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ABSTRACT
Parallel file systems have become a common component of mod-
ern high-end computers to mask the ever-increasing gap between
disk data access speed and CPU computing power. However, while
working well for certain applications, current parallel file systems
lack the ability to effectively handle concurrent I/O requests with
data synchronization needs, whereas concurrent I/O is the norm in
data-intensive applications. Recognizing that an I/O request will
not complete until all involved file servers in the parallel file sys-
tem have completed their parts, in this paper we propose a server-
side I/O coordination scheme for parallel file systems. The basic
idea is to coordinate file servers to serve one application at a time
in order to reduce the completion time, and in the meantime main-
tain the server utilization and fairness. A window-wide coordina-
tion concept is introduced to serve our purpose. We present the
proposed I/O coordination algorithm and its corresponding analy-
sis of average completion time in this study. We also implement
a prototype of the proposed scheme under the PVFS2 file system
and MPI-IO environment. Experimental results demonstrate that
the proposed scheme can reduce average completion time by 8%
to 46%, and provide higher I/O bandwidth than that of default data
access strategies adopted by PVFS2 for heavy I/O workloads. Ex-
perimental results also show that the server-side I/O coordination
scheme has good scalability.

Categories and Subject Descriptors
B.4.3 [Interconnections]: Parallel I/O; D.4.3 [File Systems Man-
agement]: Access methods
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server-side I/O coordination; parallel I/O synchronization; I/O op-
timization; parallel file systems
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Large-scale data-intensive supercomputing relies on parallel file
systems, such as Lustre [1], GPFS [22], PVFS [9], and PanFS[18]
for high-performance I/O. However, performance improvements in
computing capacity have vastly outpaced the improvements in I/O
performance in the past few decades and will likely continue in
the future. Many high-performance computing (HPC) applications
have become “I/O bounded”, unable to scale with increasing com-
pute power. The gap in performance between compute and I/O is
amplified further when multiple applications compete for limited
I/O and storage resources at the same time, as this leads to thrash-
ing scenarios within the HPC storage system. Parallel file systems
have difficulty handling I/O workloads of multiple applications for
two primary reasons. First, the file servers perform data accesses in
an interleaved fashion, resulting in excessive disk seeks. Second,
file servers perform I/O requests independently, without knowledge
of the order of requests performed at other servers, whereas HPC
applications tend to coordinate I/O across all processes. This sce-
nario leads to under-utilization of compute resources, as all com-
pute processes are held waiting for completion of an I/O request
that is delayed by the interleaved scheduling choices made by an
individual file server.

In general, data files are striped across all or a part of the file
servers in parallel file systems. One I/O request issued from a sin-
gle client often involves data accesses on multiple servers, and the
parallel I/O library has to merge the multiple data pieces from these
file servers together. Moreover, collective data access from multi-
ple clients, such as collective I/O in MPI-IO [26], has to wait for
all aggregators to complete. Synchronization of I/O requests across
processes is common in parallel computing, and can be classified
into the following three categories (as shown in Figure 1).

• Intra-request Synchronization: One I/O request issued by
one client accesses data in multiple file servers. It needs to
gather/scatter data pieces from/to multiple storage nodes and
merge them together to complete the I/O request.

• Collective I/O Synchronization: Multiple I/O clients access
data from multiple file servers collectively within a single
application. It has to wait for all aggregators to complete
their collective I/O operations before continuing.

• Inter-request Synchronization: Multiple clients access data
from a parallel file system independently, and there is explicit
synchronization among these I/O clients.

Figure 1 shows the three scenarios of data synchronization. The
first two categories are implicit synchronization and the third one is
explicit. In a large-scale and high-performance computing system,
the parallel file system is often shared by multiple applications.
When these applications run simultaneously, each file server may



# 1 # 2# 0

Request

Intra-request sync

I/O 
Clients

File
Servers

# 1 # 2# 0

Collective IO sync

RequestRequestRequestRequest

Independent I/O Collective I/O

# 1 # 2# 0

Inter-request sync

RequestRequestRequestRequest

Independent I/O
Explicit 
Sync

Explicit 
Sync

Figure 1: Three scenarios of data synchronization in parallel I/O

receive multiple I/O requests from different applications. However,
these requests are likely to be served in different order on differ-
ent file servers because they are scheduled independently. Figure 2
is an example of the I/O request scheduling in 4 file servers, and
there are 3 applications: A, B and C. Usually, the completion time
of each application depends on the completion time of the last file
server to finish the request. In the left subfigure, all nodes serve the
requests in different orders. The completion times of the I/O re-
quests from the three applications are: TA = 4t; TB = 4t; TC = 4t.
Thus the average completion time is: Tavg = 4t. If we re-arrange
the requests in the file servers, letting all nodes service the requests
in the same order, as shown in right part of Figure 2, the completion
times are: TA = 2t; TB = 3t; TC = 4t. The average completion time
is: Tavg = 3t. In other words, after requests re-ordering, the aver-
age completion time decreases from 4t to 3t, which reveals a sig-
nificant potential for shortening average completion time through
request re-ordering at the file servers.

A

B

C

A

B

A

C

C

A

B

B

C

A

t

t

t

t

time

A

A

B

C

A

B

C C

A

B

B

C

A

File Servers File Servers

Re-order
Requests

A B CApp A App B App C

# 1 # 2 # 3# 0 # 1 # 2 # 3# 0

Figure 2: Order of request handling affects completion time.
In the left subfigure, service order is different on different file
servers, and the average completion time for the three applica-
tions is 4t. While in the right subfigure, requests are serviced
in concert, and the average completion time reduces to 3t.

Existing scheduling algorithms in parallel file systems, such as
disk-directed I/O [13], server-directed I/O [23], and stream-based
I/O [11, 21], focus on reducing data access overhead on either stor-
age nodes or network traffic, to improve throughput of each file
server. These approaches have demonstrated the importance of
scheduling in parallel file systems to improve performance. How-
ever, little attention has been paid to server-side I/O coordination
in order to reduce average completion time of multiple applications
competing for limited I/O resources. In this paper, we propose a
new server-side I/O coordination scheme for parallel file systems
that enables all file servers to schedule requests from different ap-
plications in a coordinated way, to reduce the synchronization time
across clients for multiple applications.

The contribution of this paper is four-fold. First, we present
the data synchronization problems in parallel file systems. Sec-
ond, we propose an effective server-side I/O coordination scheme
for parallel I/O systems to reduce the average completion time of
I/O requests, and thus to alleviate the performance penalties of data
synchronization. Third, we implement a prototype of the I/O co-
ordination scheme in PVFS2 and MPI-IO. Finally, we evaluate the
proposed scheme both analytically and experimentally.

The remainder of this paper is organized as follows. Section 2
examines the overhead of data synchronization without I/O coor-
dination. Section 3 describes the design of I/O coordination algo-
rithm and gives an analysis of completion time. Section 4 presents
the implementation of the proposed I/O scheme in PVFS2 and MPI-
IO. Experimental and analytical results are discussed in Section 5.
Section 6 reviews related work in server-side I/O scheduling and
parallel job scheduling. Finally, Section 7 concludes this study and
discusses potential future work.

2. THE IMPACT OF DATA SYNCHRONIZA-
TION

Data synchronization is common in parallel file systems, where
I/O requests usually consist of multiple pieces of data access in
multiple file servers and will not complete until all involved servers
have completed their parts. However, due to independent schedul-
ing strategies on file servers, I/O requests with synchronization
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(a) Finish time on different file servers (HDD)
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(c) Finish time on different file servers (SSD)
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Figure 3: The finish time of I/O requests from different applications on different file servers. This set of experiments were intra-
request synchronization scenario with 10 concurrent IOR instances and a 8-node PVFS2 system. The stripe size of PVFS2 was 64KB,
and each IOR instance issued a 4MB contiguous read request to the PVFS2 system. Thereby every request involved all 8 file servers,
and the size of requested data on one file server was 512KB. ‘App$K’ (k=0∼9) refers to an IOR instance, ‘FS$N’ (N=0∼7) refers to a
file server. ‘MIN’ refers to the finish time of first complete file server, and ‘MAX’ refers to the finish time of last complete file server.
The completion time of each application relies on the ’MAX’ finish time for that application on all involved file servers.

needs from different applications are very likely to be served in
different orders on different file servers.

Understanding the impact of data synchronization in parallel I/O
systems is critical to efficiently improving completion time. In this
section, we evaluate the request completion time when file servers
serve requests from multiple applications simultaneously. We em-
ployed 8 nodes for PVFS2 file servers. Each file server was in-
stalled with a 7200RPM SATA II 250GB hard disk drive (HDD),
a PCI-E X4 100GB solid state disk (SSD), and the interconnection
was 4X InfiniBand. We adopted the IOR benchmark to simulate
the intra-request synchronization scenario and measured the finish
time of all requests on different file servers. The number of concur-
rent IOR instances was 10, to simulate 10 concurrent applications.
In these experiments we show only the intra-request data synchro-
nization case, so each instance was configured with only one pro-
cess, which issued a 4MB contiguous data read request. Figure 3
shows the finish time of different requests on different file servers.
From Figure 3 (a) and (c), we can see that, in both HDD and SSD
environments, the finish time of every application varies a lot on
different file servers. From subfigure (b) and (d), we can see that,
the maximum finish time is 4.4 times of the minimum on average
in the HDD environment and 3.1 times in the SSD environment.
The completion time of one request is equal to the maximum value

of all finish times on all involved file servers. Therefore, the signif-
icant deviation of finish time on multiple file servers leads to high
completion time of data accesses.

The experimental results also indicate that, due to the indepen-
dent scheduling strategy on each file server, data accesses are fin-
ished in different orders for concurrent applications. The difference
of service orders on different file servers will become much greater
in the inter-request or collective I/O synchronization cases, where
each application has multiple processes. As a result, the indepen-
dent scheduling strategy on file servers introduces a large number
of idle CPU cycles waiting for data synchronization on computing
nodes, and the case will become even worse for large-scale HPC
clusters. The results also reveal that there is a significant potential
to shorten completion time by coordinated I/O scheduling on file
servers.

3. I/O COORDINATION
In order to reduce the overhead of data synchronization, we pro-

pose a server-side I/O coordination scheme which re-arranges I/O
requests on file servers, so that requests are serviced in the same
order in terms of applications on all involved nodes. Data syn-
chronization usually explicitly or implicitly exists in parallel pro-
cesses of parallel applications. The re-ordering aims at scheduling
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Figure 4: I/O coordination scheme in parallel file systems

the parallel I/O requests that need to be synchronized to run to-
gether, which can benefit the system with a shorter average comple-
tion time of all I/O requests. A good scheduling algorithm should
take into account both performance and fairness. A good practi-
cal scheduling algorithm also requires simplicity in implementa-
tion. The proposed I/O coordination is no exception. For fairness,
all I/O requests should be serviced within an acceptable period to
avoid starvation. To provide the right balance of performance and
fairness, the concept of ‘Time Window’ and ‘Application ID’ are
introduced to support the server-side I/O coordination approach.

Time Window. All I/O requests issued to a file server can be
regarded as a time series. The time series is then divided into suc-
cessive segments by a fixed time interval. Here each segment of the
time series is referred to as Time Window. Thus, one Time Window
consists of a number of I/O requests. The value of the time interval
can be regarded as Time Window Width.

Application ID. We allocate an integer value for each appli-
cation running on the cluster. The integer is an identification of
“which application an I/O request belongs to”, and is referred to as
Application ID. For each I/O request, it will pass on this integer to
the file servers.

According to the definition, all I/O requests from one applica-
tion have the same ‘Application ID’. For applications with multi-
ple parallel processes, such as MPI programs, there might be large
amounts of data synchronization. In order to alleviate the perfor-
mance penalties of synchronization, I/O requests from all processes
should have the same ‘Application ID’, and they should be served
in concert in multiple file servers. The ‘Application ID’ is gener-
ated automatically in the parallel I/O library and it is transparent to
users. It can be implemented in parallel I/O client libraries or the
middleware layer, without modifying application programs.

For fairness, requests in an earlier ‘Time Window’ will be ser-
viced prior to those in a later one, to avoid starvation. The request
time can use either file-server-side time (the arrival time of a re-
quest) or client-side time (the issue time of a request). Because of

network latency and load imbalance issues, one client side request
may have different arrival time on different file servers. In a system
with many concurrent clients, a request issued earlier might get a
later arrival time on some file servers. For these reasons, in our
implementation, we choose client-side time as the request time.

3.1 Algorithm
It is not difficult to imagine that in a parallel file system, a large

number of I/O requests might be queued on each file server at a
time. These I/O requests might come from multiple applications.
As all arriving requests are attached with a request time and an
‘Application ID’, the I/O coordination algorithm can be described
as follows. In the same ‘Time Window’, I/O requests are ordered by
the value of ‘Application ID’; while in different ‘Time Windows’,
requests in an earlier window would be serviced prior to those in a
later one.

The proposed I/O scheduling algorithm is based on the obser-
vation that requests from the same application have a better lo-
cality and, equally important, the execution will be optimized if
these requests finish at the same time. It takes both performance
and fairness into consideration. In each time window, requests are
served one application at a time in order to reduce the overhead
of data synchronization. In addition, none of the requests will be
starved, because requests in an earlier time window will always be
performed first.

Figure 4 illustrates how the I/O coordination algorithm works in
parallel file systems. In this example, there are 4 file servers and
three concurrent applications. The original request arrival orders
are inconsistent on different file servers, such as in subfigure (a).
The series of I/O requests are split into successive ‘Time Windows’
by a fixed time interval on all file servers, as shown in subfigure (b).
The scheduler on each file server then reorders the requests in each
‘Time Window’ by ‘Application ID’, so that requests from one ap-
plication can be serviced in the same time on all file servers, as
shown in subfigure (c).



The scheduler on each file server maintains a queue for all re-
quests, which determines the service order of I/O requests. When
a new I/O request arrives, if the queue is empty, the request will
be scheduled immediately. If the queue is not empty, the scheduler
will insert the request into the queue in terms of ‘Time Window’
and ‘Application ID’. The scheduler keeps issuing request with the
highest priority (i.e. the head of the queue) to the low-level storage
devices in current queue on each file server. Since the ‘Applica-
tion ID’ and request time are generated at the client side and then
passed to the file servers, there is no communication between dif-
ferent file servers while scheduling the requests. The use of ‘Ap-
plication ID’ and ‘Time Window’ has significantly simplified the
implementation of the coordination and paved the foundation for
good scalability as the number of file servers increases.

3.2 Completion Time Analysis
Assume that the number of file servers is n, the number of con-

current applications is m, and that each application needs to access
data on all file servers (for simplicity). A collective data access
from one application is mapped into n sub-parts to all file servers,
and each sub-part is also a request in a file server. The service time
on each file server for each sub-part is t.

Without I/O coordination, the sub-parts are served in different
file servers independently. As requests are issued simultaneously,
the sub-parts may be served randomly without order on all file
servers. Hence for each sub-part, the finish time on each file server
can randomly fall in {t, 2t, 3t, ..., mt}, and the finish time of data
access for one application depends on the latest finish time of all
nodes. The expectation of completion time of one data access is
equal to the expectation of the maximum finish time on all n file
servers. The average completion time can be represented as For-
mula (1), where F (k) means the probability distribution function
and f(x) represents the probability density function. From the for-
mula, we observe that, if there is only 1 file server, the expectation
of completion time is m+1

2
t, which conforms to the distribution

of our assumption. The formula also indicates that the completion
time increases as the number of file servers n increases, and also
as the concurrent applications number m increases. When the file

server number n is very large, t
mn

m−1∑
k=1

kn would be close to 0, and

then the average completion time would be close to mt.

Tavg = E(Max(T )) = (
m∑

k=1

kf(k))t

= (
m∑

k=1

k(F (k) − F (k − 1)))t

= (

m∑

k=1

k((
k

m
)n − (

k − 1

m
)n))t

= mt − t

mn

m−1∑

k=1

kn (1)

With the I/O coordination strategy, all file servers serve applica-
tions one at a time. I/O requests with synchronization needs will be
served at the same time on all file servers. Therefore, the comple-
tion times for these applications are: t, 2t, ..., mt, and the average
completion time can be represented as Formula (2). The formula
indicates that the average completion time is independent of n, the
number of file servers. That means the average completion time
of the I/O coordination scheme is much more scalable than that of

existing independent scheduling strategies. Currently, parallel file
systems usually reach up to hundreds of storage nodes or even be-
yond. The proposed I/O coordination strategy is a practical way to
reduce the request completion time for data-intensive applications.

T
′
avg =

1

m

m∑

k=1

kt =
m + 1

2
t (2)

From Formula (1) and (2), we can calculate the reduction of the
average completion time as follows.

Tdiff = Tavg − T
′
avg

=
m − 1

2
t − t

mn

m−1∑

k=1

kn (3)

As can be seen in Formula 3, when the number of file servers
n is very big, the reduction of completion time would be close to
m−1

2
t, and the decrease rate would be approaching m−1

2m
. As the

number of concurrent applications m increases, the decrease rate is
approaching 50%.

4. IMPLEMENTATION
We have implemented the server-side I/O coordination scheme

under PVFS2[9] and MPI-IO. PVFS2 is an open source parallel file
system developed jointly by Clemson University and Argonne Na-
tional Laboratory. It is a virtual parallel file system for Linux clus-
ters based on underlying native file systems on storage nodes. The
prototype implementation includes modifications to the PVFS2 re-
quest scheduling module and the PVFS2 driver package in ROMIO
[26] MPI-IO library.

4.1 Implementation in PVFS2
We modified the client interface and server side request sched-

uler in PVFS2. The client interface passes ‘Application ID’ and
‘Request Time’ to the file servers, and then the file servers re-
arrange requests service orders based on the two parameters.

We utilize the ‘PVFS_hint’ mechanism to pass the two param-
eters between I/O clients and file servers. Two new hint types are
defined in the PVFS2 source code: ‘PINT_HINT_APP_ID’ and
‘PINT_HINT_REQ_TIME’, representing the Application ID and
request time respectively. We made a modification of the client-side
interface PVFS_sys_read/write(), adding PVFS_hint as
a parameter, so that the hint could be passed to the PVFS2 server
side.

When a file server receives a request, the scheduler first calcu-
lates its priority, and then inserts the request to the request queue
in the ascending order of their priorities. The smaller the prior-
ity number a request gets, the earlier it would be scheduled. The
request priority is calculated as follows.

req_prior = req_time / interval * 32768
+ app_id;

Here req_time is the issue time of the I/O request from the client
side, and it is an integer value referring to the number of millisec-
onds since ‘1970-01-01 00:00:00 UTC’. Interval is the width of
the ‘Time Window’, which can be defined as a startup parameter
in the PVFS2 configuration file. If interval is not configured, it
will use the default value (1000ms for HDD and 250ms for SSD).
App_id represents ‘Application ID’, and it is an integer value in the
range 0 to 32767. From the formula we observe that the req_prior



of a request in an earlier ‘Time Window’ is guaranteed to be smaller
than a request in a later one. Also in one ‘Time Window’, a request
with a small Application ID will be scheduled prior to that with a
large one. Therefore, all the I/O requests in file servers are ordered
by the value of req_prior.

In current PVFS2, each file server maintains a set of request
queues for different file handles, and services requests in each queue
in the FCFS (First Come First Serve) way. A file handle corre-
sponds to a data file on one file server, which is usually a subfile
of a whole PVFS2 file. We designed a global shared request queue
to store all I/O requests of different jobs in the requests scheduler
module. In request post function PINT_req_sched_post(),
instead of adding an I/O request to the tail of the request queue
of each file handle, the I/O scheduler inserts the request into the
shared request queue according to the value of req_prior. The
trove module of PVFS2 handles read/write operations on block
devices one by one from the head of the shared queue. Therefore,
all I/O requests are serviced in the order of req_prior.

4.2 Implementation in MPI-IO Library
We also modified the PVFS2 driver in ROMIO [26] to pass ‘Re-

quest Time’ and ‘Application ID’ via ‘PVFS_hint’. ‘Application
ID’ is generated the first time when an MPI program calls func-
tion MPI_File_open(), and then it is broadcast to all MPI pro-
cesses. ‘Application ID’ is a global variable shared by all MPI
processes, so that all processes of an MPI program get the same
value of ‘Application ID’. It is an unsigned integer value, which is
generated randomly between 0 and 32767 by default. For system
performance tuning, we also provide a configuration interface for
parallel file system administrators. Administrators can specify the
value of the ‘Application ID’ in a global configuration file, either
as a fixed number or a range. If it is specified as a range, the value
will be generated randomly in the range.

ROMIO[26] is a high-performance, portable implementation of
MPI-IO, providing applications with a uniform interface in the top
layer, and dealing with data access to various file systems by an
internal abstract I/O device layer called ADIO. It provides vari-
ous types of file system drivers in its internal abstract I/O device
layer, including PVFS2. We modified the PVFS2 driver package
in ROMIO: for every data access function, it first generates a re-
quest time, and adds the request time and global ‘Application ID’
into a variable of PVFS_hint type, and then passes the hint to file
servers by calling modified data access functions. Following is an
example of calling the PVFS2 data read interface.

...
PVFS_hint chint = PVFS_HINT_NULL;
int appid = app_id;
struct timeval rtime;
gettimeofday(&rtime, NULL);
long int req_time = rtime.tv_sec;

/* add application id and request time to hint */
PVFS_hint_add(&chint, "pvfs.hint.app_id", sizeof(int),

&appid);
PVFS_hint_add(&chint, "pvfs.hint.req_time",

sizeof(long int), &req_time);

/* call new read/write function with the hint
parameters.*/

ret = PVFS_sys_read2(pvfs_fs->object_ref, file_req,
offset, buf, mem_req,
&(pvfs_fs->credentials),
&resp_io, chint);

...

These code modifications in the MPI-IO library are transparent
to application programmers and users. There is no need to mod-

ify the source code of application; the user can simply relink the
program using the modified MPI-IO library.

The request time is one of the primary factors used for request
reordering on file servers in the proposed I/O coordination strat-
egy. For this reason, the clock of all machines in the large-scale
system must be synchronized. In our implementation, the request
time is generated in MPI-IO library at the client side, so all the
client machines must adopt the same clock. Clock skew of client
nodes may lead to unexpected requests service orders, especially
for the collective I/O synchronization and inter-request synchro-
nization cases. Currently, most of the high-performance comput-
ing clusters have synchronized clocks using either NTP service or
hardware clock synchronization(for example in Blue Gene/P).

5. EXPERIMENTAL EVALUATION

5.1 Experiments Setup
Our experiments were conducted on a 65-node SUN Fire Linux-

based cluster, with one head node and 64 computing nodes. All
nodes were equipped with Gigabit Ethernet interconnection. The
model of head node was Sun Fire X4240, installed with dual 2.7
GHz Opteron quad-core processors, 8GB memory, and 12 500GB
7200RPM SATA II disk drives configured as RAID5 disk array.
The computing nodes were Sun Fire X2200 servers, each with dual
2.3GHz Opteron quad-core processors, 8GB memory, and a 250GB
7200RPM SATA hard drive. All 65 nodes were connected with
Gigabit Ethernet. In addition, 17 of these nodes (including the head
node) were connected with 4X InfiniBand network, and had a PCI-
E X4 100GB SSD. All these nodes ran Ubuntu 9.04 (Linux kernel
2.6.28.10) operating system. We implemented the I/O coordination
strategy in MPICH2-1.1.1p1 and PVFS2 2.8.1 file system.

We evaluated the proposed I/O coordination strategy in both ‘Gi-
gabit Ethernet + HDD’ and ‘InfiniBand + SSD’ environments. We
measured average completion time, system scalability, and band-
width with IOR, PIO-Bench, MPI-TILE-IO, and Noncontig bench-
marks. IOR benchmark is a software used to test random and se-
quential I/O performance of parallel file systems. PIO-Bench pro-
vides a flexible framework for standardized testing of multiple file
access methods. MPI-TILE-IO and Noncontig are designed to test
the performance of MPI-IO for non-contiguous access workloads.
All the tests were repeated 3 times. Before each run, we flushed
memory to avoid the impact of memory cache and buffer.

5.2 Results and Analysis
First we conducted experiments to evaluate the completion time

of I/O requests with the proposed I/O coordination strategy, by
comparing with original scheduling strategy (without I/O coordina-
tion) in PVFS2. We used the same application scenarios shown in
Figure 3. Figure 5 shows the completion time of different applica-
tions on different file servers. From the results we see that the I/O
requests from one application were served together, and different
applications finished one by one on all file servers. The maximum
finish time is reduced from 4.4 to 1.3 times of the minimum finish
time in the HDD environment, and from 3.1 to 1.2 times in the SSD
environment. The completion time of one application relies on the
maximum finish time of all file servers. From the results, we ob-
serve that the average completion time of all applications is reduced
around 29.8% in the HDD environment and 19.5% in the SSD en-
vironment. Compared with the results in Figure 3, the proposed
I/O coordination lets requests from the same application complete
together, one at a time, rather than mixed random. We also notice
some crossover in the completion time of the requests in subfigure
(a) and (c). The reason is that, due to nonuniform network delays,
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Figure 5: The finish time of I/O requests on different file servers with the proposed I/O coordination strategy. All file servers serve one
application at a time together, and they serve I/O requests from multiple applications in the same order. The application scenarios
are the same as in Figure 3.

some requests with low priority were already issued to the storage
devices in cases when some requests with high priority arrived late
on some file servers. The proposed I/O coordination scheme al-
ways issues requests with the highest priority to low-level storage
devices in the request queue on each file server. Therefore, a small
percent crossover is expected.

We then compared the average completion time with different
number of concurrent applications. We employed 16 file servers,
and tested in both HDD and SSD environments. We used multiple
instances of IOR to simulate concurrent applications. The numbers
of concurrent instances were 2, 4, 6, 8, 10, 12, 14 and 16 respec-
tively, and the number of MPI processes for each IOR instance were
8, 16 and 32, respectively. The width of ‘Time Window’ was set as
1000 milliseconds. The I/O request size was 128 KB, and the stripe
size of PVFS2 was 4 KB. We added an MPI_Barrier operation
between two requests and measured the completion time of each
I/O request. Figure 6 shows the performance results. The prefix in
the legend indicates the number of processes in each application,
e.g. ‘32C’ means 32 processes per application. The suffix ‘cio’
means the proposed I/O coordination strategy, and ‘ori’ means the
original scheduling strategy in PVFS2. From the results we observe
that the proposed I/O coordination always achieves lower average
completion time, and the decrease in completion time is about 8%
to 42% in HDD environment and 11% to 43% in SSD environment.
Moreover, as the number of concurrent applications increases, the

decrease rate of completion time rises, which matches our previous
analysis.

Next we conducted experiments to evaluate the scalability of the
proposed I/O coordination strategy. We configured PVFS2 with 2,
4, 8, 16, 32 and 64 file servers in HDD environment and 2, 4, 8,
and 16 file servers in SSD environment, respectively. We adopted
PIO-Bench instances for applications, and the number of MPI pro-
cesses for each application were 8, 16, and 32, respectively. In this
set of experiments, we measured the completion time of sequential
read and write. The request sizes were 8KB ∗n (the number of file
servers) for different runs, so that for each request the data size on
all file servers is the same (8KB). We ran 10 concurrent PIO-Bench
instances together. Figure 7 shows the results; the X axis represents
the number of MPI processes for I/O coordination and original data
access strategies. The figure demonstrates that I/O coordination can
get a sustained steady completion time as the number of file servers
increases, while with the original data access strategy, the average
completion time grows as system scale increases. In the case of
2 file servers, the I/O coordination could obtain about 10% reduc-
tion of average completion time compared to original scheduling
strategy in both HDD and SSD environments. While the number
of file servers increases, the completion time decrease is around
46% for 64-node HDD environment and 39% for 16-node SSD en-
vironment. The results indicate that, the proposed I/O coordination
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Figure 6: Average completion time with different numbers of
concurrent applications. Prefix ‘8C’, ‘16C’ and ‘32C’ mean
each application has 8, 16 and 32 MPI processes, respectively.
Suffix ‘cio’ means the I/O coordination scheme, and ‘ori’ means
the original data access strategy. Labels in Figure 7 are simi-
larly defined. We used multiple instances of IOR to simulate
concurrent applications.

strategy is effective and even more appropriate for large-scale par-
allel file systems.

We also conducted experiments to evaluate the effect of differ-
ent lengths of the time window of the proposed I/O coordination
scheme. We set time window sizes as 250ms, 500ms, 1000ms, and
2000ms, and compared their completion time and I/O bandwidth
without I/O coordination. The number of file servers was 16 in both
HDD and SSD experiments. We adopted 3 IOR, 3 PIO-Bench, 2
MPI-TILE-IO, and 2 Noncontig instances to simulate 10 concur-
rent applications. The numbers of MPI processes for each appli-
cation were 8, 16, and 32, respectively (labelled as ‘8C’, ‘16C’,
and ‘32C’). The request sizes of all programs were 128 KB, and
the stripe size was 4 KB. Figure 8 shows the experimental results,
where subfigures (a) and (c) show average completion time and
subfigures (b) and (d) show the aggregate I/O bandwidth. From
subfigures (a) and (c) we observe that, for all time window sizes,
the completion times with the proposed I/O coordination strategy
are lower than that with original strategy without I/O coordination.
In addition, the window size 1000ms results in the lowest comple-
tion time in almost all cases in the HDD tests, and the 250ms win-
dow size results in the lowest completion time in SSD tests. From
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Figure 7: Average completion time with different numbers of
file servers. In HDD tests, the number of file servers was con-
figured as 2, 4, 8, 16, 32, or 64. In SSD tests, we configured the
number of file server as 2, 4, 8, or 16, respectively. We adopted
PIO-Bench instances to simulated concurrent applications.

subfigure (b) we can observe that, in HDD tests, the I/O bandwidth
increases as the window size is increased from 250ms to 1000ms,
and the I/O bandwidth with window size 1000ms and 2000ms are
similar. From subfigure (d) we observe that, in SSD tests the win-
dow size 250ms obtained the highest bandwidth. From the results
in HDD environment we see that, when the number of processes
in each application is 8, the bandwidth of original I/O scheduling
strategy is little higher (up to 1.2%) than I/O coordination scheme
in some cases. But for 32 processes, the I/O coordination strategy
achieved about 10.9% higher aggregate bandwidth than the original
strategy. The results in SSD show that the I/O coordination scheme
always obtains the highest I/O bandwidth. The results indicate that
the I/O coordination strategy can achieve comparable bandwidth to
the original strategy when the I/O workload of a parallel file sys-
tem is heavy. The experimental results also indicate that, the size of
time windows affect the completion time and I/O bandwidth. Gen-
erally, parallel file systems consisting of high performance storage
devices should set a short time window, and those consisting of
lower performance storage devices should set a relative large win-
dow size. Based on the results in this set of experiments, we rec-
ommend to set the window size to 1000ms in an HDD environment
and 250ms in an SSD environment.
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Figure 8: Average completion time and aggregate I/O bandwidth under different window sizes. We run 10 concurrent applications
(3 IOR, 3 PIO-Bench, 2 MPI-TILE-IO, and 2 Noncontig instances) in both HDD and SSD environments. The window sizes of I/O
coordination scheme were 250ms, 500ms, 1000ms, and 2000ms, respectively. We also measured the results without I/O coordination
strategy (labelled as ’ORI’ in the figure).

6. RELATED WORK
We discuss related work in the area of scheduling in parallel I/O

and parallel file systems, and we also discuss coordinated schedul-
ing techniques, and discuss how our work differs from those efforts.

6.1 Server-side I/O Scheduling in Parallel File
Systems

In order to obtain sustained peak I/O performance, a collection
of I/O scheduling techniques have been developed for the server
side I/O scheduling of parallel file systems, such as disk-directed
I/O [13], server-directed I/O [23], and stream-based I/O [11, 21].
These techniques succeed in achieving high bandwidth in disks and
networks of file servers, by reducing either the frequency of disk
seeks, or the waiting time of socket connections. However, to the
best of our knowledge, little effort has been devoted to reducing the
average completion time of I/O requests of multiple applications
for multiple file servers.

Numerous research efforts have been devoted to improving qual-
ity of service (QoS) of I/O requests in distributed or parallel storage
systems [4, 8, 10, 12, 19, 29]. Some of them adopted deadline-
driven strategies [12, 19, 31], that allow the upper layer to spec-
ify latency and throughput goals of file servers and schedule the
requests based on Earliest Deadline First(EDF) [16] or its vari-
ants [19, 20, 31]. Some approaches employed proportional-sharing

scheduling strategies [8, 29] between competing I/O workloads.
These strategies aim to either provide fairness of sharing of band-
width for clients, or to control the requests issue queue lengths of
I/O clients to guarantee a moderate latency. Our approach is differ-
ent from these works in that we do not use explicit deadline-driven
or throttling control algorithms, making it completely transparent
to I/O clients. Moreover, our approach takes into consideration
multiple file servers.

6.2 Coordinated scheduling
Coordinated scheduling has been recognized as an effective ap-

proach to obtain efficient execution for parallel or distributed envi-
ronments. It has been achieved with gang scheduling [5, 6, 7, 14,
17, 27, 28, 30] and co-scheduling [2, 3, 15, 25, 24]. A large body of
research has been devoted to reducing the synchronization time for
communication between threads/processes, by scheduling related
threads/processes to run simultaneously on different processors in
a parallel or distributed system. The scheduler packs synchronized
processes into gangs and schedules them simultaneously, to allevi-
ate performance penalties of communicative synchronization. Fei-
telson et al. [5] made a comparison of various packing schemes for
gang scheduling, and evaluated them under different cases. Wise-
man et al. [30] matched gangs that make heavy use of the CPU with
gangs that make light use of the CPU, and scheduled such pairs



together, to improve the throughput by making better utilization
of the system resources. Wang et al. [27, 28] presented a mathe-
matical model that can measure system performance with different
scheduling parameters, to guide the design of scheduling policies.
All these coordinated scheduling techniques focus on the thread,
process or job level, either to reduce synchronization time or to
better utilize the system resources. However, none of these works
focused on I/O request scheduling. Moreover, current coordinated
scheduling policies employed centralized or distributed schedulers,
both of which are based on communication itself among proces-
sors/nodes. In our approach no central control mechanism exists,
nor communication between file servers, making it much more suit-
able for large-scale parallel file systems.

Zhang et al. [32] proposed an inter-server coordination technique
in parallel file systems to improve the spatial locality and program
reuse distance. They calculated the access distances and group the
requests with small distance together, but this optimization does
not apply to SSDs. Our approach, on the other hand, is based on
the observation that the requests with synchronization needs will
be optimized if they finish at the same time. We coordinate among
file servers so that they work on one application at a time together.
The motivation and methodology of the design and implementa-
tion of our and their approaches are very different. In addition, our
approach does not require a central control, is simple in implemen-
tation, and can be extended to SSDs.

7. CONCLUSIONS AND FUTURE WORK
Parallel file systems are widely used for data-intensive and high-

performance computing applications. However, I/O performance
lags far behind the computing capacities in current systems, result-
ing in processors wasting large numbers of cycles waiting for data
to arrive. The situation becomes even worse when multiple applica-
tions try to access data concurrently. Existing server-side schedul-
ing algorithms focus on tapping the potential capacity of each sin-
gle file server to achieve a higher throughput of each storage node,
thus to improve overall system throughput. Little has been done
to investigate coordinated data access on multiple file servers to
reduce the average completion time from the parallel data access
point-of-view. This paper targets the problem of reducing the aver-
age completion time of I/O requests from multiple applications.

This paper proposes a novel server-side I/O coordination scheme
in which all file servers serve requests in step to alleviate the impact
of data synchronization, and also maintain fairness and simplicity.
The proposed scheme lets all file servers work on one application at
a time based on a automatically created chronological order recog-
nized within the whole cluster, rather than all servers working in-
dependently. This paper makes the following contributions. First,
we describe the I/O synchronization problems in parallel I/O sys-
tems, and demonstrate that re-arranging service orders on multiple
file servers is beneficial. Second, we propose an I/O coordination
scheme to let all file servers work in concert. Third, we have imple-
mented the proposed I/O strategy in PVFS2 and MPI-IO. The ex-
perimental results demonstrate that, compared to the conventional
data access strategy, the proposed I/O coordination scheme can re-
duce the I/O completion time by up to 46% and provide a com-
parable I/O bandwidth. Analytical and experimental results con-
firm that the control mechanism of the proposed I/O coordination
scheme is simple and effective, and it is an appropriate choice for
large-scale parallel file systems with heavy I/O workloads.

In the future, we plan to investigate optimization of the I/O coor-
dination strategy based on application data access patterns. We also
plan to add a minimum group communication in I/O coordination,
to explore its feasibility for imbalanced data access workloads.

8. ACKNOWLEDGMENTS
The authors are thankful to Jibing Li from Illinois Institute of

Technology and Robert Ross from Argonne National Laboratory
for their constructive and thoughtful suggestions toward this study.
This research was supported in part by National Science Founda-
tion under NSF grant CCF-0621435 and CCF-0937877, and in part
by the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

9. REFERENCES

[1] High-performance Storage Architecture and Scalable Cluster
File System. Lustre File System White Paper, Dec. 2007.

[2] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E.
Anderson, and D. A. Patterson. The Interaction of Parallel
and Sequential Workloads on a Network of Workstations. In
SIGMETRICS ’95/PERFORMANCE ’95: Proceedings of the
1995 ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems, pages
267–278, New York, NY, USA, 1995. ACM.

[3] A. C. Arpaci-Dusseau. Implicit Coscheduling: Coordinated
Scheduling with Implicit Information in Distributed
Systems. ACM Transactions on Computer Systems (TOCS),
19(3):283–331, 2001.

[4] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. P. Lee. Performance Virtualization for
Large-scale Storage Systems. In SRDS ’03: Proceedings of
the 22th International Symposium on Reliable Distributed
Systems, pages 109–118, 2003.

[5] D. G. Feitelson. Packing Schemes for Gang Scheduling. In
IPPS ’96: Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, pages 89–110, London,
UK, 1996. Springer-Verlag.

[6] D. G. Feitelson and M. A. Jette. Improved Utilization and
Responsiveness with Gang Scheduling. In IPPS ’97:
Proceedings of the Job Scheduling Strategies for Parallel
Processing, pages 238–261, London, UK, 1997.
Springer-Verlag.

[7] D. G. Feitelson and L. Rudolph. Gang Scheduling
Performance Benefits for Fine-Grain Synchronization.
Journal of Parallel and Distributed Computing, 16:306–318,
1992.

[8] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA:
Proportional Allocation of Resources for Distributed Storage
Access. In FAST ’09: Proccedings of the 7th Conference on
File and Storage Technologies, pages 85–98, Berkeley, CA,
USA, 2009. USENIX Association.

[9] I. F. Haddad. PVFS: A Parallel Virtual File System for Linux
Clusters. Linux Journal, page 5, 2000.

[10] L. Huang, G. Peng, and T.-c. Chiueh. Multi-dimensional
Storage Virtualization. SIGMETRICS Perform. Eval. Rev.,
32(1):14–24, 2004.

[11] W. B. Ligon III and R. B. Ross. Implementation and
Performance of a Parallel File System for High Performance
Distributed Applications. In HPDC ’96: Proceedings of the
5th IEEE International Symposium on High Performance
Distributed Computing, page 471, Washington, DC, USA,
1996. IEEE Computer Society.

[12] M. Karlsson, C. Karamanolis, and X. Zhu. Triage:
Performance Differentiation for Storage Systems Using
Adaptive Control. ACM Trans. Storage, 1(4):457–480, 2005.



[13] D. Kotz. Disk-directed I/O for MIMD Multiprocessors. ACM
Trans. Comput. Syst., 15(1):41–74, 1997.

[14] W. Lee, M. Frank, V. Lee, K. Mackenzie, and L. Rudolph.
Implications of I/O for Gang Scheduled Workloads. In IPPS
’97: Proceedings of the Job Scheduling Strategies for
Parallel Processing, pages 215–237, London, UK, 1997.
Springer-Verlag.

[15] S. T. Leutenegger and M. K. Vernon. The Performance of
Multiprogrammed Multiprocessor Scheduling Algorithms. In
SIGMETRICS ’90: Proceedings of the 1990 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 226–236, New York, NY, USA,
1990. ACM.

[16] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Dard-Real-Time Environment.
Journal of the ACM, 20(1):46–61, 1973.

[17] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and M. A.
Jette. An Infrastructure for Efficient Parallel Job Execution in
Terascale Computing Environments. In Supercomputing ’98:
Proceedings of the 1998 ACM/IEEE conference on
Supercomputing (CDROM), pages 1–14, Washington, DC,
USA, 1998. IEEE Computer Society.

[18] D. Nagle, D. Serenyi, and A. Matthews. The Panasas
Activescale Storage Cluster: Delivering Scalable High
Bandwidth Storage. In Supercomputing ’04: Proceedings of
the 2004 ACM/IEEE conference on Supercomputing,
page 53, Washington, DC, USA, 2004. IEEE Computer
Society.

[19] A. Povzner, D. Sawyer, and S. Brandt. Horizon: Efficient
Deadline-driven Disk I/O Management for Distributed
Storage Systems. In HPDC ’10: Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing, pages 1–12, 2010.

[20] A. L. Narasimha Reddy and J. C. Wyllie. Disk Scheduling in
a Multimedia I/O System. In MULTIMEDIA ’93:
Proceedings of the First ACM International Conference on
Multimedia, pages 225–233, New York, NY, USA, 1993.
ACM.

[21] R. B. Ross and W. B. Ligon III. Server-Side Scheduling in
Cluster Parallel I/O Systems. Calculateurs Parallèles Special
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