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In modern distributed object systems, reference parameters to a remote method are passed ac-

cording to their runtime type. This design choice limits the expressiveness, readability, and
maintainability of distributed applications. Further, to extend the built-in set of parameter pass-

ing semantics of a distributed object system, the programmer has to understand and modify

the underlying middleware implementation. To address these design shortcomings, this article
presents (i) a declarative and extensible approach to remote parameter passing that decouples

parameter passing semantics from parameter types, and (ii) a plugin-based framework, DeXteR,

which enables the programmer to extend the built-in set of remote parameter passing semantics,
without having to understand or modify the underlying middleware implementation. DeXteR

treats remote parameter passing as a distributed cross-cutting concern and uses aspect-oriented

and generative techniques. DeXteR enables the implementation of different parameter passing
semantics as reusable application-level plugins, applicable to application, system, and third-party

library classes. The expressiveness, flexibility, and extensibility of the approach is validated by
adding several non-trivial remote parameter passing semantics (i.e., copy-restore, lazy, streaming)

to Java Remote Method Invocation (RMI) as DeXteR plugins.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Program-

ming—Program synthesis; D.1.3 [Programming Techniques]: —Distributed Programming;
D.3.3 [Programming Languages]: Language Constructs and Features—Frameworks

General Terms: Languages, Design

Additional Key Words and Phrases: Extensible Middleware, Metadata, Aspect Oriented Pro-
gramming (AOP), Generative Programming, Declarative Programming

1. INTRODUCTION

One of the most widely-used paradigms for constructing distributed systems is Re-
mote Procedure Call (RPC) [Birrell and Nelson 1984]. RPC leverages the ubiquity
of procedure calls in programming languages and makes remote calls work like local
calls. RPC is also straightforward to implement—most programming languages can
express remote calls by simply defining an appropriate library.

To support the construction of distributed object systems [The Object Man-
agement Group (OMG) 1997; Wollrath et al. 1996], RPC has been extended to
Remote Method Invocation (RMI), which enables transparent object distribution.

This is a corrected and expanded version of a paper [Gopal et al. 2008] presented at the 9th

ACM/IFIP/USENIX Middleware Conference.
Corresponding Author’s Address: Eli Tilevich, Dept. of Computer Science, Virginia Tech, Blacks-

burg, VA, USA. Email: tilevich@cs.vt.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–29.



2 · E. Tilevich and S. Gopal

Although RMI-based distributed object systems aim at making remote methods in-
distinguishable from local methods, parameter passing is one implementation facet
that is handled specially. Parameter passing in local calls can be implemented
efficiently because the caller and the callee share the same address space. When
distribution takes place, however, efficiently maintaining the local parameter pass-
ing semantics across different address spaces becomes impossible without special
hardware support. As a result, distributed object systems offer different param-
eter passing semantic for remote calls (e.g., call-by-copy, call-by-remote-reference,
call-by-copy-restore). Furthermore, to designate how a particular parameter should
be passed to a remote method, the programmer has to use types. Specifically, the
runtime type of a remote parameter determines the semantics by which it will be
passed.

Types are among the most commonly explored research topics in programming
languages. In addition to presenting stimulating research challenges, type systems
provide practical means for creating more robust programs. By ensuring that pro-
gram fragments compute a specific set of values, a type system helps avoid undesir-
able runtime behaviors. In his book “Types and Programming Languages,” Pierce
points out how type systems benefit practical software development by detecting
errors, providing useful abstractions, documenting program behavior, ensuring lan-
guage safety, and improving efficiency [Pierce 2002].

Despite all of these benefits of type systems, the main argument of this article
is that types are ill-suited as a mechanism to express the semantics for passing
parameters to remote methods. We argue that type-based parameter passing is a
poorly-designed programming abstraction that negatively affects the expressiveness,
readability, and maintainability of distributed applications.

Mainstream programming languages such as C, C++, and C# express the choice
of local parameter passing mechanisms through method declarations with special
tokens rather than types. For example, by default objects in C++ are passed by
value, but inserting the & token after the type of a parameter signals the by reference
mechanism. Why cannot distributed object systems adhere to a similar declara-
tive paradigm for remote method calls, albeit properly designed for distributed
communication?

To that end, we present declaration-based parameter passing for remote meth-
ods. While Java always uses the by value semantics for local calls, distributed
communication requires a richer set of semantics to ensure good performance and
to increase flexibility. With our model, the declaration of a remote method includes
a passing mechanism for each parameter, expressed using Java 5 annotations. We
demonstrate how decoupling parameter passing from parameter types increases ex-
pressiveness, improves readability, and eases maintainability. We also show that
IDL-based distributed object systems such as CORBA [Group 1998b] and DCOM
[Brown and Kindel 1998] with their in, out, and inout parameter modes stop short
of a fully declarative parameter passing model and are not extensible.

Recognizing that many existing distributed applications are built upon a type-
based model, we present a technique for transforming a type-based remote pa-
rameter passing model to use a declaration-based one. Our technique transforms
parameter passing functionality transparently, without any changes to the under-
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lying distributed object system implementation, ensuring cross-platform compati-
bility and ease of adoption. With Java RMI as our example domain, we combine
aspect-oriented and generative techniques to retrofit its parameter passing func-
tionality. Our approach is equally applicable to application classes, system classes,
and third-party libraries.

In addition, declaration-based remote parameter passing simplifies adding new
semantics to an existing distributed object system. We present an extensible plug-
in-based framework, through which third-party vendors or in-house expert program-
mers can seamlessly extend a built-in set of remote parameter passing semantics.
Our framework allows such extension in the application space, without modifying
the JVM or its runtime classes. As a validation, we used our framework to extend
the set of available parameter passing semantics of RMI with several non-trivial
state-of-the-art semantics, introduced earlier in the literature both by us [Tilevich
and Smaragdakis 2008] and others [Line et al. 2008; Yang et al. 2006; Eberhard
and Tripathi 2001].

One of the implemented semantics optimizes our own prior algorithm for copy-
restore [Tilevich and Smaragdakis 2008]. While the original implementation is inef-
ficient in high-latency, low-bandwidth network environments, the optimized version
of the copy-restore algorithm—copy-restore with delta—efficiently identifies and en-
codes the changes made by the server to a copy-restore parameter.

Contributions and Roadmap

This article makes the following novel contributions:

—A clear exposition of the shortcomings of type-based parameter passing in dis-
tributed object systems, including CORBA, Java RMI, and .NET Remoting.

—An alternative declarative parameter passing approach that offers design and
implementation advantages.

—An extensible framework to retrofit RMI applications with declaration-based pa-
rameter passing and to extend the built-in set of semantics.

—An enhanced copy-restore mode of remote parameter passing, offering perfor-
mance advantages for low bandwidth, high latency networks.

The rest of this article is structured as follows. Section 2 demonstrates the
shortcomings of type-based parameter passing using a bioinformatics application.
Section 3 presents DeXteR, our extensible framework. Section 4 describes how
we used DeXteR to add several non-trivial parameter passing semantics to RMI.
Section 5 discusses the advantages and constraints of our approach. Section 6
discusses related work. Section 7 outlines future work directions, and Section 8
presents concluding remarks.

2. MOTIVATING EXAMPLE

Organizations have hundreds of workstations connected into local area networks
(LANs) that stay unused for hours at a time. Consider leveraging these idle com-
puting resources for distributed scientific computation. Specifically, we would like
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to set up an ad-hoc grid that will use the idle workstations to solve bioinformatics
problems. The ad-hoc grid will coordinate the constituent workstations to align,
mutate, and cross DNA sequences, thereby solving a computationally intensive
problem in parallel.

Each workstation has a standard Java Virtual Machine (JVM) installed, and the
LAN environment makes Java RMI a viable distribution middleware choice. As
a distributed object model for Java, RMI simplifies distributed programming by
exposing remote method invocations through a convenient programming model. In
addition, the synchronous communication model of Java RMI aligns well with the
reliable networking environment of a LAN.

The bioinformatics application follows a simple Master-Worker architecture, with
classes Sequence, SequenceDB, and Worker representing a DNA sequence, a collection
of sequences, and a worker process, respectively. Class Worker implements three
computationally-intensive methods: align , cross , and mutate.

1 interface WorkerInterface {
2 void align (SequenceDB allSeqs, SequenceDB candidates,
3 Sequence toMatch);
4 Sequence cross(Sequence s1, Sequence s2);
5 void mutate(SequenceDB seqs);
6 }
7

8 class Worker implements WorkerInterface { ... }

The align method iterates over a collection of candidate sequences (candidates),
adding to the global collection ( allSeqs ) those sequences that satisfy a minimum
alignment threshold. The cross method simulates the crossing over of two sequences
(e.g., during mating) and returns the offspring sequence. Finally, the mutate method
simulates the effect of a gene therapy treatment on a collection of sequences, thereby
mutating the contents of every sequence in the collection.

Consider using Java RMI to distribute this application on an ad-hoc grid, so that
multiple workers could solve the problem in parallel. To ensure good performance,
we need to select the most appropriate semantics for passing parameters to remote
methods. However, as we demonstrate next, despite its Java-like programming
model, RMI uses a different remote parameter passing model that is type-based.
That is, the runtime type of a reference parameter determines the semantics by
which RMI passes it to remote methods. We argue that this parameter passing
model has serious shortcomings, with negative consequences for the development,
understanding, and maintenance of distributed applications.

Method align takes two parameters of type SequenceDB: allseqs and candidates.
allseqs is an extremely large global collection that is being updated by multiple
workers. We, therefore, need to pass it by remote-reference. candidates, on the
other hand, is a much smaller collection that is being used only by a single worker.
We, therefore, need to pass it by copy, so that its contents can be examined and
compared efficiently. To pass parameters by remote-reference and by copy, the
RMI programmer has to create subclasses implementing marker interfaces Remote

and Serializable , respectively. As a consequence, method align ’s signature must be
changed as well. Passing allSeqs by remote-reference requires the type of allSeqs
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to become a remote interface. Finally, examining the declaration of the remote
method align would give no indication about how its parameters are passed, forcing
the programmer to examine the declaration of each parameter’s type. In addition,
in the absence of detailed source code comments, the programmer has no choice
but to examine the logic of the entire slice [De Lucia et al. 1996] of a distributed
application that can affect the runtime type of a remote parameter.

Method mutate mutates the contents of every sequence in its seqs parameter. Since
the client needs to use the mutated sequences, the changes have to be reflected
in the client’s JVM. The situation at hand renders passing by remote-reference
ineffective, since the large number of remote callbacks is likely to incur a significant
performance overhead. One approach is to pass seqs by copy-restore, a semantics
which efficiently approximates remote-reference under certain assumptions [Tilevich
and Smaragdakis 2008].

Because Java RMI does not natively support copy-restore, one could use a cus-
tom implementation provided either by a third-party vendor or an in-house expert
programmer. Mainstream middleware, however, does not provide programming fa-
cilities for such extensions. Thus, adding the new semantics would require that
a programmer understand the RMI implementation in sufficient detail to be able
to add the new functionality by hand either by manipulating bytecode directly or
using a tool as AspectJ.

Finally, consider the task of maintaining the resulting ad-hoc grid distributed
application. Assume that SequenceDB is a remote type in one version of the ap-
plication, such that RMI will pass all instances SequenceDB by remote-reference.
However, if a maintenance task necessitates passing some instance of SequenceDB

using different semantics, the SequenceDB type would have to be changed. Nev-
ertheless, if SequenceDB is part of a third-party library, it may not be subject to
modification by the maintenance programmer.

To summarize, type-based parameter passing is detrimental for the development
and maintenance of distributed applications. Relying on types also makes it difficult
to extend a distributed object system with additional remote passing semantics.

3. DECLARATION-BASED PARAMETER PASSING WITH DEXTER

This section discusses the design and implementation of DeXteR (Declarative
Extensible Remote Parameter Passing)—our framework for declarative and exten-
sible remote parameter passing. We begin by demonstrating how the bioinformatics
application presented above can be distributed with ease if declaration-based pa-
rameter passing is used. We then provide a general overview of DeXteR—its API,
implementation insights, and design assumptions.

3.1 Bioinformatics Example Revisited

Using DeXteR, the programmer can express remote parameter passing semantics by
annotating remote method declarations with the intended semantics. A DeXteR
parameter passing plug-in provides both the annotation and the implementation
for a given semantics. Using annotations rather than types to express different
parameter passing semantics reduces the amount of changes the programmer must
make to distribute a centralized application. For instance, a distributed version of
the bioinformatics application from Section 2 can be expressed using DeXteR as
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follows.

1 interface WorkerInterface extends Remote
2 {
3 void align (@RemoteRef SequenceDB matchingSeqs,
4 @Copy SequenceDB candidates,
5 @Copy Sequence toMatch)
6 throws RemoteException;
7

8 @Copy Sequence cross(@Copy Sequence s1,
9 @Copy Sequence s2)

10 throws RemoteException;
11

12 void mutate(@CopyRestore SequenceDB seqs)
13 throws RemoteException;
14 }

Since remote parameter passing annotations are part of a remote method’s sig-
nature, they must appear in both the method declaration in the remote interface
and the method definitions in all remote classes implementing the interface. This
requirement ensures that the client is informed about how remote parameters will
be passed, and it also allows for safe polymorphism (i.e., the same remote interface
may have multiple remote classes implementing it). This requirement however,
must not impose any additional burden on the programmer, as a modern IDE such
as Eclipse [Foundation 2007], NetBeans [Oracle Corporation 2010], or Visual Stu-
dio [Microsoft Corporation 2007] can be configured to reproduce these annotations
when providing method stub implementations for remote interfaces.

3.2 Framework Overview

DeXteR implements declaration-based remote parameter passing on top of standard
Java RMI, without modifying its implementation. DeXteR uses a plug-in based
architecture and treats remote parameter passing as a distributed cross-cutting
concern. Each parameter passing semantics is an independent plugin component.

DeXteR uses the Interceptor Pattern [Schmidt et al. 2000] to expose the invoca-
tion context explicitly on the client and the server sites. The Interceptor pattern
captures techniques for extending the functionality of a complex system at specific
interception points. While Interceptors have been used in several prior systems
[Narasimhan et al. 1999; Fleury and Reverbel 2003] to introduce orthogonal cross-
cutting concerns such as logging and security, the novelty of our approach lies in
employing Interceptors to transform and enhance the core functionality of a dis-
tributed object system, its remote parameter passing semantics.

Figure 1 depicts the overall translation strategy employed by DeXteR. The rank-
and-file (i.e., application) programmer annotates an RMI application with the de-
sired remote parameter passing semantics. The annotations processor takes the
application source code as input, and extracts the programmer’s intent. The ex-
tracted information parameterizes the source code generator, which encompasses
the framework-specific code generator and the plugin-specific code generators. The
framework-specific code generator synthesizes the code for the client and the server
interceptors using aspects. The plugin-specific code generators synthesize the code
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Fig. 1. Development and deployment process using DeXteR.

pertaining to the translation strategy for supporting a specific parameter passing
semantics. DeXteR compiles the generated code into bytecode, and the resulting
application uses standard Java RMI, only with a small AspectJ runtime library as
an extra dependency. The generated aspects are weaved into the respective classes
at load-time, thereby redirecting the invocation to the framework interceptors at
both the local and the remote sites.

3.3 Framework API

DeXteR provides extension points for parameter passing plugins in the form of the
IGenerator interface and the InterceptionPoint interface. Developing a new plugin
involves implementing the InterceptionPoint interface and the optional IGenerator

interface, identifying the interception points of interest, providing the functionality
at these interception points, and registering the plugin with the framework.

1 interface IGenerator { // Plugin−specific code generator
2 void generate(AnnotationInfo info );
3 }

The IGenerator interface forms the compile-time part of a plugin. At compile-time,
DeXteR exposes the annotation information extracted from the RMI application
to the respective parameter passing plugins. Plugins can use this information to
generate code, which can then be used at run-time for implementing a specific
parameter passing strategy.

1 interface InterceptionPoint {
2 // Interception points on client−side
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3 ... argsBeforeClientCall (...);
4 ... customArgsBeforeClientCall (...);
5 ... retAfterClientCall (...);
6 ... customRetAfterClientCall (...);
7

8 // Interception points on server−side
9 ... argsBeforeServerCall (...);

10 ... customArgsBeforeServerCall (...);
11 ... retAfterServerCall (...);
12 ... customRetAfterServerCall (...);
13 }

The InterceptionPoint interface forms the run-time part of a plugin. It exposes
the invocation context of a remote call at different points of its control-flow on both
the client and server sites. DeXteR exposes to a plugin only the invocation context
pertaining to the corresponding parameter passing annotation. For example, plugin
X obtains access only to those remote parameters annotated with annotation X.
DeXteR enables plugins to modify the original invocation arguments. Plugins can
thus modify the invocation arguments using the code generated at compile-time. In
addition, DeXteR enables sending custom information between the client- and the
server-side plugins. This custom information is simply piggy-backed to the original
invocation context.

3.4 Implementation Details

DeXteR intercepts the invocation of remote methods by combining aspect-oriented
and generative programming techniques. Specifically, DeXteR adds methods to
RMI remote interface, stub, and server implementation classes by means of As-
pectJ. Following the Proxy pattern, the intercepted methods delegate to the added
methods, thus interposing the logic required to support various remote parame-
ter passing strategies. The aspect code itself is automatically generated for each
distributed application.

3.4.1 Compile-time. For each remote method, DeXteR generates AspectJ code
that injects a wrapper method into the remote interface and the server implemen-
tation using inter-type declarations, which enable introducing new members. In
addition, DeXteR pointcuts on the execution of that method in the stub (i.e., im-
plemented as a dynamic proxy) to provide a wrapper. This is accomplished by
providing an around advice, which runs in place of a specific execution point. All
the AspectJ code that provides the interception functionality is automatically gen-
erated at compile time, based on the remote method’s signature.

3.4.2 Load-time. The generated aspects are weaved into the stub (i.e., dynamic
proxy) on the client side, and the remote interface and server implementation on
the server side when these classes are loaded into the virtual machine.

3.4.3 Runtime. At runtime, the flow of a remote call is intercepted to invoke
the plugins with the annotated parameters, and the modified set of parameters is
obtained. The intercepted invocation on the client site is then redirected to the
added extra method on the server. The added server method reverses the process,
invoking the parameter passing style plugins with the modified set of parameters

ACM Journal Name, Vol. V, No. N, Month 20YY.



Expressive and Extensible Parameter Passing for Distributed Objects · 9

provided by their client-side peers. The resulting parameters are used to make the
invocation on the actual server method. A similar process occurs when the call
returns, in order to support different passing styles for return values as well.

3.5 Applicability Assumptions

In terms of applicability of DeXteR, we assume a distributed system written in a
modern mainstream language that (1) features language-integrated metadata facil-
ities (e.g., Java 5 annotations), (2) loads code at runtime, and (3) has a dynamic
aspect oriented extension that can weave in extra functionality. Consequently, our
approach would not be directly applicable to legacy systems written in older lan-
guages (e.g., C and C++) that do not feature the facilities described above. Even
though one could try to adapt various facets of our approach to make it work with
legacy systems written in these languages, it is not clear how complex or even
feasible such adaptations would be.

In modern software development, the languages that satisfy our assumptions
are commonly described as managed languages, such as Java and C#. Because
managed languages reduce the complexity of software construction by providing
portability, type safety, and automated memory management, they have become
dominant in enterprise software development—a Gartner report predicts that in
2010, as much as 80% of new software will be written in C# or Java [Flen and
Linden 2005]. Because managed languages and environments are widely used in
the construction of distributed enterprise systems, our approach can benefit a high
and growing percentage of real word systems.

4. SUPPORTING PARAMETER PASSING SEMANTICS

This section describes how several non-trivial parameter passing semantics, pre-
viously proposed in the research literature [Tilevich and Smaragdakis 2008; Line
et al. 2008; Yang et al. 2006; Eberhard and Tripathi 2001], can be implemented as
DeXteR plugins.

To demonstrate the power and expressiveness of our approach, we chose the
semantics that have very different implementation requirements. While the lazy
and streaming semantics require proxies for the parameters’ classes, copy-restore
requires passing extra information between the client and the server. Despite the
contrasting nature of these semantics, we were able to encapsulate all their im-
plementation logic inside their respective plugins and easily deploy them using
DeXteR. In terms of the programming effort involved, it took in the order of a
couple of weeks for an M.S. student without prior knowledge of the RMI internals
to implement each of the semantics described in this section.

4.1 Lazy Semantics

Lazy parameter passing [Line et al. 2008], also known as lazy pass-by-value, is
intended for asynchronous distributed environments, especially in P2P applications.
It works by passing the object initially by reference and then transferring it by
value either upon first use (implicitly lazy) or at a point dictated by the application
(explicitly lazy). More precisely, lazy parameter passing defines if and when exactly
an object is to be passed by value.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · E. Tilevich and S. Gopal
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Fig. 2. Lazy semantics plugin interaction diagram

(A: Serializable Object; As: Stub of A; Ac: Copy of A; (1) A is passed from client to server; (2)
Server invokes foo() on stub As; (3) Server plugin calls download() on client plugin; (4) Client

plugin sends a copy of A, Ac; (5) Server plugin calls foo() on Ac.)

The translation strategy for passing reference objects by lazy semantics involves
using the plugin-specific code generator. As our aim is to decouple parameter types
from the semantics by which they are passed, to pass a parameter of type A by lazy
semantics does not require defining any special interface nor A implementing one.
Instead, the plugin-specific code generator generates a Remote interface, declaring
all the accessible methods of A. To make our approach applicable for passing
both application and system classes, we deliberately avoid making any changes
to the parameter’s class A. Instead, we use a delegating dynamic proxy (e.g.,
A DynamicProxy) for the generated Remote interface (e.g., AIface) and generate a
corresponding server-side proxy (e.g., A ServerProxy) that is type-compatible with
the parameter’s class A.

As is common with proxy replacements for remote communication [Eugster 2006],
all the direct field accesses of the remote-reference parameter on the server are
replaced with accessor and mutator methods.1

In order to enable obtaining a copy of the remote parameter (at some point in ex-
ecution), the plugin inserts an additional method download() in the generated remote
interface AIface, the client proxy A DynamicProxy and the server proxy A ServerProxy.

1

2 class A {
3 public void foo() {...}
4 }
5

1Replacing direct fields accesses with methods has become such a common transformation that

AspectJ [Kiczales et al. 2001] provides special fields access pointcuts (i.e., set , get) to support it.
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6 // Generated remote interface
7 interface AIface extends Remote {
8 public void foo() throws RemoteException;
9 public A download() throws RemoteException;

10 }
11

12 // Generated client proxy
13 class A DynamicProxy implements AIface {
14 private A remoteParameter;
15

16 public A download() {
17 // serialize remoteParameter
18 }
19

20 public void foo() throws RemoteException { ... }
21 }
22

23 // Generated server proxy
24 class A ServerProxy extends A {
25 private A a;
26 private AIface stub;
27

28 public A ServerProxy(AIface stub) {
29 this .stub = stub;
30 }
31

32 synchronized void download() {
33 // Obtain a copy of the remote parameter
34 a = stub.download();
35 }
36

37 public void foo() {
38 // Dereference the stub
39 stub.download();
40 // Invoke the method on the copy
41 a.foo ();
42 }
43 }

Any invocation made on the parameter (i.e., server proxy) by the server results
in a call to its download method, if a local copy of the parameter is not yet available.
The download method of the server proxy replays the call to the download method of
the enclosed client proxy with the aim of obtaining a copy of the remote parameter.

The client proxy needs to serialize a copy of the parameter. However, passing
a remote object (i.e., one that implements a Remote interface) by copy presents a
unique challenge, as type-based parameter passing mechanisms are deeply entangled
with Java RMI. The RMI runtime replaces the object with its stub, effectively
forcing pass by remote-reference. The plugin-generated code overrides this default
functionality of Java RMI by marshaling a given remote object into a byte array
using serialization. This technique effectively “hides” the remote object, as the
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RMI runtime transfers byte arrays without inspecting or modifying their content.
The “hidden” remote object can then be extracted from the array on the server-side
by the server proxy. Once the copy is obtained, all subsequent invocations made on
the parameter (i.e., server proxy) are delegated to the local copy of the parameter.

Thus, passing an object of type A as a parameter to a remote method will result
in the client-side plugin replacing it with its type-incompatible stub. The server-
side plugin wraps this type-incompatible stub into the generated server-side proxy
that is type-compatible with the original remote object.

We note that a subset of the strategies described above is used for supporting
declarative parameter passing for the native RMI semantics of copy and remote-
reference.

4.2 Copy Restore Semantics

A semantics with a different set of implementation requirements than that of lazy
parameter passing is the copy-restore semantics. It copies a parameter to the server
and then restores the changes to the original object in place (i.e., preserving client-
side aliases). A fully general implementation of copy-restore must work correctly
for parameters that are linked data structures (e.g., lists, trees, etc.), some of which
may share structure.

Such an implementation must offer identical semantics to remote-reference in the
important case of single-threaded clients and stateless servers (i.e., when the server
cannot maintain state reachable from the arguments of a call after the end of the
call). It is the responsibility of the programmer to ensure that these preconditions
are met before specifying copy-restore for a given remote parameter. Using copy-
restore when these preconditions are unmet constitutes a programming error.

P

foo(p)

Pl + retPl
LM

ret

foo(p)

Copy-Restore
Plugin (Server)

Copy-Restore
Plugin (Client)

Client
Application

1

2

3

4

P

PLM

Fig. 3. Copy-restore semantics plugin interaction diagram
(P : Set of parameters passed to foo; PLM : Linear map of parameters; Pl: Modified parameters

(restorable data); ret : values returned by the invocation; P1
LM : Modified linear map; (1) The

client invokes method foo() passing parameter p; (2) The client-side plugin constructs a linear
map PLM and calls the original foo(p); (3) Server-side plugin invokes foo and returns modified

parameters Pl and the return value ret ; (4) Changes restored and the return value ret is passed
to the client.)

ACM Journal Name, Vol. V, No. N, Month 20YY.



Expressive and Extensible Parameter Passing for Distributed Objects · 13

Implementing the copy-restore semantics involves tracing the invocation argu-
ments and restoring the changes made by the server after the call. The task is
simplified by the well-defined hook points provided by the framework. The copy-
restore plugin obtains a copy of the parameter A and creates a linear map of all
objects reachable from the parameter on both the client and the server sites prior
to the invocation. The invocation then resumes and the server mutates the pa-
rameter during the call. Once the call completes, the server-side plugin needs to
send back to its client-side peer the changes made by the server represented as a
linear map of all objects reachable from the parameter. This is accomplished using
the custom information passing facility provided by the framework. The client-side
plugin obtains the linear map from its server-side peer, compares it with the linear
map it holds, and restores the changes to the original parameter A in the client’s
JVM.

4.3 Copy Restore With Delta Semantics

For single-threaded clients and stateless servers, copy-restore makes remote calls
indistinguishable from local calls as far as parameter passing is concerned [Tilevich
and Smaragdakis 2008]. However, in a low bandwidth high latency networking
environment, such as in a typical wireless network, the reference copy-restore im-
plementation may be inefficient. The potential inefficiency lies in the restore step
of the algorithm, which always sends back to the client an entire object graph of
the parameter, no matter how much of it has been modified by the server. To opti-
mize the implementation of copy-restore for low bandwidth, high latency networks,
the restore step can send back a “delta” structure by encoding the differences be-
tween the original and the modified objects. The necessity for such an optimized
copy-restore implementation again presents a compelling case for extensibility and
flexibility in remote parameter passing.

The following pseudo-code describes our optimized copy-restore algorithm, which
we term copy restore with delta:

(1) Create and keep a linear map of all the objects transitively reachable from the
parameter.

(2) On the server, again create a linear map, Lmap1, of all the objects transitively
reachable from the parameter.

(3) Deep copy Lmap1 to an isomorphic linear map Lmap2.

(4) Execute the remote method, modifying the parameter and Lmap1, but not
Lmap2.

(5) Return Lmap1 back to the client; when serializing Lmap1, encode the changes
to the parameter by comparing with Lmap2 as follows:

(a) Write as is each changed existing object or a newly added object.

(b) Write its numeric index in Lmap1 for each unchanged existing object.

(6) On the client, apply the encoded changes and use the client-side linear map to
retrieve the original (unchanged) old objects at the specified indexes.

Creating Linear Map. A linear map of objects transitively reachable from a
reference argument is obtained by recording each encountered object during serial-
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ization. In order not to interfere with garbage collection, all linear maps use weak
references.
Calculating Delta. The algorithm encodes the delta information efficiently using
a handle structure shown below.

1 class Handle{
2 int id ;
3 ArrayList<Long> chId;
4 ArrayList<Long> chScript;
5 ArrayList<Object> chObject;
6 }

The identifier id refers to the position of an object in the client site linear map.
The change indicator chId identifies the modified member fields using a bit level
encoding. chScript contains the changes to be replayed on the old object. For a
primitive field, its index simply contains the new value, whereas for an object field,
its index points to chObject, which contains the modified references.
Restoring Changes. For each unserialized handle on the client, the corresponding
old object is obtained from the client’s linear map using the handle identifier id.
The handle is replaced with the old object, and the changes encoded in the handle
are replayed on it. Following the change restoration, garbage collection reclaims
the unused references.

As a concrete example of our algorithm, consider a simple binary tree, t, of
integers. Every node in the tree has three fields: data, left , and right . A subset of
the tree is aliased by non-tree pointers alias1 and alias2 . Consider a remote method
such as the one shown below, to which tree t is passed as a parameter.

1 void alterTree (Tree tree ) {
2 tree . left .data = 0;
3 tree . right .data = 9;
4 tree . right . right .data = 8;
5 tree . left = null ;
6 Tree temp = new Tree (2, tree. right . right , null );
7 tree . right . right = null ;
8 tree . right = temp;
9 }

Figure 4 shows the sequence of steps involved in passing tree t by copy restore
with delta and restoring the changes made by the remote method alterTree to the
original tree.

We measured the performance gains of our algorithm over the original copy-
restore by conducting a series of micro-benchmarks, varying the size of a binary
tree and the amount of changes performed by the server. The benchmarks were
run on Pentium 2.GHz (dual core) machines with 2 GB RAM, running Sun JVM
version 1.6.0 on an 802.11b wireless LAN. Figures 5 and 6 show the percentage
of performance gain of copy-restore with delta over copy-restore. Overall, our
experiments indicate that the performance gain is directly proportional to the size
of the object graph and is inversely proportional to the amount of changes made
to the object graph by the server.

By providing flexibility in parameter passing, DeXteR enables programmers to
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(a) (b)

(c)
(d)

(e)

Fig. 4. Copy-restore with delta algorithm by example (a) State after step 3. (b)
State after step 4. The remote procedure modified the parameter. (c) State during
step 5. Copy the modified objects (even those no longer reachable through tree)
back to the client; compute the delta script for modified objects using a hash map.
(d) State during step 6. Replace the handles with the original old objects; replay
the delta script to reflect changes. (e) State of the client side object after step 6.

use not only different semantics, but also different variations of the same semantics
as required by the nature of the application. For instance, within the same appli-
cation one can pass parameters by regular copy-restore to a method operating on
small parameters and by copy-restore with delta to a method operating on larger
ones.

4.4 Streaming Semantics

Passing objects by streaming is useful when parameters or return types are large
objects. It involves buffering large objects in the background, without blocking
the call. As streaming is similar to the lazy semantics, so are their respective
implementation strategies. The key difference between the two semantics lies in the
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Performance Gain of Copy-restore with delta over 
Copy-restore

0

5

10

15

20

25

1 2 3 4 5 6 7

Size of the tree (height)

Pe
rc

en
ta

ge
 o

f t
im

e 
sa

ve
d

1/4th of the tree
changed

Performance Gain of Copy-restore with delta over Copy-
restore

-10

-5

0

5

10

15

20

1 2 3 4 5 6 7

Size of the tree (height)

Pe
rc

en
ta

ge
 o

f t
im

e 
sa

ve
d

1/2 of the tree
changed

Fig. 5. The advantages of saving bandwidth via “copy-restore with delta” (the server changes

1/4th of the binary tree’s nodes)

way the copy of an object is obtained. Having described how the lazy semantics is
implemented for passing parameters, the discussion below focuses on implementing
streaming for return values.

Our strategy for supporting streaming involves transmitting an object initially
by reference by employing a pair of proxies (A DynamicProxy and A ClientProxy).
We use the plugin-specific code generator to generate the proxies and the remote
interface during compile time. Returning an object of type A will result in the
server-side plugin replacing it with a type-incompatible proxy A DynamicProxy. The
client-side plugin wraps this type-incompatible proxy into a stub A ClientProxy that
is type-compatible with the return type of the remote method. Prior to returning
the wrapped object to the client, the client-side streaming plugin obtains a weak
reference to it, so that its referent would not be prevented from being garbage
collected. Then the client code spawns a thread whose aim is to obtain a local copy
of the returned object. The spawned thread invokes the download method on the
type-incompatible proxy A DynamicProxy enclosed within the type-compatible stub
A ClientProxy instance. The download method returns a copy of A, which is populated
within the A ClientProxy instance by the client-side plugin using the weak reference
it holds.

Future invocations made by the client on the return type are handled at the
client end, as soon as a copy of the entire object has been streamed. If not, the
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Fig. 6. The advantages of saving bandwidth via “copy-restore with delta” (the server changes 1/2

of the binary tree’s nodes)

invocations are delegated to the server using the member remote-reference.

1 // Generated client proxy
2 class A ClientProxy extends A
3 {
4 // streamed copy of the remote object
5 private A a;
6 // type−incompatible stub
7 private AIface stub;
8 // streaming completion indicator
9 private boolean isBuffered ;

10

11 public A ClientProxy(AIface stub) {
12 this .a = null ;
13 this .stub = stub;
14 this . isBuffered = false ;
15 }
16

17 public void deref () {
18 // obtain a copy of the remote parameter
19 a = stub.deref ();
20 }
21
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Copy (A)
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Fig. 7. Streaming semantics plugin interaction diagram

(A: Serializable Object; As: Stub of A; Ac: Copy of A; (1) A is returned from server to client; (2)
Client plugin spawns a thread and calls download() on server plugin; (3) Server plugin sends a

copy of A, Ac and the client plugin starts buffering it; (4) Client calls foo() on the buffered Ac.)

22 public void setBufferedStatus (){
23 isBuffered = true;
24 }
25

26 public boolean isBuffered(){
27 return isBuffered ;
28 }
29

30 public void bar() {
31 if ( isBuffered ()) {
32 // invoke the method on the copy
33 a.bar ();
34 }
35 else {
36 // invoke the method on the remote object
37 stub.bar ();
38 }
39 }
40 }

In a distributed systems context, the term streaming is often interpreted as al-
lowing some of an object’s state to be used before the entire state was received. The
implementation described above is a special kind of future for a remote object.
While the streamed object has not been completely received, all the calls to it are
forwarded to the object’s origin. One can view this implementation as a form of
passing by asynchronous copy. Thus, our use of the term “streaming” refers to
what transpires at the implementation level, rather than to what the term means

ACM Journal Name, Vol. V, No. N, Month 20YY.



Expressive and Extensible Parameter Passing for Distributed Objects · 19

in the traditional distributed systems context from the end-user’s perspective.

4.5 Caching Semantics

In order to validate the expressive power of DeXteR further, we chose to implement
a variant of parameter substitution a.k.a caching that follows a simple caching strat-
egy and consistency policy. Reference [Eberhard and Tripathi 2001] describes other
strategies for parameter substitution based on different consistency guarantees.

Parameter passing by caching can be used when unchanged resources/parameters
are sent frequently from the client to the server or vice-versa. It involves saving
a copy of the state of parameter objects on the receiving node and using them
for subsequent invocations without requiring a retransmission. Caching effects are
more pronounced when the cost of caching computations is subsumed by the savings
in bandwidth.

P

foo(p)

ret

foo(p)

Caching Plugin 
(Server)

Caching Plugin 
(Client)

Client
Application

1

2

3

4

PCC

PSC

foo(p)
HP

PSC

ret

foo(p)

Fig. 8. Caching semantics plugin interaction diagram
(P : Set of parameters passed to foo; PCC : Parameter in client cache; PSC : Parameter in server

cache; HP : Handle for parameter P ; (1) The client invokes method foo() passing parameter

P ; (2) The client-side and the server-side plugins cache P as PCC and PSC respectively before
invoking the original foo(p); (3) The client makes a subsequent invocation of foo() with the same

parameter P ; (4) The client-side plugin replaces P with handle HP and the server-side plugin
retrieves PSC corresponding to HP and invokes foo() with PSC .)

When a parameter is transmitted for the first time, the client-side caching plugin
stores a copy of the parameter in its local cache prior to serializing a copy of it
to the server using the pass by copy strategy outlined earlier. On obtaining the
parameter object, the server-side caching plugin stores a copy of it in its local cache
prior to providing the remote method with the parameter object. Since the plugin
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caches a deep copy of the parameter object, mutating the parameter object does
not affect the state of the cached object.

Subsequent invocations involving the same parameter object state result in the
client-side caching plugin substituting the original parameter object with an object
identifier and sending it to the server. The server-side plugin reverses the process:
it uses the identifier sent by its client-side peer to retrieve the object state from its
local cache and uses this cached object as the parameter for the remote method.

4.6 Future Semantics

DeXteR offers the advantage of supporting a wide variety of remote parameter pass-
ing semantics through a uniform API. By decoupling parameter passing semantics
from parameter types, DeXteR flexibly supports new parameter passing seman-
tics as well as new optimization strategies. Developments in hardware and software
designs are likely to lead to the creation of new parameter passing semantics and op-
timization mechanisms. These mechanisms will leverage the new designs, but may
be too experimental to be included in the implementation of a standard middleware
system. DeXteR will allow the integration and use of these novel mechanisms at the
application layer, without changing the underlying middleware. As a particular ex-
ample, consider the introduction of massive parallelism into mainstream processors.
Multiple cores will require the use of explicit parallelism to improve performance.
Some facets of parameter passing are computation-intensive and can benefit from
parallel processing. One can imagine, for instance, how marshaling could be per-
formed in parallel, in which parts of an object graph are serialized/deserialized by
different cores.

5. DISCUSSION

This section discusses some of the advantages of the DeXteR framework as well as
some of the constraints imposed by our design.

5.1 Design Advantages

Expressing remote parameter passing choices as a part of a method declaration
has several advantages over a type-based system. Specifically, a declaration-based
approach increases expressiveness/encapsulation, improves readability, and eases
maintainability. To further illustrate the advantages of our declaration-based frame-
work, we compare and contrast our approach with that of Java RMI.

5.1.1 Expressiveness/Encapsulation. In Java RMI, all instances of the same
type are passed identically, which restricts expressiveness. To select a different se-
mantics, the programmer can create a subclass that implements the required marker
interface. Thus, potentially the same remote method can use different passing se-
mantics for the same parameter, as determined by the parameter’s runtime type.
In essence, the remote method’s programmer cannot enforce by which semantics
its parameters are passed, as it can change between call sites. A remote method
encapsulates a certain behavior; a call site determining the method’s parameter
passing semantics may violate the encapsulation principle.

By contrast, our approach does not require any new subclasses to be created or
any changes to be made to the original method’s signature. The simple declara-
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tive style of our annotations makes enforcement of the parameter passing policies
straightforward. With our approach, a remote method fully encapsulates the se-
mantics by which its parameters are passed.

5.1.2 Readability. Examining the declaration of a remote method does not re-
veal any details about how its parameters are passed. Furthermore, the programmer
has to exhaustively examine each call site to discover which exact subclasses for
each remote parameter have been used. Forcing the programmer to examine all the
program’s parameter types and call sites reduces readability and hinders program
understanding. By contrast, our approach provides a single point of reference that
explicitly informs the programmer how remote parameters are passed.

5.1.3 Maintainability. An existing class may have to be modified to implement
an interface before its instances can be passed as parameters to a remote method.
This complicates maintainability as, in the case of third-party libraries, source code
may be difficult or even impossible to modify. By contrast, our approach enables the
maintenance programmer to modify the semantics by simply specifying a different
parameter passing annotation.

5.1.4 Extensibility. Even if the copy-restore semantics is natively supported in
the next version of Java RMI, including new optimization mechanisms such as
using copy-restore with delta would still require modifying the underlying RMI im-
plementation of both the client and the server. By contrast, our approach supports
extending the native remote parameter passing semantics at the application-level,
requiring no modifications to the underlying middleware.

5.1.5 Reusability. DeXteR also enables providing the parameter passing seman-
tics as plugin libraries. Application programmers thus can obtain third-party plug-
ins and automatically enhance their own RMI applications with the new parameter
passing semantics.

5.1.6 Efficiency. Another advantage of our approach is its efficiency. All the
DeXteR transformations do not cause any additional overhead in using objects of
type A, until they are passed using a particular semantics in an RMI call. This
requires that one know exactly when an object of type A is used in this capacity.
The insight that makes it possible to detect such cases precisely is that the program
execution flow must enter an RMI stub (dynamic proxy) for a remote call to occur.

Once a parameter is passed to a remote method, however, DeXteR then intro-
duces several levels of proxy indirection, and we had to ensure that this indirection
overhead is not unreasonable. To measure the overhead imposed by DeXteR, we
conducted a series of micro-benchmarks that compared the performance of pass by
copy and pass by remote-reference semantics implemented as DeXteR plugins with
that of their native RMI counterparts. The results represent the average of running
each benchmark 1,000 times on a Pentium D 3.GHz (dual core) machine with 2GB
of RAM, running Sun JVM version 1.6.0. By warming the JVM, we ensured that
the measured programs had been dynamically compiled before measurements. To
distill the pure overhead, we ran the benchmarks on a single machine. In the pres-
ence of network communication and added latency, the overhead incurred by the
additional levels of local indirection would be dominated. Therefore, the results do
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not unfairly benefit our approach.
Since pass by copy predominantly involves the cost of object serialization, its

micro-benchmark involved measuring the execution times for a varying object size.
Figure 9 presents the performance comparison of the two implementations of pass
by copy.
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Fig. 9. Pass by copy benchmark.

In lieu of support for type-compatible dynamic proxies for classes in Java,
the DeXteR implementation emulates this functionality using a type-incompatible
client-side dynamic proxy and a type-compatible server-side wrapper proxy. Thus,
this emulated functionality introduces two new levels of indirection compared to the
standard Java RMI implementation of pass by remote-reference. The purpose of
passing a parameter by remote-reference is to enable the server to invoke methods
on that parameter as part of the remote method’s logic. Since these invocations
will be propagated back to the client, they are called remote callbacks. Figure 10
presents the performance comparison between the two implementations of pass by
remote-reference, for a varying number of remote callbacks.

As the latency of a remote call is orders of magnitude greater than that of a
local call, one can expect that the overhead incurred by the additional local calls
added to the remote call by DeXteR would be insignificant. Indeed, the resulting
overhead never exceeds a few percentage points of the total latency of a remote call
executed on a single machine. Thus, the performance measurements above confirm
the feasibility of our approach: the small overhead incurred by DeXteR is well offset
by its software engineering benefits.

5.2 Design Constraints

Achieving the afore-mentioned advantages without changing the Java language re-
quired constraining our design in the following ways.
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Fig. 10. Pass by remote-reference benchmark.

Classes Analyzed
Total Classes with Total

Public Fields Public Fields

User-Accessible Classes 2732 57 123

GUI Classes 913 15 65

Exception Classes 364 33 34

RMI Classes 58 22 22

Java Bean Classes 56 3 3

Table I.

Analysis of Java 6 JDK’s public member fields (some overlap exists due to Exception classes
spanning multiple packages).

First, array objects are always passed by copy though the array elements could
be passed using any desired semantics. While this is a limitation of our system,
it is still nonetheless an improvement over standard RMI, which also passes array
objects by copy, but passes array elements based on their runtime type.

Second, passing final classes (not extending UnicastRemoteObject) by remote-
reference would entail either removing their final specifier or performing a so-
phisticated global replacement with an isomorphic type [Tilevich and Smaragdakis
2002]. This requirement stems from our translation strategy’s need to create a
proxy subclass for remote-reference parameters, an impossibility for final classes.
Since heavy transformations would clash with our design goal of simplicity, our
approach issues a compile-time error to an attempt to pass an instance of a final

class by remote-reference. Again, this limitation is also shared by standard RMI.
Finally, since our approach does not modify standard Java classes, it is not pos-

sible to support direct member field access for instances of system classes passed
by remote-reference. While this is a conceptual problem, an analysis of the Java
6 library shown in Table 1 indicates that this is not a practical problem. For our
purposes, we analyzed the java .∗ and javax .∗ classes, as they are typically the only
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ones used by application developers. As the table demonstrates, approximately
1% of classes contain non-final member fields. However, the vast majority of these
classes are either GUI or sound components, SQL driver descriptors, RMI internal
classes, or exception classes, and as such, are unlikely to be passed by remote-
reference. Additionally, the classes in java .beans.∗ provide getter methods for their
public fields, thereby not requiring direct access. The conclusion of our analysis is
that only one (java . io .StreamTokenizer) of more than 5,500 analyzed classes could
potentially pose a problem, with two public member fields not accessible by getter
methods.

6. RELATED WORK

The body of research literature on distributed object systems and separation of
concerns is extremely large and diverse. The following discusses only closely-related
state of the art.

6.1 Separation of Concerns

Several language-based and middleware-based approaches address the challenges in
modeling cross-cutting concerns.

Proxies and Wrappers [Souder and Mancoridis 1999] introduce late bound cross-
cutting features, though in an application-specific manner.

Aspect Oriented Programming (AOP) [Kiczales et al. 1997] is a methodology
for modularizing cross-cutting concerns. Several prior AOP approaches aim at
improving various properties of middleware systems, with the primary focus on
modularization [Zhang and Jacobsen 2003; Eichberg and Mezini 2004].

Java Aspect Components (JAC) [Pawlak et al. 2004] and DJCutter [Nishizawa
et al. 2004] support distributed AOP. The JAC framework makes it possible to
add and remove an advice dynamically. DJCutter extends AspectJ with remote
pointcuts, a special language construct for developing distributed systems. DeXteR
could use these approaches as an alternative to AspectJ.

A closely related work is the DADO [Wohlstadter et al. 2003] system for program-
ming cross-cutting features in distributed heterogeneous systems. Similar to DeX-
teR, DADO uses hook-based extension patterns. It employs a pair of user-defined
adaplets, explicitly modeled using IDL for expressing the cross-cutting behavior. To
accommodate heterogeneity, DADO employs a custom DAIDL (an IDL extension)
compiler, runtime software extensions, and tool support for dynamically retrofitting
services into CORBA applications. DADO uses the Portable Interceptor approach
for triggering the advice for cross-cutting concerns, which do not modify invocation
arguments and return types. Thus, using DADO to change built-in remote param-
eter passing semantics would not eliminate the need for binary transformations and
code generation.

The SPOON [Pawlak 2005] framework provides a program transformation tool
that takes advantage of Java 5 annotations to define and parameterize user-defined
transformations. Using compile-time reflection, SPOON enables annotation driven
AOP with pure Java. Base programs can thus be annotated to define how and
where the aspects are weaved. SPOON can be used as an alternative to AspectJ
in our implementation.
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6.2 Remote Parameter Passing

Multi-language distributed object systems, such as CORBA [Group 1998b],
DCOM [Brown and Kindel 1998], use an Interface Definition Language (IDL) to ex-
press how parameters are passed to remote methods. Each parameter in a remote
method signature is associated with keywords in, out, and inout designating the
different passing options. The IDL specification is translated into a conventional
programming language such as C, C++ or Java. Traditional RPC systems, thus,
have separated the IDL and the target language mappings for flexibility reasons.

The design of Java RMI, however, no longer distinguishes between a language-
independent IDL specification and a mapping to a given implementation language.
Specifically, in RMI, Java interfaces have supplanted IDL specifications. Despite
the simplicity advantages of this design, it lacks flexibility when it comes to remote
parameter passing. Our framework, DeXteR, addresses this particular shortcoming
of the RMI design. In fact, DeXteR goes beyond some IDL-based approaches
that can be limited in flexibility if the language binding cannot be adapted as
necessary [Ford et al. 1994; 1995].

In addition, mainstream IDL implementations do not completely decouple pa-
rameter passing semantics from parameter types. When an IDL interface is mapped
to a concrete language, the generated implementation may still rely on a type-based
parameter passing model of the target language. As an example, CORBA in map-
ping IDL to Java [Group 2003], an IDL valuetype maps to a Serializable class,
which is always passed by copy. Conversely, an IDL interface maps to a Remote

class, which is always passed by remote-reference. Additionally, even if we constrain
parameters to valuetypes only, the mapped implementation will generate different
types based on the keyword modifiers present [Group 1998a]. Thus, remote param-
eter passing in mainstream IDL-based distributed object systems is neither fully
declarative, nor it is extensible.

.NET Remoting [Obermeyer and Hawkins 2001] for C# also follows a mixed
approach to remote parameter passing. It supports the parameter-passing keywords
out and ref. However, the ref keyword designates pass by value-result in remote
calls rather than the standard pass by reference in local calls. This difference
in passing semantics may lead to the introduction of subtle inconsistencies when
adapting a centralized program for distributed execution. Furthermore, in the
absence of any optional parameter passing keywords, a reference object is passed
based on the parameter type. While this approach shares the limitations of Java
RMI, remote-reference proxies are type-compatible stubs, which provide full access
to the remote object’s fields. Therefore, while the parameter passing model of
.NET Remoting contains some declarative elements, it has shortcomings and is not
extensible.

Adaptive parameter passing [Lopes 1997] optimizes RPC marshaling by sending
a subset of an object’s state graph, specified using a domain specific language.
Adaptive parameter passing can be thought of as a mechanism for defining custom
distributed parameter passing semantics on a per-object basis. Our approach can
be extended to allow a comparable level of flexibility; the programmer can be given
greater control by means of annotation attributes that can be set individually to
customize the passing semantics for each remote parameter.
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The Quality Objects (QuO) framework [Schantz et al. 2002] provides adaptive
quality of service (QoS) capabilities as standard middleware services. As their run-
time environments change, applications built using QuO can adapt their execution
to meet the required QoS requirements. Among the functional interface-specific
adaptations offered by QuO is the ability to change the characteristics of method
parameters. Our approach similarly offers flexible and extensible remote parameter
passing as a standard middleware service.

Doorastha [Dahm 2000] represents a closely related piece of work on increasing
the expressiveness of distributed object systems. It aims at providing distribution
transparency by enabling the programmer to annotate a centralized application
with distribution tags such as globalizable and by-refvalue, and using a special-
ized compiler for processing the annotations to provide fine-grained control over
the parameter passing functionality. While influenced by the design of Doorastha,
our approach differs in the following ways. First, Doorastha does not completely
decouple parameter passing from the parameter types, as it requires annotating
classes of remote parameters with the desired passing style. Unannotated remote
parameters are passed based on their type. Second, Doorastha does not support
extending the default set of parameter passing modes. Finally, Doorastha requires
a specialized compiler for processing the annotations. While Doorastha demon-
strates the feasibility of many of our approach’s features, we believe our work is the
first to present a comprehensive argument and design for a purely declarative and
extensible approach to remote parameter passing.

The Opentalk communication layer [Cincom Systems Inc. 2002] is a set of frame-
works and components that provide a rich and extensible environment for devel-
opment, deployment, maintenance, and monitoring of distributed Smalltalk appli-
cations. As other distributed object systems, it supports pass by value and pass
by reference. By default, all immediate objects ( nil , true, false , Characters and
SmallIntegers ), Magnitudes, ByteStrings, ByteSymbols, and some collections are passed
by value. Parameters that are complex objects are exported to the distributed
runtime automatically and passed by reference. However, the framework enables
the programmer to override this default behavior by forcing objects to be passed
by value or by reference using special keywords asPassedByValue and asPassedByRef.
This approach, however, does not follow a fully declarative style, as the default
behavior is still type-based. Furthermore, the native parameter passing modes are
not extensible to include other semantics.

6.3 Web Services

A web service is a remote invocation that uses the world wide web as the trans-
port protocol. The Simple Object Access Protocol (SOAP) can be used to send
and receive structured XML documents [Box et al. 2002]. With respect to param-
eter passing, SOAP web services only allow defined record-like types and certain
primitive types to be transferred.

An alternative to SOAP web services is representation state transfer
(REST) [Fielding and Taylor 2000], an architectural model that resembles a very
abstract remote shell command. A REST request is a URL with a path and form
parameters, commonly interpreted as an object address and method parameters.
The output can be any valid hypertext media such as HTML or images. The simple
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request model of REST transfers form parameters as plain text.
Thus, our approach to declarative and extensible remote parameter passing is

unlikely to be applicable to the modern implementations of web services.

7. FUTURE WORK

A promising future work direction is to develop a declaration-based distributed
object system for an emerging object-oriented language such as Ruby [Thomas
and Hunt 2001] or Scala [Odersky et al. 2004]. It would be interesting to explore
how advanced language features of Ruby such as built-in aspects, closures, and
co-routines can be utilized in the implementation. Despite the exploratory nature
and the presence of advanced features in the Ruby language, DRuby [Seki 2007],
its distributed object system, does not significantly differ from Java RMI.

Scala currently does not even have a distributed object system, but due to its
interoperability with Java, Scala programs can use Java RMI. Scala language is
extensible and supports Java-style annotations. Some of Scala extensibility features
include extensible types, and control structures, operator overloading, etc. We
would like to explore how these advanced features can aid it the development a
new generation distributed object system for Scala. This system can leverage all
the improvements that had been proposed for Java RMI, including a declarative
and extensible distributed parameter passing model.

8. CONCLUSIONS

This article has exposed the shortcomings of type-based remote parameter passing
models in distributed object systems. To overcome these shortcomings, we pre-
sented declaration-based parameter passing as a better alternative to type-based
parameter passing. We have also presented an argument in favor of treating pa-
rameter parameter passing as a distributed cross-cutting concern, separate from
the core functionality of a distributed object system. Based on this principle, we
have created an extensible framework for declaration-based parameter passing and
described how multiple non-trivial semantics can be efficiently implemented on top
of a type-based parameter passing model with ease using our extensible framework.
Our experiences have shown that the framework provides a powerful distributed
programming platform and a convenient experimentation facility for research in
distributed object systems.

Availability

DeXteR can be downloaded from http://research.cs.vt.edu/vtspaces/

dexter.
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