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Abstract 

This paper presents a control-theoretic approach to reactive flow 
control in networks that do not reserve bandwidth. We assume a 
round-robin-like queue service discipline in the output queues of 
the network's switches, and propose deterministic and stochastic 
models for a single conversation in a network of such switches. 
These models motivate the Packet-Pair rate probing technique, 
and a provably stable rate-based flow control scheme. A Kalman 
state estimator is derived from discrete-time state space analysis, 
but there are difficulties in using the estimator in practice. These 
difficulties are overcome by a novel estimation scheme based on 
fuzzy logic. We then present a technique to extract and use addi- 
tional information from the system to develop a continuous-time 
system model. This is used to design a variant of the control law 
that is also provably stable, and, in addition, takes control action 
as rapidly as possible. Finally, practical issues such as correcting 
parameter drift and coordination with window flow control are 
described. 

1. Introduction 
As networks move towards integrated service, there is a 

need for network control mechanisms that can provide users with 
different qualities of service in terms of throughput, delay and 
delay jitter [1]. Recent work has shown that these guarantees can 
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be provided if the network makes bandwidth reservations on 
behalf of each conversation (also called channel, circuit or virtual 
circuit; we use 'conversation' throughout) [2-5]. However, such 
reservations can reduce the statistical multiplexing in the network, 
making the system expensive. 

An interesting problem arises in the control of conversa- 
tions that do not reserve bandwidth, and hence are not given any 
performance guarantees by the network. These conversations 
must adapt to changing network conditions in order to achieve 
their data transfer goals. In this paper we present a control- 
theoretic approach to determine how a conversation can satisfy its 
throughput and queueing delay requirements by adapting its data 
transfer rate to changes in network state, and to prove that such 
adaptations do not lead to instability. This approach can be used 
to control both transport connections in reservationless networks, 
and so-called 'best-effort' connections in reservation-oriented net- 
works [2]. 

A control theoretic approach to flow control requires that 
changes in the network state be observable. In recent work, we 
have shown that it is possible to measure network state easily if 
the servers at the output queues of the switches are of a type 
called a Rate Allocating Server and the transport protocol uses the 
Packet-Pair probing technique (described below) [6-8]. Thus, in 
this paper, we will make the assumption that the queue service 
discipline is of the RAS type and that sources implement Packet- 
Pair. Our approach does not extend to First-Come-First-Served 
(FCFS) networks, where there is no simple way to probe the net- 
work state. 

The paper is laid out as follows. We first describe rate 
allocating servers (§2), and present deterministic and stochastic 
models for networks of such servers (§3). Next, we describe the 
Packet-Pair state probing technique (§4). This is used as the basis 
for the design of a stable rate-based flow control scheme (§5). A 
problem with non-linearity in the system is discussed in §6. We 
present a Kalman state estimator in §7. However, this estimator 
is impractical, and so we have designed a novel estimation 
scheme based on fuzzy logic (§8). A technique to increase the fre- 
quency of control based on additional information from the sys- 
tem is presented in §9, and this serves as the basis for a new con- 
trol law. Practical implementation issues are discussed in §10, 
and these include correcting for parameter drift, and interaction 
with window flow control. We conclude with some remarks on 
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the limitations of the approach (§ 11) and a review of related work 
(§ 12). 

2. Rate Allocating Servers 

In this section, we describe the notion of a Rate Allocating 
Server. Consider the queue service discipline in the output 
queues of the touters of a communication network. If packets are 
scheduled in strict Time-Division-Multiplexing (TDM) order, 
then whenever  a conversat ion's  time slot comes around and it has 
no data to send, the output trunk is kept idle and some bandwidth 
is wasted. Suppose packets are stamped with a priority index that 
corresponds to the time of service of the packet were the server 
actually to do TDM. It can be shown that service in order of 
increasing priority index has the effect of approximately emulat- 
ing TDM without its attendant inefficiencies [9]. This idea lies 
behind the Fair Queueing service discipline [10]. In recent work it 
has been shown that Fair Queueing is quite similar to the Virtual 
Clock [5] discipline [11]. Thus, we will refer to both as Rate 
Allocating Servers (RASs); the reason for this name will shortly 
become clear. 

While the Virtual Clock scheduling discipline was origi- 
nally presented in the context of a reservation-oriented network 
layer, we study its behavior in reservationless networks. This 
raises an important point. In reservation-oriented networks, dur- 
ing call set-up, a conversation specifies a desired service rate to 
the servers that lie in its path. This information allows each 
server to prevent overbooking of its bandwidth and the service 
rate that a conversation receives is constant. However, in reserva- 
tionless networks, a server is not allowed to refuse any conversa- 
tions, and so the bandwidth could be overbooked. We assume 
that in such a situation, a RAS will divide bandwidth in the same 
way as a Fair Queueing server, that is, equally among the cur- 
rently active conversations. 

With a RAS, there are two reasons why the perceived rate 
of service of a specific conversation may change. First, the total 
number  of conversations served can change. Since the service rate 
of the selected conversation is inversely proportional to the num- 
ber of active conversations, the service rate of that conversation 
also changes. 

Second, if some conversation has an arrival rate slower 
that its allocated bandwidth share, or has a bursty arrival pattern, 
then there are intervals where it does not have any packets to 
send, and the RAS will treat that conversation as idle. Thus, the 
effective number of active conversations decreases, and the rate 
allocated to all the other conversations increases. When its traffic 
resumes, the service rate again decreases. 

Note that even with these variations in the service rate, a 
RAS provides a conversation with a more consistent service rate 
than a FCFS server. In a FCFS server the service rate of a conver- 
sation is linked in detail to the arrival pattern of every other con- 
versation in the server, and so the perceived service rate varies 
rapidly. 

For example, consider the situation where the number of 
conversations sending data to a server is fixed, and each conver- 
sation always has data to send when it is scheduled for service. In 
a FCFS server, if any one conversation sends a large burst of data, 
then the service rate of all the other conversations effectively 
drops until the burst has been served. In a RAS, the other conver- 
sations will be unaffected. Thus, the server allocates a rate of ser- 
vice to each conversation that is, to a first approximation, inde- 
pendent of the arrival patterns of the conversations. So, a source 
sending data to a RAS server should use a rate-based flow control 
scheme that determines the allocated service rate, and then sends 

data at this rate. 

3. Choice of  network model  

In this section, we consider how to model a network of 
Rate Allocating Servers. A theoretically sound flow control 
mechanism operating in a network of RASs requires an analytical 
model for network transients. If the network is modeled as a 
queueing system, usually the kind of results that can be obtained 
are those that hold in the average case. Though the Chapman- 
Kolmogorov differential equations do give the exact dynamics of 
a M/M/1 queue, the solution of these equations is equivalent to 
evaluating an infinite sum of Bessel functions [12]. This problem 
is made more complicated if the network is non-Jacksonian (as in 
our case). Thus, we feel that by using a queueing network model, 
transient analysis becomes cumbersome and sometimes impossi- 
ble. However, flow control depends precisely on such transients. 
Thus, we would like to use an approach that models network tran- 
sients explicitly. 

We choose to model a network of RASs deterministically 
since it has been shown that a deterministic modeling of a RAS 
network allows network transients to be calculated exactly [7]. 
Waclawsky and Agrawala have developed and analyzed a similar 
deterministic model for studying the effect of window flow con- 
trol protocols on virtual circuit dynamics [13, 14]. However, this 
approach can be too simplistic, since it ignores the variations in 
the allocated service rate discussed in §2. So, we first summarize 
a deterministic model similar to the one presented in [7], and then 
present a stochastic extension. 

3.1. Deterministic Model  

We model a conversation in a FQ network as a regular 
flow of packets from a source to a destination (sink) over a series 
of servers (routers or switches) connected by links. The servers in 
the path of the conversation are numbered 1,2,3...n, and the 
source is numbered 0. The destination is assumed to acknowl- 
edge each packet. (Strictly speaking, this assumption is not 
required, but we make it for ease of exposition.) We assume, for 
ease of analysis, that sources always have data to send. This sim- 
plification allows us to ignore start-up transients in our analysis. 
The start-up costs can, in fact, be significant, and these are ana- 
lyzed in [7]. 

The time taken to get service at each server is finite and 
deterministic. If the ith server is idle when a packet arrives, the 
time taken for service is s i, and the (instantaneous) service rate is 
defined to be Pi = 1 / s i .  Note that the time to serve one packet 
includes the time taken to serve packets from all other conversa- 
tions in round-robin order. Thus, the service rate is the inverse of 
the time between consecutive packet services from the same con- 
versation. 

If the server is not idle when a packet arrives, then the ser- 
vice time can be more than s;. This is ignored in the model, but 
we will consider the implications in section 4. If there are other 
packets from that conversation at the server, an incoming packet 
waits for its turn to get service (we assume a FCFS queueing dis- 
cipline for packets from the same conversation). 

The source sending rate is denoted by ~ and the source is 
assumed to send packets spaced exactly s o = l/~. time units 
apart. We define 

st) = max(s i  I 0 < i < n) 

to be the bo t t l eneck  service time in the conversation, and b is the 
index of the bottleneck server, g, the bottleneck service rate, is 

1 
defined to be - - .  

Sb 
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We will henceforth work in discrete time, so the continu- 
ous time parameter, t, is replaced by the step index k. One step 
corresponds to one round-trip, as explained in section 5.2. In 
addition, let S(k)  be the number of unacknowledged packets at 
the source at time k. 

3.2. Stochastic model 

In the deterministic model, Ix is assumed to he constant. 
Actually, Ix changes due to the creation and deletion of active 
conversations. If the number of active conversations, N~c, is 
large, we expect that the change in N,c in one time interval will 
be small compared to N~c. Hence the change in Ix in one interval 
will be small and Ix(k + 1) will be 'close' to Ix(k). One way to 
represent this would be for Ix to be a fluctuation around a nominal 
value Ix0. However, this does not adequately capture the dynamics 
of the process, since Ix(k + 1) is 'close' to Ix(k) and not to a fixed 
value go. Instead, we model IX as a random walk where the step 
is a random variable that has zero mean and has low variance. 
Thus, for the most part, changes are small, but we do not rule out 
the possibility of a sudden large change. This model is simple 
and though it represents only the first order dynamics, we feel that 
it is sufficient for our purpose. Thus, we define 

Ix (k+ l )  = Ix(k) + 0)(k), 

where o~(k) is a random variable that represents zero-mean gaus- 
sian white noise. There is a problem here: when Ix is small, the 
possibility of an increase is larger than the possibility of a 
decrease. Hence, at this point, the distribution of co is asymmetric, 
with a bias towards positive values (making the distribution non- 
gaussian). However, if Ix is sufficiently far away from 0, then the 
assumption of zero mean is justifiable. 

The white noise assumption means that the changes in ser- 
vice rate at time k and time k+  1 are uncorrelated. Since the 
changes in the service rate are due to the effect of uncorrelated 
input traffic, we think that this is valid. However, the gaussian 
assumption is harder to justify. As mentioned in [15], many noise 
sources in nature are gaussian. Second, a good rule of thumb is 
that the gaussian assumption will reflect at least the first order 
dynamics of any noise distribution. Finally, for any reasonably 
simple control theoretic formulation (using Kalman estimation) 
the gaussian white noise assumption is unavoidable. Thus, for 
these three reasons, we will assume that the noise is gaussian. 

These strict assumptions about the system noise are neces- 
sary mainly for doing Kalman estimation. We also describe a 
fuzzy prediction approach (§8) that does not make these assump- 
tions 

Note that the queueing theoretic approach to modeling Ix 
would be to define the density function of It, say G(Ix), that 
would have to be supplied by the system administrator. Then, 
system performance would be given by expectations taken over 
the distribution. In contrast, we explicitly model the dynamics of 
Ix and so our control scheme can depend on the currently mea- 
sured value of Ix, as opposed to only on an asymptotic time aver- 
age. 

4. Detailed Dynamics of Packet-Pair 

State probing is done using the Packet-Pair mechanism, 
shown in Figure 1. 
The figure presents a time diagram. Time increases along the ver- 
tical axes, and each axis represents a node in a communication 
network. The parallelograms represent the transmission of a 
packet and correspond to two kinds of delays: the vertical sides 
are as long as the transmission delay (the packet size divided by 

WIT 

necl 
- -  j 

J__- - ml l- - - ' -  - -'.-- 

............. lli;:;: ;:~:~:;:;:Z:~ 

-- -T-- bottle- 
rate 

SOURCE SERVER 1 BOTFLENECK SINK 
Figure 1: The Packet-Pair probing scheme 

the line capacity). Second, the slope of the longer sides is propor- 
tional to the propagation delay. Since the network is store-and- 
forward, a packet cannot be sent till it is completely received. 
After a packet arrives, it may be queued for a while before it 
receives service. This is represented by the space between two 
dotted lines, such as de. 

In the Packet-Pair scheme, the source sends out two back- 
to-back packets (at time s). These are serviced by the bottleneck; 
by definition, the inter-packet service time is I /g ,  the service time 
at the bottleneck. Since the acks preserve this spacing, the source 
can measure the inter-ack spacing to estimate IX. 

We now consider possible sources of error in the estimate. 
The server marked 1 also spaces out the back-to-back packets, so 
can it affect the measurement of IX? A moment's reflection 
reveals that as long as the second packet in the pair arrives at the 
bottleneck before the bottleneck ends service for the first packet, 
there is no problem. If the packet does arrive after this time, then, 
by definition, server 1 itself is the bottleneck. Hence, the spacing 
out of packets at servers before the bottleneck server is of no con- 
sequence, and does not introduce errors into the scheme. Another 
detail that does not introduce error is that the first packet may 
arrive when the server is serving other packets and may be 
delayed, for example, by de. Since this delay is common to both 
packets in the pair, this does not matter. 

What does introduce an error is the fact that the acks may 
be spread out more (or less) than Sb due to different queueing 
delays for each ack along the return path. In the figure note that 
the first ack has a net queueing delay of ij + lm, and the second 
has a zero queueing delay. This has the effect of increasing the 
estimate of g. 

Note that this source of error will persist even if the inter- 
ack spacing is noted at the sink and sent to the source using a state 
exchange scheme [16]. Measuring IX at the sink will reduce the 
effect of noise, but cannot eliminate it, since any server that is 
after the bottleneck could also cause a noise in the measurement. 

We model this error in measurement as an observation 
noise. Since the observed value of IX can be either increased or 
decreased by this noise, with equal probability in either direction, 
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we expect that the noise distribution is symmetric about 0. As a 
simplification, it is again assumed that the distribution is gaus- 
sian, and that the noise is white. 

5. Design Strategy 

This section describes the strategy used to design the 
flow-control mechanism, some preliminary considerations, and 
the detailed design. The design strategy for the flow control 
mechanism is based upon the Separation Theorem [17]. Infor- 
mally, the theorem states that for a linear stochastic system where 
an observer is used to estimate the system state, the eigenvalues 
of the state estimator and the controller are separate. The theorem 
allows us to use any technique for state estimation, and then 
implement control using the estimated state J instead of the actual 
state x. Thus, we will derive a control law assuming that all 
required estimators are available; the estimators are derived in 
section 7. We first discuss our assumptions and a few preliminary 
considerations. 

5.1. Choice of Setpoint 

The aim of the control is to maintain the number of packets 
in the bottleneck queue, n b at a desired setpoint. Since the system 
has delay components, it is not possible for the control to stay at 
the setpoint at all times. Instead, the system will oscillate around 
the setpoint value. The choice of the setpoint reflects a tradeoff 
between mean packet delay, packet loss and bandwidth loss 
(which is the bandwidth a conversation loses because it has no 
data to send when it is eligible for service). This is discussed 
below. 

Let B denote the number of buffers a switch allocates per 
conversation (in general, B may vary with time, and this can be 
accounted for. In this paper, we assume that B is static). Con- 
sider the distribution of n b for the controlled system, given by 
N(x)  = Pr(nb = x) (strictly speaking, N(x)  is a Lebesgue mea- 
sure, since we will use it to denote point probabilities). N(x)  is 
sharply delimited on the left by 0 and on the right by B and tells 
us three things: 

l) Pr(loss of bandwidth) = Pr (RAS server schedules the 
conversation for service ] n b = 0 ) .  Assuming that these 
events are independent, which is a reasonable assumption, 
we find that Pr(loss of bandwidth) is proportional to N(0). 

2) Similarly, Pr (loss of packet) = Pr (packet arrival ] 
n b = B), so that the density at B, N(B)  is proportional to 
the probability of a packet loss. 

3) the mean queuing delay is given by 
B 

B s b  I xN(x)dx' 
i N ( x ) d  x o 
0 

where, on average, a packet takes s o units of time to get 
service at the bottleneck. 

If the setpoint is small, then the distribution is driven 
towards the left, the probability of bandwidth loss increases, the 
mean packet delay is decreased, and the probability of packet loss 
is decreased. Thus, we trade off bandwidth loss for lower mean 
delay and packet loss. Similarly, if we choose a large setpoint, 
we will trade off packet loss for a larger mean delay and lower 
probability of bandwidth loss. In the sequel, we assume a set- 
point of B/2. The justification is that, since the system noise is 
symmetric, and the control tracks the system noise, we expect 
N(x)  to be symmetric around the setpoint. In that case, a setpoint 
of B/2 balances the two tradeoffs. Of course, any other setpoint 

can be chosen with no loss of generality. 

Recent work by Mitra et al has shown that asymptotic 
analysis of product form queueing networks can be used to derive 
an optimal value of the setpoint [18, 19]. The application of their 
ideas to this problem is explored in reference [20]. 

5.2. Frequency of Control 

We initially restrict control actions to only once per round 
trip time (RTI') (this restriction is removed in section 9). For the 
purpose of exposition, divide time into epochs of length RTT (= R 
+ queueing delays) (Figure 2). This is done simply by transmit- 
ting a specially marked packet-pair, and when it returns, taking 
control action, and sending out another marked pair. Thus, the 
control action is taken at the end of every epoch. 

5.3. Assumptions Regarding Round Trip Time Delay 

We assume that the propagation delay, R, is constant for a 
conversation. This is usually true, since the propagation delay is 
due to the speed of light in the fiber and hardware switching 
delays. These are fixed, except for rare rerouting. 

We assume that the round trip time is large compared to 
the spacing between the acknowledgments. Hence, in the analy- 
sis, we treat the arrival of the packet pair as a single event, that 
measures both the round trip time and the bottleneck service rate. 

Finally, we assume that the measured round trip time in 
epoch k, denoted by RTT(k) ,  is a good estimate for the round trip 
time in epoch k + 1. The justification is that when the system is in 
equilibrium, the queue lengths are expected to be approximately 
the same in successive epochs. In any case, for wide area net- 
works, the propagation delay will be much larger than the addi- 
tional delay caused by a change in the queueing delay. Hence, to 
a first approximation, this change can be ignored. This assump- 
tion is removed in section 9. 

5.4. Controller Design 

Consider the situation at the end of the kth epoch. At this 
time we know RTT(k),  the round trip time in the kth epoch, and 
S(k), the number of packets outstanding at that time. We also 
predict ~t(k + 1), which is the estimator for the average service 
rate during the (k + 1)th epoch. If the service rate is 'bursty', then 
using a time average for g may lead to problems. For example, if 
the average value for g is large, but during the first part of the 
control cycle, the actual value is low, then the bottleneck buffers 
could overflow. In such cases, we can take control action with 
the arrival of every probe, as discussed in section 9. 

Figure 2 shows the time diagram for the control. The ver- 
tical axis on the left is the source, and the axis on the right is the 
bottleneck. Each line between the axes represents a packet pair. 
Control epochs are marked for the source and the bottleneck. 
Note that the epochs at the bottleneck are time delayed with 
respect to the source. We use the convention that the end of the 
kth epoch is called 'time k', except that nb(k)  refers to the num- 
ber of packets in the bottleneck at the beginning of the kth epoch. 
Estimators are marked with a hat. 

We now make a few observations regarding Figure 2. The 
distance ab is the RTI" measured by the source (from the time the 
first packet in the pair is sent to the time the first ack is received). 
By an earlier assumption, the propagation delay for the (k + l)th 
special pair is the same as for the kth pair. Then ab = cd, and the 
length of epoch k at the source and at the bottleneck will be the 
same, and equal to RTT(k).  

At the time marked 'NOW',  which is the end of the kth 
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Each line represents a packet pair 

- - a  

Epoch k 

NOW 

:) 

hk 

RTT(k) 

~+1) 

Epoch k+l 

SOURCE 

ch k+ 

~,TT(k+ 1 ) 

k+2) 

BOTTLENECK - - 
Figure 2: Time scale of control 

epoch, all the packets sent in epoch k - 1  have been acknowl- 
edged. So, the only unacknowledged packets are those sent in the 
kth epoch itself, and this is the same as the number of outstanding 
packets S(k) .  This can be approximated by the sending rate mul- 
tiplied by the sending interval, ~(k)RTT(k). So, 

S ( k )  = ~ ( k ) R T T ( k )  1 

The number of packets in the bottleneck at the beginning of the 
(k + l)th epoch is simply the number of packets at the beginning 
of the kth epoch plus what came in minus what went out in the kth 
epoch (ignoring the non-linearity at nb = 0, discussed in §5.6). 
Since ~(k) packets were sent in, and l a ( k ) R T T ( k )  packets were 
serviced in this interval, we have 

n b ( k + l  ) = n b ( k  ) + ~ ( k ) R T T ( k )  - ~ t ( k ) R T T ( k )  2 

Equations (1) and (2) are the fundamental equations in this analy- 
sis. They can be combined to give 

n b ( k + l  ) = n b ( k  ) + S ( k )  - ~ t ( k ) R T T ( k )  3 

Now, n b ( k  + 1) is already determined by what we sent in the kth 
epoch, so there is no way to control it. Instead, we will try to con- 
trol n b ( k + 2 ) .  We have 

n b ( k + 2  ) = n b ( k + l )  + (~ , (k+ l )  - ~ t ( k + l ) ) R T T ( k + l ) 4  

From (3) and (4): 

n b ( k + 2 )  = rib(k) + S ( k )  - p . ( k ) R T T ( k )  + 5 

~ , ( k + l ) R T T ( k + l )  - ~ ( k + l ) R g T ( k + l )  

The control should set this to B/2 .  So, set (5) to B/2 ,  and obtain 
X ( k + l ) .  

n l , ( k + 2 )  = B / 2  = n b ( k )  + S ( k )  - p . ( k ) R T T ( k )  6 

+ (~ . (k+ l )  - ~ ( k + I ) ) R T T ( k + I )  

This gives ~,(k + 1 ) as 

1 
~,(k + 1) - 7 

R T T ( k  + 1 ) 

[B /2  - n t , (k )  - S ( k )  + ~ ( k ) R T T ( k )  + ~ ( k + I ) R T T ( k + I ) ]  

Replacing the values by their estimators (which will be derived 
later), we have 

1 
- 8 ~,(k + 1 ) R.~.rr + 1 ) 

[B/2  - h b ( k )  - S ( k )  + ~ t ( k ) R T T ( k )  + ~ t ( k + l ) R T T ( k + l ) ]  

Since both t2(k) and ~t(k + 1 ) are unknown, we can safely assume 
that ~(k) = /2(k+l ) .  Further, from an earlier assumption, we 
set R77"(k + 1 ) to R77"(k). This gives us: 

1 
~. (k+l )  - - - [ B / 2  - ~ b ( k )  - S ( k )  + 2~ t ( k )RTT(k ) ]9  

RTT(k) 
This is the control law. The control always tries to get the buffer 
to B/2.  It may never reach there, but will always stay around it. 

Note that the control law requires us to maintain two esti- 
mators: 12(k) and h b (k). The effectiveness of the control depends 
on the choice of the estimators. This is considered in sections 7 
and 8. 

5.5 .  S t a b i l i t y  A n a l y s i s  

The state equation is given by (2) 

n b ( k + l )  = nb (k )  + ~ ( k ) R T T ( k )  - . t ( k ) R T T ( k )  10 

For the stability analysis of the controlled system, ~.(k) should be 
substituted using the control law. Since we know ~(k + 1), we 
use the state equation derived from (2) instead (which is just one 
step forward in time). This gives 

n b ( k + 2 )  = n b ( k + l )  + ( ~ ( k + l ) - ~ ( k + l ) ) R T T ( k + l )  

Substitute (8) in (10) to find the state evolution of the controlled 
system. 

n b ( k + 2 )  = n b ( k + l )  - ~ ( k + l ) R T T ( k + l )  + R T T ( k + I )  
RTT(k) 

[B/2  - ~tb(k) - S ( k )  + 2 ~ t ( k ) R T T ( k ) ]  

By assumption, R T T ( k )  is close to RTI ' ( k  + 1 ). So, to first order, 
canceling R T T ( k )  with R T T ( k  + 1 ) and moving back two steps in 
time, 

n b ( k )  = n b ( k - t )  - ~ t ( k - l ) R 7 7 " ( k - l )  + 

B /2  - h b ( k - 2 )  - S ( k - 2 )  + 2 ~ t ( k - 2 ) R T T ( k - 2 )  

Taking the Z transform of both sizes, and assuming 
n b ( k - 2 )  = h b ( k - 2 ) , w e g e t  

n b ( z )  = z - t n b ( Z )  -- Z - z p . ( z ) * R T T ( z )  + 

B /2  - z - 2 n b ( Z )  -- z - 2 S ( z )  + 2z-4O(z)*RTT(z)  

Considering n b as the state variable, it can be easily shown that 
the characteristic equation is 

z -2 - z  -I + l = 0  

If the system is to be asymptotically stable, then the roots of the 
characteristic equation (the eigenvalues of the system), must lie 
inside the unit circle on the complex Z plane. Solving for z-  1, we 
get 

z _ l  __ 1 + # 1 -  4 _ l+~f3-i 
2 2 
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The distance from 0 is hence 

~ 1 2 -~ -2  _ 1 

2- + 2 

Since the eigenvalues lie on the unit circle, the controlled system 
is not asymptotically stable. 

However, we can place the pole of the characteristic equa- 
tion so that the system is asymptotically stable. Consider the con- 
trol law 

~,(k+ 1) = ct 
RTT(k)  

[B/2  - ~b(k)  - S(k)  + 2~t(k)RTF(k)]  

[B/2 - hb(k )  - S(k)  + 2~t(k)RTT(k)]  

This leads to a characteristic equation 

~z  -2 - z  -1 + 1 = 0 

so that the roots are 

I+  4q4~--  l i  - i  z = 
2~  

The poles are symmetric about the real axis, so we need only 
ensure that 

I z - ' l  > 1 

~ /  1 2 4 ~ - ~ _  1 ) 2 > 1 
=> ( T d )  + ( 2c~ 

l 
=>  - -  > 1 = >  ~ < 1 

4-ff 
This means that if ct < 1, the system is provably asymptotically 
stable (by the Separation Theorem, since the system and observer 
eigenvalues are distinct, this stability result holds irrespective of 
the choice of the estimators). 

The physical interpretation of et is simple: to reach B/2  at 
the end of the next epoch, the source should send exactly at the 
rate computed by (9). If it does so, the system may be unstable. 
Instead, it sends at a slightly lower rate, and this ensures that the 
system is asymptotically stable. Note that (t is a constant that is 
independent of the system's dynamics and can be chosen in 
advance to be any desired value smaller than 1.0. The exact value 
chosen for u controls the rise time of the system, and for adequate 
responsiveness, it should not be too small. Our simulations indi- 
cate that a value of 0.9 is a good compromise between responsive- 
ness and instability [20]. Similar studies are mentioned in [21]. 

6. S y s t e m  n o n - l i n e a r i t y  

This section discusses a non-linearity in the system, and 
how it can be accounted for in the analysis. Note that the state 
equation (9) is correct when n b ( k + l )  lies in the range 0 to B. 
Since the system is physically incapable of having less than 0, and 
more than B packets in the bottleneck queue, the equation actually 
is incorrect at the endpoints of this range. The correct equation is 
then: 

I i f  nb(k)  + S(k)  - RTT(k) I t (k )  < 0 then 0 
n b ( k + l )  = lif  rib(k) + S(k)  RTT(k ) I t ( k )  > B then B 

L otherwise nb(k)  + S(k)  - RTT(k ) I t ( k )  

The introduction of the MAX and MIN terms in the state equation 
makes the system nonlinear at the boundaries. This is a difficulty, 
since the earlier proof of stability is valid only for a linear system. 

However, note that if the equilibrium point (setpoint) is chosen to 
lie in the interior of the range [0,B], then the system is linear 
around the setpoint. Hence, for small deviations from the set- 
point, the earlier stability proof, which assumes linearity, is suffi- 
cient. For large deviations, stability must be proved by other 
methods, such as the second method of Liapunov [22] page 558. 

However, this is only as an academic exercise. In practice, 
the instability of the system means that n b can move arbitrarily 
away from the setpoint. In section 10.2, we show how window- 
based flow control can be used in conjunction with a rate-based 
approach. Then, n b can never be less than 0, and the window flow 
control protocol ensures that it never exceeds B, and so true insta- 
bility is not possible. 

Nevertheless, we would like the system to return to the set- 
point, whenever it detects that it has moved away from it, rather 
than operating at an endpoint of its range. This is automatically 
assured by equation (9), which shows that the system chooses 
~ , (k+ l )  such that n b ( k + 2 )  is B/2.  So, whenever the system 
detects that it is at an endpoint, it immediately takes steps to 
ensure that it moves away from it. 

Thus, the non-linearity in the system is of no practical con- 
sequence, except that the flow control mechanism has to suitably 
modify the state equations when updating ~ b ( k +  1). A rigorous 
proof of the stability of the system using Liapunov's second 
method is also possible, but the gain from the analysis is slight. 

7. K a l m a n  State  E s t i m a t i o n  

This section presents a Kalman state estimator, and shows 
that Kalman estimation is impractical. A practical scheme is pre- 
sented in §8. 

Having derived the control law, and proved its stability, we 
now need to determine stable estimators for the system state. We 
choose to use Kalman estimation, since it is a well known and 
robust technique [23]. Before the technique is applied, a state- 
space description of the system is necessary. 

7.1.  State  S p a c e  D e s c r i p t i o n  

We will use the standard linear stochastic state equation 
given by 

x(k+l) = Gx(k) + Hu(k) + v L(k) 
y(k) = Cx(k) + v2(k) 

x, u and y are the state, input and output vectors of sizes n, m and 
r, respectively. G is the nxn state matrix, H is an nxm matrix, and 
C is an rxn matrix, vl(k)  represents the system noise vector, 
which is assumed to be zero-mean, gaussian and white, v2(k) is 
the observation noise, and it is assumed to have the same charac- 
teristics as the system noise. 

Clearly, u is actually u, a scalar, and u(k)  = ~,(k). At the 
end of epoch k, the source receives probes from epoch k-1. (To 
be precise, probes can be received from epoch k-1 as well as from 
the beginning of epoch k. However, without loss of generality, 
this is modeled as part of the observation noise.) So, at that time, 
it knows the average service time in the k-lth epoch, I t ( k - 1 ) .  
This is the only observation it has about the system state and so 
y(k)  is a scalar, y(k)  = I t ( k - I )  + v2. If this is to be derived 
from the state vector x by multiplication with a constant matrix, 
then the state must contain I t ( k -  1 ). Further, the state must also 
include the number of packets in the buffer, n b. This leads to a 
state vector that has three elements, rib, It(k) and It(k - 1 ), where 
It(k) is needed since it is part of the delay chain leading to 
It(k - 1 ) in the corresponding signal flow graph. Thus, 
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where It_~ represents the state element that stores the one step 
delayed value of It. 

We now turn to the G, H, v~, v 2 and C matrices. The 
state equations are 

n b ( k + l )  = rib(k) + ~(k)RTT(k)-i t(k)RTT(k) 

It(k+ 1) = It(k) + o)(k) 

I t _ ~ ( k + l )  = It(k) 

Since RTT(k) is known at the end of the kth epoch, we can repre- 
sent it by a pseudo-constant, Rtt. This gives us the matrices 

I l - R t t O  ] 
G =  0 1 0  

0 1 0  

L 0 J  

Vl=[ l 
c ; [ 0 O l l  

v2 is simply the (scalar) variance in the observation noise. 
This completes the state space description of the flow control sys- 
tem. 

7.2. Kalman Filter Solution to the Estimation Problem 

A Kalman filter is the minimum variance state estimator of 
a linear system. In other words, of all the possible estimators for 
x, the Kalman estimator is the one that will minimize the value of 
E( [  ~( t )  - x(t)]r[~c(t) - x( t ) ] ) ,  and in fact this value is zero. 
Moreover, a Kalman filter can be manipulated to yield many 
other types of filters [23]. Thus, it is desirable to construct a Kal- 
man filter for x. 

In order to construct the filter, we need to determine three 
matrices, Q, S and R, which are defined implicitly by : 

E [vz (k) 

where ~i is the Kronecker delta defined by ~(k) = if (k = 0 ) then 
1 else 0. Expanding the left hand side, we have 

000 

R = E ( V 2  z ) 

S = E  2 

If  the two noise variables are assumed to be independent, then the 
expected value of their product will be zero, so that S = 0. How- 
ever, we still need to know E(oJ 2) and E(v22).  

Also, 

From the state equation, 

I t ( k + l )  = It(k) + o)(k) 

Itob . . . . .  d ( k + l )  = I t ( k + l )  + v 2 ( k + l  ) 

Combining, 

Itob ..... d ( k + l )  = p(k)  + e)(k) + v 2 ( k + l )  

which indicates that the observed value of It is affected by both 
the state and observation noise. As such, each component cannot 
be separately determined from the observations alone. Thus, in 
order to do Kalman filtering, the values of E(o) z) and E(v22)  
must be extraneously supplied, either by simulation or by mea- 
surement of the actual system. Practically speaking, even if good 
guesses for these two values are supplied, the filter will have rea- 
sonable (but not optimal) performance. Hence, we will assume 
that the value of noise variances are supplied by the system 
administrator, and so matrices Q, R and S are known. It is now 
straightforward to apply Kalman filtering to the resultant system. 
We follow the derivation in [23] (pg 249). 

The state estimator J is derived using 

~ ( k + l )  = G~(k) + K(k)[y(k) - C~(k) ]  + H u ( k )  

2(0)  = 0 

where K is the Kalman filter gain matrix, and is given by 

K(k)  = [ G Z ( k ) C  T + S ] [ C Z ( k ) C  r + R] - t  

Y.(k) is the error state covariance, and is given by the Riccatti dif- 
ference equation 

Y . (k+ l )  = G Z ( k ) G  r + Q - K(k)[CZ(k)C r + R ] K ( k )  r 

E(O) = Eo 

where Zo is the covariance of x at time 0, and can be assumed to 
be 0. 

Note that a Kalman filter requires the Kalman gain matrix 
K(k) to be updated at each time step. This computation involves 
a matrix inversion, and appears to be expensive. However, since 
all the matrices are at most 3x3, in practice this is not a problem. 

To summarize, if the variances of the system and observa- 
tion noise are available, Kalman filtering is an attractive estima- 
tion technique. However, if these variances are not available, 
then Kalman filtering cannot be used. In the next section, we pre- 
sent a heuristic estimator that works even in the absence of 
knowledge about system and observation noise. 

8. Fuzzy Estimation 

This section presents the design of a fuzzy system that pre- 
dicts the next value of a time series. Consider a scalar variable 0 
that assumes the sequence of values 

{Ok} = 0t, 02, " ' , 0 k  

where 

O k = Ok_ ] + 0)k_ I 

and to k (called the 'system perturbation') is a random variable 
from some unknown distribution. 

Suppose that i n  observer sees a sequence of values 

o,, o2, .  ..... 0k-, 
and wishes to use the sequence to estimate the current value of  
Ok. We assume that the observed sequence is corrupted by some 

ACM SIGCOMM -195 -  Computer Communication Review 



observation noise ~, so that the observed values {0k} are not the 
actual values {Ok}, and 

0k = 0k + ~k 
where ~k is another random variable from an unknown distribu- 
tion. 

Since the perturbation and noise variables can be stochas- 
tic, the exact value of 0 k cannot be determined. What is desired, 
instead, is 0k, the predictor of O k, be optimal in some sense. 

8.1. Assumptions 
We model the parameter Ok as the state variable of an 

unknown dynamical system. The sequence {0k} is then the 
sequence of states that the system assumes. We make three weak 
assumptions about the system dynamics. First, the time scale 
over which the system perturbations occur is assumed to be an 
order of magnitude slower than the corresponding time scale of 
the observation noise. 

Second, we assume that system can span a spectrum rang- 
ing from 'steady' to 'noisy'.  When it is steady, then the variance 
of the system perturbations is close to zero, and changes in { 0 k } 
are due to observation noise. When the system is noisy, {Ok} 
changes, but with a time constant that is longer than the time con- 
stant of the observation noise. Finally, we assume that ~ is from a 
zero mean distribution. 

Note that this approach is very general, since there are no 
assumptions about the exact distributions of co and ~. On the 
other hand, there is no guarantee that the resulting predictor is 
optimal: we only claim that the method is found to work well in 
practice. 

8.2. Exponential averaging 
The basis of this approach is the predictor given by: 

6k+, = ~6k + ( 1 - ~ ) 0 k  

The predictor is controlled by a parameter (~, where c~ is the 
weight given to past history. The larger it is, the more weight 
past history has in relation to the last observation. The method is 
also called exponential averaging, since the predictor is the dis- 
crete convolution of the observed sequence with an exponential 
curve with a time constant (x 

k - I  

6k = Z ( 1 - ~ ) ~ i ~  k-~-' + ~k6o 
i=0  

The exponential averaging technique is robust, and so it 
has been used in a number of applications. However, a major 
problem with the exponential averaging predictor is in the choice 
of c~. While in principle, it can be determined by knowledge of 
the system and observation noise variances, in practice, the vari- 
ances are unknown. It would be useful to automatically deter- 
mine a 'good' value of (x, and to be able to change this value on- 
line if the system behavior changes. Our approach uses fuzzy 
control to effect this tuning [24-26]. 

8.3. Fuzzy exponential averaging 
Fuzzy exponential averaging is based on the assumption 

that a system can be thought of as belonging to a spectrum of 
behavior that ranges from 'steady' to 'noisy'. In a 'steady" sys- 
tem, the sequence {Ok} is approximately constant, so that {Ok} is 
affected mainly by observation noise. Then, (~ should be large, so 
that the past history is given more weight, and transient changes 
in 0 are ignored. 

In contrast, i f  the system is 'noisy',  {0k } itself could vary 
considerably, and 0 reflects changes both in 0 k and the observa- 
tion noise. By choosing a lower value of c~, the observer quickly 
tracks changes in O k , while ignoring past history which only pro- 
vides old information. 

While the choice of ct in the extremal cases is simple, the 
choice for intermediate values along the spectrum is hard to 
make. We use a fuzzy controller to determine a value of (t that 
gracefully responds to changes in system behavior. Thus, if the 
system moves along the noise spectrum, (t adapts to the change, 
allowing us to obtain a good estimate of 0 k at all times. More- 
over, if the observer does not know ~ a priori ,  the predictor auto- 
matically determines an appropriate value. 

8.4. System identification 

Since o~ is linked to the 'noise' in the system, how can the 
amount of 'noise' in the system be determined? Assume, for the 
moment, that the variance in co is an order of magnitude larger 
than the variance in ~. Given this assumption, if a system is 
'steady', the exponential averaging predictor will usually be accu- 
rate, and prediction errors will be small. In this situation, c~ 
should be large. In contrast, if the system is 'noisy',  then the 
exponential averaging predictor will have a large estimation error. 
This is because when the system noise is large, past history can- 
not predict the future. So, no matter what the value of (x, it will 
usually have a large error. In that case, it is best to give little 
weight to past history by choosing a small value of cx, so that the 
observer can track the changes in the system. 

To summarize, the observation is that if  the predictor error 
is large, then c~ should be small, and vice versa. Treating 'small '  
and 'large' as fuzzy linguistic variables [27], this is the basis for a 
fuzzy controller for the estimation of ct, 

8.5. Fuzzy Control ler  

The controller implements three fuzzy laws: 

l f  error is low, then c¢ is high 
I f  error is medium, then o~ is med ium 
I f  error is high, then o~ is low 

The linguistic variables ' low',  'medium' and 'high' for ct and 
error are defined in Figure 3. 
The input to the fuzzy controller is a value of error, and it outputs 
cx in three steps. First, the error value is mapped to a membership 
in each of the fuzzy sets ' low' ,  'medium',  and 'high'  using the 
definition in Figure 3. Then, the control roles are used to deter- 
mine the applicability of each outcome to the resultant control. 
Finally, the fuzzy set expressing the control is defuzzified using 
the centroid defuzzifier. 

The error 10 - 01is processed in two steps before it is 
input to the fuzzy, system. First, it is converted to a proportional 

value, error = . Second, it is not a good idea to use 
0k 

the absolute error value directly, since spikes in 0k can cause the 
error to be large, so that ct drops to 0, and all past history is lost. 
So, the absolute error is smoothed using another exponential aver- 
ager. The constant for this averager, 13, is obtained from another 
fuzzy controller that links the change in error to the value of [3. 
The idea is that if the change in error is large, then 13 should be 
large, so that spikes are ignored. Otherwise, 13 should be small. 1~ 
and change in error are defined by the same linguistic variables, 
' low' and 'high',  and these are defined exactly like the corre- 
sponding variables for cx. With these changes, the assumption 
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Figure 3: Definition of linguistic variables 

that the variance in the observation noise is small can now be 
removed. The resulting system is shown in Figure 4. 

Observati°l I Exponential Averager L ~ 

mate 3 Esti- ~ 

] Fuzzy System I 

Proportionalerror T Smoothed proportional error 

~_~ Exponential Averager I 

___q Fuzzy System 

Figure 4: Fuzzy prediction system 

Details of the prediction system and a performance analysis can 
be found in reference [28]. 

ACM SIGCOMM 

9. Using additional information 

This section describes how the frequency of control can be 
increased by using information about the propagation delay. Note 
that nb(k + l ), the estimate for the number of packets in the bot- 
tleneck queue, plays a critical role in the control system. The 
controller tracks changes in / ]b(k) ,  and so it is necessary that 
nb(k) be a good estimator of rl b. ~lb(k ) can be made more accu- 
rate if additional information from the network is available. One 
such piece of information is the value of the propagation delay. 

The round-trip time of a packet has delays due to three 
causes: 

• the propagation delay from the speed of light and process- 
ing at switches and interfaces 

• the queueing delay at each switch, because previous pack- 
ets from that conversation have not yet been serviced 

• the phase delay, introduced when the first packet from a 
previously inactive conversation waits for the server to fin- 
ish service of packets from other conversations 

The propagation delay depends on the geographical spread of the 
network, and for WANs, it can be of the order of a few tens of 
milliseconds. The phase delay is roughly the same magnitude as 
the time it takes to send one packet each from all the conversa- 
tions sharing a server, the round time. The queueing delay is of 
the order of several round times, since each packet in the queue 
takes one round time to get service. For future high speed net- 
works, we expect the propagation and queueing delays to be of 
roughly the same magnitude, and the phase delay to be one order 
of magnitude smaller. Thus, if queueing delays can be avoided, 
the measured round-trip time will be approximately the propaga- 
tion delay of the conversation. 

An easy way to avoid queueing delays is to measure the 
round-trip time for the first packet of the first packet-pair. Since 
this packet has no queueing delays, we can estimate the propaga- 
tion delay of the conversation from this packet's measured round 
trip time. Call this propagation delay R. 

The value of R is useful, since the number of packets in the 
bottleneck queue at the beginning of epoch k + 1, nb(k + l ) ,  can 
be estimated by the number of packets being transmitted ('in the 
pipeline') subtracted from the number of unacknowledged packets 
at the beginning of the epoch, S(k). That is, 

t ]b (k+ l )  = S(k) - R~t(k) 

Since S, R and t2(k) are known, this gives us another way of 
determining ~b (k + 1 ). This can be used to update ~b (k +1) as 
an alternative to equation (2). The advantage of this approach is 
that equation (2) is more susceptible to parameter drift. That is, 
successive errors in ~ b (k + 1 ) can add up, so that t]b (k + 1 ) could 
differ substantially from n b. In the new scheme, this risk is con- 
siderably reduced: the only systematic error that could be made is 
in It, and since this is frequent sampled, as well as smoothed by 
the fuzzy system, this is of smaller concern. 

There is another substantial advantage to this approach: it 
enables control actions to be taken much faster than once per 
round trip time. This is explained in the following section. 

9.1. Faster than once per RTT control 

It is useful to take control actions as fast as possible so that 
the controller can react immediately to changes in the system. In 
the system described thus far, we limited ourselves to once per 
RTT control because this enables the simple relationship between 
S(k) and 7,(k) given by equation (1). If control actions are taken 
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faster than once per RTT, then the epoch size is smaller, and the 
relationship is no longer true. The new relationship is much more 
complicated, and it is easily shown that the state and input vectors 
must expand to include time delayed values of Ix, ~, and n b. It is 
clear that the faster that control actions are required, the larger the 
state vector, and this complicates both the analysis and the con- 
trol. 

In contrast, with information about the propagation delay 
R, control can be done as quickly as once every packet-pair with 
no change to the length of the state vector. This is demonstrated 
below. 

If control is done once every probe, then it is easier to 
work in continuous time. We also make the fluid approximation 
[29], so packet boundaries are ignored, and the data flow is like 
that of a fluid in a hydraulic system. This approximation is com- 
monly used [30, 31], and both analysis [19] and our simulations 
show that the approximation is a close one, particularly when the 
bandwidth-delay product is large [20]. 

Let us assume that ~, is held fixed for some duration J. 
Then, 

n b ( t + J )  = rib(t)  + ~ , ( t ) J -  Ix ( t )J  11 

where Ix is the average service rate in the time interval [t, t+J], and 
n b is assumed to lie in the linear region of the space. Also, note 
that 

n b ( t  ) --- S ( t )  - RIx( t )  12 

The control goal is to have n b ( t  +J )  be the setpoint value B/2.  
Hence, 

n b ( t + J )  = rib(t)  + ~ , ( t ) J -  Ix ( t )J  = B / 2  13 

SO, 

~,(t) = B / 2  - S ( t )  + R~t(t)  + J~t(t)  14 
J 

which is the control law. The stability of the system is easily 
determined. Note that rib(t)  is given by 

n b ( t + ~ )  -- rib(t)  
= ~,(t) -- Ix(t) 15 6 rib(t)  = limit 

8 ~ 0  

From equation (13), 

B / 2  - nb ( t )  
h b -- J 16 

If we define the state of the system by 

x = rib(t)  -- B / 2  17 

then, the equilibrium point is given by 

x =  0 18 

and the state equation is 

--X 
Jc= - -  19 

J 

Clearly, the eigenvalue of the system is -1/J, and since J is posi- 
tive, the system is both Lyapunov stable and asymptotically sta- 
ble. In this system, J is the pole placement parameter, and plays 
exactly the same role as ct in the discrete time system. When J is 
close 0, the eigenvalue of the system is close to - oo and the sys- 
tem will reach the equilibrium point rapidly. Larger values of J 
will cause the system to move to the equilibrium point more 
slowly. An intuitively satisfying choice of J is one round trip 
time, and this is easily estimated as R + S(k ) Ix ( t ) .  In practice, 
the values of R and S ( k )  are known, and Ix(t) is estimated by ~, 

which is the fuzzy predictor described earlier. 

10. Practical Issues 

This section considers two practical considerations: how to 
correct for parameter drift; and how to coordinate rate-based and 
window-based flow control. 

10.1. Correcting for Parameter Drift 

In any system with estimated parameters, there is a possi- 
bility that the estimators will drift away from the true value, and 
that this will not be detected. In our case, the estimate for the 
number of packets in the bottleneck buffer at time k, rib(k), is 
computed from/~b ( k  - l ) and the estimator 12(k). If  the estimators 
are incorrect, rib(k) might drift away from n b ( k  ). Hence, it is rea- 
sonable to require a correction for parameter drift. 

Note that if ~,(k) is set to 0 for some amount of time, then 
nb will decrease to 0. At this point, hb can also be set to 0, and 
the system will resynchronize. In practice, the source sends a 
special pair and then sends no packets till the special pair is 
acknowledged. Since no data was sent after the pair, when acks 
are received, the source is sure that the bottleneck queue has gone 
to 0. It can now reset ~b and continue. 

The penalty for implementing this correction is the loss of 
bandwidth for one round-trip-time. If a conversation lasts over 
many round trip times, then this loss may be insignificant over the 
lifetime of the conversation. Alternately, if a user sends data in 
bursts, and the conversation is idle between bursts, then the value 
of h b can be resynchronized to 0 one R T r  after the end of the 
transmission of a data burst. 

10.2. The Role of Windows 

Note that our control system does not give us any guaran- 
tees about the shape of the buffer size distribution N ( x ) .  Hence, 
there is a non-zero probability of packet loss. In many applica- 
tions, packet loss is undesirable. It requires endpoints to retrans- 
mit messages, and frequent retransmissions can lead to conges- 
tion. Thus, it is desirable to place a sharp cut-off on the right end 
of N(x ) ,  or strictly speaking, to ensure that there are no packet 
arrivals when nb = B. This can be arranged by having a window 
flow control algorithm operating simultaneously with the rate- 
based flow control algorithm described here. 

In this scheme, the rate-based flow control provides us a 
'good' operating point which is the setpoint that the user selects. 
In addition, the source has a limit on the number of packets it 
could have outstanding (the window size), and every server on its 
path reserves at least a window's worth of buffers for that conver- 
sation. This assures us that even if the system deviates from the 
setpoint, the system does not lose packets and possible congestive 
losses are completely avoided. 

Note that by reserving buffers per conversation, we have 
introduced reservations into a network that we earlier claimed to 
be reservationless. However, our argument is that strict band- 
width reservation leads to a loss of statistical multiplexing. As 
long as no conversation is refused admission due to a lack of 
buffers, statistical multiplexing of bandwidth is not affected by 
buffer reservation, and the multiplexing gain is identical to that 
received in a network with no buffer reservations. Thus, with 
large cheap memories, we claim that it will be always be possible 
to reserve enough buffers so that there is no loss of statistical mul- 
tiplexing. 

To repeat, we use rate-based flow control to select an oper- 
ating point, and window-based flow control as a conservative 
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cut-off point. In this respect, we agree with Jain that the two 
forms of flow control are not diametrically opposed, but in fact 
can work together [32]. 

The choice of window size is critical. Using fixed sized 
windows is usually not possible in high speed networks, where 
the bandwidth-delay product, and hence the required window can 
be large (of the order of hundreds of kilobytes per conversation). 
In view of this, the adaptive window allocation scheme proposed 
by Hahne et al [33] is attractive. In their scheme, a conversation is 
allocated a flow control window that is always larger than the 
product of the allocated bandwidth at the bottleneck, and the 
round trip propagation delay. So, a conversation is never con- 
strained by the size of the flow control window. A signaling 
scheme dynamically adjusts the window size in response to 
changes in the network state. We believe that their window-based 
flow control scheme is complementary to the rate-based flow con- 
trol scheme proposed in this paper. 

11. Limitat ions of the Our Approach 

The main limitation of a control-theoretic approach is that 
it restricts the form of the system model. Since most control- 
theoretic results hold for linear systems, the system model must 
be cast in this form. This can be rather restrictive, and certain 
aspects of the system, such as the window flow control scheme, 
are not adequately modeled. Similarly, the standard noise 
assumptions are also restrictive and may not reflect the actual 
noise distribution in the target system. 

These are mainly limitations of linear control. There is a 
growing body of literature dealing with non-linear control and one 
direction for future work would be to study non-linear models for 
flow control. 

Another limitation of control theory is that for controller 
design, the network state should be observable. Since a FCFS 
server's state cannot be easily observed, it is hard to apply control 
theoretic principles to the control of FCFS networks. In contrast, 
RAS state can be probed using a packet pair, and so RAS net- 
works are amenable to a formal treatment. 

12. Related Work and Contributions 

Several control theoretic approaches to flow control have 
been studied in the past. One body of work has considered the 
dynamics of a system where users update their sending rate either 
synchronously or asynchronously in response to measured round 
trip delays, or explicit congestion signals, for example in refer- 
ences [34-38]. These approaches typically assume Poisson 
sources, availability of global information, a simple flow update 
rule, and exponential servers. We do not make such assumptions. 
Further, they deal with the dynamics of the entire system, with the 
sending rate of all the users explicitly taken into account. In con- 
trast, we consider a system with a single user, where the effects of 
the other users are considered as a system 'noise'. Also, in our 
approach, each user uses a rather complex flow update rule, based 
in part on fuzzy prediction, and so the analysis is not amenable to 
the simplistic approach of these authors. 

Some control principles have been appealed to in work by 
Jain [39] and Jacobson [40], but the approaches of these authors is 
quite informal. Further, their control systems take multiple round 
trip times to react to a change in the system state. In contrast, the 
system in §9.1 can take control action multiple times per RTI ~. In 
a high bandwidth-delay product network, this is a significant 
advantage. 

In recent work, Ko et al [41] have studied an almost identi- 
cal problem, and have applied principles of predictive control to 

hop-by-hop flow control. However, they appeal primarily to intu- 
itive heuristics, and do not use a formal control-theoretic model, 
and hence are not able to prove stability of their system. Further, 
we believe that our fuzzy scheme is a better way to predict service 
rate than their straightforward moving-average approach. 

A control theoretic approach to individual optimal flow 
control was described originally by Agnew [29] and since 
extended by Filipiak [42] and Tipper et al [30]. In their approach, 
a conversation is modeled by a first order differential equation, 
using the fluid approximation. The modeling parameters are 
tuned so that, in the steady state, the solution of the differential 
equation and the solution of a corresponding queueing model 
agree. While we model the service rate at the bottleneck ~t as a 
random walk, they assume that the service rate is a non-linear 
function of the queue length, so that kt = G(no),  where G(.) is 
some nonlinear function. This is not true for a RAS, where the 
service rate is independent of the queue length. Hence, we cannot 
apply their techniques to our problem. 

Vakil, Hsiao and Lazar [43] have used a control-theoretic 
approach to optimal flow control in double-bus TDMA local-area 
integrated voice/data networks. However, they assume exponen- 
tial FCFS servers, and, since the network is not geographically 
dispersed, propagation delays are ignored. Their modeling of the 
service rate ~t is as a random variable as opposed to a random 
walk, and though they propose the use of recursive minimum 
mean squared error filters to estimate system state, the bulk of the 
results assume complete information about the network state. 
Vakil and Lazar [44] have considered the the design of optimal 
traffic filters when the state is not fully observable, but the filters 
are specialized for voice traffic. 

Robertazzi and Lazar [45] and Hsiao and Lazar [46] have 
shown that under a variety of conditions, the optimal flow control 
for a Jacksonian network with Poisson traffic is bang-bang 
(approximated by a window scheme). It is not clear that this 
result holds when their strong assumptions are removed. 

In summary, we feel that our approach is substantially dif- 
ferent from those in the literature. Our use of a packet-pair to 
estimate the system state is unique, and this estimation is critical 
in enabling the control scheme. We have described two provably 
stable rate-based flow control schemes as well as a novel estima- 
tion scheme using fuzzy logic. Some practical concerns in imple- 
menting the scheme have also been addressed. 

The control law presented in §9.1 has been extensively 
simulated in a number of scenarios [20]. While considerations of 
space do not allow us to present detailed results in this paper, they 
can be summarized as 

• The performance of the flow control with Fair Queueing 
servers in the benchmark suite described in reference [10] 
is comparable to that of the DECbit scheme [47], but with- 
out any need for switches to set bits. 

• The flow control algorithm responds quickly and cleanly to 
changes in network state. 

• Unlike some current flow control algorithms (DECbit and 
Jacobson's modifications to 4.3 BSD [40,47]), the system 
behaves extraordinarily well in situations where the 
bandwidth-delay product is large, even if the cross traffic 
is misbehaved or bursty. 

• Implementation and tuning of the algorithm is straightfor- 
ward, unlike the complex and ad-hoc controls in current 
flow control algorithms. 

• Even in complicated scenarios, the dynamics are simple to 
understand and manage: in contrast the dynamics of 
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Jacobson's algorithm are messy and only partially under- 
stood [48]. 

In conclusion, we believe that our decision to use a formal 
control-theoretic approach in the design of a flow control algo- 
rithm has been a success. Our algorithm behaves well even under 
great stress, and, more importantly, it is simple to implement and 
tune. These are not fortuitous, rather, they reflect the theoretical 
underpinnings of the approach. 

13. Future Work 

This paper makes several simplifications and assumptions. 
It would be useful to measure real networks to see how far theory 
and practice agree. We plan to make such measurements in the 
XUNET II experimental high speed network testbed [49]. Other 
possible extensions are to design a minimum variance controller 
and a non-linear controller. 
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