
Geo-social Recommendations based on Incremental
Tensor Reduction and Local Path Traversal

Panagiotis Symeonidis
Aristotle University

Thessaloniki, Greece
symeon@csd.auth.gr

Alexis Papadimitriou
Aristotle University

Thessaloniki, Greece
apapadi@csd.auth.gr

Yannis Manolopoulos
Aristotle University

Thessaloniki, Greece
manolopo@csd.auth.gr

Pinar Senkul
Middle East Technical

University
Ankara, Turkey

senkul@ceng.metu.edu.tr

Ismail Toroslu
Middle East Technical

University
Ankara, Turkey

toroslu@ceng.metu.edu.tr

ABSTRACT
Social networks have evolved with the combination of geo-
graphical data, into Geo-social networks (GSNs). GSNs give
users the opportunity, not only to communicate with each
other, but also to share images, videos, locations, and ac-
tivities. The latest developments in GSNs incorporate the
usage of location tracking services, such as GPS to allow
users to “check in” at various locations and record their ex-
perience. In particular, users submit ratings or personal
comments for their location/activity. The vast amount of
data that is being generated by users with GPS devices,
such as mobile phones, needs efficient methods for its ef-
fective management. In this paper, we have implemented
an online prototype system, called Geo-social recommender
system, where users can get recommendations on friends, lo-
cations and activities. For the friend recommendation task,
we apply the FriendLink algorithm, which performs a local
path traversal on the friendship network. In order to pro-
vide location/activity recommendations, we represent data
by a 3-order tensor, on which latent semantic analysis and
dimensionality reduction is performed using the Higher Or-
der Singular Value Decomposition (HOSVD) technique. As
more data is accumulated to the system, we use incremental
solutions to update our tensor. We perform an experimen-
tal evaluation of our method with two real data sets and
measure its effectiveness through recall/precision.

Keywords
tensor, geographical, social, geo-social, recommendations 1

1This work has been partially funded by the Greek GSRT
(project number 10TUR/4-3-3) and the Turkish TUBITAK
(project number 109E282) national agencies as part of
Greek-Turkey 2011-2012 bilateral scientific cooperation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM LBSN ’11, November 1, 2011. Chicago, IL, USA
Copyright c⃝2011 ACM 978-1-4503-1033-8/11/11 ...$10.00.

1. INTRODUCTION
Over the past few years, social networks have attracted a

huge attention after the widespread adoption of Web 2.0
technology. Social networks combined with geographical
data, have evolved into Geo-social networks (GSNs). GSNs
such as Facebook Places, Google Places, Foursquare.com,
etc., which allow users with mobile phones to contribute
valuable information, have increased both in popularity and
size. These systems are considered to be the next big thing
on the web [4]. An interesting statistic is that more than
250 million users are daily accessing Facebook through their
mobile devices and they are twice as active than non-mobile
users.

GSNs allow users to use their GPS-enabled device, to
“check in” at various locations and record their experience.
In particular, users submit ratings or personal comments for
the location/activity they visited/performed. That is, they
“check in” at various places, to publish their location online,
and see where their friends are. Moreover, they can either
comment on a friend’s location or comment on their own.
These GSN systems, based on a user’s “check in”profile, can
also provide activity and location recommendations. For an
activity recommendation, if a user plans to visit some place,
the GSN system can recommend an activity (i.e. dance,
eat, etc.). For a location recommendation, if a user wants
to do something, the GSN system can recommend a place
to go. Recently, Zheng et al. [12] proposed a User Collab-
orative Location and Activity Filtering (UCLAF) system,
which is based on Tensor decomposition. However, as the
authors claim, they do not update their system online as
more users accumulate data continuously over time. More-
over, even though their system provides location and activity
recommendations to users, it does not consider the case of
providing also friend recommendations.

Our prototype system GeoSocial is an online recommender
system that relies on user check-ins to provide friend, loca-
tion and activity recommendations. Every registered user
is presented with the option of checking in. The proce-
dure involves selecting the location he is currently at, the
activity he is performing there, and finally rating that ac-
tivity. Based on the users’ “check in” history and friend-
ship network, GeoSocial provides friend, location and activ-
ity recommendations. Friends are recommended based on

Recommendation

Engine

Mobile

users
Geo-Social

Algorithm

Check-in Profile

Web SiteCheck-in

System

Friend Recommendations

Location Recommendations

Activity Recommendations

Friendship Profile

Friends

Similarity

Matrix

Dynamically

analyzed 3-order

tensor(user,

location, activity)

Activity Profile

Activity Name

Activity id

User Profile

User Name
User id

Database Profiles

Check-in Profile

Location id Activity idUser id Rating id Time

Rating Profile

Rating Name

Rating id

Location Profile

Location Name

Location Position

Location id

Time Profile

Time Stamp

Time id

Friendship Profile

From User id

To User id

Figure 1: Components of the Geo-social recommender system.

the FriendLink algorithm [6] and the average geographical
distances between users’ “check-ins”, which are used as link
weights. Users, locations and activities are also inserted into
a 3-order tensor, which is then used to provide location and
activity recommendations.
The remainder of this paper is organized as follows. Sec-

tion 2 summarizes the related work, whereas Section 3 de-
scribes the GeoSocial recommender system and its compo-
nents. Section 4 describes the FriendLink algorithm, which
performs a local path traversal on the friendship network
to provide friend recommendations. Section 5 explains the
main steps that are followed when performing the tensor
reduction to detect latent associations between the user, lo-
cation and activity dimensions and also the way we update
the tensor data by implementing the Incremental Tensor Re-
duction (ITR) algorithm. In Section 6 we study the perfor-
mances of ITR and FriendLink in terms of friend, location
and activity recommendations. Finally, Section 7 concludes
the paper and proposes possible future work.

2. RELATED WORK
Recently emerged GSNs (i.e. Gowalla.com, Foursquare.com,

Facebook Places etc.) provide to users activity or location
recommendation. For example, in Gowalla.com a target user
can provide to the system the activity he wants to do and
the place he is (e.g. coffee in New York). Then, the sys-
tem provides a map with coffee places which are nearby the
user’s location and were visited many times from people he
knows. Moreover, Facebook Places allows users to see where
their friends are and share their location in the real world.
There is a little research on the scientific field of GSNs.

Backstrom et al. [1] use user-supplied address data and the
network of associations between members of the Facebook
social network to measure the relationship between geogra-
phy and friendship. Using these measurements, they can
predict the location of an individual. Scellato et al. [10] pro-

posed a graph analysis based approach to study social net-
works with geographic information. They also applied new
geo-social metrics to four large-scale Online Social Network
data sets (i.e. Liveljournal, Twitter, FourSquare, BrightKite).
Quercia et al. [7] address the mobile cold-start problem when
recommending social events to users without any location
history.

Leung et al. [5] propose the Collaborative Location Rec-
ommendation (CLR) framework for location recommenda-
tion. The framework considers activities and different user
classes to generate more precise and refined recommenda-
tions. The authors also incorporate a dynamic clustering al-
gorithm, namely Community-based Agglomerative-Divisive
Clustering (CADC), into the framework in order to clus-
ter the trajectory data into groups of similar users, simi-
lar activities and similar locations. The algorithm can also
be updated incrementally when new GPS trajectory data is
available.

Ye et al. [11] believe that user preferences, social influence
and geographical influence should be considered when pro-
viding Point of Interest recommendations. They study the
geographical clustering phenomenon and propose a power-
law probabilistic model to capture the geographical influence
among Points of Interest. Finally, the authors evaluate their
proposed method over the Foursquare and Whrrl datasets
and discover, among others, that geographical influence is
more important than social influence and that item similar-
ity is not as accurate as user similarity due to a lack of user
check-ins.

Moreover, there are tensor-based approaches. For exam-
ple, Biancalana et al. [2] implemented a social recommender
system based on a tensor that is able to identify user prefer-
ences and information needs and suggests personalized rec-
ommendations for possible points of interest (POI). Further-
more, Zheng et al. [13] proposed a method, where geograph-
ical data is combined with social data to provide location

(a) (b)

Figure 2: Location and activity recommendations made by the Geo-social recommender system.

and activity recommendations. The authors used GPS lo-
cation data, user ratings and user activities to propose loca-
tion and activity recommendations to interested users and
explain them accordingly. Moreover, Zheng et al. [12] pro-
posed a User Collaborative Location and Activity Filtering
(UCLAF) system, which is based on Tensor decomposition.
In contrast to the aforementioned tensor-based methods,

our Geosocial recommender system provides (i) location and
activity recommendations (ii) friend recommendations by
combining FriendLink algorithm [6] with the geographical
distance between users. Moreover, our tensor method in-
cludes an incremental stage, where newly created data is
inserted into the tensor by incremental solutions. [9, 3].

3. GEOSOCIAL SYSTEM DESCRIPTION
Our GeoSocial system consists of several components. The

system’s architecture is illustrated in Figure 1, where three
main sub-systems are described: (i) the Web Site, (ii) the
Database Profiles and (iii) the Recommendation Engine.
In the following sections, we describe each sub-system of
GeoSocial in detail.

3.1 GeoSocial Web Site
The GeoSocial system uses a web site 2 to interact with

the users. The web site consists of four sub-systems: (i) the
friend recommendation, (ii) the location recommendation,
(iii) the activity recommendation and (iv) the check-in sys-
tem. The friend recommendation sub-system is responsible
for evaluating incoming data from the Recommendation En-
gine of GeoSocial and providing updated friend recommen-

2http://delab.csd.auth.gr/geosocial

dations. In order to provide such recommendations, the web
site sub-system implements the FriendLink algorithm [6] and
also considers the geographical distance between users and
“check in” points. The same applies to the location and ac-
tivity recommendation sub-systems where new and updated
location and activity recommendations are presented to the
user as new “check-ins” are stored in the Database profiles.
Finally, the check in system is responsible for passing the
data inserted by the users to the respective Database pro-
files.

Figure 2a shows a location recommendation while Fig-
ure 2b depicts an activity recommendation. As shown in
Figure 2a, the user selects an activity that he would like to
perform, in this case working, and the system provides loca-
tion recommendations where he could perform his selected
activity, in this case either Starbucks or the Auth Library.
As shown in Figure 2b, the user selects a nearby location,
i.e. Auth Library and the system provides activities that
he could perform. In this case the user’s location is near
the Auth Library and the system proposes clubbing at the
“Trendy bar” or the “Picadily” as possible activities.

Figure 3a presents a scenario where the GeoSocial sys-
tem recommends 4 possible friends to a target user. As
shown, the first table includes 3 users, namely Maria Kon-
taki, Nikos Dimokas and Panagiotis Symeonidis, who are
connected to the target user via 2-hop paths. The results
are ordered based on the second to last column of the ta-
ble, which indicates the number of common friends that the
target user shares with each possible friend. As shown in
Figure 3a, Maria Kontaki is the top recommendation be-
cause she shares 3 common friends with the target user.
The common friends are then presented in the last column

(a) (b)

Figure 3: (a) Friend recommendations provided by the GeoSocial system. (b) Database check-in profile.

of the table. The second table contains one user, namely
Tasos Gounaris, who is connected to the target user via a
3-hop path. The last column of the table indicates the num-
ber of pairs that connect the target user with the possible
friend. As shown in Figure 3a, Tasos Gounaris is connected
to the target user via 1 3-hop path. This path is presented
in the last column of the table.

3.2 GeoSocial Database Profiles
The database that supports the GeoSocial system is a

MySQL(v.5.5.8) 3 database. MySQL is an established Database
Management System (DBMS), which is widely used in on-
line, dynamic, database driven websites.
The database profile sub-system contains five profiles where

data about the users, locations, activities and their corre-
sponding ratings is stored. As shown in Figure 3b, this data
is received by the Check-In profile and along with the Friend-
ship profile, they provide the input for the Recommendation
Engine sub-system.
The collected data is stored in a database table, called

“checkins”, which is shown in Figure 3b. Each table field rep-
resents the respective data that is collected by the Check-In
profile. NodeID, placeID and activityID refer to specific IDs
given to users, locations and activities respectively. We also
store information about the time of the check-in inside the
date field and an optional user comment inside the comment
field.

3.3 GeoSocial Recommendation Engine
The recommendation engine is responsible for collecting

the data from the database and producing the recommenda-
tions which will then be displayed on the web site. As shown
in Figure 1, the recommendation engine constructs a friends
similarity matrix by implementing the FriendLink algorithm

3http://www.mysql.com

proposed in [6]. The average geographical distances between
users’ “check-ins” are used as link weights. To obtain the
weights, we calculate the average distance between all pairs
of POIs that two users have checked-in. The recommen-
dation engine also produces a dynamically analyzed 3-order
tensor, which is firstly constructed by the HOSVD algorithm
and is then updated using incremental methods [9, 3], both
of which are explained in later sections.

4. THE FRIENDLINK ALGORITHM
In this section, we describe our FriendLink [6] algorithm,

which can be used for the task of friend recommendations.
Here, we describe how FriendLink is applied on GSNs and
how the recommendation of friends is performed according
to the detected associations.

When using an GSN, users explicitly declare their friends
so that they are able to share information location with them
(i.e. photos etc.) After some time, the geo-social network
accumulates a set of connection data (graph of friendships),
which can be represented by an undirected graph.

Our method assumes that persons in an GSN can use all
the pathways connecting them, proportionally to the path-
way lengths. Thus, two persons who are connected with
many unique pathways have a high possibility to know each,
proportionally to the length of the pathways they are con-
nected with.
Definition 1. The similarity sim(vx, vy) between two graph
nodes vx and vy is defined as the counts of paths of varying
length ℓ from vx to vy:

sim(vx, vy) =

ℓ∑
i=2

1

i− 1
·
∣∣pathsivx,vy

∣∣
i∏

j=2

(n− j)

(1)

where

• n is the number of vertices in a graph G,

• ℓ is the maximum length of a path between the graph
nodes vx and vy (excluding paths with cycles). By the
term “paths with cycles” we mean that a path can not
be closed (cyclic). Thus, a node can exist only one
time in a path (e.g. path v1 → v2 → v3→v1 → v5 is
not acceptable because v1 is traversed twice),

• 1
i−1

is an “attenuation” factor that weights paths ac-
cording to their length ℓ. Thus, a 2-step path measures
the non-attenuation of a link with value equals to 1
(1
2−1

= 1). A 3-step path measures the attenuation of

a link with value equals to 1
2
(1
3−1

= 1
2
) etc. In this

sense, we use appropriate weights to allow the lower
effectiveness of longer path chains.

•
∣∣pathsℓvx,vy

∣∣ is the count of all length-ℓ paths from vx
to vy,

•
i∏

j=2

(n − j) is the count of all possible length-ℓ paths

from vx to vy, if each vertex in graph G was linked with

all other vertices. By using the fraction

∣∣∣pathsℓvx,vy

∣∣∣
i∏

j=2

(n− j)

,

our similarity measure is normalized and takes val-
ues in [0,1]. If two nodes are similar we expect the
value sim(vx, vy) to be close to 1. On the other hand,
if the two nodes are dissimilar, we expect the value
sim(vi, vj) to be close to 0.

Our FriendLink approach finds similarities between nodes
in an undirected graph constructed from these connection
data. The FriendLink algorithm uses as input the connec-
tions of a graph G and outputs a similarity matrix between
any two nodes in G. Therefore, friends can be recommended
to a target user u according to their weights in the similarity
matrix.
Friendlink computes node similarity between any two nodes

in a graph G. The initial input of Friendlink is the number
n of nodes of G, the adjacency matrix A, and the length ℓ
of paths that will be explored in G. To enumerate all simple
paths in G, Rubin’s algorithm [8] can be employed. However,
Rubin’s algorithm uses O(n3) matrix operations to find all
paths of different length between any pair of nodes, where n
is the number of nodes in G. In the following, we customize
Rubin’s algorithm to create only paths of length up to ℓ for
our purpose.
As shown in Figure 4, FriendLink consists of a main pro-

gram and two functions. In the main program, we modify
the adjacency matrix so instead of holding 0/1 values, the
(i, j) entry of the matrixA is a list of paths from i to j. Then,
in the function Combine Paths(), we perform the matrix
multiplication algorithm. However, instead of multiplying
and adding entries, we concatenate pairs of paths together.
Finally, in the function Compute Similarity(), we update
the similarity between nodes i and j, for each length-ℓ path
we find, where i is the start node and j is the destination
node (i.e all paths of length [2..ℓ]). For the update of the
similarity value between nodes i and j we use Equation 1.
Notice that, we do not take into account cyclic paths in our
similarity measure.

Algorithm FriendLink (G, A, n, ℓ)
Input

G: an undirected graph
A: adjacency matrix of graph G,
n: number of nodes of graph G,
ℓ: maximum length of paths explored in G,
m: the length of a path

Output
sim(i, j): similarity between node i and node j in G

1. Main Program
2. for i = 1 to n
3. for j = 1 to n
4. if A(i, j) = 1 then
5. A(i, j) = j
6. else
7. A(i, j)= 0
8. end if
9. end for j
10. end for i
11. for m = 2 to ℓ
12. Combine Paths()
13. Compute Similarity(m)
14. end for m
15. End Main Program

16. Function Combine Paths()
17. for i = 1 to n
18. for j = 1 to n
19. for k = 1 to n
20. if A(i, k) <> 0 and A(k, j) <> 0 then
21. A(i, j) = concatenate(A(i, k), A(k, j))
22. end if
23. end for k
24. end for j
25. end for i
26. return A(i, j)
27. End Function

28. Function Compute Similarity(m)
29. for i = 1 to n
30. for j = 1 to n
31. denominator = 1
32. for k = 2 to m
33. denominator = denominator * (n - k)
34. end for k

35. sim(i, j) = sim(i, j) + 1
m−1 ·

∣∣∣pathsmi,j

∣∣∣
denominator

36. end for j
37. end for i
38. return sim(i, j)
39. End Function

Figure 4: The FriendLink algorithm.

5. OUR INCREMENTAL TENSOR REDUC-
TION APPROACH

In this section we provide details on how HOSVD is ap-
plied on tensors and how location/activity recommendation
is performed based on the detected latent associations.

Our Tensor Reduction approach initially constructs a ten-
sor, based on usage data triplets {u, l, a} of users, location
and activity. The motivation is to use all three objects
that interact inside a location-based social network. Con-
sequently, we proceed to the unfolding of A, where we build
three new matrices. Then, we apply SVD in each new ma-
trix. Finally, we build the core tensor S and the resulting
tensor Â. The 6 steps of the proposed approach are sum-
marized as follows:

• Step 1: The initial tensor A construction, which is
based on usage data triplets (user, location, activity).

• Step 2: The matrix unfoldings of tensor A, where we
matricize the tensor in all three modes, creating three
new matrices (one for each mode).

• Step 3: The application of SVD in all three new ma-
trices, where we keep the c-most important singular
values for each matrix.

• Step 4: The construction of the core tensor S, that
reduces the dimensionality.

• Step 5: The construction of the Â tensor, that is an
approximation of tensor A.

• Step 6: Based on the weights of the elements of the re-
constructed tensor Â, we recommend location/activity
to the target user u.

Steps 1 − 5 build a model and can be performed off-line.
The recommendation in Step 5 is performed on-line, i.e.,
each time we have to recommend a location/activity to a
user, based on the built model. In the following, we provide
more details on each step.

5.1 The initial construction of tensor A

From the usage data triplets (user, location, activity), we
construct an initial 3-order tensor A ∈ RIu×Il×Ia , where
Iu, Il, Ia are the numbers of users, locations and activities,
respectively. Each tensor element measures the number of
times that a user u checked in a location l and made an
activity a.

5.2 Matrix unfolding of tensor A

As described, a tensor A can be unfolded (matricized),
i.e., we build matrix representations of tensor A in which
all the column (row) vectors are stacked one after the other.
The initial tensor A is matricized in all three modes. Thus,
after the unfolding of tensor A for all three modes, we create
3 new matrices A1, A2, A3, as follows:

A1 ∈ RIu×IlIa ,

A2 ∈ RIl×IuIa ,

A3 ∈ RIuIl×Ia

5.3 Application of SVD on each matrix
We apply SVD on the three matrix unfoldings A1, A2, A3.

We result, in total, to 9 new matrices.

A1 = U (1) · S1 · V T
1 (2)

A2 = U (2) · S2 · V T
2 (3)

A3 = U (3) · S3 · V T
3 (4)

For Tensor Dimensionality Reduction, there are three di-
mensional parameters to be determined. The numbers c1, c2

and c3 of left singular vectors of matrices U (1), U (2), U (3), re-
spectively, that are preserved. They will determine the final
dimensionality of the core tensor S. Since each of the three
diagonal singular matrices S1, S2 and S3 are calculated by
applying SVD on matrices A1, A2 and A3, respectively, we
use different c1, c2 and c3 numbers of principal components
for each matrix U (1), U (2), U (3). The numbers c1, c2 and
c3 of singular vectors are chosen by preserving a percentage
of information of the original S1, S2, S3 matrices after ap-
propriate tuning (the default percentage is set to 50% of the
original matrix).

5.4 The construction of the core tensor S

The core tensor S governs the interactions among users,
locations and activities. Since we have selected the dimen-
sions of U (1), U (2) and U (3) matrices, we proceed to the
construction of S, as follows:

S = A×1 Uc1
(1)T ×2 Uc2

(2)T ×3 Uc3
(3)T , (5)

where A is the initial tensor, Uc1
(1)T is the tranpose of the

c1-dimensionally reduced U (1) matrix, Uc2
(2)T is the tran-

pose of the c2-dimensionally reduced U (2) matrix, Uc3
(3)T is

the tranpose of the c3-dimensionally reduced U (3) matrix.

5.5 The construction of tensor Â

Finally, tensor Â is build as the product of the core tensor
S and the mode products of the three matrices U (1), U (2)

and U (3) as follows:

Â = S ×1 Uc1
(1) ×2 Uc2

(2) ×3 Uc3
(3), (6)

S is the reduced core tensor, Uc1
(1) is the c1-dimensionally

reduced U (1) matrix, Uc2
(2) is the c2-dimensionally reduced

U (2) matrix, Uc3
(3) is the c3-dimensionally reduced U (3) ma-

trix.

5.6 The generation of the location/activity Rec-
ommendation list

Tensor Â measures the associations among the users, lo-
cations and activities and acts as a model that is used during
the recommendation.

Each element of Â represents a quadruplet {u, l, a, p},
where p is the likeliness that user u will visit location l
and perform activity a. Therefore, locations/activities can
be recommended to u according to their weights associated
with {u, a} and {u, l} pairs, respectively. If we want to
recommend to u N activities for location l, then we select
the N corresponding activities with the highest weights.

5.7 Inserting new users, locations, or activi-
ties over time

As new users, locations, or activities are being introduced
to the system, the Â tensor, which provides the recommen-
dations, has to be updated. The most demanding operation
for this task is the updating of the SVD of the correspond-
ing unfoldings. We can avoid the costly batch recomputa-
tion of the corresponding SVD, by considering incremental
solutions [9, 3]. Depending on the size of the update (i.e.,

number of new users, locations, or activities), different tech-
niques have been followed in related research. For small
update sizes we can consider the folding-in technique [9],
whereas for larger update sizes we can consider Incremental
SVD techniques [3].

5.7.1 Update by Incremental SVD
Folding-in incrementally updates SVD, but the resulting

model is not a perfect SVD model, because the space is
not orthogonal [9]. When the update size is not big, loss
of orthogonality may not be a severe problem in practice.
Nevertheless, for larger update sizes the loss of orthogonality
may result to an inaccurate SVD model. In this case we need
to incrementally update SVD so as to ensure orthogonality.
This can be attained in several ways. Next we describe how
to use the approach proposed by Brand [3].
Let Mp×q be a matrix, upon we which apply SVD and

maintain the first r singular values, i.e.,

Mp×q = Up×rSr×rV
T
r×q

Assume that each column of matrix Cp×c contains the
additional elements. Let L = U\C = UTC be the projection
of C onto the orthogonal basis of U . Let also H = (I −
UUT)C = C−UL be the component of C orthogonal to the
subspace spanned by U (I is the identity matrix). Finally,
let J be an orthogonal basis of H and let K = J\H = JTH
be the projection of C onto the subspace orthogonal to U .
Consider the following identity:

[U J]

[
S L
0 K

] [
V 0
0 I

]T

=

[
U(I − UUT)C/K

] [
S UTC
0 K

] [
V 0
0 I

]T

=

[
USV T C

]
= [M C]

Like an SVD, the left and right matrixes in the product are
unitary and orthogonal. The middle matrix, denoted as Q,
is diagonal. To incrementally update the SVD, Q must be
diagonalized. If we apply SVD on Q we get:

Q = U ′S′(V ′)T

Additionally, define U ′′, S′′, V ′′ as follows:

U ′′ = [U J]U ′, S′′ = S′, V ′′ =

[
V 0
0 I

]
V ′

Then, the updated SVD of matrix [M C] is:

[M C] = [USV T C] = U ′′S′′(V ′′)T

This incremental update procedure takes O((p+ q)r2 + pc2)
time [3].
Returning to the application of incremental update for

new users, locations, or activities, in each case we result
with a number of new rows that are appended in the end of
the unfolded matrix of the corresponding mode. Therefore,
we need an incremental SVD procedure in the case where we
add new rows, whereas the aforementioned method works in
the case where we add new columns. In this case we simply
swap U for V and U ′′ for V ′′.

6. EXPERIMENTAL CONFIGURATION
In this section, we study the performance of our approach

in terms of friend, location and activity recommendations.
To evaluate the aforementioned recommendations we have
chosen two real data sets. The first one, denoted as geoso-
cial data set is extracted from our newly developed site.
There are 1,173 triplets in the form user–location–activity.
To these triplets correspond 102 users, 46 locations and 18
activities. The second data set, denoted as UCLAF 4 [12]
data set consists of 164 users, 168 locations and 5 different
types of activities, including “Food and Drink”, “Shopping”,
“Movies and Shows”, “Sports and Exercise”, and “Tourism
and Amusement”.

The numbers c1, c2, and c3 of left singular vectors of ma-
trices U (1), U (2), U (3) for our approach, after appropriate
tuning, are set to 25, 12 and 8 for the geosocial dataset, and
to 40, 35, 5 for the UCLAF data set. Due to lack of space
we do not present experiments for the tuning of c1, c2, and
c3 parameters. The core tensor dimensions are fixed, based
on the aforementioned c1, c2, and c3 values.

6.1 Evaluation Metrics
We perform 4-fold cross validation and the default size

of the training set is 75% – we pick, for each user, 75% of
his check-ins and friends randomly. The task of all three
recommendation types (i.e. friend, location, activity) is to
predict the friends/locations/activities of the user’s 25% re-
maining check-ins and friends, respectively. As performance
measures we use precision and recall, which are standard
in such scenarios. For a test user that receives a list of N
recommended friends/locations/activities (top-N list), the
following are defined:
– Precision : is the ratio of the number of relevant
friends/locations/activities in the top-N list relative to N .
– Recall : is the ratio of the number of relevant
friends/locations/activities in the top-N list relative to the
total number of relevant friends/locations/activities, respec-
tively.

6.2 Comparison Results
In this section, we study the accuracy performance of our

method in terms of precision and recall. This reveals the
robustness of our method in attaining high recall with min-
imal losses in terms of precision. We examine the top-N
ranked list, which is recommended to a test user, starting
from the top friend/location/activity. In this situation, the
recall and precision vary as we proceed with the examination
of the top-N list. In Figure 5, we plot a precision versus re-
call curve. As it can be seen, our ITR approach presents high
accuracy. The reason is that we exploit altogether the infor-
mation that concerns the three entities (friends, locations,
and activities) and thus, we are able to provide accurate lo-
cation/activity recommendations. Notice that activity rec-
ommendations are more accurate than location recommen-
dations. A possible explanation could be the fact that the
number of locations is bigger than the number of activities.
That is, it is easier to predict accurately an activity than a
location. Notice that for the task of friend recommendation,
the performance of Friendlink is not so high. The main rea-
son is data sparsity. In particular, the friendship network
has average nodes’ degree equal to 2.7 and average shortest

4http://www.cse.ust.hk/ vincentz/aaai10.uclaf.data.mat

distance between nodes 4.7, which means that the friendship
network can not be consider as a “small world” network and
friend recommendations can not be so accurate.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

%
 P
re
c
is
io
n

% Recall

Activity
Recommendations

Location
Recommendations

Friend
Recommendations

Figure 5: Precision Recall diagram of ITR and
FriendLink for activity, location and friend recom-
mendations on the Geosocial data set

For the UCLAF data set, as shown in Figure 6, our ITR
algorithm attains analogous results. Notice that the recall
for the activity recommendations, reaches 100% because the
total number of activities is 5. Moreover, notice that in this
diagram, we do not present results for the friend recom-
mendation task, since there is no friendship network in the
corresponding UCLAF data set.

30

40

50

60

70

80

90

100

%
 P
re
c
is
io
n

Activity
Recommendations

Location
Recommendations

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

%
 P
re
c
is
io
n

% Recall

Activity
Recommendations

Location
Recommendations

Figure 6: Precision Recall diagram of ITR for activ-
ity and location recommendations on the UCLAF
data set

7. CONCLUSION AND FUTURE WORK
In this paper we have proposed a Geo-social recommender

system, which is capable of recommending friends, locations
and activities. For the location/activity recommendation
task, we used a tensor, which is updated by incremental
tensor approaches, as new users, locations, or activities are
being inserted into the system. For the friend recommen-
dation task, we apply the FriendLink algorithm, which per-
forms a local path traversal on the friendship network.
As future work, we plan on conducting a user study con-

cerning the recommendations in our Geo-social web site to
measure user satisfaction. We are also planning on compar-
ing our method to other state-of-the-art methods in terms of
effectiveness and efficiency. Moreover, we want to extend our
Geo-social recommender system by taking also into account
the geographical influence and semantics. That is, the geo-
graphical proximities of locations and their semantics could
play a determinant role on users’ check-in behavior.

References
[1] L. Backstrom, E. Sun, and C. Marlow. Find me if

you can: improving geographical prediction with social
and spatial proximity. In WWW ’10: Proceedings of
the 19th international conference on World Wide Web,
pages 61–70, New York, NY, USA, 2010. ACM.

[2] C. Biancalana, F. Gasparetti, A. Micarelli, and G. San-
sonetti. Social tagging for personalized location-based
services. 2011.

[3] M. Brand. Incremental singular value decomposition of
uncertain data with missing values. In European Con-
ference on Computer Vision (ECCV2002), 2002.

[4] Economist. A world of connections: A special report
on networking. The Economist: Editorial Team, 2010.

[5] K. W.-T. Leung, D. L. Lee, and W.-C. Lee. Clr: a col-
laborative location recommendation framework based
on co-clustering. In Proceedings of the 34th interna-
tional ACM SIGIR conference on Research and devel-
opment in Information, SIGIR ’11, pages 305–314, New
York, NY, USA, 2011. ACM.

[6] A. Papadimitriou, P. Symeonidis, and Y. Manolopou-
los. Friendlink: Predicting links in social networks via
bounded local path traversal. In Proceedings of the 3rd
Conference on Computational Aspects of Social Net-
works (CASON’2011), Salamanca, Spain (to appear),
2011.

[7] D. Quercia, N. Lathia, F. Calabrese, G. Di Lorenzo,
and J. Crowcroft. Recommending Social Events from
Mobile Phone Location Data. In Proceedings of IEEE
ICDM 2010, Dec. 2010.

[8] F. Rubin. Enumerating all simple paths in a graph.
IEEE Transactions on Circuits and Systems, 25(8):641–
642, 1978.

[9] B. Sarwar, J. Konstan, and J. Riedl. Incremental singu-
lar value decomposition algorithms for highly scalable
recommender systems. In International Conference on
Computer and Information Science, 2002.

[10] S. Scellato, C. Mascolo, M. Musolesi, and V. Latora.
Distance Matters: Geo-social Metrics for Online Social
Networks. In Proceedings of the 3rd Workshop on On-
line Social Networks (WOSN 2010), June 2010.

[11] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting ge-
ographical influence for collaborative point-of-interest
recommendation. In Proceedings of the 34th interna-
tional ACM SIGIR conference on Research and devel-
opment in Information, SIGIR ’11, pages 325–334, New
York, NY, USA, 2011. ACM.

[12] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang.
Collaborative filtering meets mobile recommendation:
A user-centered approach. AAAI’10, pages 236–241,
2010.

[13] W. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collabo-
rative location and activity recommendations with gps
history data. In WWW ’10: Proceedings of the 19th
international conference on World Wide Web, pages
1029–1038, New York, NY, USA, 2010. ACM.

