directly to C code with pointers,
so that we expect it to provide much greater automation.

Corin and Manzano [19] report an extension of the KLEE
test-generation tool [17] that allows KLEE to be applied to
cryptographic protocol implementations (but not to extract
models, as in our work). They do not extend the class of
properties that KLEE is able to test for; in particular, test-
ing for trace properties is not yet supported. Similarly to

our work, KLEE is based on symbolic execution; the main
difference is that [19] treats every byte in a memory buffer
separately and thus only supports buffers of fixed length.

An appendix includes proofs for all the results stated in
this paper.

2. C VIRTUAL MACHINE (CVM)
This section describes our low-level source language CVM

(C Virtual Machine). The language is simple enough to
formalise, while at the same time the operations of CVM
are closely aligned with the operations performed by C pro-
grams, so that it is easy to translate from C to CVM. We
shall describe such a translation informally in section 3.

The model of execution of CVM is a stack-based machine
with random memory access. All operations with values
are performed on the stack, and values can be loaded from
memory and stored back to memory. The language con-
tains primitive operations that are necessary for implement-
ing security protocols: reading values from the network or
the execution environment, choosing random values, writ-
ing values to the network and signalling events. The only
kind of conditional that CVM supports is a testing opera-
tion that checks a boolean condition and aborts execution
immediately if it is not satisfied.

The fact that CVM permits no looping or recursion in the
program allows us to inline all function calls, so that we do
not need to add a call operation to the language itself. For
simplicity of presentation we omit some aspects of the C
language that are not essential for describing the approach,
such as global variable initialisation and structures. We also
restrict program variables to all be of the same size: for the
rest of the paper we choose a fixed but arbitrary N ∈ N and
assume sizeof(v) = N for all program variables v. Our
implementation does not have these restrictions and deals
with the full C language.

Let BS = {0, 1}∗ be the set of finite bitstrings with the
empty bitstring denoted by ε. For a bitstring b let |b| be the
length of b in bits. Let Var be a countably infinite set of
variables. We write f : X ⇀ Y to denote a partial function
and let dom(f) ⊆ X be the set of x for which f(x) is defined.
We write f(x) = ⊥ when f is not defined on x and use the
notation f{x 7→ a} to update functions.

Let Ops be a finite set of operation symbols such that
each op ∈ Ops has an associated arity ar(op) and an ef-

ficiently computable partial function Aop : BS
ar(op) ⇀ BS.

The set Ops is meant to contain both the primitive opera-
tions of the language (such as the arithmetic or comparison
operators of C) and the cryptographic primitives that are
used by the implementation. The security definitions of this
paper (given later) assume an arbitrary security parameter.
Since real-life cryptographic protocols are typically designed
and implemented for a fixed value of the security parame-
ter, for the rest of the paper we let k0 ∈ N be the security
parameter with respect to which the operations in Ops are
chosen.

A CVM program is simply a sequence of instructions,
as shown in fig. 3. To define the semantics of CVM we
choose two functions that relate bitstrings to integer val-
ues, val : BS → N and bs: N → BS and require that for
n < 2N the value bs(n) is a bitstring of length N such that
val(bs(n)) = n. We allow bs to have arbitrary behaviour
for larger numbers. The functions val and bs encapsulate
architecture-specific details of integer representation such as
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b ∈ BS, v ∈ Var, op ∈ Ops

src ::= read | rnd input source

dest ::= write | event output destination

instr ::= instruction

Const b constant value

Ref v pointer to variable

Malloc pointer to fresh memory

Load load from memory

In v src input

Env v environment variable

Apply op operation

Out dest output

Test test a condition

Store write to memory

P ∈ CVM ::= {instr;}∗ program

Figure 3: The syntax of CVM.

the endianness. Even though these functions capture an un-
signed interpretation of bitstrings, we only use them when
accessing memory cells and otherwise place no restriction
on how the bitstrings are interpreted by the program oper-
ations. For instance, the set Ops can contain both a signed
and an unsigned arithmetic and comparison operators. Bit-
string representations of integer constants shall be written
as i1, i20, etc, for instance, i10 = bs(10).

We let Addr = {1, . . . , 2N − 1} be the set of valid memory
addresses. The reason we exclude 0 is to allow the length
of the memory to be represented in N bits. The seman-
tic configurations of CVM are of the form (Ac,Mc,Sc, P ),
where

• Mc : Addr ⇀ {0, 1} is a partial function that rep-
resents concrete memory and is undefined for unini-
tialised cells,

• Ac ⊆ Addr is the set of allocated memory addresses,
• Sc is a list of bitstrings representing the execution

stack,
• P ∈ CVM is the executing program.

Semantic transitions are of the form (η, s)
l
−→ (η′, s′), where

s and s′ are semantic configurations, η and η′ are environ-
ments (mappings from variables to bitstrings) and l is a
protocol action such as reading or writing values from the
attacker or a random number generator, or raising events.
The formal semantics of CVM is given in appendix C, in this
section we give an informal overview. Before the program is
executed, each referenced variable v is allocated an address
addr(v) in Mc such that all allocations are non-overlapping.
If the program contains too many variables to fit in mem-
ory, the execution does not proceed. Next, the instructions
in the program are executed one by one as described below.
For a, b ∈ N we define {a}b = {a, . . . , a+ b− 1}.

• Const b places b on the stack.
• Ref v places bs(addr(v)) on the stack.
• Malloc takes a value s from the stack, reads a value p

from the attacker, and if the range {val(p)}val(s) does
not contain allocated cells, it becomes allocated and
the value p is placed on the stack. Thus the attacker
gets to choose the beginning of the allocated memory
area.

• Load takes values l and p from the stack. In case
{val(p)}val(l) is a completely initialised range in mem-
ory, the contents of that range are placed on the stack.
In case some of the bits are not initialised, the value
for those bits is read from the attacker.

• In v read or In v rnd takes a value l from the stack.
In v read reads a value of length val(l) from the at-
tacker and In v rnd requests a random value of length
val(l). The resulting value b is then placed on the
stack. The environment η is extended by the binding
v 7→ b.

• Env v places η(v) and bs(|η(v)|) on the stack.
• Apply op with ar(op) = n applies Aop to n values on

the stack, replacing them by the result.
• Out write sends the top of the stack to the attacker

and Out event raises an event with the top of the stack
as payload. Events with multiple arguments can be
represented using a suitable bitstring pairing opera-
tion. Both commands remove the top of the stack.

• Test takes the top of the stack and checks whether it
is i1. If yes, the execution proceeds, otherwise it stops.

• Store takes values p and b from the stack and writes
b into memory at position starting with val(p).

The execution of a program can get stuck if rule con-
ditions are violated, for instance, when the program runs
out of memory or attempts to write to uninitialised mem-
ory. All these situations would likely result in a crash in a
real system. Our work is not focused on preventing crashes,
but rather on analysing the sequences of events that occur
before the program terminates (either normally or abnor-
mally). Thus we leave crashes implicit in the semantics.
An exception is the instruction Load: reading uninitialised
memory is unlikely to result in a crash in reality, instead
it can silently return any value. We model this behaviour
explicitly in the semantics.

3. FROM C TO CVM
We describe how to translate from C to CVM programs.

We start with aspects of the translation that are particular
to our approach, after which we illustrate the translation by
applying it to the example program in fig. 1.

Proving correctness of C compilation is not the main fo-
cus of our work, so we trust compilation for now. To prove
correctness formally one would need to show that a CVM
translation simulates the original C program; an appropri-
ate notion of simulation is defined in appendix B and is used
to prove soundness of other verification steps. We believe
that work on proving correctness of the CompCert compiler
[31] can be reused in this context.

We require that the C program contains no form of looping
or function call cycles and that all actions of the program
(either network outputs or events) happen in the same path
(called main path in the following). We then prune all other
paths by replacing if-statements on the main path by test
statements: a statement if(cond) t_block else f_block

is replaced by test(cond); t_block in case the main path
continues in the t_block, and by test(!cond); f_block

otherwise. The test statements are then compiled to CVM
Test instructions. The main path can be easily identified
by static analysis; for now we simply identify the path to be
compiled by observing an execution of the program.

As mentioned in the introduction, we do not verify the
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void mac proxy (void ∗ buf , s i z e t buf l en ,
void ∗ key , s i z e t keylen ,
void ∗ mac){

load buf ( buf , bu f l en ) ;
load buf ( key , keylen ) ;
apply( ”mac” , 2 ) ;
store buf (mac ) ;

}

int memcmp proxy (void ∗ a , void ∗ b ,
s i z e t l en ){

int r e t ;
load buf ( a , l en ) ;
load buf (b , l en ) ;
apply( ”cmp” , 2 ) ;
store buf (& r e t ) ;
return r e t ;

}

Figure 4: Examples of proxy functions.

source code of cryptographic functions, but instead trust
that they implement the cryptographic algorithms correctly.
Similarly, we would not be able to translate the source code
of functions like memcmp into CVM directly, as these func-
tions contain loops. Thus for the purpose of CVM transla-
tion we provide an abstraction for these functions. We do so
by writing what we call a proxy function f_proxy for each
function f that needs to be abstracted. Whenever a call to
f is encountered during the translation, it is replaced by the
call to f_proxy. The proxy functions form the trusted base
of the verification.

Examples of proxy functions are shown in fig. 4. The func-
tions load_buf, apply and store_buf are treated specially
by the translation. For instance, assuming an architecture
with N = 32, a call load_buf(buf, len) directly generates
the sequence of instructions:

Ref buf ; Const i32 ; Load ;
Ref l en ; Const i32 ; Load ; Load ;

Similarly we provide proxies for all other special functions
in the example program, such as readenv, read, write or
event. The proxies essentially list the CVM instructions
that need to be generated.

Appendix H.2 shows more examples of proxy functions.
Appendix A shows the CVM translation of our example C
program in fig. 1.

4. INTERMEDIATE MODEL LANGUAGE
This section presents the intermediate model language

(IML) that we use both to express the models extracted
from CVM programs and to describe the environment in
which the protocol participants execute. IML borrows most
of its structure from the pi calculus [1, 14]. In addition it
has access both to the set Ops of operations used by CVM
programs and to primitive operations on bitstrings: con-
catenation, substring extraction, and computing lengths of
bitstrings. Unlike CVM, IML does not access memory or
perform destructive updates.

The syntax of IML is presented in fig. 5. In contrast to
the standard pi calculus we do not include channel names,
but implicitly use a single public channel instead. This cor-
responds to our security model in which all communication
happens through the attacker. The nonce sampling opera-
tion (νx[e]) takes an expression as a parameter that specifies
the length of the nonce to be sampled—this is necessary in

b ∈ BS, x ∈ Var, op ∈ Ops

e ∈ IExp ::= expression

b concrete bitstring

x variable

op(e1, . . . , en) computation

e1|e2 concatenation

e{eo, el} substring extraction

len(e) length

P, Q ∈ IML ::= process

0 nil

!P replication

P |Q parallel composition

(νx[e]); P randomness

in(x); P input

out(e); P output

event(e); P event

if e then P [else Q] conditional

let x = e in P [else Q] evaluation

Figure 5: The syntax of IML.

JbK = b, for b ∈ BS,

JxK = ⊥, for x ∈ Var,

Jop(e1, . . . , en)K = Aop(Je1K, . . . , JenK),

Je1|e2K = Je1K|Je2K,

Je{eo, el}K = sub(JeK, val(JeoK), val(JelK)),

Jlen(e)K = bs(|JeK|).

Figure 6: The evaluation of IML expressions,
whereby ⊥ propagates.

the computational setting in order to obtain a probability
distribution. We introduce a special abbreviation for pro-
grams that choose randomness of length equal to the secu-
rity parameter k0 introduced in section 2: let (ν̃x); P stand
for (νx̃[k0]); let x = nonce(x̃) in P , where nonce ∈ Ops.
Using nonce allows us to have tagged nonces, which will be
necessary to link to the pi calculus semantics from [4].

For a bitstring b let b[i] be the ith bit of b counting from
0. The concatenation of two bitstrings b1 and b2 is written
as b1|b2.

Just as for CVM, the semantics of IML is parameterised
by functions bs and val. The semantics of expressions is
given by the partial function J·K : IExp ⇀ BS described in
fig. 6. The partial function sub: BS×N× N⇀ BS extracts
a substring of a given bitstring such that sub(b, o, l) is the
substring of b starting at offset o of length l:

sub(b, o, l) =

{

b[o] . . . b[o+ l − 1] if o+ l ≤ |b|,

⊥ otherwise.

For a valuation η : Var⇀ BS we denote with JeKη the result
of substituting all variables v in e by η(v) (if defined) and
then applying J·K.

The formal semantics of IML is mostly straightforward
and is shown in detail in appendix D.
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5. SECURITY OF PROTOCOLS
This section gives an informal overview of our security

definition. The complete definition is given in appendix B.
To define security for protocols implemented by CVM and

IML programs we need to specify what a protocol is and
give a mapping from programs to protocols. The notion
of a protocol is formally captured by a protocol transition
system (PTS), which describes how processes evolve and in-
teract with the attacker. A PTS is a set of transitions of
the form (η, s)

l
−→ {(η1, s1), . . . , (ηn, sn)}, where η and ηi are

environments (modelled as valuations), s and si are seman-
tic configurations of the underlying programming language,
and l is an action label. Actions can include reading values
from the attacker, generating random values, sending values
to the attacker, or raising events. We call a pair (η, s) an
executing process. Multiple processes on the right hand side
capture replication.

The semantics of CVM and IML are given in terms of the
PTS that are implemented by programs. For a CVM pro-
gram P we denote with JP KC the PTS that is implemented
by P . Similarly, for an IML process P the corresponding
PTS is denoted by JP KI .

Given a PTS T and a probabilistic machine E (an at-
tacker) we can execute T in the presence of E. The state of
the executing protocol is essentially a multiset of executing
processes. The attacker repeatedly chooses a process from
the multiset which is then allowed to perform an action ac-
cording to T . The result of the execution is a sequence of
raised events. For a resource bound t ∈ N we denote with
Events(T,E, t) the sequence of events raised during the first
t steps of the execution. We shall be interested in the proba-
bility that this sequence of events belongs to a certain “safe”
set. This is formally captured by the following definition:

Definition 1 (Protocol security) We define a trace prop-
erty as a polynomially decidable prefix-closed set of event
sequences. For a PTS T , a trace property ρ and a resource
bound t ∈ N let insec(T, ρ, t) be the probability

sup {Pr[Events(T,E, t) /∈ ρ] | E attacker, |E| ≤ t} ,

where |E| measures the size of the description of the at-
tacker. ✷

Intuitively insec(T, ρ, t) measures the success probability
of the most successful attack against T and property ρ when
both the execution time of the attack and the size of the
attacker code are bounded by t.

Since the semantics of CVM and IML are in the same for-
malism, we may combine the sets of semantic rules and ob-
tain semantics J·KCI for mixed programs, where a CVM pro-
gram can be a subprocess of a larger IML process. We add
an additional syntactic form []i (a hole) with i ∈ N and no
reductions to IML. For an IML process PE with n holes and
CVM or IML processes P1, . . . , Pn we write PE[P1, . . . , Pn]
to denote process PE where each hole []i is replaced by Pi.
The semantics of the resulting process P ′

E , denoted with
JP ′

EKCI , is defined in appendix D.
Being able to embed a CVM program within an IML pro-

cess is useful for modelling. As an example, let P1 be the
CVM program resulting from the translation of the C code
in fig. 1 and let P2 be a description of another participant
of the protocol, in either CVM or IML. Then we might be
interested in the security of the following process:

PE [P1, P2] = !((ν̃ k); ((!P1)|(!P2))).

v ∈ Var, i ∈ N

pb ∈ PBase ::= pointer base

stack v stack pointer to variable v

heap i heap pointer with id i

e ∈ SExp ::= symbolic expression

ptr(pb, e) pointer

. . . same as IExp in fig. 5

Figure 7: Symbolic expressions.

A trace property ρ of interest might be, for instance, “Each
event of the form accept(x) is preceded by an event of the
form request(x)”, where request is an event possibly raised
in P2. The goal is to obtain a statement about probability
insec(JPE[P1, P2]KCI , ρ, t) for various t. The next section
shows how we can relate the security of PE [P1, P2] to the

security of PE [P̃1, P2], where IML process P̃1 is a model of
the CVM process P1, extracted by symbolic execution.

6. CVM TO IML: SYMBOLIC EXECUTION
We describe how to automatically extract an IML model

from a CVM program while preserving security properties.
The key idea is to execute a CVM program in a symbolic
semantics, where, instead of concrete bitstrings, memory lo-
cations contain IML expressions representing the set of all
possible concrete values at a given execution point.

To track the values used as pointers during CVM exe-
cution, we extend IML expressions with an additional con-
struct, resulting in the class of symbolic expressions shown
in fig. 7. An expression of the form ptr(pb, eo) represents a
pointer into the memory location identified by the pointer
base pb with an offset eo relative to the beginning of the
location. We require that eo ∈ IExp, so that pointer offsets
do not contain pointers themselves. Pointer bases are of two
kinds: a base of the form stack v represents a pointer to the
program variable v and a base of the form heap i represents
the result of a Malloc.

Symbolic execution makes certain assumptions about the
arithmetic operations that are available in Ops. We as-
sume that programs use operators for bitwise addition and
subtraction (with overflow) that we shall write as +b and
−b. We also make use of addition and subtraction without
overflow—the addition operator (written as +N) is expected
to widen its result as necessary and the negation operator
(written as −N) returns ⊥ instead of a negative result. We
assume that Ops contains comparison operators =, ≤, and
< such that A=(a, b) returns i1 if val(a) = val(b) and i0 oth-
erwise, similarly for the other operators. This way ≤ and
< capture unsigned comparisons on bitstring values. We
assume Ops contains logical connectives ¬ and ∨ that in-
terpret i0 as false value and i1 as true value. These operators
may or may not be the ones used by the program itself.

To evaluate symbolic expressions concretely, we need con-
crete values for pointer bases as well as concrete values for
variables. Given an extended valuation η : V ar ∪ PBase ⇀
BS, we extend the function J·Kη from fig. 6 by the rule:

Jptr(pb, eo)Kη = η(pb) +b JeoKη.

When applying arithmetic operations to pointers, we need
to make sure that the operation is applied to the pointer
offset and the base is kept intact. This behaviour is encoded
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(Init, P ) → (Σop, {stack v 7→ bs(N) | v ∈ var(P )} , {stack v 7→ ε | v ∈ var(P )} , [], P )
(S-Init)

(Σ, As, Ms, Ss, Const b; P ) → (Σ, As, Ms, b :: Ss, P )
(S-Const)

(Σ, As, Ms, Ss, Ref v; P ) → (Σ, As, Ms, ptr(stack v, i0) :: Ss, P )
(S-Ref)

el ∈ IExp i ∈ N minimal s.t. pb = heap i /∈ dom(Ms)

(Σ, As, Ms, el :: Ss, Malloc; P ) → (Σ, As{pb 7→ el}, Ms{pb 7→ ε}, ptr(pb, i0) :: Ss, P )
(S-Malloc)

pb ∈ dom(Ms) e = simplifyΣ(M
s(pb){eo, el}) Σ ⊢ (eo +N el ≤ getLen(Ms(pb)))

(Σ, As, Ms, el :: ptr(pb, eo) :: Ss, Load; P ) → (Σ, As, Ms, e :: Ss, P )
(S-Load)

el ∈ IExp l = (if src = read then in(v); else (νv[el]);)

(Σ, As, Ms, el :: Ss, In v src; P )
l
−→ (Σ ∪ {len(v) = el}, As, Ms, v :: Ss, P )

(S-In)

(Σ, As, Ms, Ss, Env v; P ) → (Σ, As, Ms, len(v) :: v :: Ss, P )
(S-Env)

e = apply(op, e1, . . . , en) 6= ⊥

(Σ, As, Ms, e1 :: . . . :: en :: Ss, Apply op; P ) → (Σ, As, Ms, len(e) :: e :: Ss, P )
(S-Apply)

e ∈ IExp l = (if dest = write then out(e); else event(e);)

(Σ, As, Ms, e :: Ss, Out dest; P )
l
−→ (Σ, As, Ms, Ss, P )

(S-Out)

e ∈ IExp

(Σ, As, Ms, e :: Ss, Test; P )
if e then
−−−−−−−→ (Σ ∪ {e}, As, Ms, Ss, P )

(S-Test)

eh = Ms(pb) 6= ⊥ es = As(pb) 6= ⊥ elh = getLen(eh) el = getLen(e)

either Σ ⊢ (eo +N el < elh) and e′h = simplifyΣ(eh{i0, eo}|e|eh{eo +N el, elh −N (eo +N el)})

or Σ ⊢ (eo +N el ≥ elh) ∧ (eo ≤ elh) ∧ (eo +N el ≤ es) and e′h = simplifyΣ(eh{i0, eo}|e)

(Σ, As, Ms, ptr(pb, eo) :: e :: Ss, Store; P ) → (Σ, As, Ms{pb 7→ e′h}, S
s, P )

(S-Store)

Figure 8: The symbolic execution of CVM.

by the function apply, defined as follows:

apply(+b,ptr(pb, eo), e) = ptr(pb, eo +b e),

for e ∈ IExp,

apply(−b,ptr(pb, eo),ptr(pb, e
′
o)) = eo −b e

′
o,

apply(op, e1, . . . , en) = op(e1, . . . , en),

for e1, . . . , en ∈ IExp,

apply(...) = ⊥, otherwise.

As well as tracking the expressions stored in memory, we
also track logical facts discovered during symbolic execu-
tion. To record these facts, we use symbolic expressions
themselves, interpreted as logical formulas with =, ≤, and
< as relations and ¬ and ∨ as connectives. We allow quanti-
fiers in formulas, with straightforward interpretation. Given
a set Σ of formulas and a formula φ we write Σ ⊢ φ iff for
each Σ-consistent valuation η (that is, a valuation such that
JψKη = i1 for all ψ ∈ Σ) we also have JφKη = i1.

To check the entailment relation, our implementation re-
lies on the SMT solver Yices [21], by replacing unsupported
operations, such as string concatenation or substring extrac-
tion, with uninterpreted functions. This works well for our
purpose—the conditions that we need to check during the
symbolic execution are purely arithmetic and are supported
by Yices’ theory.

The function getLen returns for each symbolic expression

an expression representing its length:

getLen(ptr(. . .)) = bs(N),

getLen(len(. . .)) = bs(N),

getLen(b) = bs(|b|), for b ∈ BS,

getLen(x) = len(x), for x ∈ Var,

getLen(op(e1, . . . , en)) = len(op(e1, . . . , en)),

getLen(e1|e2) = getLen(e1) +N getLen(e2),

getLen(e{eo, el}) = el.

We assume that the knowledge about the return lengths of
operation applications is encoded in a fact set Σop. As an
example, Σop might contain the facts:

∀x, y, a : len(x) = a ∧ len(y) = a⇒ len(x+b y) = a,

∀x : len(sha1(x)) = i20.

We assume that Σop is consistent: ∅ ⊢ φ for all φ ∈ Σop.
The transformations prescribed by the symbolic semantic

rules would quickly lead to very large expressions. Thus
the symbolic execution is parametrised by a simplification
function simplify that is allowed to make use of the collected
fact set Σ. We demand that the simplification function is
sound in the following sense: for each fact set Σ, expression
e and a Σ-consistent valuation η we have

JeKη 6= ⊥ =⇒ JsimplifyΣ(e)Kη = JeKη.

The simplifications employed in our algorithm are described
in appendix E.
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Line no. C line symbolic memory updates new facts generated IML line

1. readenv("k", &key, &keylen); stack key ⇒ ptr(heap 1, i0)
heap 1 ⇒ k
stack keylen ⇒ len(k)

2. read(&len, sizeof(len)); stack len ⇒ l len(l) = iN in(l)
3. if(len > 1000) exit(); ¬(l > i1000)
4. void * buf = malloc(len + 2 * MAC_LEN); stack buf ⇒ ptr(heap 2, i0)

heap 2 ⇒ ε
5. read(buf, len); heap 2 ⇒ x1 len(x1) = l in(x1)
6. mac(buf, len, key, keylen, buf + len); heap 2 ⇒ x1|mac(k, x1)
7. read(buf + len + MAC_LEN, MAC_LEN); heap 2 ⇒ x1|mac(k, x1)|x2 len(x2) = i20 in(x2)
8. if(memcmp(...) == 0) if mac(k, x1) = x2 then

9. event("accept", buf, len); event accept(x1)

Figure 9: Symbolic execution of the example in fig. 1.

The algorithm for symbolic execution is determined by the
set of semantic rules presented in fig. 8. The initial seman-
tic configuration has the form (Init, P ) with the executing
program P ∈ CVM. The other semantic configurations have
the form (Σ, As, Ms, Ss, P ), where

• Σ ⊆ SExp is a set of formulas (the path condition),
• As : PBase ⇀ SExp is the symbolic allocation table

that for each memory location stores its allocated size,
• Ms : PBase ⇀ SExp is the symbolic memory. We re-

quire that dom(Ms) = dom(As),
• Ss is a list of symbolic expressions representing the

execution stack,
• P ∈ CVM is the executing program.

The symbolic execution rules essentially mimic the rules
of the concrete execution. The crucial rules are (S-Load)
and (S-Store) that reflect the effect of storing and loading
memory values on the symbolic level. The rule (S-Load) is
quite simple—it tries to deduce from Σ that the extraction is
performed from a defined memory range, after which it rep-
resents the result of the extraction using an IML range ex-
pression. The rule (S-Store) distinguishes between two cases
depending on how the expression e to be stored is aligned
with the expression eh that is already present in memory. If
e needs to be stored completely within the bounds of eh
then we replace the contents of the memory location by
eh{. . .}|e|eh{. . .} where the first and the second range ex-
pression represent the pieces of eh that are not covered by
e. In case e needs to be stored past the end of eh, the
new expression is of the form eh{. . .}|e. The rule still re-
quires that the beginning of e is positioned before the end
of eh, and hence it is impossible to write in the middle of
an uninitialised memory location. This is for simplicity of
presentation—the rule used in our implementation does not
have this limitation (it creates an explicit “undefined” ex-
pression in these cases).

Since all semantic rules are deterministic there is only one
symbolic execution trace. Some semantic transition rules are
labelled with parts of IML syntax. The sequence of these
labels produces an IML process that simulates the behaviour
of the original CVM program. Formally, for a CVM program
P , let L be the symbolic execution trace starting from the
state (Init, P ). If L ends in a state with an empty program,
let λ1, . . . , λn be the sequence of labels of L and set JP KS =
λ1 . . . λn0 ∈ IML, otherwise set JP KS = ⊥.

We shall say that a polynomial is fixed iff it is independent
of the arbitrary values assumed in this paper, such as N or
the properties of the set Ops. Our main result relates the
security of P to the security of JP KS.

Theorem 1 (Symbolic Execution is Sound) There ex-
ists a fixed polynomial p such that if P1, . . . , Pn are CVM
processes and for each i P̃i := JPiKS 6= ⊥ then for any IML
process PE, any trace property ρ, and resource bound t ∈ N:

insec(JPE [P1, . . . , Pn]KCI , ρ, t)

≤ insec(JPE[P̃1, . . . , P̃n]KI , ρ, p(t)). ✷

The condition that p is fixed is important—otherwise p
could be large enough to give the attacker the time to enu-

merate all the 22
N−1 memory configurations. For practical

use the actual shape of p can be recovered from the proof of
the theorem given in appendix F.

Fig. 9 illustrates our method by showing how the symbolic
execution proceeds for our example in fig. 1. For each line
of the C program we show updates to the symbolic memory,
the set of new facts, and the generated IML code if any. In
our example MAC_LEN is assumed to be 20 and N is equal
to sizeof(size_t). The variables l, x1, and x2 are arbi-
trary fresh variables chosen during the translation from C
to CVM (see appendix A). Below we mention details for
some particularly interesting steps (numbers correspond to
line numbers in fig. 9).

1. The call to readenv redirects to a proxy function that
generates CVM instructions for retrieving the environ-
ment variable k and storing it in memory.

4. A new empty memory location is created and the pointer
to it is stored in buf. We make an entry in the allo-
cation table As with the length of the new memory
location (l +b i2 ∗ i20).

5. We check that the stored value fits within the allocated
memory area, that is, l ≤ l+bi2∗i20. This is in general
not true due to possibility of integer overflow, but in
this case succeeds due to the condition ¬(l > i1000)
recorded before (assuming that the maximum integer
value 2N −1 is much larger than 1000). Similar checks
are performed for all subsequent writes to memory.

7. The memory update is performed through an interme-
diate pointer value of the form ptr(heap 2, l +b i20).
The set of collected facts is enough to deduce that this
pointer points exactly at the end of x1|mac(k, x1).

8. The proxy function for memcmp extracts values e1 =
e{l, i20} and e2 = e{l +b i20, i20}, where e is the con-
tents of memory at heap 2, and puts cmp(e1, e2) on
the stack. With the facts collected so far e1 simplifies
to mac(k, x1) and e2 simplifies to x2. With some spe-
cial comprehension for the meaning of cmp we generate
IML if e1 = e2 then.
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7. VERIFICATION OF IML
The symbolic model extracted in fig. 9 does not con-

tain any bitstring operations, so it can readily be given to
ProVerif for verification. In general this is not the case and
some further simplifications are required. In a nutshell, the
simplifications are based on the observation that the bit-
string expressions (concatenation and substring extraction)
are meant to represent pairing and projection operations, so
we can replace them by new symbolic operations that behave
as pairing constructs in ProVerif. We then check that the
expressions indeed satisfy the algebraic properties expected
of such operations.

We outline the main results regarding the translation to
ProVerif. Appendix G contains the details. The pi calculus
used by ProVerif can be described as a subset of IML from
which the bitstring operations have been removed. Unlike
CVM and IML, the semantics of pi is given with respect
to an arbitrary security parameter: we write JP Kkπ for the
semantics of a pi process P with respect to the parameter
k ∈ N. In contrast, we consider IML as executing with re-
spect to a fixed security parameter k0 ∈ N. For an IML
process P we specify conditions under which it is translat-
able to a pi process P̃ .

Theorem 2 (Soundness of the translation)
There exists a fixed polynomial p such that for any P ∈ IML
translatable to a pi process P̃ , any trace property ρ and re-
source bound t ∈ N: insec(JP KI , ρ, t) ≤ insec(JP̃ Kk0

π , ρ, p(t)).✷

Backes et al. [4] provide an example of a set of operations
OpsS and a set of soundness conditions restricting their
implementations that are sufficient for establishing compu-
tational soundness. The set OpsS contains a public key
encryption operation that is required to be IND-CCA se-
cure. The soundness result is established for the class of the
so-called key-safe processes that always use fresh random-
ness for encryption and key generation, only use honestly
generated decryption keys and never send decryption keys
around.

Theorem 3 (Computational soundness) Let P be a pi
process using only operations in OpsS such that the sound-
ness conditions are satisfied. If P is key-safe and symboli-
cally secure with respect to a trace property ρ (as checked by
ProVerif) then for every polynomial p the following function
is negligible in k: insec(JP Kkπ, ρ, p(k)). ✷

Overall, theorems 1 to 3 can be interpreted as follows: let
P1, . . . , Pn be implementations of protocol participants in
CVM and let PE be an IML process that describes an execu-
tion environment. Assume that P1, . . . , Pn are successfully
symbolically executed with resulting models P̃1, . . . , P̃n, the
IML process PE [P̃1, . . . , P̃n] is successfully translated to a
pi process Pπ, and ProVerif successfully verifies Pπ against
a trace property ρ. Then we know by theorem 3 that Pπ

is a pi protocol model that is (asymptotically) secure with
respect to ρ. By theorems 1 and 2 we know that P1, . . . , Pn

form a secure implementation of the protocol described by
Pπ for the security parameter k0.

8. IMPLEMENTATION & EXPERIMENTS
We have implemented our approach and successfully tested

it on several examples. Our implementation performs the
conversion from C to CVM at runtime—the C program is

C LOC IML LOC outcome result type time

simple mac ∼ 250 12 verified symbolic 4s
RPC ∼ 600 35 verified symbolic 5s
NSL ∼ 450 40 verified computat. 5s
CSur ∼ 600 20 flaw: fig. 11 — 5s
minexplib ∼ 1000 51 flaw: fig. 12 — 15s

Figure 10: Summary of analysed implementations.

read ( conn fd , temp , 128 ) ;
// BN hex2bn e xpe c t s zero−terminated s t r i n g
temp [ 1 2 8 ] = 0 ;
BN hex2bn(&c ipher 2 , temp ) ;
// decrypt and parse c ipher 2
// to ob ta in message f i e l d s

Figure 11: A flaw in the CSur example: input may
be too short.

instrumented using CIL so that it outputs its own CVM rep-
resentation when run. This allows us to identify and compile
the main path of the protocol easily. Apart from information
about the path taken we do not use any runtime informa-
tion and we plan to make the analysis fully static in future.
The idea of instrumenting a program to emit a low-level set
of instructions for symbolic execution at runtime as well as
some initial implementation code were borrowed from the
CREST symbolic execution tool [16].

Currently we omit certain memory safety checks and as-
sume that there are no integer overflows. This allows us
to use the more efficient theory of mathematical integers in
Yices, but we are planning to move to exact bitvector treat-
ment in future.

The implementation comprises about 4600 lines of OCaml
code. The symbolic proxies for over 80 of the cryptographic
functions in the OpenSSL library comprise further 2000 lines
of C code.

Fig. 10 shows a list of protocol implementations on which
we tested our method. Some of the verified programs did not
satisfy the conditions of computational soundness (mostly
because they use cryptographic primitives other than public
key encryption and signatures supported by the result that
we rely on [4]), so we list the verification type as “symbolic”.

The “simple mac” is an implementation of a protocol sim-
ilar to the example in fig. 1. RPC is an implementation of
the remote procedure call protocol in [8] that authenticates
a server response to a client using a message authentication
code. It was written by a colleague without being intended
for verification using our method, but we were still able to
verify it without any further modifications to the code.

The NSL example is an implementation of the Needham-
Schroeder-Lowe protocol written by us to obtain a fully com-
putationally sound verification result. The implementa-
tion is designed to satisfy the soundness conditions listed
in appendix G (modulo the assumption that the encryption
used is indeed IND-CCA). Masking the second participant’s
identity check triggers Lowe’s attack [32] as expected. Ap-
pendix H shows the source code and the extracted models.

The CSur example is the code analysed in a predecessor
paper on C verification [26]. It is an implementation of a
protocol similar to Needham-Schroeder-Lowe. During our
verification attempt we discovered a flaw, shown in fig. 11:
the received message in buffer temp is being converted to
a BIGNUM structure cipher_2 without checking that enough
bytes were received. Later a BIGNUM structure derived from
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unsigned char s e s s i on key [256 / 8 ] ;
. . .
// Use the 4 f i r s t b y t e s as a pad
// to encrypt the reading
encrypted r ead ing =

( (unsigned int ) ∗ s e s s i on key ) ˆ ∗ r ead ing ;

Figure 12: A flaw in the minexplib code: only one
byte of the pad is used.

cipher_2 is converted to a bitstring without checking that
the length of the bitstring is sufficient to fill the message
buffer. In both cases the code does not make sure that the
information in memory actually comes from the network,
which makes it impossible to prove authentication proper-
ties. The CSur example has been verified in [26], but only for
secrecy, and secrecy is not affected by the flaw we discovered.
The code reinterprets network messages as C structures (an
unsafe practise due to architecture dependence), which is
not yet supported by our analysis and so we were not able
to verify a fixed version of it.

The minexplib example is an implementation of a privacy-
friendly protocol for smart electricity meters [37] developed
at Microsoft Research. The model that we obtained uncov-
ered a flaw shown in fig. 12: incorrect use of pointer derefer-
encing results in three bytes of each four-byte reading being
sent unencrypted. We found two further flaws: one could
lead to contents of uninitialised memory being sent on the
network, the other resulted in 0 being sent (and accepted)
in place of the actual number of readings. All flaws have
been acknowledged and fixed. An F# implementation of
the protocol has been previously verified [38], which high-
lights the fact that C implementations can be tricky and can
easily introduce new bugs, even for correctly specified and
proven protocols. The protocol uses low-level cryptographic
operations such as XOR and modular exponentiation. In
general it is impossible to model XOR symbolically [40], so
we could not use ProVerif to verify the protocol, but we are
investigating the use of CryptoVerif for this purpose.

9. RELATED WORK
[26] presents the tool Csur for verifying C implementations

of crypto-protocols by transforming them into a decidable
subset of first-order logic. It only supports secrecy properties
and relies on a Dolev-Yao attacker model. It was applied to a
self-made implementation of the Needham-Schroeder proto-
col. [18] presents the verification framework ASPIER using
predicate abstraction and model-checking which operates on
a protocol description language where certain C concepts
such as pointers and variable message lengths are manually
abstracted away. In comparison, our method applies directly
to C code including pointers and thus requires less manual
effort. [28] presents the C API “DYC”which can be used to
generate executable protocol implementations of Dolev-Yao
type cryptographic protocol messages. By generating con-
straints from those messages, one can use a constraint solver
to search for attacks. The approach presents significant limi-
tations on the C code. [39] reports on the Pistachio approach
which verifies the conformance of an implementation with a
specification of the communication protocol. It does not
directly support the verification of security properties. To
prepare the ground for symbolic analysis of cryptographic
protocol implementations, [19] reports an extension of the

KLEE symbolic execution tool. Cryptographic primitives
can be treated as symbolic functions whose execution anal-
ysis is avoided. A security analysis is not yet supported. The
main difference from our work is that [19] treats every byte
in a memory buffer separately and thus only supports buffers
of fixed length. [20] shows how to adapt a general-purpose
verifier to security verification of C code. This approach does
not have our restriction to non-branching code, on the other
hand, it requires the code to be annotated (with about one
line of annotation per line of code) and works in the sym-
bolic model, requiring the pairing and projection operations
to be properly encapsulated.

There is also work on verifying implementations of secu-
rity protocols in other high-level languages. These do not
compare directly to the work presented here, since our aim
is in particular to be able to deal with the intricacies of a
low-level language like C. The tools FS2PV [10] and FS2CV
translate F# to the process calculi which can be verified by
the tools ProVerif [11] and CryptoVerif [12] versus symbolic
and computational models, respectively. They have been ap-
plied to an implementation of TLS [9]. The refinement-type
checker F7 [8] verifies security properties of F# programs
versus a Dolev-Yao attacker. Under certain conditions, this
has been shown to be provably computationally sound [6,
23]. [33] reports on a formal verification of a reference imple-
mentation of the TPM’s authorization and encrypted trans-
port session protocols in F#. It also provides a translator
from programs into the functional fragment of F# into exe-
cutable C code. [6] gives results on computational soundness
of symbolic analysis of programs in the concurrent lambda
calculus RCF. [5] reports on a type system for verifying
crypto-protocol implementations in RCF. With respect to
Java, [29] presents an approach which provides a Dolev-Yao
formalization in FOL starting from the program’s control-
flow graph, which can then be verified for security properties
with automated theorem provers for FOL (such as SPASS).
[35] provides an approach for translating Java implemen-
tations into formal models in the LySa process calculus in
order to perform a security verification. [27] presents an
application of the ESC/Java2 static verifier to check confor-
mance of JavaCard applications to protocol models. [22] de-
scribes verification of cryptographic primitives implemented
in a functional language Cryptol. CertiCrypt [7] is a frame-
work for writing machine-checked cryptographic proofs.

10. CONCLUSION
We presented methods and tools for the automated veri-

fication of cryptographic security properties of protocol im-
plementations in C. More specifically, we provided a com-
putationally sound verification of weak secrecy and authen-
tication for (single execution paths of) C code. Despite the
limitation of analysing single execution paths, the method
often suffices to prove security of authentication protocols,
many of which are non-branching. We plan to extend the
analysis to more sophisticated control flow.

In future, we aim to provide better feedback in case ver-
ification fails. In our case this is rather easy to do as sym-
bolic execution proceeds line by line. If a condition check
fails for a certain symbolic expression, it is straightforward
to print out a computation tree for the expression together
with source code locations in which every node of the tree
was computed. We plan to implement this feature in the
future, although so far we found that manual inspection of

10



the symbolic execution trace lets us identify problems easily.
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APPENDIX

A. C TO CVM—EXAMPLE
Fig. 13 shows the CVM translation of the example pro-

gram from fig. 1. We use abbreviations for some useful in-
struction sequences: we write Clear as an abbreviation for
Store dummy that stores a value into an otherwise unused
dummy variable. The effect of Clear is thus to remove one
value from the stack. Often we do not need the length of the
result that the instructions Env and Apply place on the stack,
so we introduce the versions Env’ and Apply’ that discard
the length: Env’ v is an abbreviation for Env v; Clear and
Apply’ v is an abbreviation for Apply v; Clear. The ab-

breviation Varsize is supposed to load the variable width N
onto the stack, for instance, on an architecture with N = 32
the meaning of Varsize would be Const i32. For conve-
nience we write operation arguments of Apply together with
their arities.

During the translation we arbitrarily choose fresh vari-
ables l, x1, and x2 for use in the In operations.

// vo id ∗ key ; s i z e t k e y l en ;
// readenv (”k ” , &key , &key l en ) ;
Env k ; Ref keylen ; Store ;
Ref keylen ; Var s i ze ; Load ; Malloc ;
Ref key ; Store ;
Ref key ; Var s i ze ; Load ; Store ;
// s i z e t l e n ;
// read(& len , s i z e o f ( l e n ) ) ;
Vars i ze ; In l read ; Ref l en ; Store ;
// i f ( l e n > 1000) e x i t ( ) ;
Const i1000 ; Ref l en ; Var s i ze ; Load ;
Apply ’ >/2; Apply ’ ¬/1 ; Test ;
// vo id ∗ bu f = mal loc ( l en + 2 ∗ 20) ;
Ref l en ; Var s i ze ; Load ;
Const i 2 ; Const i 20 ;
Apply ’ ∗/2 ; Apply ’ +/2;
Malloc ; Ref buf ; Store ;
// read ( buf , l e n ) ;
Ref l en ; Var s i ze ; Load ; In x1 read ;
Ref buf ; Var s i ze ; Load ; Store ;
//mac( buf , len , key , key l en , bu f + l en ) ;
Ref buf ; Var s i ze ; Load ;
Ref l en ; Var s i ze ; Load ; Load ;
Ref key ; Var s i ze ; Load ;
Ref keylen ; Var s i ze ; Load ; Load ;
Apply ’ mac /2 ;
Ref buf ; Var s i ze ; Load ;
Ref l en ; Var s i ze ; Load ;
Apply ’ +/2; Store ;
// read ( bu f + l en + 20 , 20 ) ;
Const i 20 ; In x2 read ;
Ref buf ; Var s i ze ; Load ;
Ref l en ; Var s i ze ; Load ;
Const i 20 ;
Apply ’ +/2; Apply ’ +/2; Store ;
// i f (memcmp( bu f + len ,
// bu f + l en + 20 ,
// 20) == 0)
Ref buf ; Var s i ze ; Load ;
Ref l en ; Var s i ze ; Load ; Apply ’ +/2;
Const i 20 ; Load ;
Ref buf ; Var s i ze ; Load ;
Ref l en ; Var s i ze ; Load ;
Const i 20 ; Apply ’ +/2; Apply ’ +/2;
Const i 20 ; Load ;
Apply ’ cmp/2 ;
Const 0 ; Apply ’ ==/2; Test ;
// event (” ac c ep t ” , buf , l e n ) ;
Ref buf ; Var s i ze ; Load ;
Ref l en ; Var s i ze ; Load ; Load ;
Event ;

Figure 13: Translation of the example C program
(fig. 1) into CVM.

B. PROTOCOL TRANSITION SYSTEMS
This section establishes the definition of security that we

use in the paper and gives some sufficient conditions under
which a protocol transformation (as done, for instance, by
translating from a description of a protocol in C to a de-
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scription in a more abstract language) preserves security.
In order to define security for a program we first need

to define the protocol that the program implements. The
notion of a protocol is formally captured by a protocol tran-
sition system (PTS), defined as follows: a PTS is a triple
(S, sI ,→), where S is a set, sI ∈ S and → is a labelled
transition relation with transitions of the form

(η, s)
l
−→ {(η1, s1), . . . , (ηn, sn)},

where η and ηi are valuations, s, si ∈ S, and the right hand
side is a nonempty multiset. We call a pair (η, s) an exe-
cuting process and think of η as an environment in which s
executes. We require that each executing process is of one
of the following types:

• a reading process, in which case all outgoing labels are
of the form read b with b ∈ BS,

• a control process, in which case all outgoing labels are
of the form ctr b with b ∈ BS,

• a randomising process, in which case all outgoing labels
are of the form rnd b with b ∈ BS and all b have the
same length,

• a writing process, in which case there is a single out-
going transition with label of the form write b with
b ∈ BS,

• an event process, in which case there is a single outgoing
transition with label of the form event b with b ∈ BS.

We require that the transition relation is deterministically
computable: there should exist a probabilistic algorithm
that

• given a left hand side which is a reading or a control
process and a label computes the right hand side (in
particular, the right hand side is uniquely determined),

• given a left hand side which is a randomising process
chooses one of the admissible outgoing labels uniformly
at random and computes the right hand side,

• given a left hand side which is a writing or an event
process computes the outgoing label and the right hand
side,

• given inputs for which there is no transition, or mal-
formed inputs, returns “wrong”.

The semantics of languages that we use (CVM and IML)
will be given as a function from programs to PTS.

We now define protocol states and show how they evolve.
Intuitively a protocol state is just a collection of executing
processes. The attacker repeatedly chooses one of the pro-
cesses, which is then allowed to perform a transition accord-
ing to the PTS rules. The executing processes are assigned
handles so that the attacker can refer to them. A handle is
a sequence of all observable transitions that have been per-
formed by the process so far—this way the handle contains
all the information that the attacker has about a process.

Formally, an observation is either an integer or one of the
reading, control, or writing labels. A process history is a
sequence of observations. A protocol state over a PTS T is
a partial map from process histories to executing processes
over T . We extend the transition relation of T to a transition
relation over protocol states as follows: Let P be a protocol
state and h ∈ dom(P) a process history such that T contains
a transition of the form

P(h)
l
−→ {(η1, s1), . . . , (ηn, sn)}

Let

P ′ = P−h {hoi 7→ (ηi, si) | 1 ≤ i ≤ n} ,

where o = l if l is an observation and o = ε otherwise, and
we use an abbreviation f−x = f{x 7→ ⊥}. Then there is a

transition P
c, a
−−→ P ′ between protocol states P and P ′ with

a command c and an action a, where

• c = (h, l) and a = ε if l is a control label, or a read
label,

• c = (h, ε) and a = l if l is a a randomising label, a write
label, or an event label.

Given an initial protocol state and a command, the ac-
tion and the resulting state are computable by the assump-
tion that the underlying PTS transitions are computable.
We extend the definition to multiple transitions and write

P
c1...cn, a1...am−−−−−−−−−−→∗ P ′, iff there is a sequence of transitions

leading from P to P ′ with commands c1, . . . , cn and actions
a1, . . . , am.

We shall be interested in the sequence of events raised by
a protocol in the presence of an attacker. The execution of
a protocol is defined as follows:

Definition 2 (Protocol execution) Given a PTS T =
(S, sI ,→) and an interactive probabilistic machine E (an
attacker) we define the execution of the protocol T as a
probabilistic machine Exec(T,E) that proceeds as follows:

Maintain a protocol state P . Initially P = {ε 7→ (∅, sI)}.
Keep receiving commands from the attacker and for each
command c

• compute a transition P
c, a
−−→ P ′ and set P := P ′. If no

such transition exists or if the command is malformed,
terminate,

• if a = write b, send b to the attacker,

• if a = event b, raise event b. ✷

We shall assume that Exec(T,E) uses the most efficient
algorithm to compute the PTS transitions. For a PTS T , an
attacker E, and a resource bound t ∈ N let Events(T, E, t) be
the sequence of events raised by the execution of Exec(T,E)
during the first t elementary computation steps (each pro-
tocol transition will typically involve multiple steps). We
define a trace property as a polynomially decidable prefix-
closed set of event sequences. This leads us to the definition
of security for protocols:

Restatement of definition 1 For a PTS T , a trace
property ρ and a resource bound t ∈ N let

insec(T, ρ, t)

= sup {Pr[Events(T, E, t) /∈ ρ] | E attacker, |E| ≤ t} ,

where |E| is the size of the description of the attacker.

Intuitively insec(T, ρ, t) measures the success probability
of the most successful attack against T and property ρ when
both the execution time of the attack and the size of the
attacker code are bounded by t.

In the following we define a simulation relation on PTS
that preserves security. This relation will be used as a tool
to relate the security of a protocol described by a low-level
CVM program P to the security of a protocol described by a
more abstract IML process P̃ that results from the symbolic
execution of P .
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In the definition of the simulation relation we shall refer
to a slightly generalised notion of the protocol execution,
parameterised by the initial environment: given a PTS T
with an initial state sI , an attacker E, and a valuation η, let
Execη(T, E) be the machine that executes like Exec(T,E),
but starts with {ε 7→ (η, sI)} as the initial state.

We shall be interested in PTS in which the number of
steps to reach a certain state is independent of how it is
reached, as captured by the following definition:

Definition 3 (History-independent PTS) A PTS T is
called history-independent iff, whenever for any valuation η
and attackers E and Ẽ the machine Execη(T,E) reaches a
protocol state P in t non-attacker steps and the machine
Execη(T, Ẽ) reaches P in t̃ non-attacker steps, t̃ = t.

Given a history-independent PTS T , a protocol state P
over T and a valuation η we say that T reaches P from η
in t steps iff t is the number of non-attacker steps in which
Execη(T, E) reaches P for some attacker E.

For the PTS defined in this paper we shall ensure history-
independence by recording enough information in the state
to be able to reconstruct the set of transitions that lead into
that state.

Intuitively we shall say that a PTS T̃ simulates a PTS T
when an attacker has a way of playing against T̃ in such a
way that it solicits the same sequence of actions as when
playing against T . In other words, given an execution trace
of T , it should be feasible to reconstruct an execution trace
of T̃ with the same sequence of actions. The only additional
complication is that the reconstruction should happen on-
line, that is, the translation of a prefix of a trace should
not depend on what follows the prefix. This corresponds to
the fact that the attacker cannot see into the future. We
achieve the on-line property by demanding that there is an
equivalence relation between protocol states of T and T̃ such
that for each transition from P to P ′ in T and a state P̃
equivalent to P there is a transition from P̃ to P̃ ′ in T̃ such
that P̃ ′ is equivalent to P ′. Most of the technicalities of the
definition deal with placing restrictions on the computability
of these transitions.

Definition 4 (Simulation relation on PTS) For a poly-

nomial p we say that PTS T̃ with initial state s̃I p-simulates
a PTS T with initial state sI , writing T .p T̃ iff both T and
T̃ are history-independent and there exists a relation . be-
tween protocol states of T and protocol states of T̃ and a
partial map τ from commands to sequences of commands
such that

1. for all valuations η

{ε 7→ (η, sI)} . {ε 7→ (η, s̃I)},

2. if P . P̃ and there exists a transition P
c, a
−−→ P ′ with a

command c and an action a then there exists a protocol

state P̃ ′ of T̃ such that P ′ . P̃ ′ and P̃
τ(c), a
−−−−→∗ P̃ ′,

3. τ (c) is computable in p(|c|+ |sI |) steps,

4. if P . P̃ and for some valuation η T reaches P from
η in t steps and T̃ reaches P̃ from η in t̃ steps then
t̃ ≤ p(t). ✷

Theorem 4 (Preservation of security by simulation)
For every polynomial p there exists a polynomial p′ such that

whenever T .p T̃ for PTS T and T̃ , for any trace property
ρ and resource bound t ∈ N

insec(T, ρ, t) ≤ insec(T̃ , ρ, p′(t)).
✷

Proof Let T .p T̃ for PTS T and T̃ and a polynomial p.
Given an attacker E we shall construct an attacker Ẽ such
that whenever the machine Exec(T,E) produces a sequence
of events es within the first t steps when running with ran-
dom tape R, the machine Exec(T̃ , Ẽ) produces the sequence
es within at most p′(t) steps when running with R, where
p′ is a polynomial depending on p. Thus, given that ρ is
defined to be prefix-closed, any violation of ρ happening in
T will happen in T̃ with at least the same probability.

The attacker Ẽ shall run an instance of E and iterate as
follows:

• Receive a sequence c1 . . . cm of commands from E and
output τ (c1) . . . τ (cm),

• Forward any input to E.

Let M be the state of the machine Exec(T,E) running
with random tapeR after having processed commands c1 . . . cn
and M̃ the state of the machine Exec(T̃ , Ẽ) running with R
after having processed commands τ (c1) . . . τ (cn). By induc-
tion using (1)–(2) in definition 4 we can show:

• if P is the protocol state contained in M and P̃ is the
protocol state contained in M̃ then P . P̃,

• the instance of E run by Ẽ in M̃ has executed the
same computations as the instance of E inM , the same
portion of R has been consumed, and the same sequence
of events has been raised.

To bound the execution time of M̃ assume that M has
executed t steps and M̃ has executed t̃ steps. Let t = tE+tT ,
where tE is the number of steps executed by the attacker and
tT is the number of non-attacker steps. Similarly split t̃ =
t̃E + t̃T . The attacker Ẽ runs an instance of E which takes
time O(tE) and additionally issues n queries to τ . According
to (3) in definition 4 the runtime of each query is bounded by
p(|cmax|+|sI |), where cmax is the longest command received
from E. Both n and |cmax| are bounded by tE and |sI | is
bounded by tT as Exec(T,E) needs to construct the initial
state. Overall

t̃E ≤ O(tE) + n · p(|cmax|+ |sI |)

≤ O(tE) + tE · p(tE + tT ). �

According to (4) in definition 4 t̃T ≤ p(tT ). We conclude
that t̃ ≤ t · p(t) + p(t) +O(t).

We shall be interested in executing a PTS in the context
of another PTS. This is useful for modelling: we shall spec-
ify the threat model for a CVM program by embedding it
as a subprocess within an IML process. This way we can
formally define a setting with multiple threads and shared
key creation and distribution without having to add process
control primitives to CVM itself. An important property of
embedding that we define is that it preserves the simula-
tion relation. In order to define the embedding we start by
adding holes to PTS:

Definition 5 (PTS with a hole) Given a polynomial p
we define a PTS with a hole identifiable in p-time as a
history-independent PTS with initial state sI that contains
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a special state [] such that there are no transitions from []
and such that there exists an algorithm that, given a pro-
cess history h, runs in time p(|h|+ |sI |) and decides whether
h is a history of a hole, that is, whether for all protocol
states P reachable from some environment η and such that
h ∈ dom(P) the process P(h) is of the form (η′, []) with
some environment η′. ✷

The definition intuitively states that the attacker must
have an efficient means to decide whether a process is a hole
given the observable history of the process. We can now
proceed to defining the embedding:

Definition 6 (Embedding of PTS) Given a PTS with a
hole TE = (SE, sIE ,→E) and a PTS T = (S, sI ,→) we
define the embedding TE [T ] of T within TE by

TE[T ] = (((SE \ []) × {sI}) ∪ S, (sIE, sI), →
′
E ∪ →),

where→′
E is obtained from→E by replacing each occurrence

of s ∈ SE \ [] by (s, sI) and by replacing each occurrence of
[] with sI . ✷

Theorem 5 (Simulation and embedding) For each two
polynomials p and p′ there exists a polynomial p′′ such that
if T and T̃ are PTS with T .p T̃ and TE is a PTS with a
hole identifiable in p′-time then TE[T ] .p′′ TE[T̃ ]. ✷

Proof We start by giving a definition of embedding for
protocol states. Given a protocol state P that contains holes
with histories h1, . . . , hn and protocol states P1, . . . ,Pn we
define the embedding

P [P1, . . . ,Pn]

= P−h1,...,hn {hihj 7→ Pi(hj) | 1 ≤ i ≤ n, hj ∈ dom(Pi) } .

Let TE = (SE, sIE ,→E), T = (S, sI ,→), and T̃ = (S̃, s̃I , →̃)
be defined as in the theorem. We show how to extend the
relation . on protocol states and the function τ given by
the definition of simulation relation of T and T̃ to a cor-
responding relation .E and a function τE for TE [T ] and

TE [T̃ ]. For a protocol state P over TE [T ] and P̃ over TE [T̃ ]

we set P .E P̃ iff there exist protocol states P1, . . . ,Pn over
T , P̃1, . . . , P̃n over T̃ and a protocol state PE over TE such
that Pi . P̃i for all i and

P = PE[P1, . . . ,Pn] and P̃ = PE[P̃1, . . . , P̃n].

Let a command c = (h, d) be given. We compute τE(c)
as follows: first check whether h contains a prefix hE such
that hE is a history of a hole. If it doesn’t, set τE(c) = c,
otherwise let h′ be a process history such that h = hEh

′ and
let

(h̃1, d1), . . . , (h̃m, dm) = τ ((h′, d)),

τE(c) = (hE h̃1, d1), . . . , (hEh̃m, dm).

It is straightforward to check that (1)–(2) in definition 4 are

satisfied for TE[T ] and TE[T̃ ] with τE and .E.
To prove (3) we need to bound the evaluation time of τE(c)

for a command c = (h, d) in terms of |c| and |s′IE| where
s′IE = (sIE, sI) is the initial state of TE [T ]. To evaluate
τE(c) the following operations are performed:

• Run the hole-detection algorithm for each prefix of h.
According to the assumption on TE this can be done in
|h| · p′(|h|+ |s′IE |) steps,

• if h = hEh
′, where hE is a history of a hole, evaluate

τ (c′) for c′ = (h′, d). According to the assumption that

T .p T̃ this takes p(|c′|+ |sI |) steps.

Given that |h| ≤ |c|, |c′| ≤ |c|, and |sI | ≤ |s′IE|, the overall
evaluation time of τE is bounded by

O(|c| · p′(|c|+
∣

∣s′IE
∣

∣) + p(|c|+
∣

∣s′IE
∣

∣)).

To prove (4) choose a valuation η and assume that TE[T ]

reaches a state P from η in t steps, TE[T̃ ] reaches a state P̃

from η in t̃ steps, and P . P̃. By definition the states are
of the form

P = PE[P1, . . . ,Pn] and P̃ = PE[P̃1, . . . , P̃n],

where PE is a state of TE and Pi . P̃i for all i. For each i
let ηi be the environment of the ith hole in PE . It is easy
to see that t = O(tE + t1 + . . . + tn), where tE is the time
in which TE reaches PE from η and ti is the time in which
T reaches Pi from ηi. Similarly t̃ = O(tE + t̃1 + . . . + t̃n),

where t̃i is the time in which T̃ reaches P̃i from ηi. From
the assumption T .p T̃ we know that t̃i ≤ p(ti) for each i.
Assuming w.l.o.g. that p is at least linear and monotonic,
we conclude t̃ ≤ p(t). �

The definition and the theorem can easily be extended to
the setting with multiple holes []1, . . . , []n. We shall write
TE [T1, . . . , Tn] to denote the corresponding embedding.

C. SEMANTICS OF CVM
This section presents the formal semantics of the CVM

language, the syntax of which is introduced in fig. 3. In the
following, let N , val, and bs be chosen as in section 2. In
order to define the semantics, we associate to each CVM
program the protocol transition system that is generated by
it. Let a program P ∈ CVM be given. Let var(P ) be the set
of variables used in Ref instructions within P and choose an
allocation function addr: var(P ) → N. We require that the
allocated memory ranges do not overlap, that is

{addr(v)}N ∩
{

addr(v′)
}

N
= ∅ for all v 6= v′.

We let JP KC be the PTS with the initial state (Init, P ) and
all other states of the form (Ac,Mc,Sc, P ), as described
in section 2. The transition rules of JP KC are presented
in fig. 14. The right hand side of each transition always
contains a single process, so we omit the multiset bracket.

The rule (C-In) stores the input value in the environment
in addition to placing it on the stack. This way the resulting
PTS is history-independent—the state contains the informa-
tion about all inputs so that there is only one trace leading
to each state.

D. SEMANTICS OF IML
Just as for CVM, the semantics of IML is given as a pro-

tocol transition system. We choose the functions bs and val
as in section 2 and let the function J·Kη be defined as in sec-
tion 4. For an IML process P we let JP KI be the PTS with
IML processes as states, with starting state P and transi-
tions described in fig. 15.

The rules (I-Repl) and (I-Par) are standard replication
and parallel composition rules from the pi calculus. The
rule (I-Nonce) is interesting in that it restricts the gener-
ated nonce to be of a given length. The input rule (I-In)
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∀v ∈ var(P ) : {addr(v)}N ⊆ Addr

η, (Init, P )
ctr ε
−−−→ η, (

⋃

v∈var(P ) {addr(v)}N , ∅, [], P )
(C-Init)

η, (Ac, Mc, Sc, Const b; P )
ctr ε
−−−→ η, (Ac, Mc, b :: Sc, P )

(C-Const)

η, (Ac, Mc, Sc, Ref v; P )
ctr ε
−−−→ η, (Ac, Mc, bs(addr(v)) :: Sc, P )

(C-Ref)

p ∈ BS |p| = N {val(p)}val(l) ⊆ Addr \ Ac

η, (Ac, Mc, l :: Sc, Malloc; P )
ctr p
−−−→ η, (Ac ∪ {val(p)}val(l) , M

c, p :: Sc, P )
(C-Malloc)

b, bE ∈ BS |b| = val(l) ≤ |bE | ∀i ∈ |b| : b[i] = if val(p) + i ∈ dom(Mc) then Mc(val(p) + i) else bE [i]

η, (Ac, Mc, l :: p :: Sc, Load; P )
ctr bE−−−−−→ η, (Ac, Mc, b :: Sc, P )

(C-Load)

b ∈ BS |b| = val(l) < 2N

η, (Ac, Mc, l :: Sc, In v src; P )
src b
−−−→ η{v 7→ b}, (Ac, Mc, b :: Sc, P )

(C-In)

v ∈ dom(η) |η(v)| < 2N

η, (Ac, Mc, Sc, Env v; P )
ctr ε
−−−→ η, (Ac, Mc, bs(|η(v)|) :: η(v) :: Sc, P )

(C-Env)

ar(op) = n b = Aop(b1, . . . , bn) 6= ⊥ |b| < 2N

η, (Ac, Mc, b1 :: . . . :: bn :: Sc, Apply op; P )
ctr ε
−−−→ η, (Ac, Mc, bs(|b|) :: b :: Sc, P )

, (C-Apply)

η, (Ac, Mc, b :: Sc, Out dest; P )
dest b
−−−−→ η, (Ac, Mc, Sc, P )

(C-Out)

b = i1

η, (Ac, Mc, b :: Sc, Test; P )
ctr 1
−−−→ η, (Ac, Mc, Sc, P )

(C-Test)

{val(p)}|b| ⊆ Ac

η, (Ac, Mc, p :: b :: Sc, Store; P )
ctr ε
−−−→ η, (Ac, Mc {val(p) + i 7→ b[i] | i ∈ |b|} , Sc, P )

(C-Store)

Figure 14: The concrete semantics of CVM.

does not place such a restriction and allows the input to be
of any length (this is more permissive than the CVM input
rule). The rules (I-Out) and (I-Event) generate an output
and an event transition respectively. The conditional rules
(I-Cond-True) and (I-Cond-False) have different control la-
bels, so that the attacker can distinguish the branch that
has been taken by the process. Unlike CVM there is no ex-
plicit rule for reading environment variables, because IML
operates on the environment η directly.

Consider IML enriched with an additional syntactic form
[]i (a hole) with i ∈ N and without any reductions. For
an IML process P with holes the semantics JP KI is a PTS
with holes (definition 5). The history of a process uniquely
determines its state, for instance, given the process P =
!(if e then [] else 0) and history h = (ctr ε) 1 (ctr 1) 1, it
is easy to see that h is a history of a hole in JP KI . Here it is
important that the true and the false branches in fig. 15 have

different control labels. In general, whether h is a history of
a hole in JP KI , is computable in time linear in |P |+ |h|. Just
like CVM IML is history-independent because it records all
the inputs in the environment. Thus the following holds:

Lemma 1 (IML with holes) For an IML process P with
holes the semantics JP KI is a PTS with holes identifiable in
p-time for some fixed linear polynomial p. ✷

The semantics of mixed IML and CVM processes is de-
fined by using a PTS embedding as follows:

Definition 7 (Mixed semantics) For a process PE ∈ IML
with n holes and processes P1, . . . , Pn ∈ CVM let

JPE [P1, . . . , Pn]KCI = JPEKI [JP1KC , . . . , JPnKC ]. ✷
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(η, !P )
ctr ε
−−−→ {(η, P ), (η, !P )}

(I-Repl)

(η, P |Q)
ctr ε
−−−→ {(η, P ), (η, Q)}

(I-Par)

b ∈ BS, |b| = val(JeKη)

(η, (νx[e]);P )
rnd b
−−−→ {(η{x 7→ b}, P )}

(I-Nonce)

b ∈ BS

(η, in(x);P )
read b
−−−−→ {(η{x 7→ b}, P )}

(I-In)

b = JeKη 6= ⊥

(η, out(e);P )
write b
−−−−−→ {(η, P )}

(I-Out)

b = JeKη 6= ⊥

(η, event(e);P )
event b
−−−−−→ {(η, P )}

(I-Event)

JeKη = i1

(η, if e then P else Q)
ctr 1
−−−→ {(η, P )}

(I-Cond-True)

JeKη = i0

(η, if e then P else Q)
ctr 0
−−−→ {(η, Q)}

(I-Cond-False)

b = JeKη 6= ⊥

(η, let x = e in P else Q)
ctr 1
−−−→ {(η{x 7→ b}, P )}

(I-Let-True)

JeKη = ⊥

(η, let x = e in P else Q)
ctr 0
−−−→ {(η, Q)}

(I-Let-False)

Figure 15: The semantics of IML.

E. SIMPLIFICATIONS
Fig. 16 presents the simplification rules used in our sym-

bolic execution algorithm. The simplification function is
concerned with simplifying range expressions when possible,
for instance, an expression of the form (a|b){x, y}, where
Σ ⊢ (x = getLen(a)) and Σ ⊢ (y = getLen(b)) will sim-
plify to b. The main work is done by two recursive functions
cutL, cutR: SExp × SExp → SExp that given a length ex-
pression l and a concatenation expression e attempt to split
e at the position given by l. If this succeeds, cutL returns
the part of e to the left of the split position and cutR returns
the part to the right.

In order to simplify an expression of the form e{eo, el} the
function simplify first checks two special cases: if eo is equal
to zero and el is equal to the length of e then the range
can be removed and the expression can be simplified to just
e. On the other hand if el is equal to zero then the range
expression can be simplified to ε. If e is itself a range expres-
sion of the form e′{e′o, e

′
l} then the two ranges are merged

giving the result e′{eo+N e
′
o, el}. If e is a concatenation then

the functions cutR and cutL are applied. Finally, if all of
the above fails, the original expression is returned without
simplification.

cutLΣ(l, e1| . . . |en)

=



















e1| . . . |ei−1| simplifyΣ(cutLΣ(l −N l′, ei))

if Σ ⊢ (l ≥ l′) ∧ (l ≤ l′ +N getLen(ei)),

where l′ = Σi−1
j=1 getLen(ej),

(e1| . . . |en){i0, l} otherwise,

cutRΣ(l, e1| . . . |en) =

=



















simplifyΣ(cutRΣ(l −N l′, ei))|ei+1| . . . |en
if Σ ⊢ (l ≥ l′) ∧ (l ≤ l′ +N getLen(ei)),

where l′ = Σi−1
j=1 getLen(ej),

(e1| . . . |en){l, getLen(e1| . . . |en)−N l} otherwise,

simplifyΣ(e{eo, el})

=































e
if Σ ⊢(eo = i0)

∧ (el = getLen(e))

ε if Σ ⊢ (el = i0)

e′{eo +N e′o, el} if e = e′{e′o, e
′
l}

cutLΣ(el, cutRΣ(eo, e)) if e is a concatenation

e{eo, el} otherwise.

Figure 16: Simplification rules.

We omit the soundness proof for our simplification func-
tion.

F. SYMBOLIC EXECUTION SOUNDNESS
We prove our main result (theorem 1). We shall do so

by showing that the PTS JJP KSKI resulting from the sym-
bolic execution of a program P ∈ CVM simulates (in the
sense of definition 4) the PTS JP KC resulting from running
P directly. This result is captured by lemma 4. Theorem 1
then follows by combined application of theorems 4 and 5
and lemma 1 together with definition 7.

For compactness we shall write bN instead of val(b) for
b ∈ BS. When referring to valuations we shall mean ex-
tended valuations of the form η : Var ∪ PBase → BS⊥. For
an extended valuation η let var(η) be the restriction of η to
Var.

We shall make use of the soundness of the function getLen
introduced in section 6 that we state here without proof: for
any e ∈ SExp and valuation η

(JeKη 6= ⊥) ∧ (|JeKη| < 2N ) ⇒ JgetLen(e)Kη = bs(|JeKη|).

The main tool in the proof of lemma 4 is a concretisation
function that, given a valuation, maps symbolic execution
states to concrete execution states. Given a symbolic state
s = (Σ,As,Ms,Ss, P ) and a valuation η we say that s is
η-consistent when all expressions in s are well-defined with
respect to η, when η maps all symbolic memory locations
to disjoint ranges that are within allocated memory bounds,
all conditions in Σ hold with respect to η, and η agrees with
the addr function for stack variables. Formally, we say that
s is η-consistent, iff

1. for all pb ∈ dom(Ms) :

JMs(pb)Kη 6= ⊥, JAs(pb)Kη 6= ⊥, η(pb) 6= ⊥,

|JMs(pb)Kη| ≤ JAs(pb)KNη ,
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2. for all pb, pb′ ∈ dom(As) with pb 6= pb′:
{

η(pb)N
}

JAs(pb)KNη

∩
{

η(pb′)N
}

JAs(pb′)KNη

= ∅,

3. for all ψ ∈ Σ: JψKη = i1,

4. for all e ∈ Ss : JeKη 6= ⊥,

5. for all v ∈ var(P ) : η(stack v) = bs(addr(v)).

For an η-consistent state s let concη(s) = (Asc,Msc,Ssc, P )
be the concrete state where Ssc is obtained from Ss by ap-
plying J·Kη to each element and

Asc =
⋃

{

{

η(pb)N
}

JAs(pb′)KNη

∣

∣

∣

∣

pb ∈ dom(As)

}

,

Msc =

{

η(pb)N + i 7→ JMs(pb)Kη[i]

∣

∣

∣

∣

∣

pb ∈ dom(Ms),

i < |JMs(pb)Kη|

}

.

The conditions of η-consistency guarantee that Msc is well-
defined: symbolic expressions will map onto concrete mem-
ory without overlapping, that is, for each p ∈ N there is only
one pair pb, i such that η(pb)N + i = p.

The special state (Init, P ) is defined to be η-consistent
for any η with dom(η) ⊆ Var and we let concη(Init, P ) =
(Init, P ).

We start by proving two lemmas relating the symbolic and
the concrete execution of a program. Lemma 2 shows that if
a symbolic state s maps to a concrete state c then the state
following s in the symbolic execution can be mapped to the
state following c in the concrete execution. Lemma 3 shows
that if in a symbolic and a concrete execution the states can
be mapped to each other then the IML program generated
by the symbolic execution performs the same actions as the
concrete execution.

Lemma 2 Let (ηc, c)
l
−→ (η′c, c

′) be a concrete transition
(fig. 14), s

λ
−→ s′ a symbolic transition (fig. 8), and η an

extension of ηc such that s is η-consistent and concη(s) = c.
Then there exists an extension η′ of both η and η′c such that
s′ is η′-consistent and concη′(s′) = c′. ✷

Proof By definition of the concretisation function both the
concrete and the symbolic step are executed with the same
instruction or both perform the initialisation. We prove the
lemma by enumerating the pairs of rules that generate the
transitions. For the purpose of this proof we are not inter-
ested in the values of transition labels l and λ.

In the following Ac, . . . and Ac′, . . . refer to components of
c and c′ respectively, As, . . . and As′, . . . refer to components
of s and s′, and Asc, . . . and Asc′, . . . refer to components of
concη(s) and concη′(s′).

1. (C-Init) and (S-Init)

By definition of η-consistency for the initial state we
know that stack v /∈ dom(η) for all v ∈ var(P ). We
show that the lemma holds with

η′ = η {stack v 7→ bs(addr(v)) | v ∈ var(P )} .

The second condition of η′-consistency of s′ follows by
the choice of addr function (appendix C), the other con-
ditions are straightforward to check. In s′ each location
in the symbolic memory is initialised to ε, so applying
the definition of concη we see that Msc′ = ∅ = Mc′.

Finally

Asc′ =
⋃

v∈var(P )

{

{

η′(stack v)N
}

JAs′(stack v)KN
η′

}

=
⋃

v∈var(P )

{

{

bs(addr(v))N
}

bs(N)N

}

=
⋃

v∈var(P )

{{addr(v)}N} = Ac′.

2. (C-Const) and (S-Const) with Const b

Both the concrete and the symbolic transition have the
effect of putting the same bitstring b onto the stack.
Thus both the η-consistency and the state correspon-
dence are preserved and the lemma holds with η′ = η.

3. (C-Ref) and (S-Ref) with Ref v

The concrete transition puts bs(addr(v)) on the stack
and the symbolic transition puts ptr(stack v, i0) on the
stack. By η-consistency η(stack, v) = bs(addr(v)), thus

Jptr(stack v, i0)Kη = η(stack, v) +b i0 = bs(addr(v))

and the lemma holds with η′ = η.

4. (C-Malloc) and (S-Malloc)

Let p and l be defined as in rule (C-Malloc) and pb and
el be defined as in rule (S-Malloc). We show that the
lemma holds with η′ = η{pb 7→ p}. It is straightforward
to check that the first condition of η′-consistency of s′

holds, taking into consideration that JMs′(pb)Kη = ε.
To prove the second condition, let pb′ ∈ dom(As′) such
that pb′ 6= pb. In that case pb′ ∈ dom(As) and by
definition of concη and the state correspondence of c
and s
{

η′(pb′)N
}

JAs′(pb′)KN
η′

=
{

η(pb′)N
}

JAs(pb′)KNη

⊆ Asc = Ac.

By initial state correspondence and the definition of η′

{

η′(pb)N
}

JAs′(pb)KN
η′

=
{

η′(pb)N
}

JelK
N

η′

=
{

pN
}

JelK
N
η

=
{

pN
}

lN
⊆ Addr \ Ac.

Thus the allocation ranges of pb and pb′ are disjoint
and the condition (2) holds. Conditions (3) to (5) are
straightforward to check. To prove that concη′(s′) = c′

observe that

Asc′ = Asc ∪
{

η′(pb)N
}

JAs′(pb)KN
η′

= Ac ∪
{

pN
}

lN
= Ac′,

Msc′ = Msc = Mc = Mc′,

Jptr(pb, i0)Kη′ = η′(pb) +b i0 = p.

5. (C-Load) and (S-Load)

Both the concrete and the symbolic rule have the effect
of replacing two values on the stack with a new value.
In the concrete transition the new value is b ∈ BS such
that b[i] = Mc(p+ i) whenever Mc(p+ i) is initialised
and p is defined as in rule (C-Load). In the symbolic
transition the new value is e = simplifyΣ(M

s(pb){eo, el}),
where pb, eo, and el are defined as in rule (S-Load). We
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shall prove that JeKη = b so that the lemma holds with
η′ = η.

Let bh = JMs(pb)Kη. By definition of concη and initial
state correspondence

bh = Msc

(

{

bNpb

}

|bh|

)

= Mc

(

{

bNpb

}

|bh|

)

,

where we use the notation Mc(I) for I ⊆ Addr to de-
note the sequence of bits of Mc with addresses in I .
Thus Mc is defined in the range {bNpb}|bh|, in particular

bNpb + |bh| < 2N . (*)

Let bo = JeoKη and bl = JelKη. Evaluating the con-
ditions of the rule (S-Load) and using the assumption
of η-consistency we obtain bo +N bl ≤ JgetLen(eh)Kη.
Because |bh| < 2N we can apply soundness of getLen
which together with the definitions of bitstring opera-
tions +N and ≤ gives

bNo + bNl ≤ |bh| . (**)

Using the definition of the function sub

JMs(pb){eo, el}Kη = sub(bh, b
N

o , b
N

l )

= sub

(

Mc

(

{

bNpb

}

|bh|

)

, bNo , b
N

l

)

= Mc

(

{

bNpb + bNo

}

bN
l

)

.

This allows us to apply soundness of simplify:

JeKη = JsimplifyΣ(M
s(pb){eo, el})Kη

= JMs(pb){eo, el}Kη = Mc

(

{

bNpb + bNo

}

bN
l

)

.

By the state correspondence of c and s we obtain

p = Jptr(pb, eo)Kη = η(pb) +b JeoKη = bpb +b bo,

|b| = JelK
N = bNl .

By (*) and (**) bNpb + bNo < 2N , thus

bNpb + bNo = (bpb +b bo)
N = pN.

Substituting this into the above we get

JeKη = Mc

(

{

bNpb + bNo

}

bN
l

)

= Mc

(

{

pN
}

|b|

)

= b

The final equality holds as the referenced memory cells
lie within the initialised range {bNpb}|bh|.

6. (C-In) and (S-In) with In v src

The rule (C-In) takes a value l from the stack and places
a value b of length lN on the stack. Additionally it
updates η′c = ηc{v 7→ b}. The rule (S-In) takes an
expression el from the stack, places v on the stack, and
adds the fact len(v) = el to Σ. We show that the
lemma holds with η′ = η{v 7→ b}. Due to initial state
correspondence JelKη = l and due to the condition of
the rule (C-In) |b| < 2N , thus

Jlen(v)KNη′ = bs(|b|)N = |b| = lN = JelK
N

η′ ,

so that the new fact is indeed valid.

7. (C-Env) and (S-Env) with Env v

The rule (C-Env) places ηe(v) together with bs(|ηe(v)|)
on the stack (the valuation η in fig. 14 corresponds to ηe
in the lemma). The rule (S-Env) places v and len(v) on
the stack. By assumption of the lemma η(v) = ηe(v),
so it is straightforward to check that the lemma holds
with η′ = η.

8. (C-Apply) and (S-Apply) with Apply op

The rule (C-Apply) places on the stack the bitstring
b = Aop(b1, . . . , bn) together with its length, whereby
b1, . . . , bn are taken from the stack. The rule (S-Apply)
places on the stack the value e = apply(op, e1, . . . , en)
together with len(e), whereby e1, . . . , en are taken from
the stack. We show that JeKη = b so that the lemma
holds with η′ = η. By initial state correspondence we
have JeiKη = bi for all i. We enumerate the cases arising
from the definition of apply given b 6= ⊥:

(a) n = 2, e1 = ptr(pb, eo), e2 ∈ IExp, and op = +b.
In this case

b = Jptr(pb, eo)Kη +b Je2Kη

= η(pb) +b JeoKη +b Je2Kη

= Jptr(pb, eo +b e2)Kη

= Japply(+b, ptr(pb, eo), e2)Kη

(b) n = 2, e1 = ptr(pb, eo), e2 = ptr(pb, e′o), op = −b.
In this case

b = Jptr(pb, eo)Kη −b Jptr(pb, e′o)Kη

= η(pb) +b JeoKη −b (η(pb) +b Je′oKη)

= JeoKη −b Je′oKη

= Japply(−b, ptr(pb, eo),ptr(pb, e
′
o))Kη

(c) e1, . . . , en ∈ IExp. In this case

b = Aop(Je1Kη, . . . , JenKη) = Jop(e1, . . . , en)Kη

= Japply(op, e1, . . . , en)Kη

9. (C-Out) and (S-Out)

The lemma holds trivially with η′ = η.

10. (C-Test) and (S-Test)

The rule (C-Test) removes a value b from the stack.
The rule (S-Test) removes an expression e from the
stack and adds e to the set of facts. We show that the
lemma holds with η′ = η. We only need to prove that
JeKη = i1, but this follows from the assumption of the
lemma that JeKη = b and the condition b = i1 of the
rule (C-Test).

11. (C-Store) and (S-Store)

Both the concrete and the symbolic transition perform
a memory update. These updates are

Mc′ = Mc
{

pN + i 7→ b[i]
∣

∣

∣ i < |b|
}

,

Ms′ = Ms{pb 7→ e′h}, (1)

where p and b are defined as in rule (C-Store), and pb
and e′h are defined as in rule (S-Store).

We shall prove that the lemma holds with η′ = η. We
start by showing that s′ is η-consistent. As the transi-
tion only updates the memory, we only need to check
that Je′hKη 6= ⊥ and |Je′hKη| ≤ JAs(pb)KNη . Let eh, es,
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elh, el, eo, e, and pb be defined as in (S-Store). For ex ∈
{eh, es, elh, el, eo} let bx = JexKη and let bpb = JpbKη.

By initial state correspondence JeKη = b. The rule
(C-Store) assumes

{

pN
}

|b|
⊆ Ac, which implies |b| <

2N . Using the soundness of getLen and the definition
of bl we obtain

bNl = JgetLen(e)KNη = |JeKη| = |b| .

By initial state correspondence

bh = Mc

(

{

bNpb

}

|bh|

)

= Mc

(

{

bNpb

}

bN
lh

)

,

where the second equality follows by soundness of getLen
and the fact

bNpb + |bh| < 2N (2)

established by the first equality.

We shall distinguish between two cases in the premise
of the rule (S-Store). The first case is

Σ ⊢ (eo +N el < elh), e′h = simplifyΣ(e
′′
h), where

e′′h = eh{0, eo}|e|eh{eo +N el, elh −N (eo +N el)}.

In this case the same argument as for the rule (S-Load)
yields

bNo + bNl < |bh| = bNlh. (A3)

Substituting the value of bh and expanding the defini-
tion of the function sub under consideration of (A3) we
obtain

Je′′hKη = Mc

(

{

bNpb

}

bNo

)∣

∣

∣

∣

b

∣

∣

∣

∣

Mc

(

{

bNpb + bNo + bNl

}

bN
lh

−bNo−bN
l

)

.

(A4)

Applying the soundness of the function simplify we get
Je′hKη = Je′′hKη 6= ⊥. From bNl = |b| follows |Je′hKη| =
|JehKη|. By initial state correspondence |JehKη| ≤ JAs(pb)KNη .
This proves η-consistency of s′ in the first case.

The second case in the premise of the rule (S-Store) is

Σ ⊢ (eo +N el ≥ elh) ∧ (eo ≤ elh) ∧ (eo +N el ≤ es),

e′h = simplifyΣ(eh{0, eo}|e).

Together with η-consistency of s this implies the fol-
lowing condition on bitstrings:

(bNo + bNl ≥ bNlh) ∧ (bNo ≤ bNlh) ∧ (bNo + bNl ≤ bNs ). (B3)

This allows us to expand the definition of sub and apply
soundness of simplify to obtain

Je′hKη = Mc

(

{

bNpb

}

bNo

)∣

∣

∣

∣

b 6= ⊥, (B4)

Using (B3)
∣

∣Je′hKη
∣

∣ = bNo + |b| = bNo + bNl ≤ bNs = JAs(pb)KNη ,

which proves η-consistency of s′ in the second case.

The next step is to show that concη(s
′) = c′. Both in

the first and in the second case above |Je′hKη| ≥ |JehKη|
(in the first case they are equal, in the second case it
follows from (B3)). Comparing the definition of Msc′

and Msc and using the relation (1) between Ms′ and
Ms

Msc′ = Msc
{

bNpb + i 7→ (Je′hKη)[i]
∣

∣

∣
i <

∣

∣Je′hKη
∣

∣

}

.

Substituting the value of Je′hKη from either (A4) or (B4)
and using the assumption Msc = Mc from the initial
state correspondence we can simplify this to

Msc′ = Mc
{

bNpb + bNo + i 7→ b[i]
∣

∣

∣ i < |b|
}

.

By initial state correspondence

p = Jptr(pb, eo)Kη = η(pb) +b JeoKη = bpb +b bo,

It is bNpb + bNo < 2N both in the first and in the second
case above: in the first case it follows from (2) and (A3),
in the second case it follows from (2) and (B3). This
implies pN = bNpb + bNo . Thus

Msc′ = Mc
{

pN + i 7→ b[i]
∣

∣

∣
i < |b|

}

= Mc′.
�

We call a valuation η′ minimal with a property φ iff η′

satisfies φ and η′−x does not satisfy φ for all x ∈ dom(η′).

Lemma 3 Let ηc, η
′
c, η, and η

′ be valuations and s and s′ be
symbolic states such that s is η-consistent, s′ is η′-consistent,
and there are transitions (ηc, concη(s))

l
−→(η′c, concη′(s′)) and

s
λ
−→ s′ with λ 6= ε. Assume additionally that η′ is a min-

imal extension of η with the property above. Then for all
P ∈ IML the following is a valid IML transition (fig. 15):

{(var(η), lP )}
l
−→ {(var(η′), P )}.

✷

Proof We prove the lemma by case distinction over all
pairs of l and a that can occur.

1. l = read b and λ = in(x); by rules (C-In) and (S-In).

From the correspondence between the symbolic and the
concrete transition we obtain η′(x) = b. Because η′ was
chosen to be minimal η′ = η{x 7→ b}, which also implies
var(η′) = var(η){x 7→ b}. The lemma follows by rule
(I-In).

2. l = rnd b and λ = (νx[el]); by rules (C-In) and (S-In).

The correspondence between the symbolic and the con-
crete transition implies var(η′) = var(η){x 7→ b}. Ad-
ditionally the correspondence yields |b| = JelK

N

η , so that
the lemma follows by rule (I-Nonce).

3. l = write b and λ = out(e); by rules (C-Out) and
(S-Out).

From the correspondence between the symbolic and the
concrete transition we obtain JeKη = b. Additionally
η′ = η by minimality of η′. The lemma follows by rule
(I-Out).

4. l = event b and λ = event(e); by rules (C-Out) and
(S-Out).

The proof is exactly analogous to the case above, the
lemma follows by rule (I-Event).

5. l = ctr 1 and λ = if e then by rules (C-Test) and
(S-Test).

From the correspondence between the symbolic and the
concrete transition we obtain JeKη = i1. Additionally
η′ = η by minimality of η′. The lemma follows by rule
(I-Cond-True). �
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Lemma 4 There exists a fixed polynomial p such that for
any P ∈ CVM with JP KS 6= ⊥

JP KC .p JJP KSKI . ✷

Proof Let P be a CVM program such that JP KS 6= ⊥. Let

T = JP KC and T̃ = JJP KSKI . We shall show that T .p T̃
for some polynomial p by giving a relation . between states
of T and T̃ as well as a translation function τ that satisfy
definition 4. Let s1, . . . , sn be the symbolic execution trace
of P with labels λ1, . . . , λn−1 and let P̃i = λi . . . λn−10 ∈
IML. This way P̃1 = JP KS and P̃n = 0. Let P1, . . . ,Pm be
protocol states over T such that P1 = {ε 7→ (η1, (Init, P ))}
for some initial environment η1 and there is a transition

Pi
(hi,di), ai−−−−−−→ Pi+1 with a command (hi, di) and an action

ai for each i. As CVM does not perform replication, each
protocol state will be of the form Pi = {hi 7→ (ηi, ci)} for
some state ci and valuation ηi.

No concrete trace of CVM is longer than the symbolic
trace (both are bounded by the number of instructions in
P ), so clearly m ≤ n. By definition the initial symbolic
state s1 = (Init, P ) is η1-consistent and concη1(s1) = c1.
By setting η̃1 = η1 and repeatedly applying lemma 2 we
obtain a sequence η̃1, . . . , η̃m of valuations such that for each
i the valuation η̃i is an extension of ηi, the state si is η̃i-
consistent and concη̃i(si) = ci. Additionally we can choose
the valuations such that η̃i+1 is a minimal extension of η̃i
satisfying the property. For each i = 1, . . . ,m we define a
protocol state P̃i over T̃ as P̃i = {h̃i 7→ (var(η̃i), P̃i)}, where

h̃i is obtained from hi as follows: Let I ⊆ {1, . . . , n− 1} be

the set of indices i such that P̃i 6= P̃i+1. Given a history hi

of the form hi = o11 . . . oi−11 (every CVM rule only has one
process on the right hand side, so the replication identifier
is always 1) let h̃i = oi11 . . . oik1, where {i1, . . . , ik} = I ∩
{1, . . . , i− 1}.

Given a protocol state P over T and a protocol state P̃
over T̃ we define P . P̃ iff there exist sequences of states
P1, . . . ,Pm and P̃1, . . . , P̃m as above such that P = Pi and
P̃ = P̃i for some i. We define the function τ from commands
to sequences of commands as follows:

τ ((h, d)) =

{

(h̃, d), if h = o11 . . . oi−11, and i ∈ I ,

ε otherwise.

We now show that the relation . and the function τ satisfy
definition 4, so that T .p T̃ for some polynomial p. The
conditions in definition 4 are satisfied as follows:

1. Any initial valuation η1 is not an extended valuation so
that var(η1) = η1. By definition

{ε 7→ (η1, (Init, P ))} . {ε 7→ (var(η1), P̃1)}

= {ε 7→ (η1, JP KS)}.

2. Let P . P̃ and assume that there exists a transition

P
(h,d), a
−−−−−→ P ′. By definition of the relation . there

exist sequences of states P1, . . . ,Pm and P̃1, . . . , P̃m as
above such that P = Pi, P

′ = Pi+1 and P̃ = P̃i for
some i < m. It suffices to show that

P̃i
τ((h,d)), a
−−−−−−→∗ P̃i+1. (*)

If i ∈ I then (*) follows from lemma 3. Let i /∈ I , that
is λi = ε in the symbolic execution. Inspecting the

proof of lemma 2 we see that then var(η̃i) = var(η̃i+1)

and so P̃i = P̃i+1. The program performs no action so
that a = ε and by definition τ ((h, d)) = ε, thus (*) is
satisfied.

3. To compute τ it is necessary to know I , but this can
be computed by an inspection of P in linear time: it
is i + 1 ∈ I iff the ith instruction in P is one of In,
Out, or Test, that is, an instruction that generates a
nonempty label λ in the symbolic execution. Thus τ (c)
is computable in time linear in |c|+ |P |.

4. Assume that for some valuation η and attackers E and
Ẽ the machine M = Execη(T,E) reaches a state P in

t steps and the machine M̃ = Execη(T̃ , Ẽ) reaches a

state P̃ in t̃ steps and P . P̃ . If η is the environment
of the process in P and η̃ is the environment of the
process in P̃ then η̃ is an extension of η, in fact η̃ = η,
as both environments get updated by rules (C-In) and
(I-Nonce), (I-In) in the same way. It is easy to see that

t̃ = O(ñtr · (t̃e + |JP KS|+ |η̃|)),

where ñtr is the number of transitions performed by
M̃ and t̃e is the number of steps to evaluate the most
expensive IML expression during the execution of M̃ .
All of these values can be bounded in terms of t as
follows: The IML model JP KS performs at most the
same number of transitions as the PTS program P , so
that ñtr ≤ ntr ≤ t, where ntr is the number of tran-
sitions executed by M . By construction of the sym-
bolic execution |JP KS| = O(|P |) = O(t). Furthermore
|η̃| = |η| ≤ t. Finally we shall prove by induction that
if t̃e is the number of steps to evaluate JeKη̃ = JeKη for
some expression e then t̃e = O(t) · |e|. Consider the
following cases:

• e = b for some b ∈ BS. In this case t̃e = |e|.

• e = x for some x ∈ Var. In this case JeKη = η(x),
so that t̃e ≤ t.

• e = op(e1, . . . , en) with some op ∈ Ops. For bit-
strings b1, . . . , bn ∈ BS let top(b1, . . . , bn) be the
number of steps to evaluate Aop(e1, . . . , en) and let
t̃i be the number of steps to evaluate JeiKη. Every
operation in e is also performed by M , thus

t̃e = top(Je1Kη, . . . , JenKη) + t̃1 + . . .+ t̃n

≤ top(Je1Kη, . . . , JenKη) +
∑

i

|ei| ·O(t)

≤ O(t) ·

(

∑

i

|ei|+ 1

)

≤ O(t) · |e| .

• e = e1|e2. Let t̃1 and t̃2 be the number of steps to
evaluate Je1Kη and Je2Kη respectively. Then

t̃e ≤ t̃1 + t̃2 + |Je1Kη|+ |Je2Kη|

≤ 2 · (t̃1 + t̃2) ≤ O(t) · (|e1|+ |e2|) ≤ O(t) · |e| .

• The cases e = e′{eo, el} and e = len(e′) are proved
analogously to the case e = e1|e2. �

Restatement of theorem 1 There exists a fixed poly-
nomial p such that if P1, . . . , Pn are CVM processes and for
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each i P̃i := JPiKS 6= ⊥ then for any IML process PE , any
trace property ρ, and resource bound t ∈ N

insec(JPE[P1, . . . , Pn]KCI , ρ, t)

≤ insec(JPE[P̃1, . . . , P̃n]KI , ρ, p(t)).

Proof By lemma 4 there exists a polynomial p1 such that
JPiKC .p1 JP̃iKI for each i. By lemma 1 the PTS JPEKI
is a PTS with holes identifiable in p2-time for some fixed
polynomial p2. Applying definition 7 and theorem 5 we see
that there exists a polynomial p3 depending only on p1 and
p2 (and thus fixed) such that

JPE[P1, . . . , Pn]KCI =JPEKI [JP1KC , . . . , JPnKC ]

.p3JPEKI [JP̃1KI , . . . , JP̃nKI ]

=JPE [P̃1, . . . , P̃n]KI .

By theorem 4 there exists a polynomial p4 depending only on
p3 (and thus fixed) such that theorem 1 holds with p = p4.�

G. VERIFICATION OF IML—DETAILS
We show how to simplify IML to the applied pi calculus

that can be verified using ProVerif. As ProVerif works in the
symbolic model, we shall employ a computational soundness
result from [4] to justify its use. The result will guarantee
that if ProVerif successfully verifies the translated pi calcu-
lus process then the process is asymptotically secure in our
computational model. We start by illustrating the method
on an example and then give a general description.

The main challenge when translating IML to the pi cal-
culus is that IML processes contain bitstring manipulation
primitives that are not valid in pi. An example of such a
process is shown in fig. 17—it is an adapted excerpt from an
IML model of the Needham-Shroeder-Lowe protocol imple-
mentation used in one of our experiments (the full model is
shown in appendix H). The key observation is that the bit-
string manipulation expressions in IML are most commonly
employed to provide the tupling functionality. In our exam-
ple the process A uses concatenations to construct a compu-
tational representation of the pair of nA and pkA. Similarly,
process B uses range expressions to extract the second ele-
ment of the pair. The idea of the translation is thus to enrich
Ops with encoding and parsing operations with meanings
given by the bitstring manipulation expressions. This way
we hide the direct bitstring manipulation inside new opaque
operations. Of course, to obtain a soundness result we need
to prove certain properties of the extracted operations to
make sure that they correctly implement tupling.

In our example we introduce new operations conc1 and
parse2 with implementations given by

Aconc1(b1, b2) = J”msg1”| len(b1)|b1|b2K,

Aparse2(b) =

if J¬(b{i4, iN}+b iN +b i4 ≤ len(b))K then ⊥ else

if J¬(b{i0, i4} = ”msg1”)K then ⊥ else

Jb{i4 +b iN +b b{i4, iN},

len(b)−b i4−b iN −b b{i4, iN}}K.

In the implementation of the parsing expression we keep all
the condition checks that are performed by the IML process
before applying the parser. We follow the convention of IML
that i1 and i0 represent truth values of bitstrings. Using the

A =
(ν̃ nA); (ν̃ r);
let m1 = ”msg1”| len(nA)|nA|pkA in

let e1 = encrypt(pkX , m1) in
out(e1); ...

B =
in(e1);
let m1 = decrypt(skB, e1) in

if m1{i4, iN}+b iN +b i4 ≤ len(m1) then

if m1{i0, i4} = ”msg1” then
let x1 = m1{i4 +b iN +b m1{i4, iN},

len(m1) −b i4−b iN −b m1{i4, iN}} in

if x1 = pkX then ...

Figure 17: An excerpt from the IML process for
the NSL protocol. An expression len(. . .) produces a
result of fixed length iN .

A =
(ν̃ nA); (ν̃ r);
out(encrypt(pkX , conc1(nA, pkA))); ...

B =
in(e1);
let m1 = decrypt(skB, e1) in

let x1 = parse2(m1) in
if x1 = pkX then ...

Figure 18: An excerpt from the pi calculus transla-
tion for the NSL protocol.

new operations we can simplify our example IML process
to the pi calculus process shown in fig. 18, removing the if-
statements that have been absorbed into the implementation
of parse2.

The syntax of the applied pi calculus is shown in fig. 19.
It is a strict subset of the IML syntax with the following
differences:

• The bitstring operations are no longer available.

• The only allowed form of the restriction operator is (ν̃x)
with the same meaning as described in section 4.

• Parameters of events are restricted to be fixed bitstrings.
This is a limitation of the result in [4].

• The conditional expression of IML with truth meanings
for bitstrings i0 and i1 is no longer available. Instead
we can use let expressions to conditionally choose based
on equality of bitstrings by assuming that there exists
an operation eq ∈ Ops such that Aeq(b, b) = b and
Aeq(b, b

′) = ⊥ for all b 6= b′.

• The input and output expressions only accept variables
as parameters—all computations must be performed in
let-expressions.

The calculus shown in fig. 19 is a restricted version of
the pi calculus presented in [4], as we do not need the full
generality used there. Our restrictions are as follows:

• There is only one public communication channel.

• We do not make a distinction between variables and
names, as they behave identically for the purpose of
the computational execution.
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b ∈ BS, x ∈ Var, op ∈ Ops

e ∈ PExp ::= expression

x variable

op(e1, . . . , en) constructor/destructor

P, Q ::= process

0 nil

!P replication

P |Q parallel composition

(ν̃x); P randomness

in(x); P input

out(x); P output

event(b); P event

let x = e in P [else Q] evaluation

Figure 19: The syntax of the applied pi calculus.

JxKkη = η(x), for x ∈ Var,

Jop(e1, . . . , en)K
k
η = Ãop(k, Je1Kkη , . . . , JenKkη).

Figure 20: The evaluation of pi expressions, whereby
⊥ propagates.

• We only allow computations in let-expressions, so that
we do not make a distinction between constructors and
destructors in the syntax.

Unlike CVM and IML which execute with regards to a
fixed security parameter k0 introduced in section 2, the com-
putational semantics of the applied pi calculus is parame-
terised by a security parameter. In order to achieve that
we assume that the operations in Ops possess a generalised
implementation Ã such that Ãop : N× BSar(op) ⇀ BS is the
implementation of an operation op ∈ Ops that takes the
security parameter as the first argument. For a security
parameter k and inputs m the value Ãop(k,m) should be
computable in time polynomial in k + |m|. We require that

Ãop(k0, ·) = Aop for each op ∈ Ops.
The semantics of the pi calculus is directly derived from

the semantics of IML. Given a pi process P and a secu-
rity parameter k, we define the semantics JP Kkπ as follows:

The expression evaluation uses Ã instead of A as shown in
fig. 20. The semantics rules are obtained from the IML rules
(fig. 15) by substituting all expression evaluations JeKη with
JeKkη. The syntactic form (ν̃x) behaves as described in sec-
tion 4, but now it is not a syntactic sugar anymore, so we

b ∈ BS, |b| = k, r = Ãnonce(k, b)

(η, (ν̃x);P )
rnd b
−−−→ {(η{x 7→ r}, P )}

. (pi-Nonce)

Figure 21: Randomness generation in pi calculus.

add a new semantic rule shown in fig. 21.
We now give details regarding the translation procedure

from IML to pi. In the following we shall assume that the
IML processes do not contain else-branches; this is true for
the processes produced by the symbolic execution. Remov-
ing if-statements from such processes does not reduce the
set of traces and thus does not reduce insecurity. We shall
therefore divide all if-statements into two groups: the cryp-
tographic statements, that are likely to be relevant for the
security of the process and should be kept in the translation,
and the auxiliary statements that can be removed from the
process without affecting security. The exact choice does
not affect the soundness of the approach, but removing too
many if statements might make the resulting pi process in-
secure, and removing too few may prevent the successful
translation from IML to pi. We use the following heuris-
tic: an if-statement is considered to be cryptographic iff it
is of the form if e1 = e2 then P , where both e1 and e2 are
variables or applications of cryptographic operations.

Given an IML process P we perform on it the following
operations:

• Introduce intermediate let-statements so that all out-
statements only contain variables, all cryptographic if-
statements are of the form if x1 = x2 then P with vari-
ables x1 and x2 and every expression in the new let
statements is of one of three types:

– an encoding expression, that is, an expression con-
taining only concrete bitstrings, len(), concatena-
tions, arithmetic operations, and variables,

– a parsing expression, that is, an expression contain-
ing only concrete bitstrings, len(), substring extrac-
tion, arithmetic operations, and a single variable,

– a cryptographic expression, that is, an expression
containing only variables and cryptographic oper-
ations.

As an example, the IML processes in fig. 17 are already
written in such a form.

• For each subprocess P ′ = (let y = e in P ′′), where e is
an encoding expression with variables x1, . . . , xn, add
a new encoding operation c of arity n to Ops with the
implementation given by

Ac(b1, . . . , bn) = Je[b1/x1, . . . , bn/xn]K.

Now substitute P ′ by let y = c(x1, . . . , xn) in P ′′.

In order to justify modelling the encoding operations as
tuples symbolically, we need to check that their compu-
tational implementations fulfil certain conditions. The
first condition is:

(C1) the ranges of the functions Ac introduced above are
disjoint.

Checking the side conditions is described in appendix G.1.

• For each subprocess P ′ = (let y = e in P ′′), where e is
a parsing expression with a variable x, add a new pars-
ing operation p of arity 1 to Ops. We need to check
that before computing e the process P makes sure that
x contains a result of a suitable encoding operation.
More specifically, we check that there exists an encod-
ing operation c such that the process rejects any x with
the value outside the range of Ac and such that e com-
putes an inverse of Ac. Let e1, . . . , en be expressions
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such that P contains an auxiliary if-statement of the
form if ei then . . . above P ′ for some i. Let x1, . . . , xm

be the variables of P with exception of x and let

φp = ∃x1, . . . , xm : e1 ∧ . . . ∧ en.

This way, whenever (η′, P ′) is an executing process in
a protocol state reached by JP KI from some environ-
ment η, we have JφpKη′ = i1. We check the following
conditions:

(C2) there exists an encoding operation c such that for
every b not in the range of Ac it is Jφp[b/x]K = i0.
We say that c matches p,

(C3) the function fp : b 7→ Je[b/x]K is an ith inverse of Ac

for some i, that is, fp(Ac(b1, . . . , bn)) = bi where n
is the arity of c.

Appendix G.1 shows how to check the conditions (C1)–
(C3) and how a successful check results in a quantifier-
free formula φ′

p with x as the only variable such that
φp implies φ′

p and the condition (C2) is still satisfied
with φ′

p. Additionally φ′
p satisfies

(C4) for the encoding operation c that matches p and
any b in the range of Ac it is Jφp[b/x]K = i1.

We define the computational implementation for p as

Ap(b) = if Jφ′
p[b/x]K then Je[b/x]K else ⊥

and substitute P ′ by let y = p(x) in P ′′.

• Remove all auxiliary if-statements: for every such state-
ment replace if e then P ′ by P ′. Translate all crypto-
graphic if-statements into the form expected by the pi-
calculus: replace every occurrence of if x1 = x2 then P
by let = eq(x1, x2) in P .

If the process P does not contain any else-branches and
the above procedure yields a valid pi process P̃ then we say
that P is translatable to P̃ . A complete example of an IML
program and its resulting pi calculus translation for the NSL
protocol is shown in appendix H.

In order to obtain the computational semantics for the
translated process, we need to specify the generalised im-
plementations Ãc and Ãp for the newly introduced encoders
and parsers. We can assume any generalisation of these op-
erations to arbitrary security parameters that satisfies the
conditions (C1)–(C4).

Clearly the translation preserves all the action sequences
of the original process so the following holds:

Lemma 5 There exists a fixed polynomial p such that for
any IML process P translatable to a pi process P̃

JP KI .p JP̃ Kk0

π .
✷

Applying theorem 4 we obtain a statement that links the
security of the pi translation to the security of the original
IML process:

Restatement of theorem 2 There exists a fixed poly-
nomial p such that for any IML process P translatable to a
pi process P̃ , any trace property ρ and resource bound t ∈ N

insec(JP KI , ρ, t) ≤ insec(JP̃ Kk0

π , ρ, p(t)).

Now that we have translated IML to pi, we can enumerate
the conditions under which the resulting pi process can be

soundly verified using ProVerif. For this purpose we shall
make use of a computational soundness result from [4], which
places restrictions on the operation set Ops as well as on the
shape of the pi process. More specifically, the computational
soundness theorem is proved there for the set of construc-
tors C = {E/3, ek/1, dk/1, pair/2} and destructors D =
{D/2, isenc/1, isek/1, ekof/1, fst/1, snd/1, eq/2}. The re-
sult includes soundness for signatures, but we omit them
as they have not been used in our experiments so far. For
simplicity the result presented here uses only one pairing
construct (as in [4]), but it can be easily extended to an arbi-
trary number of tupling constructors and destructors, to cor-
respond to our encoding and parsing operations introduced
during the translation from IML. The symbolic behaviour of
the operations is defined by the following equations:

D(dk(t1), E(ek(t1),m, t2)) = m,

isenc(E(ek(t1), t2, t3)) = E(ek(t1), t2, t3),

isek(ek(t)) = ek(t),

ekof(E(ek(t1),m, t2)) = ek(t1),

fst(pair(x, y)) = x,

snd(pair(x, y)) = y,

eq(x, x) = x.

Let OpsS = C∪D∪ {nonce}. The soundness conditions

that the implementations Ãx for x ∈ OpsS need to satisfy
are as follows:

1. There are disjoint and efficiently computable sets of bit-
strings representing the types nonces, ciphertexts, en-
cryption keys, decryption keys, and pairs. Let Noncesk
denote the set of all nonces for a security parameter k.

2. Given b ∈ BS with |b| = k chosen uniformly at random,

Ãnonce(k, b) returns r ∈ Noncesk uniformly at random.

3. The functions ÃE, Ãek, Ãdk, and Ãpair are length-
regular—the length of their result depends only on the
lengths of their parameters. All m ∈ Noncesk have the
same length.

4. Every image of ÃE is of type ciphertext, every image of
Ãek and Ãekof is of type encryption key, every image

of Ãdk is of type decryption key.

5. For all m1,m2 ∈ BS we have Ãfst(Ãpair(m1,m2)) =

m1 and Ãsnd(Ãpair(m1,m2)) = m2. Every m of type

pair is in the range of Ãpair. If m is not of type pair,
Ãfst(m) = Ãsnd(m) = ⊥.

6. Ãekof (ÃE(p, x, y)) = p for all p of type encryption key,

x ∈ BS, and a nonce y. Ãekof (e) 6= ⊥ for any e of type

ciphertext and Ãekof (e) = ⊥ for any e that is not of
type ciphertext.

7. ÃE(p,m, y) = ⊥ if p is not of type encryption key.

8. ÃD(Ãdk(r),m) = ⊥ if r ∈ Noncesk and Ãekof (m) 6=

Ãek(r).

9. ÃD(Ãdk(r), ÃE(Ãek(r),m, r
′)) = m for all r, r′ ∈ Noncesk.

10. Ãisek(x) = x for any x of type encryption key. Ãisek(x) =
⊥ for any x not of type encryption key.

11. Ãisenc(x) = x for any x of type ciphertext. Ãisenc(x) =
⊥ for any x not of type ciphertext.
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m, n ::= x | pair(m,n)

e ::= m | isek(e) | isenc(e) | D(xd, e) | fst(e)

| snd(e) | ekof(e) | eq(e, e)

P, Q ::= out(x); P | in(x); P | 0 | !P | (P |Q) | (ν̃x); P

| let x = e in P [else Q] | event(b); P

| (ν̃r); let x = ek(r) in let xd = dk(r) in P

| (ν̃r); let x = E(isek(D1), D2, r) in P [else Q]

Figure 22: The syntax of key-safe processes.

12. We define an encryption scheme (KeyGen,Enc,Dec)
as follows: KeyGen picks a random r in Noncesk and
returns (Ãek(r), Ãdk(r)). Enc(p,m) picks a random

r in Noncesk and returns ÃE(p,m, r). Dec(k, c) re-

turns ÃD(k, c). We require that the defined encryption
scheme is IND-CCA secure.

13. For all e of type encryption key and m ∈ BS the prob-
ability that ÃE(e,m, r) = ÃE(e,m, r

′) for uniformly
chosen r, r′ ∈ Noncesk is negligible.

The conditions on the pairing operations follow from the
conditions (C1)–(C4) checked during the translation (length-
regularity is fulfilled for any function given by an IML en-
coding expression), the other conditions (in particular that
the encryption is IND-CCA) shall be assumed, because we
are treating cryptographic operations as black boxes and not
trying to verify them. The condition that all functions have
disjoint ranges is quite restrictive and is unlikely to be ful-
filled in actual implementations. For this reason in future
we would like to use CryptoVerif to verify our models, to
bypass the need for complex soundness conditions.

The soundness result of [4] is proved for a class of the so-
called key-safe processes. In a nutshell, key-safe processes
always use fresh randomness for encryption and key gen-
eration and only use honestly generated (that is, through
key generation) decryption keys for decryption. Decryption
keys may not be sent around (in particular, this avoids the
key-cycle problems). The grammar of key-safe processes is
summarised in fig. 22. We let x, xd, ks, and r stand for
different sets of variables: general purpose, decryption key,
signing key, and randomness variables.

Lemma 6 (Computational soundness [4]) If a closed key-
safe process symbolically satisfies a trace property ρ then it
computationally satisfies ρ. ✷

We now proceed to sketching out the proof of theorem 3
from section 7. For a process P let OpsP be the set of
operations used by P (including the nonce operation). The
symbolic semantics and security of pi are defined in [4]. We
do not detail the semantics here, as we only need to know
that it is exactly the semantics that is used by ProVerif.

A function f : N → R is called negligible if for every c ∈ N

there exists n0 ∈ N such that f(n) < 1/nc for all n > n0.

Restatement of theorem 3 Let P be a pi process such
that OpsP ⊆ OpsS and the soundness conditions are satis-
fied. If P is key-safe and symbolically secure with respect to
a trace property ρ then for every polynomial p the following
function is negligible in k:

insec(JP Kkπ, ρ, p(k)).

A =
(ν̃ nA); (ν̃ r);
let m1 = ”msg1”| len(nA)|nA|pkA in

let e1 = encrypt(pkX , m1) in
out(e1); ...

B =
in(e1);
let m1 = decrypt(skB, e1) in

if len(pkX) +b iN +b i20 +b i4 = len(m1) then

if m1{i0, i4} = ”msg1” then
if m1{i4, iN} = i20 then

let x1 = m1{i4 +b iN +b m1{i4, iN},
len(m1) −b i4−b iN −b m1{i4, iN}} in

if x1 = pkX then ...

Figure 23: An excerpt from the IML process for the
NSL protocol (full version).

The main issue in the proof is to relate the notion of com-
putational execution in [4] (their definition 18) to our notion
of computational execution (definition 2). Both definitions
are very similar. In [4] the state of the protocol consists of
a single executing process together with valuations for vari-
ables in the process. In each step the attacker chooses an
execution context to specify which subprocess of the com-
plete process is supposed to perform a reduction. In our
definition the attacker interacts with a multiset of processes,
selecting the process to be executed by an attached handle.
It is easy to see that both definitions of the security game
are equivalent.

G.1 Parsing Conditions
We show how we check conditions (C1)–(C4) arising dur-

ing the translation from IML to pi. The checks we perform
are by no means complete (we might fail to detect that the
conditions actually hold), but they are suitable for the pro-
tocols that we encountered so far. We shall use the excerpt
from the IML process of the NSL protocol shown in fig. 23 as
an example (fig. 17 contained a slightly simplified version).

For each encoding operation c and parsing operation p let
ec and ep be the IML expressions that they replace. Let φp

represent the set of facts that the IML process establishes
before applying ep, as described previously.

To prove (C1) we check that all encoding expressions ec
contain a concrete bitstring (a tag) at the same positions
and that all tags are different. In the example of fig. 23 the
bitstring ”msg1” would be such a tag, and we would expect
other messages to contain tags like ”msg2”, ”msg3”, etc.

To prove (C3) for an encoder c and a parser p we check
that simplifyΣop

(ep[ec/x]) = xi, where x is the variable of ep
and xi is one of the variables of ec. As an example, for the
operations conc1 and parse2 introduced at the beginning of
appendix G,

econc1 = ”msg1”| len(x1)|x1|x2,

eparse2 = x{i4 +b iN +b x{i4, iN},

len(x)−b i4−b iN −b x{i4, iN}.

Substituting econc1 for x in eparse2 we obtain an expression
that simplifies to x2, thus we know that eparse2 computes
the second inverse of econc1 .

Given a parser p and a candidate encoder c, we check
whether c matches p (C2) as follows: first check that ec
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is a concatenation of expressions, each of which is either a
variable (a concatenation parameter), a length of a variable,
or a constant expression. Formally ec is required to be of a
form e1| . . . |en, where {1, . . . , n} = Ix ∪ Il ∪ It such that for
all i ∈ Ix it is ei = xi for some variable xi, for all i ∈ Il it is
ei = len(xj) for some j ∈ Ix and for all i ∈ It it is ei = bi for
some constant bitstring bi. We require that all variables and
length expressions are distinct (no variable repeats twice)
and that |Ix| = |Il| + 1, that is, the expression ec contains
lengths for all parameters except one—the missing length
can then be derived from knowing the total length of the
concatenation.

Given a bitstring b, in order to check that b is in the range
of Ac, it is sufficient to check all the constant (tag) fields and
to check that the sum of the length fields is consistent with
the actual length of b. The following makes this precise.

Given a parsing expression pi, we say that pi extracts the
ith field from ec if the following holds: for an expression e let
ec[e/ei] be the expression obtained from ec by substituting
ei with e. Then for a fresh variable x′

simplifyΣ(pi[ec[x
′/ei]/x]) = x′,

where Σ = Σop ∪ {len(x′) = getLen(ei)}.

Theorem 6 Let c and p be an encoding and a parsing ex-
pression such that ec is of a form e1| . . . |en with {1, . . . , n} =
Ix∪Il∪It as described above. Assume that for each i ∈ Il∪It
the formula φp contains a parsing expression pi as a term,
such that pi extracts the ith field from ec. Let

φtag =
∧

i∈It

pi = bi,

φlen =
∑

i∈Il

pi +
∑

i∈It∪Il

getLen(ei) ≤ len(x).

Then a bitstring b is in the range of Ac iff

Jφtag ∧ φlenKx 7→b = i1.
✷

Proof (sketch) Let b ∈ BS satisfy the premises of the
theorem. For each i ≤ n we obtain the length li ∈ N of the
ith field in b as follows: for each i ∈ Il such that ei = len(xj)
for some j ∈ Ix let lj = Jpi[b/x]K

N. For each i ∈ Il ∪ It let
li = JgetLen(ei)K

N. For the single i ∈ Ix such that len(xi)
is not one of the fields of ec let li = |b| −

∑

j 6=i lj . Knowing
the lengths allows us to split b into fields as follows: for each
i ≤ n let bi = b{

∑i−1
j=1 lj , li}. This is well-defined according

to φlen. Clearly b = b1| . . . |bn. We show that for each i it is
bi = Jei[bj/xj |j ∈ Ix]K as follows.

• If i ∈ Ix then ei = xi and the equality holds trivially.

• If i ∈ Il then ei = len(xj) for some j ∈ Ix. By con-
struction bi = bs(li) = bs(|bj |).

• If i ∈ It then the equality follows from φtag.

Overall we have shown that b = Jec[bj/xj |j ∈ Ix]K, so that b
is in the range of Ac. �

Thus checking (C2) reduces to finding appropriate parsers
pi among the terms of φp and checking that φp ⊢ φtag∧φlen.
Furthermore, by choosing φ′

p = φtag ∧ φlen, we obtain a
quantifier-free formula that satisfies (C2) and (C4), as re-
quired by the translation.

As an example, we can show that (C2) holds for conc1
and parse2 with respect to fig. 23 as follows: the conditions

checked by the process B contain references to parsing ex-
pressionsm1{i0, i4} andm1{i4, iN}. We check that the first
expressions extracts the first field (the tag) from econc1 and
the second expression extracts the second field (the length
of the first parameter). We then observe that the conditions
checked by B imply

φtag = (m1{i0, i4} = ”msg1”),

φlen = (iN +b m1{i4, iN} +b i4 ≤ len(m1)).

Thus both the tag and the length consistency are properly
checked.

Our implementation currently checks all the conditions
automatically except φp ⊢ φlen. The reason is that we are
planning to use CryptoVerif as a verification backend and
expect to be able to relax the parsing conditions there.

H. NSL EXAMPLE CODE
We show all the stages of the verification of the NSL ex-

ample, discussed in section 8

H.1 Client Source
The source code of the client is shown below. In our ex-

ample N = sizeof(size_t) = 8 and k0 corresponds to
SIZE_NONCE, which is set to be 20.

#include <net . h>
#include < l i b . h>

#include <pr ox i e s /common . h>

#include <s t r i n g . h>
#include <s td i o . h>

// #de f i n e LOWEATTACK

int main ( int argc , char ∗∗ argv )
{

unsigned char ∗ pkey , ∗ skey , ∗ xkey ;
s i z e t pkey len , skey l en , xkey l en ;

unsigned char ∗ m1, ∗ m1 al l ;
unsigned char ∗ Na ;
s i z e t m1 len , m1 e len , m1 a l l l en ;

unsigned char ∗ m2, ∗ m2 e ;
unsigned char ∗ xNb ;
s i z e t m2 len , m2 e len ;
s i z e t m2 l1 , m2 l2 ;

unsigned char ∗ m3 e ;
s i z e t m3 e len ;

unsigned char ∗ p ;

// f o r encrypt ion tags
unsigned char ∗ etag = mal loc ( 4 ) ;

BIO ∗ bio = socket connec t ( ) ;

pkey = get pkey (&pkey len , ’A ’ ) ;
skey = get skey (&skey l en , ’A ’ ) ;
xkey = get xkey (&xkey len , ’A ’ ) ;

/∗ Send message 1 ∗/

m1 len = SIZE NONCE + 4 + pkey l en
+ s izeof ( s i z e t ) ;

p = m1 = mal loc ( m1 len ) ;
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memcpy(p , ”msg1 ” , 4 ) ;
p += 4 ;
∗ ( s i z e t ∗) p = SIZE NONCE ;
p += s izeof ( s i z e t ) ;
Na = p ;
nonce (Na ) ;
p += SIZE NONCE ;
memcpy(p , pkey , pkey l en ) ;

m1 e len = enc r yp t l en ( xkey , xkey len ,
m1, m1 len ) ;

m1 a l l l en = m1 e len + s izeof ( s i z e t ) + 4 ;
m1 al l = mal loc ( m1 a l l l en ) ;
memcpy( m1 al l , ”encr ” , 4 ) ;
m1 e len =

encrypt ( xkey , xkey len , m1,
m1 len ,
m1 al l + s izeof ( m1 e len ) + 4 ) ;

m1 a l l l en = m1 e len + s izeof ( s i z e t ) + 4 ;
∗ ( s i z e t ∗) ( m1 al l + 4) = m1 e len ;

send ( bio , m1 al l , m1 a l l l en ) ;

/∗ Receive message 2 ∗/

recv ( bio , etag , 4 ) ;
recv ( bio , (unsigned char∗) &m2 e len ,

s izeof ( m2 e len ) ) ;
m2 e = mal loc ( m2 e len ) ;
recv ( bio , m2 e , m2 e len ) ;

m2 len = dec r yp t l en ( skey , skey l en ,
m2 e , m2 e len ) ;

m2 = mal loc ( m2 len ) ;
m2 len =

decrypt ( skey , skey l en ,
m2 e , m2 e len , m2) ;

i f ( xkey l en + 2 ∗ SIZE NONCE
+ 2 ∗ s izeof ( s i z e t ) + 4 != m2 len )

{
p r i n t f ( ”A: m2 has wrong l ength \n” ) ;
e x i t ( 1 ) ;

}

i f (memcmp(m2, ”msg2 ” , 4) )
{

p r i n t f ( ”A: m2 not proper l y tagged \n” ) ;
e x i t ( 1 ) ;

}

m2 l1 = ∗( s i z e t ∗) (m2 + 4 ) ;
m2 l2 = ∗( s i z e t ∗) (m2 + 4 + s izeof ( s i z e t ) ) ;

i f (m2 l1 != SIZE NONCE)
{

p r i n t f ( ”A: m2 has wrong l ength f o r xNa\n” ) ;
e x i t ( 1 ) ;

}

i f (m2 l2 != SIZE NONCE)
{

p r i n t f ( ”A: m2 has wrong l ength f o r xNb\n” ) ;
e x i t ( 1 ) ;

}

i f (memcmp(m2 + 4 + 2 ∗ s izeof ( s i z e t ) ,
Na , m2 l1 ) )

{
p r i n t f ( ”A: xNa in m2 doesn ’ t match Na\n” ) ;
e x i t ( 1 ) ;

}

#ifndef LOWEATTACK
i f (memcmp(m2 + m2 l1 + m2 l2

+ 2 ∗ s izeof ( s i z e t ) + 4 ,
xkey , xkey l en ) )

{
p r i n t f ( ”A: x xkey in m2 doesn ’ t match xkey\n” ) ;
e x i t ( 1 ) ;

}
#endif

xNb = m2 + m2 l1 + 2 ∗ s izeof ( s i z e t ) + 4 ;

/∗ Send message 3 ∗/

m3 e len = enc r yp t l en ( xkey , xkey len ,
xNb , m2 l2 ) ;

m3 e = mal loc ( m3 e len + s izeof ( s i z e t ) + 4 ) ;
memcpy(m3 e , ”encr ” , 4 ) ;
m3 e len =

encrypt ( xkey , xkey len , xNb ,
m2 l2 ,
m3 e + s izeof ( m3 e len ) + 4 ) ;

∗ ( s i z e t ∗ ) ( m3 e + 4) = m3 e len ;

send ( bio , m3 e ,
m3 e len + s izeof ( m3 e len ) + 4 ) ;

return 0 ;
}

H.2 Proxy Functions
We show examples of proxy functions that replace calls to

nonce, encrypt, etc. in the symbolic execution. Each func-
tion starts by calling the actual function that it replaces
so that the concrete execution can proceed as usual—recall
that we observe a run of the program in order to identify
the main path. The proxy functions then call the special
symbolic interface functions to create new symbolic values
and place them in memory. These symbolic interface func-
tions are interpreted specially by the symbolic execution and
perform the following actions:

• load buf ( const unsigned char ∗ buf ,
s i z e t len , const char ∗ h in t )

Retrieves from memory the expression located at buf

of length len and places it on the stack. The value
hint is attached to the expression for naming purposes.
For instance, the names of variables in the IML model
shown in appendix H.3 are derived from hints.

• store buf ( const unsigned char ∗ buf )

Takes an expression from the stack and stores it in the
location in memory pointed to by buf.

• symL( const char ∗ sym , const char ∗ hint ,
s i z e t len , int d e t e rm i n i s t i c )

Applies the operation sym to all the expressions on
the stack as parameters. Sets the length of the new
expression to be equal to len. The last parameter
can be used to specify that the application is non-
deterministic, that is, conceptually it takes an extra
random argument, without having to specify that ar-
gument explicitly. Calls to this function are also used
to model random variable generation. For instance,
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the symbol nonce created in nonce_proxy is treated
specially and translates to the ν operator of IML.

• symN( const char ∗ sym , const char ∗ hint ,
s i z e t ∗ len , int d e t e rm i n i s t i c )

Behaves like symL, but instead of assigning a known
length to the new expression e, keeps its length unre-
stricted and writes len(e) into len.

The proxy functions are trusted to represent the true
behaviour of the actual cryptographic operations. For in-
stance, the function encrypt is supposed to check the well-
formedness of the key (corresponding to the symbolic opera-
tion isek). The actual cryptographic functions are required
to satisfy the conditions listed in appendix G for the sound-
ness result to hold.

void nonce proxy (unsigned char ∗ N)
{

nonce (N) ;

symL( ”nonce ” , ”nonce ” , SIZE NONCE , FALSE) ;
store buf (N) ;

}

s i z e t encrypt l en proxy (unsigned char ∗ key ,
s i z e t keylen ,
unsigned char ∗ in ,
s i z e t i n l en )

{
s i z e t r e t =

enc r yp t l en ( key , keylen , in , i n l en ) ;

symL( ”enc r yp t l en ” , ” l en ” , s izeof ( r e t ) , FALSE) ;
store buf (& r e t ) ;

i f ( r e t < 0) e x i t ( 1 ) ;

return r e t ;
}

s i z e t encrypt proxy (unsigned char ∗ key ,
s i z e t keylen ,
unsigned char ∗ in ,
s i z e t in l en ,
unsigned char ∗ out )

{
s i z e t r e t =

encrypt ( key , keylen , in , i n l en , out ) ;

unsigned char nonce [SIZE NONCE ] ;

nonce proxy ( nonce ) ;

load buf ( key , keylen , ”key ” ) ;
symN( ” i s e k ” , ”key ” , NULL, TRUE) ;
load buf ( in , i n l en , ”msg” ) ;
load buf ( nonce , SIZE NONCE , ”nonce ” ) ;
symN( ”E” , ”c ipher ” , &ret , TRUE) ;
store buf ( out ) ;

i f ( r e t > encrypt l en proxy ( key , keylen ,
in , i n l en ) )

f a i l ( ”encrypt proxy : bad l ength ” ) ;

return r e t ;
}

unsigned char ∗ get pkey proxy ( s i z e t ∗ len ,
char s i d e )

{

unsigned char ∗ r e t = get pkey ( len , s i d e ) ;

char name [ ] = ”pkX” ;
name [ 2 ] = s i d e ;

readenv ( ret , len , name ) ;

return r e t ;
}

H.3 IML Model
The IML model extracted from both the client and the

server is shown below. The notation e〈l〉 is a shorthand
for “e such that len(e) = l”. For instance, in(c, var1<8>);
means in(c, var1); if len(var1) = 8 then.

The model contains several castToInt expressions. These
result from the fact that the implementation uses size_t as
the length type, but the OpenSSL functions that we call use
int. These type conversions are recorded during the sym-
bolic execution. For now we assume no numeric overflows,
as mentioned in section 8, so the casts are removed before
translating to pi.

let A =
new nonce1<20>;
let msg1 = 6d736731|i20|nonce1|pkA in

new nonce2<20>;
let cipher1 = E(isek(pkX), msg1, nonce2) in
let msg2 = 656e6372|len(cipher1)<8>|cipher1 in

out(c, msg2);
in(c, msg3<8>);
let var1 = (msg3 castToInt TSBase(int ))

castToInt TSBase(unsigned long ) in

in(c, msg4<var1>);
let msg5 = D(skA, msg4) in
if len(pkX)<8> + i40 + i16 + i4 = len(msg5)<8> then

if msg5{0, 4} = 6d736732 then

if msg5{4, 8} = i20 then

if msg5{12, 8} = i20 then
let var2 = msg5{20, msg5{4, 8}} in

if var2 = nonce1 then

let var3 =
msg5{msg5{4, 8} + msg5{12, 8} + i16 + i4,

len(msg5) − (msg5{4, 8} + msg5{12, 8} + i16 + i4)} in

if var3 = pkX then

let msg6 = msg5{msg5{4, 8} + i16 + i4, msg5{12, 8}} in
new nonce3<20>;
let cipher2 = E(isek(pkX), msg6, nonce3) in

let msg7 = 656e6372|len(cipher2)<8>|cipher2 in
out(c, msg7); 0.

let B =
in(c, msg1<8>);
let var1 = (msg1 castToInt TSBase(int ))

castToInt TSBase(unsigned long ) in

in(c, msg2<var1>);
let msg3 = D(skB, msg2) in
if len(pkX)<8> + i8 + i20 + i4 = len(msg3)<8> then

if msg3{0, 4} = 6d736731 then

if msg3{4, 8} = i20 then
let var2 = msg3{i8 + msg3{4, 8} + i4,

len(msg3) − (i8 + msg3{4, 8} + i4)} in

if var2 = pkX then

let var3 = msg3{4, 8} in
let var4 = msg3{12, msg3{4, 8}} in

new nonce1<20>;
let msg4 = 6d736732|var3|i20|var4|nonce1|pkB in
new nonce2<20>;
let cipher1 = E(isek(pkX), msg4, nonce2) in

let msg5 = 656e6372|len(cipher1)<8>|cipher1 in

out(c, msg5);
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in(c, msg6<8>);
let var5 = (msg6 castToInt TSBase(int ))

castToInt TSBase(unsigned long ) in

in(c, msg7<var5>);
let msg8 = D(skB, msg7) in

if len(msg8)<8> = i20 then

if msg8 = nonce1 then
event endB(); 0.

H.4 ProVerif Model
The ProVerif model resulting from the translation of the

IML process is shown below. The processes A and B as well
as the symbolic rules for the new encoding and parsing ex-
pressions conci and parsei are generated automatically from
the source IML process. The rules for encryption and de-
cryption, the query, and the environment process (including
A′ and B′) are specified by hand.

The events are used without parameters—this is a limita-
tion of the result in [4], but our symbolic execution as well
as ProVerif can easily deal with parameterised events. The
modelling is similar to [13, 4]. There the client A′ executes
an event beginA() only if it is supposed to talk to B and B′

executes an event endB() only if it supposed to talk to A.
The event endB() is executed at the end, so conceptually
B′ needs to execute

if pkX = pkA then B; event endB(). else B.

Unfortunately, B; event endB(). does not form a valid pro-
cess, so we use an equivalent formulation using an event
notA() instead—endB() is always executed, but it is counted
only if notA() has not been executed.

The meaning of if-statements in pi is different from their
meaning in IML. A pi calculus statement if e1 = e2 then P
corresponds to the IML let = eq(e1, e2) in P .

free c.
fun ek/1.
fun dk/1.
fun E/3.
reduc
D(dk(a), E(ek(a), x, r)) = x.

reduc
isek (ek(a)) = ek(a).

data conc2/2.

data conc5/3.

data conc11/1.

reduc
parse2(conc5(x0, x1, x2)) = x0.

reduc
parse3(conc5(x0, x1, x2)) = x2.

reduc
parse4(conc5(x0, x1, x2)) = x1.

reduc
parse6(conc2(x0, x1)) = x1.

reduc
parse7(conc2(x0, x1)) = x0.

query
ev:endB() ==> ev:beginA() | ev:notA().

query
ev:endB() ==> ev:notA().

let A =

new nonce1;
new nonce2;
let var1 =
conc11(E(isek(pkX), conc2(nonce1, pkA), nonce2)) in

out(c, var1);
in(c, msg1);
in(c, var2);
let var3 = parse2(D(skA, var2)) in

if var3 = nonce1 then

let var4 = parse3(D(skA, var2)) in

if var4 = pkX then
new nonce3;
let var5 =
conc11(E(isek(pkX), parse4(D(skA, var2)), nonce3)) in

out(c, var5); 0.

let B =
in(c, msg2);
in(c, var27);
let var28 = parse6(D(skB, var27)) in

if var28 = pkX then
new nonce4;
new nonce5;
let var29 =
conc11(E(isek(pkX),

conc5(parse7(D(skB, var27)), nonce4, pkB),
nonce5)) in

out(c, var29);
in(c, msg3);
in(c, var30);
let var31 = D(skB, var30) in

if var31 = nonce4 then
event endB(); 0.

let A’ =
in(c, pkX);

if pkX = pkB then
event beginA(); A
else A.

let B’ =
in(c, pkX);

if pkX = pkA then B else
event notA(); B.

process
!
new A; new B;
let pkA = ek(A) in

let skA = dk(A) in
let pkB = ek(B) in

let skB = dk(B) in

out(c, pkA); out(c, pkB);
(! A’ | ! B’)

29
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