
Naming Anonymous JavaScript Functions

Salman Mirghasemi
École Polytechnique Fédérale de

Lausanne(EPFL)
salman.mirghasemi@epfl.ch

John J. Barton ∗

IBM Research - Almaden
bartonjj@us.ibm.com

Claude Petitpierre
École Polytechnique Fédérale de

Lausanne(EPFL)
claude.petitpierre@epfl.ch

Abstract
JavaScript developers create programs by calling functions
and they use functions to construct objects. JavaScript de-
velopment tools need to report to developers about those
functions and constructors, for example in debugger call-
stacks and in object representations. However, most func-
tions are anonymous: developers need not to specify names
for functions. Based on our analysis of ten large, widely
used JavaScript projects, less than 7% of JavaScript func-
tions are named by developers. After studying examples
from these JavaScript projects, we propose Static Function-
Object Consumption, a principled, automated approach
based on local source code analysis for providing names to
nameless JavaScript functions. We applied our approach to
90000 anonymous functions that appeared in the analyzed
JavaScript projects. The approach is successful in naming
more than 99% (91% are unique within their file) of anony-
mous functions while the average length of function names
is kept less than 37 characters.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids; D.2.6 [Programming Envi-
ronments]: Integrated environments

General Terms Algorithms, Human Factors, Languages

Keywords JavaScript, Anonymous Function, Debugger

1. Introduction
The unique and important role of JavaScript in web pro-
gramming is undeniable. Along with the wave of “Web 2.0,”
JavaScript has become the inevitable part of almost every

∗ The author’s current affiliation is: Google, Inc, Mountain View, CA, john-
jbarton@google.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
Copyright © 2011 ACM 978-1-4503-0942-4/11/10. . . $10.00

modern web site1. It is very likely that JavaScript keeps
this crucial role for the next few years or even the next
decade. Due to the growth of demands for more compre-
hensive user interfaces, the size and the complexity of web
applications are increasing. Moreover, JavaScript is also be-
coming a general-purpose computing platform [17] for of-
fice applications [14, 15], browsers [9, 10], program devel-
opment environments [13], and even server-side applications
[5, 18].

To cope with these large and sophisticated systems,
JavaScript developers turn to development tools. One prime
example is a runtime debugger: The developer can halt a
running program and examine the program state and execu-
tion call stack. All of these tools need to express program
artifacts in a compact way that the developer can under-
stand. For example, the debugger must present the execution
call stack so the developer can understand which functions
are currently active. Obviously, a particularly good compact
representation would be a name given by the developer in
the source code. However, the JavaScript language does not
require names for many program artifacts, and, as we shall
see, nameless or anonymous artifacts are more common than
named ones. Anonymous artifacts prevent tools from com-
municating effectively with developers.

Among program artifacts, functions are central to under-
standing a JavaScript program. In addition to their role in
the execution stack, they are first-class objects that are used
for different purposes by developers; they may be used as an
object constructor, a closure scope (module), or even passed
as an argument in a function call. These functions can be
defined and created without a name or identifier.

In this paper, we analyze 10 large, well-known projects.
We show that within these projects, less than 7% of the func-
tion bodies are named. We analyze the syntactic constructs
surrounding these function bodies and rationalize how de-
velopers think about the bodies in relation to the structure of
the code.

We propose an automated approach based on extracted
data from the source code for naming JavaScript functions.
The candidate function names can be used in debuggers for

1 As an evidence, JavaScript is used in all the Web’s 100 most popular sites
[16].

Project Ver. Description Total Named
Closure r683 Google Web Library 9195 208(2%)
DoJo 1.5 JavaScript Toolkit 18676 2810(15%)
ExtJS 3.3.1 JavaScript Framework 37717 1184(3%)
Firebug 1.7 Web Development Tool 3424 406(11%)
jQuery 1.4.4 JavaScript Library 422 23(5%)
MochiKit 1.4.2 JavaScript Library 1866 37(1%)
MooTools 1.3 JavaScript Framework 625 7(1%)
Prototype 1.7 JavaScript Framework 645 203(31%)
Scriptaculous 1.9 JavaScript Library 1092 208(19%)
YUI 3.3 Yahoo UI Library 22346 922(4%)
All All Projects 96008 6008(6.3%)

Table 1. The total number of functions and the number of
named (and percent named) functions in ten large JavaScript
projects. See appendix 1 for the project citations.

more descriptive object summaries and call-stack views, or
in integration with proposed JavaScript typing systems for
providing modern editing features in development environ-
ments.

2. The Anonymous Function Problem
A JavaScript function can be defined with the function def-
inition or the Function constructor (i.e., new Function(
args, source)) [7]. The function definition can appear
in a function declaration, function expression, or function
statement. Of these forms, only the function declaration re-
quires a function name and the Function constructor has no
mechanism to name the function. In other words, JavaScript
developers can define functions with or without function
names.

If you are unfamiliar with JavaScript or other functional
programming languages, you might imagine that developers
would naturally select the form with names, simply as an
organizational tool. However this is not the case. Functions
in JavaScript are first-class objects. They can be assigned to
any variable or object property, or passed as an argument to
a function. Consequently JavaScript programmers can use
these other constructs to organize their thinking about the
program, without the use of function names.

So what do JavaScript developers do in practice? To get
empirical evidence we analyzed the source code of ten well-
known JavaScript projects2. For every project, the total num-
ber of functions and the number of functions with an identi-
fier are shown in Table 1. The average ratio of named func-
tions to all functions is less then 7 percent and, excepting
one project, Prototype, the ratio does not exceed 13 per-
cent. Among all functions only a very limited number of
them (116 functions) are defined by the Function con-
structor. Our analysis does not include the functions defined
dynamically by eval function or new Function(); these
cases would only make the ratio even smaller. Therefore, we

2 We did not perform any preprocess to exclude third-party or repeated files
in the provided source code bundles.

9 var main = f u n c t i o n () { / / main
10 var foo = new Foo (
11 f u n c t i o n (){ / / main / foo<
12 t h i s . welcome = ” Hi ! ” ;
13 }) ;
14 var b a r = new Bar (” GoodBye . ”) ;
15 a l e r t (foo . welcome) ;
16 a l e r t (b a r . message) ;
17 } ;
18 var Foo = f u n c t i o n (){ / / Foo<
19 var i n s t a n c e s ;
20 re turn f u n c t i o n (i n i t i a l i z e r){ / / Foo
21 i n s t a n c e s ++;
22 i n i t i a l i z e r . a p p l y (t h i s) ;
23 }
24 } () ;
25 var Baz = Bar = f u n c t i o n (msg){ / / Bar
26 t h i s . message = msg ;
27 }

Figure 1. An excerpt of a JavaScript code illustrating
anonymous functions. The comments give the results from
Sec. 5 and these are discussed in Sec. 5.5

conclude that a large proportion of JavaScript functions are
anonymous.

To understand the consequences of anonymous functions
on development tools we will focus on one example, the
impact on debuggers. Two main issues appear in debuggers
due to the lack of function name. First, the object constructor
name, which can facilitate understanding the object value, is
not available in the object summary. Second, the call-stack
view is usually full of anonymous functions and therefore
much less informative. We discuss these issues in the next
two subsections.

2.1 Missed Constructor Name in Object Summary
JavaScript does not support classes, but objects can be cre-
ated by constructors (new followed by a function call). A
constructor is a regular JavaScript function. Once the new
keyword is evaluated, an empty object, with the construc-
tor prototype as its prototype, is created, then the new object
is bound to this and the constructor is called. The role of
constructor is to initialize the empty object. Unlike class-
based object-oriented languages, the structure of the object
may change during the object’s lifetime [17]. Nevertheless,
the constructor can still be useful in classifying the object
most of the time. Debuggers employ this fact and display
the constructor name in the object summary to facilitate the
developer’s understanding.

Figure 1 shows an excerpt of a JavaScript program we
use to illustrate this issue. We set a breakpoint on line 15
and examine the runtime elements at this breakpoint by two
JavaScript debuggers, Google Chrome and Firebug (Fig-
ure 2). Two objects assigned to variables foo and bar are
constructed by two different constructors: Foo and Bar.

The Google Chrome debugger shows the general class
of Object for foo and the Baz.Bar class for bar in their
summaries. The first class is very general and the second

(a) Google Chrome Debugger (b) Firebug

Figure 2. The screenshot of variables view of Google Chrome and Firebug JavaScript debuggers paused on a breakpoint at
line 15 of the program shown in Figure 1. The content of these views is discussed in Sec. 2.1

one is misleading. The developer has to expand the object
nodes to recognize their similarities and differences.

Firebug classifies both objects in the general Object
class, but includes some of the object properties in the sum-
mary. These additional properties may give a hint to the de-
veloper about the object structures. Foo and Bar definitions
at lines 20 and 25 explain the debuggers’ behavior: the func-
tion statements has no explicit name (identifier), therefore
debuggers considered them as anonymous functions or they
infer a misleading name.

2.2 Anonymous Function Names in Call-stack View
The second problem is the call-stack. To illustrate this, we
pause the program (Figure 1) at line 12 by a breakpoint.
Figure 3 shows how the program call-stack is displayed in
Google Chrome debugger and Firebug. The differences in
the number of frames and line numbers between two call-
stacks are due to dissimilar event handling implementations
in the underlying platforms. Among the three top functions
in the call stack, Google Chrome shows only the name of the
third one down, function (main), correctly. For the second
frame from the top (marked as line 22), it shows anonymous,
and for the top frame (marked at line 12), it gives a wrong
name, foo. Firebug performs better by guessing two func-
tion names correctly, but it still fails in one case. It shows
main as the name of the function on the top frame (marked
at line 12) but this is the name of another function (the en-
closing function at line 9). In these cases, the information
provided by the debugger is useless and the developer has to
locate the function source to understand or recall the func-
tion behavior.

3. Automated Function Naming
The anonymous functions problem is discussed in several
articles and forums on the Web [6, 20]. Different solutions
have been proposed and discussed by practitioners. A basic
solution is a mechanism for naming functions by develop-
ers without affecting the variables in scopes. For example, a
new property (e.g., displayName) in the function object can
be used for storing the function name, or the function name
can be defined by an annotation. Although these solutions
may help, they require extra work from developers, the dis-
playName value can become out of sync with the meaning

of the code over time, the annotation may be incorrectly rec-
ognized in programs that use the same property name for
another purpose, and maintenance of the debugger becomes
more difficult once the call-stack names can be overridden
by user code.

We instead propose an automated approach for naming
anonymous functions by analyzing the source code. Before
getting into explaining the algorithm details we discuss the
rationale behind some of decisions we made in this ap-
proach.

3.1 What Should Be Named?
A statement defining a function creates a new Function ob-
ject. The definition may be evaluated multiple times, and de-
pending on the times a function definition is evaluated, zero
to many Function objects can be created from the same
definition. Two function objects which are created from the
same function body may have different object properties
added at runtime. They may also have different enclosing
scopes and therefore different behaviors. Thus our first ques-
tion: do we try to name the Function objects or the source
that defines them?

For the common cases, the different Function objects
are bound to one or more properties of objects. The names
of these properties inform the developer about the role of the
function in the actions of the object. To determine the actions
of the functions in turn, the developer must read the function
source (or perhaps its documentation). Our function names
serve to recall or summarize that source or documentation
for the developer. Therefore we seek to name the source, the
content between the curly braces known as the Function-
Body in the standard[7].

After reflection the reader may be puzzled by the pre-
ceding claim. On the one hand we claim that the function
object instance may be bound to properties in multiple ob-
jects and those property names are not helpful for naming.
On the other hand we will shortly introduce an algorithm that
uses a property name (in part) to name a FunctionBody. Ulti-
mately we are relying on a subtle characteristic of JavaScript
programming: the first binding of a Function to an object
property differs from all other bindings because it is located
in text near the FunctionBody and thus developers associate
this first binding with the meaning of the FunctionBody.

(a) Google Chrome Debugger (b) Firebug

Figure 3. The screenshot of call-stack view of Google Chrome and Firebug JavaScript debuggers paused on a breakpoint at
line 15 of the program shown in Figure 1. The contents of these views are discussed in Sec. 2.2

3.2 What Makes a Good Function Name?
A function name is basically used to assist the developer to
recall or understand the function behavior. For a developer
who is already familiar with the function, it works more
like an identifier. However, this identifier should be easily
recognized by the developer. For example, a naive proposal
for the function name is a combination of the function file
name and its first line number. Although it may work as
an identifier, it does not assist the developer to recall or
understand the function behavior.

On the other hand, for a developer who does not know the
function, a function name should explain the function behav-
ior, or an abstraction of the function behavior, or why/where
the function is used/defined (e.g., to create the object foo). A
function name must not be so long that it can not be dis-
played or read by the developer. For example, the entire
function body source code explains the function behavior
well, however it is not an appropriate function name.

3.3 Context, Package and Function Names
JavaScript does not support a standard packaging mech-
anism to be used for modular programming. Scripts are
loaded from different files and executed within the same or
different global objects. Developers usually use objects at
the top level to encapsulate objects, properties and functions
from a framework or library. The same mechanism is reused
for defining subpackages. As the project size and the num-
ber of functions increases, the short function name will not
be enough for recognizing the function. The developer also
wants the class or the module that contains the function. In
addition to the package name, knowing the context (the en-
closing function body) that contains the function can help in
better understanding the function behavior.

4. Building Up Intuition by Example
We know that we face an ill-defined task: we are after all
attempting to create short useful names for nameless func-
tions. We have to create salient information from source
code: we anticipate that removing characters will be our
biggest challenge. To create an algorithm we decided to
study the spectrum of examples from our 10 large collec-
tions of functions. We want to see what kinds of cases are

important and what aspects of these cases help us identify
functions. For this purpose we created 12 categories of func-
tion body expressions shown in Table 2 and we categorized
all of the nameless functions from the 10 JavaScript projects
into one of these 12 cases, giving the numerical results in
Table 3.

Description Code

1
property of a new
object in an object
literal.

{ ..., foo: function(){...}, ...}

2
is

as
si

gn
ed

to
a(

n)
new array index in
an array literal.

[..., function(){...}, ...]

3

T
he

fu
nc

tio
n

ob
je

ct

direct access by
a property identi-
fier.

bar*.foo = function(){...}

4 hashmap access
by a string.

bar*[”foo”] = function(){...}

5

ob
je

ct
pr

op
er

ty
th

ro
ug

h

hashmap access
by a variable
name.

bar*[foo] = function(){...}

6
hashmap access
by a JavaScript
expression.

bar*[foo*] = function(){...}

7 array index. foo*[0] = function(){...}

8 variable. foo = function(){...}

9 is directly called. function(){...}()

10 property is accessed. function(){...}.foo

11 is returned from a
function call.

{... return function(){...}}

12 is passed as an argument
to a function.

foo*(..., function(){}, ...)

Table 2. Different cases of anonymous function object cre-
ation and usage in JavaScript. Identifiers with a star in the
table can be expressions as well as simple identifiers; we ex-
plain how we reduce expressions to pseudo-identifier in 5.3.

1 2 3 4 5 6 7 8 9 10 11 12
Closure 23(0.3%) 0 8466(94%) 3 4 0 0 67(0.7%) 16(0.2%) 0 43(0.5%) 365(4%)
DOJO 9601(61%) 7 1765(11%) 21 24 2 1 1151(7%) 476(3%) 2 175(1%) 2641(17%)
ExtJS 30221(83%) 0 1476(4%) 3 40 9 0 859(2%) 788(2%) 180 517(1%) 2439(7%)
Firebug 2296(76%) 0 539(18%) 1 2 0 0 17(0.4%) 7(0.2%) 2 6(0.2%) 148(5%)
jQuery 233(58%) 0 34(9%) 0 10 2 0 24(6%) 10(2%) 0 0 86(21%)
MochiKit 1080(59%) 10 385(21%) 0 4 0 0 110(6%) 18(1%) 0 41(2%) 181(10%)
MooTools 339(55%) 0 79(13%) 0 4 3 0 53(9%) 21(3%) 20 14(2%) 85(13%)
Prototype 265(60%) 0 28(6%) 0 0 1 0 25(6%) 44(10%) 1 8(2%) 70(16%)
Scriptaculous 564(64%) 0 75(8%) 0 2 2 0 27(3%) 45(5%) 21 9(1%) 139(15%)
YUI 14154(66%) 7 1721(8%) 0 90 0 0 1181(6%) 172(1%) 0 95(0.5%) 4004(19%)
All 58776(65%) 24 14568(16%) 28 180 19 1 3514(4%) 1597(2%) 226 908(1%) 10072(11%)

Table 3. The number of nameless functions in each category defined in table 2.

Then we examine each of these cases to think about how
we want the functions named. We will skip over the nesting
of function scopes in the analysis to avoid taking on too
much at one time; we return to this aspect at the end of this
section.

4.1 Case 1: Object Property Initializer
This case usually appears when developers try to group a set
of functions in a new object. A common case is grouping a
set of functions in the prototype property of the construc-
tor. This structure resembles the class structure in traditional
object-oriented languages. When a new object is created by
the constructor, the new object also inherits all functions de-
fined in the constructor’s prototype. This structure is also
used when the owner object is a shared object with a set of
utility functions.

The majority of nameless functions (more than 65%)
in almost all studied projects (except Closure), are defined
in object literals. This case seems particularly simple: the
property name makes a good name for the function body. But
what logic are we implicitly applying here? Our reasoning:
the developer-invented property name has high information
content, it is textually close to the function body, and the
function object created by the function body initializes to
the property. These observations guide us in more complex
cases.

4.2 Case 2: Entry in an Array Literal
Contrary to the previous case the appearance of this case
is very limited. It usually appears in initializations or when
an array of functions are passed as an argument. Among
all projects only three have instances of nameless func-
tions defined in this way. For example array argument to
Event._attach in this example from YUI 3:

a t t a c h : f u n c t i o n (e l , n o t i f i e r , d e l e g a t e) {
i f (Y.DOM. isWindow (e l)) {

re turn Event . a t t a c h ([type , f u n c t i o n (e) {
n o t i f i e r . f i r e (e) ;

} , e l]) ;
}

}

3 The example is nested in more function definitions we do not show here.

The developer will probably think of the array entry as one
item in a collection passed to Event._attach. In general
we shall want to name these kinds of functions by the destiny
of the containing array.

4.3 Case 3: Property Assignment With Property
Identifier

This case is the second most common case in the studied
projects. Here, we can see why the Closure project is differ-
ent from other projects in the first case. About 94% of name-
less functions in this project are defined in this way. It seems
that the Closure developers follow an internal standard for
function objects creation and usage.

Following the model from Case 1, we think a good name
would combine the object name with the property identifier.
The complication in this case comes from the object name:
in general the object reference can be a computed expres-
sion4. Here is a simple example from the Closure project:

t h i s . e v e n t P o o l . c r e a t e O b j e c t = f u n c t i o n () {
re turn new goog . debug . T r a c e . E v e n t () ;

} ;

In general, the expression can be long and complex: to
create a useful name we need to focus on developer-invented
identifiers in the expression and work to keep the total num-
ber of characters small. For example, this. add no infor-
mation to the name since we cannot know the value of this
while parsing.

4.4 Case 4: Property Assignment With Property Name
String

In JavaScript, objects are like hashmaps and their properties
can also be accessed by a string specified in the brackets
after the object. Semantically this is the same as the previous
case and we see few instances of this form of function object
assignment. The string inside the brackets can be considered
a property identifier for naming.

4 This comment applies to all of the cases in table 2 marked with an asterisk
on the expression identifier

4.5 Case 5: Property Assignment With Property Name
Variable

Object member names can be variable references that get
converted to strings at runtime: this is syntactically similar to
Case 4, but we cannot (usually) statically compute the string
to use as a property identifier. The usage of this case is also
limited. This form usually appears when the same function
body is assigned to different properties in a loop. For exam-
ple see the inner function in Fig. 4. The variable name in the
cases we examined was a generic name like o or item. Un-
like the previous two cases, we do not have a specific prop-
erty name. Nevertheless identifying the function body using
the assignment target with the variable name as the property
name follows the reasoning used for the simple cases.

jQuery . each (” a j a x S t a r t a j a x S t o p a j a x C o m p l e t e a j a x E r r o r ”
. s p l i t (” ”) , f u n c t i o n (i , o) {

jQuery . fn [o] = f u n c t i o n (f) {
re turn t h i s . b i nd (o , f) ;

} ;
}) ;

Figure 4. An example of a function (the inner definition)
assigned to a hashmap using a variable name (row 5 in
Table 2) and an example of functions passed as arguments
to a function (row 11 in Table 2). The function is from the
jQuery library but simplified to fit on the page.

4.6 Case 6: Property Assignment With Property Name
Expressions

Object member names can be expressions that get converted
to strings at runtime: this is more general than case 5. A com-
mon case of expression in this case is a conditional expres-
sion, e.g., condition?"prop1":"prop2", where the prop-
erty that we assign the function to depends upon runtime
values. Another kind of example of computed names comes
from the Prototype project (reformatted to fit in the page):

f u n c t i o n d e f i n e (D) {
i f (! e l e m e n t) e l e m e n t = g e t R o o t E l e m e n t () ;
p r o p e r t y [D] = ’ c l i e n t ’ + D;
v i e w p o r t [’ ge t ’ + D] = f u n c t i o n () {

re turn e l e m e n t [p r o p e r t y [D]]
} ;
re turn v i e w p o r t [’ ge t ’ + D] () ;

}

The word get is concatenated with the toString() value
of the argument D at runtime to create the property name.
Unlike Case 5, the property name expression need not
be a simple developer-invented identifier. In this example,
viewport[getD] could be a good name, but in general we
will need to process the expression to balance length with
information.

Notice that from the programming language point of
view, Cases 3 through 6 are all special cases of Case 6. After
all we are just selecting an object property in all of these
cases. But from a naming point of view these cases present

different challenges and the more complex cases will make
our necessary tradeoffs more costly.

4.7 Case 7: Assignment to an Element of an Array
We only observed one instance of this form in the studied
projects. The numerical index should clearly be part of the
name; the array name may be an expression that we have to
analyze to create name.

4.8 Case 8: Assignment to a Variable
This case is widely used and we expect developers would
expect the function body to get the name of the variable.
As the function objects’ bodies are immutable, it is very
likely that a function object which is assigned to a variable,
is used with the same variable name in the function scope
and its internal scopes. There are cases in which a variable
name is used temporarily, as the function is passed to another
function or assigned to an object property. However, in most
cases the variable name works well as the function name.

4.9 Case 9: Anonymous Functions Immediately Called
Calling function objects just after their creations is a com-
mon pattern in JavaScript. For example see the assignment
to Y.ClassNameManager in Fig. 5 (the function is called at
the bottom of the example).

Y. ClassNameManager = f u n c t i o n () {
var s P r e f i x = CONFIG[CLASS NAME PREFIX] ,
s D e l i m i t e r = CONFIG[CLASS NAME DELIMITER] ;
re turn {

getClassName : Y. cached (f u n c t i o n () {
var a r g s = Y. Array (a rgumen t s) ;
i f (a r g s [a r g s . l e n g t h −1] !== t r u e) {

a r g s . u n s h i f t (s P r e f i x) ;
} e l s e {

a r g s . pop () ;
}
re turn a r g s . j o i n (s D e l i m i t e r) ;

})
} ;
} () ;

Figure 5. An example the YUI project of function bodies
from cases 9 (the outer function) and 12 (the argument to
Y.cached) from Table 2

If the called-function is assigned to a variable or object
property, then we have a version of one of the other cases in
Table 2. The difference here is that we can tell from static
analysis that the assignment will use the return value of
the function, not the function object itself. But for naming
purposes the key information will be the assignment target.

If the function call has no result, it means that the func-
tion performs one task (e.g., initialization of some values in
the outer scope for later use). In this case we cannot use the
assignment target idea from Case 1, but the source proximity
and the developer-invented names concepts point to using in-
terior identifiers in a name. To avoid confusing the developer
by using the same name for the outer and interior functions,

we will need some way to signify that the name we create in
this way is for an immediately called function.

4.10 Case 10: Function Property is Accessed
In this unusual case a property of the function is accessed
directly from the function body. This case usually happens
when one of the predefined functions (i.e., call, apply,
bind) or added functions to the Function prototype is
called. Here is an example, from ExtJS, reformatted for dis-
play here:

s e t V i s i b l e : f u n c t i o n (v , a , d , c , e){
i f (v){

t h i s . showAct ion () ;
}
i f (a && v){

var cb = f u n c t i o n (){
t h i s . sync (t r u e) ;

i f (c){
c () ;

}
} . c r e a t e D e l e g a t e (t h i s) ;

}
/ /

}

The inner function body is not used directly, but the result
of createDelegate is assigned to cb. The most valuable
information here is the variable name cb, followed by the
createDelegate function name. This example also illus-
trates that automatic naming could have an effect on devel-
opers coding style: giving a longer name for cb would give
better names in development tools but currently developers
have limited expectations that tools will show such informa-
tion.

4.11 Case 11: Returned From a Function Call
In this case the function body appears in a return state-
ment of another function body. Although this category
only includes 2% of nameless functions, proper naming
of functions in this class is important. Many constructors
are built using this form and therefore the names of these
functions appear in object summaries. Clearly the name of
these returned functions is almost the same as the name
of the functions that define them. For example, in Fig. 6
a developer might pick names like registerWinOnIE and
registerWinNotOnIE for the functions returned by the
Dojo function registerWin.

4.12 Case 12: Function Passed as an Argument
Numbers in table 3 show that creating and passing functions
as arguments is very common in JavaScript. For example,
see Fig. 4. The calling function and the other arguments
look helpful, to the extent that they have identifiers invented
by the developer. As in this example, we see that the call-
ing function, jQuery.each(), can be generic so it provides
less valuable information, but the arguments in that exam-
ple are highly specific to the function body. Fig. 5 shows
different example, where the function called (Y.Cached())
seems much less important for naming the function than the

r e g i s t e r W i n : f u n c t i o n (targetWindow , e f f e c t i v e N o d e){
. . .
i f (doc){

i f (do jo . i s I E){
. . . .
re turn f u n c t i o n (){

doc . d e t a c h E v e n t (’ onmousedown ’ , mousedownLis tener) ;
doc . d e t a c h E v e n t (’ o n a c t i v a t e ’ , a c t i v a t e L i s t e n e r) ;
doc . d e t a c h E v e n t (’ o n d e a c t i v a t e ’ , d e a c t i v a t e L i s t e n e r) ;
doc = n u l l ;
} ;
} e l s e {

. . . .
re turn f u n c t i o n (){

doc . r e m o v e E v e n t L i s t e n e r (
’ mousedown ’ , mousedownLis tener , t r u e) ;

doc . r e m o v e E v e n t L i s t e n e r (’ focus ’ , f o c u s L i s t e n e r , t r u e) ;
doc . r e m o v e E v e n t L i s t e n e r (’ b l u r ’ , b l u r L i s t e n e r , t r u e) ;
doc = n u l l ;
} ;

}}} ,

Figure 6. An example of a function body in a return state-
ment, case 11 of Table 2 adapted from the Dojo project code

property that we initialize with the result of calling the func-
tion. This important case will stress any naming algorithm:
we somehow have to summarize the function call – which
itself may be an expression – and the other arguments – any
or all of which may be expressions.

4.13 Results of Studying Examples
We reached two main conclusions from studying the way
anonymous functions are used in the source of the 10
projects we examined. First, we want to try to find the name
of the initializer or assignment target that will receive the
function object created from a function body. JavaScript
programmers are creating anonymous functions but they are
loading them into object references and the expressions that
result in those references have informative identifiers inside.
Second, these expressions that we focus on may often be
simple identifiers, but if they are not we will need to analyze
the source code of these expressions to extract meaning-
ful summaries. This summary has to balance information
against length.

Overlaying our analysis above is hierarchy: any of the
cases can be nested in function scopes. Obviously this hi-
erarchy must be represented in our names. Algorithmically
this is straight forward recursion. But from the name usabil-
ity point of view, deep hierarchy means long names, exactly
the problem we want to avoid. Fortunately developers are
well trained in dealing with this kind of problem and we an-
ticipate that hierarchical names can be shown to users in pro-
gressive depth depending on the particular needs in the user
interface.

5. Static Function Object Consumption
Using our analysis we have created a preliminary automatic
naming solution. The three parts of our solution match three
observations for our study. First we apply (Static) Func-

tion Object Consumption, which tracks the function object
created from a function body to where the object is ’con-
sumed’, for example by assignment to or initialization of
an object property, variable reference, or function argument.
The ”static” qualifier just indicates that we will only use a
parser. Second, we reduce complex expressions to pseudo-
identifiers focusing on developer-invented names. Third we
apply our approach hierarchically to deal with nested func-
tion bodies.

We will describe the details in the next sections. In con-
structing names we realized one additional aspect: as we
move from simple object property names to more complex
examples, the path of the object consumption is an added bit
of information helpful in naming. Thus we add some sym-
bols to guide the developer to the function body in complex
cases: in this way the extra information does not take a lot of
space and it can be ignored by developers who have not yet
learned about its significance. We describe these symbols in
Sec. 5.4.

5.1 Consumption Summary Algorithm
We parse the JavaScript and search the resulting syn-

tax tree for function body nodes. For each function body,
we apply the algorithm outlined in Algorithm 1. The ba-
sic idea (the while loop) is to walk the syntax tree from
the body up through parent nodes until we hit a node that
is not a JavaScript expression. For each node we create an
entry in a list and record in it information about the relation-
ship between the node and its parent. We’ll use this relation-
ship information in Sec. 5.4. Then for each node we record
developer-invented identifiers related to the destiny of the
function object created from the body as outlined in Table 4.
For the first and third rows of the table we record the infor-
mation recursively; for the second row, assignment node, we
record the information after the loop terminates. The algo-
rithm ends when we reach a node which is an assignment or
a statement which does not return any value (i.e., the node
is not an expression). The algorithm result is an object con-
sumption summary, a list of collected data at every visited
parent node of the function body.

The algorithm uses three subroutines: getNextNode,
nameExpression, and argSummary. The getNextNode
routine normally returns n.parent, but we also use this
point in the algorithm to handle an important special case,
function bodies inside of immediate functions typically used
for modularity or scoping in JavaScript. We discuss this
case in Sec. 5.2. The remaining two subroutines construct
a pseudo-identifier from the expression as described in 5.3;
they return their argument if it is simply an identifier.

5.2 Consumption by Immediate Functions
JavaScript developers use function scope to dynamically
create functions with shared but private state. In this pattern,
an enclosing function contains a number of function and
object definitions and it is called immediately after it is

Algorithm 1 Compute Object Consumption Summary for
Function Body Nodes
Input: Function Body Node n in Abstract Syntax Tree
Output: Object Consumption Summary

List summary = new List()
while n.parent is an expression do

dataItem = new DataItem()
if n value is same as n.parent value then

dataItem.isSameAs = true
else if n value is a property of n.parent value then

dataItem.isPartOf = true
else

dataItem.isContributesTo = true
end if
if n.parent is a function call and n is an argument then

dataItem.isFunctionCall = true
dataItem.id = nameExpression(n.parent)
dataItem.hint = argSummary(n.parent)

else if n.parent is an object literal and n is its expres-
sion then

dataItem.isObjLiteral = true
dataItem.id = n.parent property name

end if
summary.add(dataItem)
n = getNextNode(n)

end while
if n.parent is an assignment then

dataItem = new DataItem()
dataItem.isAssignment = true
dataItem.id = nameExpression(n.parent)
summary.add(dataItem)

end if
return summary

defined. We call these functions immediate functions. For
an example, see line 10 of the Figure 1 which is enclosed
in the function on line 9. If the developer returns a function
from this outer, immediate function, we want to follow the
returned object to where it is consumed.

To keep our core algorithm simple we handle these
returns from immediate functions as a special case. At
the end of each loop in Algorithm 1 at the point marked
getNextNode() we check to see if the parent is a return
node. If not we return the parent node and the loop con-
tinues. If we have a return node, we look to the parent
of the return node to see if it is a function node with
a parent call node (either directly with () or via apply()
or call()). If so, we know we are returning a function ob-
ject from an immediate function. We return the parent of the
immediate function, effectively skipping the intermediate
nodes so that the name will reflect the consumption of the
return value into the destination of the immediate function.

Description Code

1 is an object literal. { ..., foo: expr }

2

T
he

pa
re

nt
no

de

is a function call. foo*(..., expr, ...)

3 is an assignment. foo* = expr

Table 4. Nodes produce identifiers in the function object
consumption summary. Identifiers with a star in the table can
be expressions as well as simple identifiers; we explain how
we reduce expressions to pseudo-identifier in 5.3.

5.3 Expression Reductions
In simple cases the syntax tree node will have an identifier
we can use as part of our name. In more complex cases an
expression will be written in place of an identifier. We reduce
these expressions to pseudo-identifiers (i.e. not necessarily
a valid JavaScript identifier) that resembles the expression.
This work is done during the Object Consumption Summary
algorithm in the functions described here:

Identifiers for Function Arguments Search for all literal
string nodes in other arguments and concatenated them by
“-”, dropping characters beyond 10. (This work is on in
Algorithm 1 in argSummary).

Identifiers for Assignments and Function calls This func-
tion gets called for nodes resulting from the last 2 rows of
Table 4. The expressions here will evaluate to a writable
or readable address, so we want to extract the most specific
developer-invented identifiers from the expression. Thus we
apply the rules from Table 5, which starts from the right hand
side of the expression; we skip any JavaScript keywords like
this or prototype. We also skip any pattern which does
not match (e.g., a function call). (This work is on in Algo-
rithm 1 in nameExpressions.)

Obviously these rules are heuristic and can be improved
through experience and interaction with developers. We are
attempting to balance information content with length. Large
complex expressions will give pseudo-identifiers which are
complex, but with some identifiable parts adequate for de-
veloper recognition and search.

5.4 Conversion to a Name
At this stage of the algorithm we have a list of identifiers
with attributes which we want to concatenate to create a
name.

First we drop function-call identifiers if we have anything
else to use for a name. The function-call identifiers typically
tell us about a transformation of the function body before
it is assigned to an object property or variable. The trans-
formation may be used many places in the code, while the
assignment target is typically an identifier defined by the de-
veloper for a specific section of source code. See, for exam-
ple, function on line 14 and the function call on line 13 in

Description Pattern Name
Primitive value value.toString()
Variable id id
GetProp e.id Name(e).id
GetElem e1[e2] Name(e1)+[+Name(e2)+]
Operation e1 op e2 Name(e1)+op+Name(e2)
Condition cond?e1:e2 Name(e1)+:+Name(e2)

Table 5. JavaScript Expression Reduction to a Name. Ex-
pressions which match an entry in the pattern column are
converted as shown in the Name column. Here e indicates
an expression, id indicates an identifier, + means string con-
catenation and Name() means we apply the pattern matching
recursively.

the Figure 1. Specifically we drop identifiers from row 2 of
table 4 in any case where we have identifiers from rows 1 or
3. The outer function in Fig. 4 illustrates the opposite case,
where we do not drop function-call identifier.

Second we concatenate the identifiers with a symbol be-
tween each parent and child showing the relationship. As
shown in Algorithm 1, if the parent expression is an array or
object literal then the identifier will be marked as isPartOf
and we insert a dot character. If the identifier was marked as
isContributesTo we insert a left angle bracket. An identifier
marked isSameAs is skipped over because we already have
identifier information for it. An identifier marked isAssign-
ment suppresses any other marks to signify the importance
of the assigned-to identifier. Because some entries on the ob-
ject consumption list are empty strings we may have dupli-
cate symbols. Any duplicates are replaced by a single sym-
bol. The result contains identifiers (i.e., variable and property
names) and strings available in the source code plus some
explanatory tokens. It compactly explains the function ob-
ject creation, consumption and assignment.

The particular symbols we use may be refined with more
experience in how developers respond to them. Our intuition
is that these extra symbols need to be visually compact
because their purpose is to adjust the developers expectation
for the identifier. For example, the function on line 11 of
Fig. 1 is named main/foo< but the developer may only key
on the word foo to recall the function body.

The name built by the above process does not contain
any information about enclosing scopes. We call it local
name. We get the function full name (that is a local name
qualified by its position in the scope hierarchy) by adding the
enclosing function full-name with a slash before the local-
name, recursing through enclosing scopes. This full-name is
the function body name.

5.5 Examples
To further explain our approach we now apply it to the
JavaScript code presented in Figure 1. We can recognize five
function bodies in the code, none of them has a name.

The first function on line 9 is assigned to the variable
main. The parent node for the function body in the syntax

tree will be an assignment, so in Algorithm 1 we skip the
while loop and compute the nameExpression as main.
Ultimately this becomes the name of the function.

The second function on line 11 is nested in the first one.
It is passed as an argument to a constructor call on line 10
and the resulting object is assigned to foo. In Algorithm 1
we create two entries in the consumption summary, one
for the function call with identifier Foo and one for the
assignment with identifier foo. The first one gets marked
with isContributesTo. Following the logic in Sec. 5.4, we
drop the function call identifier but mark the name with < for
contributes-to. The resulting local name is foo< and the full
name includes the enclosing function name: main/foo<.

The third function on line 18 is called immediately after
definition, on line 24. This means the function body in the
syntax tree will have a parent from the immediate call and
then the assignment parent node; the call does not give us an
identifier but it does give a consumption summary entry with
isContributesTo. The name becomes Foo<.

The fourth function on line 20 is returned by Foo<. After
the first pass through the while loop in Algorithm 1 we enter
getNextNode and trigger the code described in Sec. 5.2.
This will cause us to walk up the syntax tree to find the
assignment target for the outer function. We end up with
name Foo. Because do not process the intermediate nodes in
the while loop we do not mark the name with contributes-to
and we do not record that the function is nested. Of course
the function body is nested, but it is bound to an un-nested
variable. To keep the name compact we choose not to encode
this complex information. Rather we stick to the simple
picture that the function ’is’ Foo. If the developer wants to
know more they can look up Foo to see the construction and
nesting.

The fifth function on line 25 is assigned to two variables.
This example illustrates that we stop processing in Algo-
rithm 1 as soon as we hit the first assignment, giving the
name Bar. This aligns with our observation that the visually
closest identifier is the best choice.

Finally, Table 6 gives the names of functions from exam-
ples discussed in 4.

Example Code Static Function-Object Consumption Full Name
Sec. 4.2 outer YUI.add(event-focus)/ attach
Sec. 4.2 inner YUI.add(event-focus)/ attach/Event. attach()
Sec. 4.3 eventPool .createObject
Fig. 4 outer jQuery.each(ajaxStart)
Fig. 4 inner jQuery.each(ajaxStart)/jQuery.fn[o]
Sec. 4.6 define/viewport[get+D]
Fig. 5 outer YUI.add(classnamem)/Y.ClassNameManager<
Fig. 5 inner YUI.add(classnamem)/Y.ClassNameManager.getClassName<
Sec. 4.10 inner setVisible/cb<

Fig. 6 inner registerWin/

Table 6. Results from applying the approach in Sec. 5 to the
examples in the paper at the point given in the first column.
Full names are listed, even in cases where our example code
omitted the enclosing function scope.

6. Evaluation
In Table 7 we compared our results to Firebug’s naming out-
put for each of the 10 projects used previously and listed in
Appendix 1. Firebug does not use a parser for naming func-
tions. It instead employs a number of regular expressions and
apply them on a few lines around the function definition to
obtain a name (a function called guessFunctionName()). Al-
though this approach is not reliable and may provide wrong
names for some functions, it infers acceptable names in
many simple cases. About 10 percent (the second column)
of anonymous functions still remained nameless in Firebug
(in addition, some named functions may be quite incorrect
because of the simple algorithm). The third column shows
that more than 98 percent of anonymous functions have a
FOC-defined local name. By adding the enclosing function
names, this number increases to more than 99 percent for
FOC-Full(the fourth column). Based on our observations,
most functions remaining anonymous in FOC-Full are top
level immediate functions which are usually used for creat-
ing a local scope for a set of variables.

The ”Duplicates By” columns show the number of func-
tions which get a name which is also assigned to another
function(s) for Firebug, FOC-Local and FOC-Full. The
number shows that Firebug assigns duplicate names to about
47 percent of anonymous functions. The first reason behind
this huge number is that Firebug relies on regular expres-
sions instead of abstract syntax tree for locating names. The
second reason is that Firebug does not analyze the function
object flow but tries to construct the name from the identi-
fiers close to function definition. The second column shows
that FOC-Local gives much less duplicates (13%) compar-
ing to Firebug. This means that local names are sufficient for
recognizing functions within a file, which is helpful because
they have shorter length than full names. The third column
says that less than 9 percent of anonymous functions get du-
plicated names by full names. Based on our observations,
many of duplicates in projects such as DOJO, ExtJS and
YUI come from test files. In a test file the same use case is
repeated with different data and therefore the same function
names appear several times. In projects like JQuery, Pro-
totype, MooTools the conditional statements are the main
source of duplicates. These libraries usually check against
different environment properties (e.g., browser) to load the
appropriate function.

The last two columns show the average and longest func-
tion name lengths (in characters) for both short and full
names. The average length is at most 37 characters. The
last column shows that only 3 percent of functions get local
names longer than 50 characters or full names longer than 80
characters. Again, based on our observations a main source
of long names are deep nested functions which mostly ap-
pear in test files.

Project Anonymous Functions By Duplicates by Local/Full Length
Developer Firebug FOC-Local FOC-Full Firebug FOC-Local FOC-Full Average Longest >50/>80

Closure 8987 312(3%) 51 10 662(7%) 211(2%) 103(1%) 33/35 76/101 471/30
DoJo 15866 3362(21%) 528 390 3325(21%) 2993(19%) 2287(14%) 24/36 81/162 680/765
ExtJS 36533 1543(4%) 631 231 23777(65%) 3737(10%) 2342(7%) 22/25 65/91 177/2
Firebug 3018 167(5%) 14 10 481(16%) 85(3%) 32(1%) 27/36 70/140 76/18
jQuery 399 95(24%) 9 8 162(40%) 97(24%) 56(14%) 14/18 50/65 0/0
MochiKit 1829 202(11%) 59 16 491(27%) 314(17%) 191(10%) 17/22 49/80 0/0
MooTools 618 121(19%) 30 18 272(44%) 158(26%) 138(22%) 12/14 36/73 0/0
Prototype 442 125(28%) 24 19 154(35%) 70(16%) 70(16%) 21/25 55/88 5/1
Scriptaculous 884 195(22%) 25 19 306(36%) 131(19%) 86(9%) 21/27 55/132 7/5
YUI 21424 3317(15%) 212 15 10073(47%) 3558(17%) 2205(10%) 16/37 114/145 223/292
All 90000 9439(10%) 1583(2%) 736(1%) 39703(44%) 11354(13%) 7510(8%) N/A N/A 1639/1113 (3%)

Table 7. Results of Function Object Consumption. The rows are the projects listed in Appendix 1. The first column contains
the number of anonymous functions in each project. The second column shows the number of functions Firebug could not
name. The third column contains the number of functions nameless after applying the static Function Object Consumption
(FOC) algorithm; and the fourth column is the number of functions the FOC leaves without a name even from enclosing
scopes. The next three columns give the number of times a Firebug, FOC-Local, and FOC-Full function name appears twice
in a file, respectively. The last three columns contain the length information. Every cell has two entries divided by a slash,
the first is the local name and the second is the full name. The eighth and ninth columns give the average and longest name
character counts respectively. The last columns shows the number of functions with local names greater then 50 characters in
length separated by a slash from the number of functions wit full names with length greater than 80 characters.

7. Discussion
Overall the Function-Object Consumption approach dramat-
ically reduces the number of functions that a development
tool cannot name for a developer. By looking at the exam-
ples and comparing the algorithms, the names selected by
FOC will be the same as the one’s selected by Firebug’s
guessFunctionName() when that function gives reasonable
results. In other cases FOC will give a more useful name
including many cases where the current Firebug approach
fails.

There is room for improvements. The heuristic elements
of the naming solution need to be tuned based on more
experience. Given that our goals trade precision for rapid
recognition, our names are not unique. We also leave some
cases anonymous which need further investigation.

A complete naming solution will need to consider some
additional issues. The user interface that shows names typ-
ically has limited space and even our efforts to create short
names may be adequate. Often the hierarchy can help: we
can show the trailing entry in a slash delimited list and the
trailing entry in a dot delimited list with mouse-over expan-
sion to bring up an overlay line with more of the full name
displayed. Some JavaScript libraries have a regular pattern
or specific re-naming registration system (see for example
the ExtJS ClassManager[8]). A naming solution should rec-
ognize these patterns or systems. Similarly JavaScript li-
braries might support the .displayName to provide custom
names where the developer overhead to introduce and main-
tain the extra field is justified by the wide spread use of the
library.

8. Related Work
To best of our knowledge, this paper is the first study in nam-
ing anonymous functions in JavaScript. However, there have
been a few studies on the JavaScript programs behavior. In
a recent work, Richards et al. conducted a study on dynamic
behavior of JavaScript programs [17]. Although their study
contains some aspects of JavaScript function objects cre-
ation and usage, such as the number of different call sites and
arities in function calls, it does not provide any data about
anonymous functions.

We previously mentioned four JavaScript naming ap-
proaches: Zaytsev advocates expanded use of names in
function expressions[20], support for displayName in de-
buggers has been requested[6], the Firebug Regular expres-
sions, and the Google Chrome debugger’s function name
’inference’[4]. The last one appears to be a parser based
approach with goals similar to the ad-hoc Firebug regular
expressions: look for identifiers preceding anonymous func-
tion bodies.

Høst and Østvold [12] attempted to find and fix inappro-
priate function names in Java programs. Their approach em-
ploys rules extracted from a large corpus of Java projects to
recognize buggy names. To fix a name, a list of candidate
names are constructed and ranked, the name with the high-
est rank is proposed for the replacement. This approach as-
sumes that the function is already named and constructs the
names based on the function internal structure. In contrast,
our approach construct the function name by analyzing the
function context.

Caprile and Tonella [3], analyze the structure of function
identifiers in C programs. The identifiers are decomposed
into fragments that are then classified into seven lexical cat-

egories. The structure of the function identifiers are further
described by a hand-crafted grammar.

The result of our work can be improved and impact other
aspects of JavaScript programming if a stronger typing sys-
tem is employed. A few static typing systems have been pro-
posed for JavaScript [1, 2, 11, 19]. These approaches dis-
cover the type of values and object structures for a variable
by statically analyzing the source code and possible program
control flows lead to the variable assignment. The discovered
facts about variable types are not only useful for catching
errors but to assist developers in code comprehension. Nev-
ertheless, none of the mentioned approaches provided effec-
tive means for sharing this information with the developer.
Our approach can help in this regard by assigning names to
nameless elements.

9. Conclusion
Our contributions in this paper include an empirical study
of the extent of anonymous functions in JavaScript libraries,
categorization of those functions to understand the potential
for automatic naming, a practical algorithm based on the
empirical study, and its evaluation. We believe our result can
be applied directly in existing JavaScript development tools
to give immediate benefit to developers and provides a basis
for future improvements.

A. JavaScript Projects Analyzed for
Function Names

Closure Closure Library, r683, Google Code,
http://code.google.com/p/closure-library

Dojo Dojo JavaScript Toolkit, version 1.5,
http://dojotoolkit.org

ExtJS JavaScript Framework, version 3.3.1
http://www.sencha.com/products/extjs

Firebug Web Page Debugger, version 1.7
http://code.google.com/p/fbug

jQuery JavaScript Library, version 1.4.4
http://jquery.com

MochiKit version 1.4.2
http://mochi.github.com/mochikit

MooTools JavaScript Framework, version 1.3
http://mootools.net

Prototype JavaScript Framework, version 1.7
http://www.prototypejs.org

Scriptaculous JavaScript Library, version 1.9
http://script.aculo.us

YUI Library, Yahoo, Inc., version 3.3
http://developer.yahoo.com/yui

References
[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards Type

Inference for JavaScript. In Proceedings of the 19th European
conference on Object-Oriented Programming(ECOOP), July,
2005.

[2] C. Anderson and P. Giannini. Type checking for javascript.
Electr. Notes Theor. Comput. Sci., 138(2), 2005.

[3] B. Caprile and P. Tonella. Nomen est omen: Analyzing the
language of function identifiers. In Proceedings of the 6th
working conference on Reverse Engineering(WCRE), October,
1999.

[4] V8 Google FuncNameInferrer. http://v8.googlecode.com/svn
/trunk/src/func-name-inferrer.h

[5] Common JS. http://www.commonjs.org

[6] Add prettyName/displayName support to Profiler output and
Stacks. Firebug Bug Repository, http://code.google.com/p/fbug
/issues/detail?id=1811

[7] ECMA International. ECMA-262: ECMAScript Language
Specification, ECMA (European Association for Standardizing
Information and Communication Systems), Geneva, Switzer-
land, third edition, December 1999.

[8] Jacky Nguyen. Ext.ClassManager. http://docs.sencha.com/
ext-js/4-0/#/api/Ext.ClassManager

[9] Firefox Add-ons. https://addons.mozilla.org/en-US/developers
/docs/getting-started.

[10] Google Chrome Extensions. http://code.google.com/chrome
/extensions.

[11] P. Heidegger and P. Thiemann. Recency types for
dynamically-typed, object-based languages. In Proceedings
of Foundations of Object Oriented Languages (FOOL), 2009.

[12] E. W. Høst and B. M. Østvold. Debugging Method Names.
In Proceedings of the 23rd European conference on Object-
Oriented Programming(ECOOP), July, 2009.

[13] D. Ingalls, K. Palacz, S. Uhler and A. Taivalsaari. The
lively kernel a self-supporting system on a web page. In Self-
Sustaining Systems, 2008.

[14] JScript development in Microsoft Office 11. http://msdn.
microsoft.com/en-us/library/aa202668(office.11).aspx

[15] JavaScript development in OpenOffice. http://framework.
openoffice.org/scripting/release-0.2/javascript-devguide.html

[16] G. Richards, C. Hammer, B. Burg and J. Vitek. The eval that
men do. In Proceedings of the 25th European conference on
Object-Oriented Programming(ECOOP), July, 2011.

[17] G. Richards, S. Lebresne, B. Burg and J. Vitek.An analysis of
the dynamic behavior of JavaScript programs. In Proceedings of
the 2010 ACM SIGPLAN conference on Programming language
design and implementation(PLDI), June, 2010.

[18] Server-Side JavaScript Reference v1.2.
http://research.nihonsoft. org/javascript/ServerReferenceJS12.

[19] P. Thiemann. Towards a type system for analyzing JavaScript
programs. In Proceedings of European Symposium on Program-
ming (ESOP), 2005.

[20] J. Zaytsev. Named function expressions demystified. http://
kangax.github.com/nfe, June, 2010.

	Introduction
	The Anonymous Function Problem
	Missed Constructor Name in Object Summary
	Anonymous Function Names in Call-stack View

	Automated Function Naming
	What Should Be Named?
	What Makes a Good Function Name?
	Context, Package and Function Names

	Building Up Intuition by Example
	Case 1: Object Property Initializer
	Case 2: Entry in an Array Literal
	Case 3: Property Assignment With Property Identifier
	Case 4: Property Assignment With Property Name String
	Case 5: Property Assignment With Property Name Variable
	Case 6: Property Assignment With Property Name Expressions
	Case 7: Assignment to an Element of an Array
	Case 8: Assignment to a Variable
	Case 9: Anonymous Functions Immediately Called
	Case 10: Function Property is Accessed
	Case 11: Returned From a Function Call
	Case 12: Function Passed as an Argument
	Results of Studying Examples

	Static Function Object Consumption
	Consumption Summary Algorithm
	Consumption by Immediate Functions
	Expression Reductions
	Conversion to a Name
	Examples

	Evaluation
	Discussion
	Related Work
	Conclusion
	JavaScript Projects Analyzed for Function Names

