Optimized Pre-Copy Live Migration for Memory
Intensive Applications

Khaled Z. Ibrahim, Steven Hofmeyr, Costin Iancu, Eric Roman
Lawrence Berkeley National Laboratory
Email: {kzibrahim, shofmeyr, cciancu, eroman}@lbl. gov

Abstract—Live migration is a widely used technique for re-
source consolidation and fault tolerance. KVM and Xen use
iterative pre-copy approaches which work well in practice for
commercial applications. In this paper, we study pre-copy live
migration of MPI and OpenMP scientific applications running
on KVM and present a detailed performance analysis of the
migration process. We show that due to a high rate of memory
changes, the current KVM rate control and target downtime
heuristics do not cope well with HPC applications: statically
choosing rate limits and downtimes is infeasible and current
mechanisms sometimes provide sub-optimal performance. We
present a novel on-line algorithm able to provide minimal down-
time and minimal impact on end-to-end application performance.
At the core of this algorithm is controlling migration based on
the application memory rate of change.

I. INTRODUCTION

Virtualization technologies are ubiquitously deployed in
data centers and offer the benefit of performance and fault
isolation, flexible migration [16] , resource consolidation [13],
and easy creation [5] of specialized environments. They have
been extensively used to run web server, E-commerce and
data mining workloads. Recently, these workloads have been
supplemented with High Performance Computing (HPC) ap-
plications: the Amazon Elastic Compute Cloud (EC2) al-
ready provides virtualized clusters targeting the automotive,
pharmaceutical, financial and life sciences domains. The US
Department of Energy is evaluating virtualization in the Mag-
ellan [12] project. Virtualization is also evaluated in very large
scale HPC computing systems such as the Cray XT4, where
it has been shown [1], [10] to scale up to 4096 nodes.

Live virtual machine migration is one of the key enabling
technologies for fault tolerance and load balancing. With live
migration, whole environments comprised of Virtual Machine
(VM), Operating System and running tasks, are moved without
halting between distinct physical nodes or Virtual Machine
Monitors (VMM). Live migration has been extensively studied
for commercial workloads where tasks are often independent
and serve short lived requests; in contrast, HPC workloads
have tasks tightly coupled by data movement and tend to
persistently use a significant fraction of the system memory.
Due to these differences, current live migration techniques do
not cope well with HPC workloads.

In this study we examine OpenMP and MPI applications
and propose a novel control technique specifically designed
for live migration of scientific applications. We implement our
algorithms in KVM [9], which uses a state-of-the-art iterative

pre-copy mechanism. The contributions of this paper are
summarized as follows:

« We extend previous studies of migration performance [7],
[15] to quantify the impact of: i) the monitoring mech-
anism for dirty pages; ii) the memory and the network
contention; and iii) the parallel programming model and
the application data set.

o We present a novel KVM pre-copy algorithm with differ-
ent termination criteria that it is able to achieve a minimal
downtime and minimizes the impact on the application
end-to-end performance. Our algorithm can be trivially
ported to other implementations, such as Xen.

In KVM, the performance of iterative pre-copy migration
is controlled by the bandwidth allocated, as well as a target
downtime for the last iteration. These two metrics are chosen
by system administrators to both minimize the migration over-
head, and satisfy service level agreements (SLAs) that require
guarantees on the maximum downtime. For HPC applications,
downtimes are generally not as important as overall execution
time, although downtime can result in application failure due
to factors such as network timeouts. Compared to commercial
server applications, HPC applications tend to be memory
intensive, and as our analysis in Sections IV and V shows,
memory intensive applications are difficult to migrate because
rate limits and downtime cannot be optimally set without
detailed knowledge of the application behavior. In particular,
state-of-the-art pre-copy techniques as implemented in KVM
0.14.0 do not converge (iterate indefinitely) for some of our
benchmarks when executed with multiple processors per VM.

Previous work on pre-copy live migration for scientific ap-
plications [7], [15] reports acceptable performance on systems
with one or two cores per node. In the rest of this paper we
argue that when increasing the number of cores or memory
per node, controlling pre-copy live migration using rate limits
and target downtimes can become infeasible and propose a
an approach that takes into account only the application’s or
VM’s rate of memory changes. This is particularly suitable for
memory-intensive HPC applications where we do not need to
guarantee limits on downtimes.

In Section VII we present a novel iterative pre-copy al-
gorithm designed for convergence instead of guaranteeing
maximum downtime. In our experiments, the algorithm always
converges within the first third of the application execution,
significantly reducing the end-to-end application performance

impact (in some cases by an order of magnitude over the
default KVM settings). At the core of this algorithm is
making migration decisions based solely on detecting memory
activity patterns and switching to stop-and-copy migration
when further reductions in downtime are unlikely to occur.
In practise, our approach also provides low downtime and can
be easily retrofitted into implementations that need to provide
SLAs.

II. VIRTUAL MACHINE MIGRATION

In live migration, the virtual machine (or the application)
keeps running while transferring its state to the destination.
A helper thread iteratively copies the state needed while both
end-points keep evolving. The number of iterations determines
the duration of live migration. As a last step, a stop-and-copy
approach is used, its duration is referred to as downtime. All
implementations of live migration use heuristics to determine
when to switch from iterating to stop-and-copy. Throughout
this paper we refer to this decision point as convergence or
termination.

Iterative Page Pre-Migration (pre-copy): This technique
starts by copying the whole source VM state to the destination
system. While copying, the source system remains responsive
and keeps progressing all running applications. As memory
pages may get updated on the source system, even after they
have been copied to the destination system, the approach
employs mechanisms to monitor page updates. Pre-copying
is implemented in KVM and Xen. Previous studies [4], [7]
indicate that the performance of the approach is determined
by the network bandwidth available to the migration process.

The performance of live VM migration is usually defined
in terms of migration time and system downtime. All existing
techniques control migration time by limiting the rate of
memory transfers while system downtime is determined by
how much state has been transferred during the “live” process.
Minimizing both of these metrics is correlated with optimal
VM migration performance and in KVM it is achieved using
open loop control techniques.

With open loop control, the VM administrator sets config-
uration parameters for the migration service thread, hoping
that these conditions can be met. The input parameters are
a limit to the network bandwidth allowed to the migration
thread and the acceptable downtime for the last iteration
of the migration. Setting a bandwidth limit while ignoring
page modification rates can result in a backlog of pages to
migrate and prolong migration. Setting a high bandwidth limit
can affect the performance of running applications. Checking
the estimated downtime to transfer the backlogged pages
against the desired downtime can keep the algorithm iterating
indefinitely. Approaches that impose limits on the number
of iterations' or statically increasing the allowed downtime
can render live migration equivalent to pure stop-and-copy
migration.

I'As discussed in Section IX, Xen defaults to this approach.

A. The KVM Implementation

KVM, as of the QEMU-KVM release 0.14.0, uses Algo-
rithm 1. We show the pseudo-code for the call-back function
invoked by the helper thread that manages migration. This
code runs sequentially, regardless of the number of processors
in the virtual machine and it proceeds in three phases.

In the first phase (lines 2-10), all memory pages are marked
dirty and the modification tracking mechanism is initialized.
In the second phase, pages are copied if they are marked dirty.
The dirty bit is reset, but can be set again if the application
has modified the page. Normally, this second phase is the
longest in iterative pre-copy Pages are being copied as long as
the maximum transfer rate to the destination machine is not
exceeded. Pages that are modified but not copied are used to
estimate the downtime if the migration proceeds to the third
stage. If the estimated downtime is still high, the algorithm
iterates until it detects a value lower than the target value.
When the target downtime is met, the migration enters the
third and final stage, where the source virtual machine (and
applications) is stopped. Dirty pages are transmitted to the
destination machine, where execution is resumed.

B. Live Migration Optimization Challenges

Figure 1 illustrates the challenges faced when trying to op-
timize migration while maintaining application performance.
The results are obtained for the OpenMP implementation of
NAS MG, running on two cores. As OpenMP does not use
the network, the experiment is performed with no migration
rate limit, i.e., the best achievable migration speed.

The left hand side shows the variation of downtime with
migration time. Typically, the downtime decreases as we
increase the migration time because the inactive datasets are
transmitted to the destination before stopping the machine
for the last migration. As the figure illustrates, choosing a
downtime that is neither excessive or unattainable can be
difficult even for this simple case. Furthermore, as shown later,
this typical curve varies greatly depending on the workload
characteristics and the VM configurations.

The right hand side of Figure 1 shows the variation of
the performance of the application running on the VM as
a function of migration time. Increasing the migration time
increases application execution time and consequently, the
migration time should be minimized for optimal performance.

Several problems are apparent when examining the two
plots: i) a static target downtime can be easily requested below
the attainable downtime, resulting in increased migration time
or failure to migrate the virtual machine; ii) best application
performance is obtained with a short migration time, which in
turn determines an increased downtime.

In the rest of this paper we argue that when increasing the
number of cores or memory per node, controlling pre-copy live
migration using rate limits and target downtimes can become
infeasible and propose a novel approach that takes into account
only the application’s or VM’s rate of memory changes.

104 *
g‘ 8 / Excessive down time
reCh!
o 61
E]
‘E 4 N
* east down time
£ ,] ~v—+——heastdowp time
a Unattainable down time
0

RIS ISR IR IR SIS
Migration time (sec)

Fig. 1.

40+
38
36
34]
32]
30
28
26
24

// ~e

/./

-

/.

Least impact on
performance

\.\

Execution time (sec)

=G

RSIRSIRSIRAIPC IR IR\ SIS
Migration time (sec)

T T T 1

On the left, a typical VM migration plot for the downtime vs. the duration of live migration. The impact on performance by increasing the duration

of live migration is shown on the right. While downtime decreases when live migration is prolonged, the execution time is negatively impacted.

Algorithm 1 Pseudo code for the main call-back for live VM
migration as implemented in QEMU-KVM.
1: procedure RAM_SAVE_LIVE(sid, stage)

2: if stage = 1 then

3 set_dirty_tracking()

4 for all block; in ram_list do

5 for all page; in a block; do

6: set the migration dirty bit for page;.
7 end for

8 end for

9 next_stage «— 2

10: end if

11: start_time «— get_time()

12: bytes_transferred «— 0

13: while transfer_rate(sid) < maz_rate do

14: bytes_sent — migrate_page(sid)

15: add bytes_sent to bytes_transferred

16: if bytes_sent = 0 then

17: break > exit while loop
18: end if

19: end while

20: trans fer_time <« get_time() — start_time
21: bandwidth «— bytes_transferred/transfer_time
22: if stage = 3 then

23: while migrate_page(sid) # 0 do

24: end while

25: reset_dirty_tracking()

26: end if
27: remaining «— remaining_modi fied_data()
28: expected_downtime — remaining/bandwidth
29: if expected_downtime < mazx_downtime then
30: next_stage «— 3

31 end if

32: return next_stage

33: end procedure

III. EXPERIMENTAL SETUP

We experiment with the KVM open source virtualization
technology, version 0.14.0 and the Linux kernel 2.6.32.8. In
our experiments, each virtual machine is configured with 1GB
of memory per core, e.g. a 4 core VM used 4GB of memory.
The system used for the evaluation contains two 1.6 GHz
quad-core quad-socket UMA Intel Xeon E7310 (Tigerton)
nodes connected with dual InfiniBand and Ethernet networks.
The achievable bandwidth is 800 MB/s and 120MB/s over
InfiniBand and Ethernet respectively. In our environment we
use the virtio [18] driver which provides near native Ethernet
performance in KVM. KVM on Tigerton uses the state-of-
the-art Intel VT-x support for hardware virtualization. Each
experiment has been repeated six times and the average is
reported when not mentioned otherwise.

As a workload we use implementations of the NAS
Parallel Benchmarks [2] in two popular parallel program-
ming paradigms: MPI (OpenMPI 1.4.2 with gcc 4.3.2) and
OpenMP (gcc 4.3.2 with GOMP). We perform experiments
with up to eight cores per VM for the problem classes A, B
and C and, overall the memory footprint of the workload varies
from tens of MBs to tens of GBs. Asanovi¢ et al [1] examined
six different promising domains for commercial parallel appli-
cations and report that a surprisingly large fraction of them use
methods encountered in the scientific domain. In particular, all
methods used in the NAS benchmarks appear in at least one
commercial domain. Thus, beside their HPC relevance, these
benchmarks are of interest to other communities.

To understand the performance aspects of live migration we
perform two sets of experiments: 1) the application and the mi-
gration run concurrently over Ethernet and; 2) the application
runs over Ethernet while the migration uses the InfiniBand
network. The former is presented in Sections IV and V and
captures the worst case scenario, which occurs in bandwidth
starved environments or environments where the memory
rate of change is much higher than the network draining
rate. The latter is presented in Section VI and captures the
best case scenario, where high bandwidth is available for
migration and there is the least degree of interference between
the application and the migration process. Furthermore, by
running the application over a slower network we also lower

Virtual Machine 1

Modified Pages Migrated Pages

(clean)

Fig. 2.
two VMs, respectively, are used in addition to the migration destination.

its rate of memory changes, as MPI ranks will wait longer for
communication with other off-node ranks.

IV. IMPACT OF MIGRATION ON APPLICATION
PERFORMANCE

Several factors determine the impact of migration on end-
to-end application performance:

o Monitoring page modifications causes additional TLB
flushes and soft page faults on write operations.

« Copying modified pages to the IO buffer used for the
transmission to the destination machine causes memory
contention.

o Running the application and the migration process con-
currently causes network contention.

e Only one service thread per VM handles migration, but
the application can use multiple cores.

We quantify these overheads by incrementally modifying
the migration mechanism. To measure the impact of dirty
page tracking, we modified the helper thread to perform only
monitoring without sending data to the destination virtual
machine. To add the effect of memory contention, we enable
copying of modified pages to the communication buffers,
without actual data transmissions. To quantify the total impact
on performance, we start the migration process and allow it
to proceed until the completion of the application.

Figures 3 and 4 show the cumulative impact on the OpenMP
and MPI implementations of NAS classes A and B, re-
spectively. All experiments are performed using the Ethernet
network and we present configurations using one, two and
four cores per virtual machine. The figures show that, for
both OpenMP and MPI, the additional page faults impact
application performance considerably. For OpenMP and MPI
we observe an average slowdown of 20% for configurations
with one core per virtual machine. As we increase the number
of cores per virtual machine, the overhead of the monitoring
mechanism increases. Using four cores per virtual machine,
we observe average slowdowns of 55% and 65% for OpenMP
and MPI respectively, For both OpenMP and MPI, the impact
of the memory contention is modest and it accounts for a few
percent of the total slowdown.

These results suggest that we might improve live migration
performance by allowing more parallelism in the monitoring
process, i.e. allowing multiple migration threads to execute

Migration Twin

ED:

New VM pages

Virtual Machine 2

HH I)

The virtual machine (VM) configuration used in the experiments throughout the paper. Depending on the workload type (OpenMP vs. MPI) one or

concurrently. Due to space constraints we do not explore this
further in the paper.

The MPI experiments confirm that the dominating factor
is the available network bandwidth. Increasing the number
of cores per VM degrades the application performance, so
that we observe average slowdowns of 130%, 190% and
590% for VMs using one, two and four cores respectively.
Since migration is allowed to proceed until the application
terminates, these overheads reflect either upper bounds in
the case when migration terminates earlier, or actual impact
when the migration process does not converge. As we will
show, the latter is a common occurrence in practice for this
workload. For these MPI experiments we do not perform any
rate limitation. Adding rate limitation mechanisms is likely to
increase the duration of the migration, which in turn increases
the impact on end-to-end application performance as indicated
by Figure 1.

V. IMPACT OF APPLICATIONS ON MIGRATION
PERFORMANCE

Two application-specific factors that affect the performance
of the migration process are:

1) the rate at which the application changes memory, and

2) the programming model. An OpenMP application is
contained within one VM, but MPI applications can span
multiple VMs.

All experiments presented in this section are performed us-
ing the Ethernet network. In Figure 5, we show the evolution of
downtime for the OpenMP implementations when we control
the number of iterations before changing from live to stop-and-
copy migration. Each iteration is set to be at most 1000 ms.
For reference, the default allowed downtime in gemu-KVM is
30 ms, configurable by system administrators.

As illustrated, for small datasets (class A) running on single
core VMs, the downtime converges rapidly below 30 ms
for most applications (except LU and SP). In these cases
the default KVM configuration will succeed in attaining the
target downtime. Increasing the dataset size to class B and
running two cores per VM, notice that most applications
cannot achieve the default downtime of 30 ms and FT requires
as much as seven seconds. Increasing the VM concurrency
to four for the same dataset (class B) worsens the downtime
and we observe durations anywhere between two and 30
seconds. The slope of reducing the downtime is also worse

mm base @ +monitoring mmm-+memory contention

2.6+ 2.6+ 1
2.4 1 proc VM 24 2 proc VM 24 4 proc VM
L 22 2 2.2 2 22
(] (] 5]
¢ 920 o 20 €920 M
£518 £2 18 £3518
Eg1e6 £3 16 £316
SE14 5% 14 5 51.4]
512 2212 3 ®1.24
[} (53 [}
) X 1.0 2 10
PP P aPe Mool (@° PP ® 1P e 0 %e%e® o0 PP ® 0P e P w0 %00 ® (9°
P Y X
Fig. 3. Impact of VM migration on the end-to-end performance of the NPB3.3 OpenMP benchmarks, classes A and B.
mm base mm= +monitoring mmm+memory contention == +network contention
s 1 proc VM s 2 proc VM s 4 proc VM
© © ©
g8 2g4 g g4
g2 e)
Z £ 2] Z 2 24 T T 22
o s e s o3 o
B s®e ER
3 3 3
< 1 S 1 S o1
w T T T T T T T T T u T T T T T T T T T T w T T T T T T T
LU ENUENUE SR RN © Moo hobhaobghohgh © Do® D022 ©
PN or S o oy J?(\Q‘P;Q » Pqe‘ag *PoPeo® '\"%'\9'6\\)%(\0.’%9.9'6 Pqe‘ag *PoPeo® ’\"%'\9'6\\)%(\0."69.9'6 P\‘e‘?})
Fig. 4. Impact of VM migration on the end-to-end performance of the NPB3.3 MPI benchmarks, classes A and B.
‘ —m—Dbt —e—cg ep —w—ft is —a—1lu mg —e—sp ‘
- - —v_Class B - 2 proc VM 327684 Class B - 4 proc VM
2048 N Class A - 1 proc VM 8192 “’:e? T Y v, "'s‘\
1024 4096 e g

2048
1024
512
256
128

16384 4

8192+

N

>

Downtime (ms)
Downtime (ms)

64
32
16
T 8 T

|

Downtime (ms)

X

N 4

4096
ISR o

T T T T T
10 15 20 5 10

Migration Iteration

o

Migration Iteration

T 2048 T T T T T T T T
30 o 10 15 20 25 30 35 40
Migration Iteration

T T T T
15 20 25 5

Fig. 5. Downtime after each migration iteration for different VM configurations running NPB3.3 OpenMP class A and B. Each iteration is at most 1000ms.

in this case: the least downtime is achieved after a much
larger number of iterations. These results show the difficulty of
choosing a system wide target downtime and also indicate that
heuristics that impose static limits on the number of iterations
are likely to produce sub-optimal downtimes when increasing
the number of cores per VM.

We repeated the same experiments for the MPI benchmarks
with similar results. For MPI applications, the additional net-
work contention determines downtimes in the seconds range,
even for simple configurations with small data sets and few
cores per VM. The MPI case poses additional challenges
as large downtimes and low responsiveness cause in our
experiments application failures due to timeouts in the MPI
layer. Maintaining responsiveness of the machine requires
reducing the flow of migration which in turn increases the
downtime. Thus, besides the difficulty of choosing the rate
limit and the target downtime, the MPI applications require
a feedback loop with the MPI library timeouts and downtime
is transformed from a mere performance metric to a factor
determining application failure.

The downtime evolution is explained when examining the
relationship between the application working set (writable
working set, Clark et al [4]) and the network bandwidth.
Figure 6 illustrates the two possible scenarios. In the first case

the network capacity is higher than the workload capability
of writing new pages and the downtime decreases with a high
slope. In the second case, the memory rate of change is higher
than the network capability and the number of migrated pages
is always less than the number of modified pages: downtime
remains constant or decreases with a low slope.

Figure 7 shows the active dataset and the corresponding
network performance required for draining it at different
processor counts. We instrument the monitoring activity and
measure the number of modified data pages using a sampling
interval of 1000ms. We reset the pages marked dirty and
compute the bandwidth needed to handle their transfer.

We consider the effective range as those in the interquartile
range (25% to 75%), i.e. those within the box in the figure.
Figure 7 illustrates two important points. First, the working
dataset size varies greatly among applications. The largest
size is associated with FT, which explains its large required
downtime in Figure 5. Second, the network performance
required to drain the active working set is high, up to 1.5GB/s.

For the MPI case we monitor the activity in only one of
the virtual machines allocated to the application. The active
working set is generally larger for the MPI applications and
the bandwidth requirement is higher than in the OpenMP
case. Increasing the parallelization of the OpenMP applica-

Network rate (MB/s)

Modified pages (MB), inactive dataset

]
slack for
flow control

swamping
activity |

active dataset
Network rate (MB/s)

Modified pages (MB) inactive dataset \

16 32 64 128 256 512 1024
Fig. 6. Two possible scenarios of application active dataset vs. migration
network activity. Rate limiting can be effective if a slack exists in networking
performance compared with the size of the active set.

tions increases the required bandwidth, while for the MPI
applications our modified page monitoring reaches the point of
impairing the generation of modified pages when we increase
parallelization.

Overall, these results indicate that applications running in-
side parallel virtual machines at the available core concurrency
easily overwhelm, even with small datasets, the available
network draining rate. They also indicate that rate limitation
and target downtimes are infeasible metrics to control the
migration process. As these results were obtained for the worst
case scenario (low bandwidth over Ethernet) a valid question
is whether these trends are observable when high network
bandwidth is available for migration. As shown next, even
for the best case scenario with independent migration over
InfiniBand/RDMA, they persist when increasing the dataset
size or the core concurrency.

VI. MIGRATION USING INFINIBAND AND RDMA

Since our experimental system has dual network cards, we
further isolate the impact of live migration by separating the
application traffic from the migration traffic and assess the
impact under the ideal scenario of having a separate high
speed interconnect for migration management. In the rest of
the experiments, the applications are running over Ethernet
and the migration proceeds over InfiniBand. In this setting,
the migration has the least possible interference with the
application execution.

We have implemented extensions to Qemu-KVM to support
migration over InfiniBand using remote direct memory access
(RDMA). For brevity we do not present further details but note
that our implementation is as well optimized as the implemen-
tation of migration on Xen/InfiniBand presented by Huang et
al [7], i.e. it overlaps page monitoring and transmission, it
performs aggressive page coalescing and InfiniBand level flow
control of outstanding transfers.

Currently, KVM does not support virtualization of Infini-
Band devices, but it is only a matter of time before this support
becomes available. Thus, we believe that besides providing
the first open source implementation of KVM migration over
InfiniBand, our design and evaluation provide valuable insights
into tuning live migration over InfiniBand devices.

A. Performance with RDMA Migration

Figure 8 presents the evolution of the downtime with the
increase in dataset size and number of active cores in the VM.

As downtime is highly dependent on the particular time during
execution at which migration is started, we present a statistical
summary of downtime over the application lifetime: we report
the downtime for a stop-and-copy after each iteration, for
as many iterations required until application termination. The
highest downtime usually occurs after the first iteration, while
the lowest downtime occurs after the application termination.
As shown, any increase in the dataset size or the number of
processors determines an increase in downtime. The downtime
ranges from tens of milliseconds to multiple seconds; MPI
applications usually have a lower downtime than OpenMP
applications. As expected, a large downtime is associated with
application activity that exceeds the network capability for
transferring the data.

Even with a separate network for migration, the impact
on application performance is high. Figure 9 shows that the
average slowdown due to the impact of the page monitoring
mechanism is respectively 55% and 80% for the OpenMP and
MPI workloads, on 4 core VMs. In the RDMA case, this
impact is considerably higher than in the Ethernet case: the
higher network bandwidth increases the degree of bandwidth
contention to memory.

The average slowdown for MPI applications is 6.8x, much
higher than the 1.8x average for OpenMP applications, even
though the bandwidth used for migration is not at the appli-
cation’s expense. We explain the MPI behavior as follows.
The MPI ranks synchronize with each other while migration
implicitly slows down the application execution. While for
OpenMP synchronization is contained within one VM, for the
MPI case it spans multiple nodes: TCP/IP re-transmissions and
remote node delays while waiting for synchronization both
contribute to the slowdown. We did not separate these effects,
but we conjecture that in general, applications spanning mul-
tiple nodes will observe a higher slowdown due to migration
than single node applications.

While we observe a significant improvement of the overall
performance in the case of high speed networks and no rate
limits, the application’s memory rate of change is still higher
than the available draining rate and large downtimes and
considerable application performance impacts are still present.

VII. ALGORITHM FOR MIGRATION CONVERGENCE

Clearly, using a static target downtime as a condition for
switching from iterative migration to stop-and-copy leads to
sub-optimal behavior. We propose a new technique where
switching is decided by matching memory update patterns that
indicate that no beneficial progress is achieved by continuing
live migration. As a progress measure we use the probability
of further reduction in downtime, without requiring any static
estimates.

The memory update patterns are summarized in Figure 10.
The first pattern represents the case where the number of
modified pages is not reduced by iterative pre-copying. In
this case, the application’s memory rate of change exceeds
the available bandwidth and continuing migration will only

Active dataset OpenMP

Active dataset MPI (1 of the 2 VMs)

1024 == S — 1024~ = X e % S
X X X

512 « % S % 512 =

256 = = 256 x = .

128 ?? = E Eé -.g-'ﬂ- 128 *? E;] o % a_u_ e "Q‘?
o oM o *
2 64 2 o = = -

32 32

16 -— x X % 164 * *

<
8 8
X
L S e e S S S S
L TR TG 0 0 S 20 ST S S S0 S ™ o %% x® X% x& X %O
Vo Vo Vo) Vo) Vo) Vol Vol oo oo > 2 > o2 > o2 Mo® Mol LT K
L L L I FE FE K LS L L L T FE B K LS
.. Needed page draining bandwidth OpenMP Needed page draining bandwidth MPI
. 2048 4 x
024 - - = 5 - ozl o é [=-2] 5 E!l]
5124 - 512 {waa |
x - * - =8
256—$ =3 # == 256 4
P %
£ 128 == - £ 128
a5} a
S 641 S 64
324 32 x
16 16
[e e T e e e e S e [T e e T e e e e T e T B B
Vv, » Vv, ™ Vv _» Vv, > Vv, ™ W Vv, > Vv, ™ > o > & > 2 > @ > > % > > O
Vo Vo) Vo¥ Vo obo! Vo ! Vo) Vo) "o ¥ Dod e e® b L L
ST S /KK VR T 0N OO KR ST S KK Ve SN 6@ KR

Fig. 7.
for transferring the active dataset within one sampling interval.

OpenMP benchmarks

The application’s active dataset sampled at 1000 ms. Data is summarized in

quartile form (25% to 75%). Below: the network bandwidth required

- 32768 MPI benchmarks
16384 16384
8192 4 — - _ _ _ > g102 4 _ _ _ _ _ _
4096 4096
2048 2048
- 1024 > - 1024
£ 5124 £ 5124~
© 256 * = © 256 * _ T
£ 128 E 128 x x
= 64 $ = 64 o $
= 32 -3 a = 32 = =
S 1e - < S 1e % x -
= = —— x =
8 8 = ? =
3 s . =
2 2
1 T 1 T
> _ D> > > > > > > > _ > > > > > _ > > o D o D o D> o D o D> o D o > o
KA B K< K< < K LT K< RItd > > bt ot kot kot Rtd
AU NP A N A & &q%@ PN 0\2&) BN R AR A <°%<§”o \\3\3.0 6{;9
Fig. 8. Downtime after each migration iteration for the optimized RDMA implementation. We present its variation with the VM configuration, programming

model, and application dataset size (class of NPB benchmarks). Data is summarized in interquartile form.

\- base mm +monitoring mm +RDMA memory contention \

. - ; MPI2proc-2VM . -
2751 OpenMP 2 proc - 1 VM 2.75 OpenMP 4 proc - 1 VM 16 p 16 MPI 4 proc - 2 VM
2,50 2.50
[m
b 225 8 225 e 8 g 8
@ o o « @
5 9200 g %200 58 58
2 g I - . 28, 28,
g 21.75 _g %1,75« “E’] g °
i ey i i
= 2150 © &1.504 =2, c 2,]
8=] S 8B 88
3 2905 8 "125] L 3 3°
9] X 17 [
> w > >
w1.00 If 1.00 w1 | w1
9 0P 0P a0l P00 3 4% 0P P PP P00 3 Mohabobobhaghahah & VoD a0 o®a2 @
070 TP W9 e Ne@Q RRCAOR NS A Y P\.e&g PP ® 1t PP ® Pqe&Q 0P ® 1Pt N,e‘?‘g
Fig. 9. Impact of VM migration on the end-to-end performance of the NPB3.3 OpenMP and MPI benchmarks, class B. Migration is performed over
InfiniBand.

degrade end-to-end performance, without any downtime re-
duction. The second pattern is when the application’s memory
activity drops during execution such that a small downtime can
be attained. In applications, this situation occurs for example
in synchronization and barrier operations. The third pattern
occurs when most of the transmitted pages are similar to those
transmitted in the previous iteration: in this case the modified
pages can be drained but the application performs an iterative
computation on the dataset.

Algorithm 2 presents the details of our new approach.
At the core of the implementation there is a mechanism to

estimate the rate of page transmission during migration. This
is essential for detecting the three different patterns shown in
Figure 10.

Detecting pattern a requires monitoring the number of page
changes per a constant time interval. As RDMA transfers are
non-blocking (split into post and waiting for completion), we
needed to know a priori the number of pages to post before
checking the number of the remaining modified pages and then
waiting for transfer completion. As shown in lines 25-37 of the
algorithm, we use linear regression to estimate the number of
pages to send in order to make the sampling interval constant.

1.0M~ Pattern (a)
140.0k
800.0k 120.0k
100.0k
600.0k
»
@ 80.0k
4
& 400.0k 60.0k
o
40.0k
200.0k
20.0k
0.0 0.0
20 40 60 80 100 120 140 10 20
Migration iteration (sec)
Fig. 10.

Pattern (b) 4.5k Pattern (c)
4.0k
3.5k _
Modified pages
3.0k Il Migrated pages
2.5k I Retransmitted pages

30 40
Migration iteration (sec)

10 20 30 40 50 60 70 80
Migration iteration (sec)

Three patterns to detect termination of the pre-copying mechanism: a) modified pages are stable for a prolonged period of time; b) application

activity drops below a certain threshold; and c) the migration activity involves high retransmission of pages.

In our experiments we use a sampling interval of one second.
Shorter intervals increase the variation in the measurements of
paging activity and make it more difficult to recognize steady
state. Our implementation also computes a moving average
in order to handle variation of the monitored data. We then
use a simple filtering technique to check if the rate of page
modification is stable. A stable region triggers a switch to the
last stop-and-copy stage of migration.

For pattern b in Figure 10, our implementation detects
when all modified pages have been transferred in an interval
less than the preset sampling interval (omitted for brevity in
Algorithm 2). In this case we know that we migrated all
the inactive dataset and the active set is smaller than the
interconnect capability for migration.

To track the page retransmission activity required for the
detection of pattern c, the algorithm maintains a bitmap cor-
responding to the pages transmitted in the previous iteration.
During any iteration, we count the number of retransmitted
pages. If the percentage of retransmissions exceeds 90% of
the migrated pages the algorithm proceeds to the last stage of
migration (lines 41-43 in Algorithm 2). In our implementation,
we maintain only one history bitmap for the previous iteration.
The algorithm can be easily extended to maintain a window
of bitmaps across multiple iterations.

The behavior upon starting migration, also the worst period
for downtime, does not match any of these patterns: the
number of dirty pages monotonically decreases with iterations
and the number of page retransmissions is quite small. Thus, in
our implementation we transfer once the whole memory space
before enabling the convergence mechanisms. This behavior
is similar to the default KVM implementation. Given that this
stage can take a long time, a large portion of the migrated
pages will be modified by the running applications.

Table I presents the results obtained with our algorithm. The
applications are using the Ethernet network while migration
proceeds over the InfiniBand network. Slowdown presents the
impact on end-to-end application performance when running
with our implementation. No convergence presents the impact
on application performance when migration does not converge,
i.e. we iterate until application termination. This situation
occurs in practice for most of the benchmarks when using
the KVM default implementation with the preset downtime of

Algorithm 2 Pseudo code for the proposed mechanism for
migration control.

1: procedure RDMA_MIGRATE_DIRTY_RAM(migrated
Out, mig_threshold : In,retransmit : In)
2 for all block; in ram_list do
3: for all page; in block; do
4: if block; is dirty then
5.
6: if migrated < mig_threshold then >
mag_threshold is initially arbitrarily large
7: reset_dirty_bit()
8: coalesce(block;)
9: update_retransmit_count()
10: update_migrated_count()
11: if coalesced_segments > 1 then
12: post_rdma_send()
13: end if
14: end if
15: update_modified_count()
16: end if
17: end for
18: end for
19: if coalesced_segments # 0 then
20: post_rdma_send()
21: end if
22: end procedure
23:

24: procedure RDMA_CONTROL_MIGRATION(retransmitted
In, migrated In, modified In, mig_threshold
InOut, timing_info : In)

25: (ap,bp) < linear_regression(migrated, post_time)

26: (aw, bw) < linear_regression(migrated, wait_time)

27: a < ap + Qu,b — by + by

28: period < post_time + wait_time

29: if period < sampl_period then

30: new_mig_threshold — (sampl_period — a)/b

31: else if migrated < modified then

32: additional_pages — (modified — migrated)

33: maz_pages — (sampl_period — period — a)/b

34: extra «— min(mazx_slack_pages, additional_pages)
35: new_mig_threshold < mig_threshold + extra

36: end if

37: mig_threshold — (mig_threshold +

new_mig_threshold x 3)/4 > Low pass filtering
38: if migrated history in steady state then

39: Switch from live migration to downstate
40: end if

41: if retransmitted/migrated > 90% then
42: Switch from live migration to downstate
43: end if

44: end procedure

3

30ms, which is unattainable in practice.> Downtime presents
the downtime attained by our implementation. By contrast,
downtime_max is the downtime that results from pure stop-
and-copy migration at the start of the application execution,
and downtime_min is the downtime from stop-and-copy af-
ter the application terminates. Pattern presents the pattern
detected for termination during the application run. All the
results were obtained for the scenario where migration is
started after the application initialization phase, i.e. in the NAS
regions of code used for performance assessments.

As illustrated, our algorithm is able to attain downtimes
between 8ms and 520ms for all applications. For all exper-
iments, downtime min is below 15ms, but this value occurs
after application termination. Unlike our benchmarks, actual
scientific applications are long-running and either pure stop-
and-copy or live migration is required. The benefits of live
migration are clearly demonstrated by our algorithm, which
provides downtimes that are orders of magnitude lower than
the pure stop-and-copy approach (downtime max). Further-
more, for all the applications we evaluated, live migration
using our algorithm completely finishes during the first third
of application execution.

During any application run, multiple convergence patterns
can be matched, depending on the time at which migration has
been started. All previous techniques using target downtime as
a termination condition are able to match only the equivalent
of pattern b. The experimental setting, i.e. dedicated high
speed network with no rate limit for migration, is the most
favorable for achieving a predetermined minimum downtime
and implicitly matching pattern b. As the results indicate,
for a significant number of experiments our algorithm detects
termination based on patterns a and c: a stronger convergence
criteria is clearly needed when increasing VM concurrency
or the active dataset. Furthermore, while all applications have
regions where the number of modified pages becomes small
(e.g. barriers), these are infrequent and short and steady state
is characterized by frequent retransmissions.

VIII. RELATED WORK

Virtual machine migration for workstations is thoroughly
discussed by Sapuntzakis et al [16]. They present mechanisms
for offline migration of multiprogrammed workloads running
on single core x86 workstations. In offline migration, VMs
are suspended, state is stored in temporary storage (disk
or memory) and then transferred to the destination system,
where execution is resumed. This technique involves a large
downtime and server based applications avoid it to maintain
customer satisfaction.

Clark et al [4] discuss live migration of virtual machines
using pre-copy techniques for commercial workloads on dual
core systems. They introduce the concept of a writable work-
ing set (WWS) and report low downtimes for their workloads.
While the WWS is relatively small (mostly stack pages) for

2If we set the downtime threshold for the KVM implementation to be high
enough for migration to converge, in most cases the MPI benchmarks abort
because of network timeouts.

commercial workloads, for scientific workloads it comprises
most of the system memory. Voorsluys et al [19] also show
an acceptable live migration overhead for data centers serving
enterprise-class Internet applications in clouds.

Huang et al [7] present an implementation of pre-copy live
migration on Xen using InfiniBand and evaluate it for the
NAS parallel benchmarks (MPI) running on clusters using one
core per node. We provide the first implementation of live
migration in KVM over InfiniBand, while providing a similar
level of optimizations, e.g page clustering. They do not report
downtimes and indicate that migration impacts the application
performance by at most 15%. Our results indicate much larger
impacts when increasing the number of cores per VM or the
application memory footprint.

Nagarajan et al [15] discuss proactive fault tolerance mech-
anisms for scientific applications using live migration. They
present results for MPI implementations of the NAS bench-
marks, on a 16 node cluster with dual core AMD processors
and virtual machines constrained to 1GB memory. They also
discuss the interaction between health monitoring and migra-
tion. Vallee et al [17] also discuss fault tolerance using live
migration. While all these studies showcase the promise of
pre-copy live migration, as our results indicate, increasing the
number of cores and the amount of memory per VM greatly
affects performance and more sophisticated techniques for
switching from live to stop-and-copy migration are required.

Fault tolerance using migration has also been studied in user
level environments such as Adaptive MPI and Charm++ by
Chakravorty et al [3] in dual core clusters. Given the increase
in core concurrency per node we believe that our results are
directly applicable to their work.

Post-copying techniques for live migration are discussed by
Hines et al [6] and Moghaddam et al [14]. Their objective
is to reduce migration time and they show promising results
for commercial workloads. In post-migration or post-copy, the
remote machine is started and processes are migrated without
copying the memory pages, which are copied on demand. The
downside of this approach is the significant slowdown that the
migrated machine/application might suffer. First touches of a
page on the destination system usually result in a network
transfer, which has high startup costs. As opposed to pre-
copy which is bandwidth bound, post-copy is a latency bound
technique. Post-copy techniques have not been thoroughly
evaluated for scientific workloads.

A seemingly unrelated but certainly pertinent area of re-
search is configuring virtualized environments for optimal
performance when running scientific applications. In [8] we
present an overview and techniques for configuring manycore
NUMA nodes. We show that optimal performance is achieved
by configurations where cores are partitioned across multiple
virtual machines but each VM spans at least a NUMA domain.
The core concurrency within a modern NUMA domain is cer-
tainly higher than the limits that previous pre-copy techniques
can handle.

TABLE I
A SUMMARY OF THE DOWNTIME ACHIEVED BASED ON THE PROPOSED TECHNIQUE AND THE ASSOCIATED SLOWDOWN OF THE APPLICATION.
CONVERGENCE TO THE LAST PHASE OF MIGRATION IS ACHIEVED BY EITHER a: STABLE MODIFIED LEVEL; b: SMALL MIGRATION ACTIVITY; c: (90%)
RETRANSMISSION OF MODIFIED PAGES.

Class B, 4 proc VM, OpenMP

Class B, 4 proc x 2 VM, MPI

I
sp || bt

bt cg ep ft is Iu mg cg ep ft is Iu mg sp

slowdown 17% 40% 22% 16% 67% 12% 19% 20% 46% 52% 66% 56% 31% 31% 53% 57%

no convergence 85% 61% 64% 154% 123% 152% 73% 49% 602% 245% 115% 231% 196% 455% 608% 755%
downtime (ms) 54 10 12 86 8 35 15 75 97 10 11 12 12 85 40 10

downtime max (ms) 8321 7940 7842 8197 7826 7780 7909 7901 7800 8741 7887 10560 8175 7850 11293 11721
downtime min (ms) 10 12 10 5 5 13 5 6 5 6 5 5 7 5 5 5
pattern c b a a b a b a c b b b b c a b

Class C, 8 proc VM, OpenMP [Class C, 8 proc x2 VM, MPI

slowdown 9% 15% 20% 12% 18% 8% 8% 24% 59% 70% 2% 43% 102% 31% 49% 54%

no convergence 64% 56% 37% 87% 63% 51% 146% 74% 415% 201% 38% 160% 186% 218% 487% 416%
downtime (ms) 90 25 32 465 8 35 320 520 80 25 14 15 29 200 120 93

downtime max (ms) 25675 23205 22910 29856 25100 21910 22778 28407 26305 26743 27155 29243 25743 29343 28743 28743
downtime min (ms) 11 11 14 11 12 11 11 11 11 11 14 11 10 11 11 11
pattern a b a a b a c a c a b b b c a c

IX. DISCUSSION

Our technique is orthogonal and complementary to ex-
isting rate limiting techniques as it only hastens detecting
migration termination. Our evaluation is for KVM, which
uses a particular open loop control scheme for migration
where static rate limits and target downtimes are provided by
system administrators. Although Xen [4], [7] and reportedly
VMWare, use closed loop techniques with rate limits, these
are equivalent to the KVM approach. Xen uses a pre-compiled
low and high bandwidth threshold. Migration starts at the low
threshold and it is increased in subsequent iterations with a
constant additive factor. Live migration is terminated when the
bandwidth allocated to migration reaches the high threshold
or, only a small pre-compiled number of pages remains to
be transferred, which in practice amounts to the KVM target
downtime. The net effect of this approach is that Xen will
terminate migration when a target downtime is attained or the
equivalent of pattern a in Figure 10 occurs, in which case
it will perform a fixed number of iterations. We believe that
our algorithm fits naturally with these closed loop approaches
where it will be able to provide the same benefits: lower
downtime and lower application performance impact.

Matching any of the patterns discussed earlier does not
guarantee attaining the global minimum downtime; our algo-
rithm waits only until downtime becomes relatively small and
there are no further improvement expectations. The biggest
advantage of this technique is preventing the migration from
continuing while degrading the application performance with
no clear benefit.

The astute reader has noticed that our evaluation platform, a
quad-socket quad-core Intel Tigerton system, has a low mem-
ory bandwidth when compared to contemporary systems. This
is due to its particular Front Side Bus memory architecture. As
memory bandwidth also influences RDMA bandwidth, newer
systems might provide a faster draining rate for migration. On
the other hand, lower memory bandwidth throttles the memory
rate of change in applications. Thus, we believe that our results
are valid across any multicore platform.

Even with our improved algorithm we observe a high impact

on end-to-end application performance, e.g. 51% average
slowdown for NAS class C. This raises the question of whether
pure stop-and-copy migration is more appropriate than live
migration for scientific applications. For the final version of
this paper we plan to provide a comparison of these two
approaches. A sound answer to the question requires a very
large number of experiments and at the time of this writing
we have available only partial data.

X. CONCLUSIONS

In this paper we study the behavior of iterative pre-copy
live migration for memory intensive applications and present
a detailed performance analysis of the current KVM imple-
mentation. Our analysis indicates that for scientific applica-
tions, where VMs contain multiple cores, and the application
memory rate of change is likely to be higher than the migra-
tion draining rate, the existing pre-copy live migration tech-
niques become sub-optimal. We present a novel algorithm that
achieves both low downtime and low application performance
impact. At the core of the algorithm is detecting memory
update patterns and terminating migration when improvements
in downtime are unlikely to occur. We implemented this
approach in KVM and demonstrated its benefits for both
Ethernet and RDMA (InfiniBand) migration. Our technique
is complementary to rate limitation techniques and can be
easily adopted to other environments, such as Xen. The KVM
implementation provides mechanisms very similar to Xen and
our performance evaluation provides insights applicable to
both environments. Furthermore, given the increase in core
concurrency and memory per computation node, we believe
that our approach, or similar approaches able to impose fast
termination, are mandatory when considering live migration
of parallel scientific applications.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick. The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[2]

[3]

[4]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

[19]

D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow. The NAS Parallel Benchmarks 2.0. Technical Report NAS-
95-010, NASA Ames Research Center, 1995.

S. Chakravorty, C. L. Mendes, and L. V. Kal. Proactive fault tolerance
in mpi applications via task migration. In In International Conference
on High Performance Computing, 2006.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live Migration of Virtual Machines. The 2nd confer-
ence on Symposium on Networked Systems Design & Implementation -
Volume 2, pages 273-286, 2005.

L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual machine hosting
for networked clusters: Building the foundations for ”autonomic” orches-
tration. VIDC ’06: Proceedings of the 2nd International Workshop on
Virtualization Technology in Distributed Computing, page 7, 2006.

M. R. Hines and K. Gopalan. Post-copy based Live Virtual Machine
Migration using Adaptive Pre-paging and Dynamic Self-ballooning.
The 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 51-60, 2009.

W. Huang, Q. Gao, J. Liu, and D. Panda. High Performance Virtual
Machine Migration with RDMA over Modern Interconnects. The 2007
IEEE International Conference on Cluster Computing, pages 11-20,
Sept. 2007.

K. Ibrahim, S. Hofmeyr, and C. Iancu. Characterizing the Performance
of Parallel Applications on Multi-Socket Virtual Machines. In Proceed-
ings of the 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID11), 2011.

Kernel Based Virtual Machine. http://www.linux-kvm.org/, 2008.

J. Lange, K. Pedretti, P. Dinda, C. Bae, P. Bridges, P. Soltero, and
A. Merritt. Minimal-overhead virtualization of a large scale supercom-
puter. In Proceedings of he 12011 ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), 2011.

J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, , and R. Brightwell. Palacios
and Kitten: New High Performance Operating Systems For Scalable
Virtualized and Native Supercomputing. In In IPDPS ’10: Proceedings
of the 24th IEEE International Parallel and Distributed Processing
Symposium, 2010.

National Impact Series: Scientists Look To The Clouds To Solve Com-
plex Questions. Available at http://www.er.doe.gov/News_Information/-
News_Room/2009/0ct%2014_ComplexQuestions.html, 2009.

J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler. Virtual machine
contracts for datacenter and cloud computing environments. ACDC '09:
Proceedings of the 1st workshop on Automated control for datacenters
and clouds, pages 25-30, 2009.

F. Moghaddam and M. Cheriet. Decreasing live virtual machine migra-
tion down-time using a memory page selection based on memory change
PDF. Networking, Sensing and Control (ICNSC), 2010 International
Conference on, pages 355 —359, April 2010.

A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive
Fault Tolerance for HPC with Xen Virtualization. The 21Ist annual
international conference on Supercomputing, pages 23-32, 2007.

C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers. SIGOPS
Oper. Syst. Rev., 36(SI):377-390, 2002.

G. Vallee, C. Engelmann, A. Tikotekar, T. Naughton, K. Charoenporn-
wattana, C. Leangsuksun, and S. Scott. A Framework for Proactive Fault
Tolerance. Availability, Reliability and Security, 2008. ARES 08. Third
International Conference on, pages 659 —664, Mar. 2008.

Virtio: An I/O virtualization framework for Linux. http://www.ibm.-
com/developerworks/linux/library/l-virtio/index.html.

W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost of
Virtual Machine Live Migration in Clouds: A Performance Evaluation.
Proceedings of the Ist International Conference on Cloud Computing,
pages 254-265, 2009.

	I Introduction
	II Virtual Machine Migration
	II-A The KVM Implementation
	II-B Live Migration Optimization Challenges

	III Experimental Setup
	IV Impact of Migration on Application Performance
	V Impact of Applications on Migration Performance
	VI Migration Using InfiniBand and RDMA
	VI-A Performance with RDMA Migration

	VII Algorithm for Migration Convergence
	VIII Related work
	IX Discussion
	X Conclusions
	References

