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ABSTRACT

Modern data-intensive applications move vast amounts taf ol
tween multiple locations around the world. To enable priathie
and reliable data transfer, next generation networks adlogh ap-
plications to reserve network resources for exclusive usehis
paper, we solve an important problem (called Syi® accommo-
date multiple and concurrent network reservation requestigeen

a pair of end-sites. Given the varying availability of bandhi
within the network, our goal is to accommodate as many raserv
tion requests as possible while minimizing the total timedes to
complete the data transfers. We first prove that $i4fan NP-hard
problem. Then we solve it by developing a polynomial-timarie
tic, called RRA. The RRA algorithm hinges on an efficient maech
nism to accommodate large number of requests by minimitiag t
bandwidth wastage. Finally, via numerical results, we sltitoat
RRA constructs schedules that accommodate significantheta
number of requests compared to other, seemingly efficieoi;is
tics.
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1. INTRODUCTION

Extreme scale scientific computations within collaboea#wviron-
ments are highly dependent on the availability of data thet heed
to process. The data in such environments is usually digéib
among national and international data repositories. Asaltieany
scientific data analysis requires frequent and time-deeditans-
fers of large volumes of data from one repository to anotiver o
the network. This fact highlights the extreme importancesbéible
network services. However, the default behavior of todbg'st ef-
fort networks is to treat all data flows equally. This causesdata
flows of higher priority and/or urgency to be adversely intpdc
by competing flows of lower priority. In distributed dataensive
environments, such behavior is unwarranted and can deginade
effective “goodput” of the overall system. Furthermoregtsibe-
havior makes it impossible to guarantee any type of Quafityas-
vice (QoS) which is often required for time sensitive datasfers.

As a first step to alleviate such concerns, next generatitwonks
such as EsNet [5] and Internet2 [9] have dedicated largevhiaitd
links between sites distributed across distant geograprégions.
These networks allow applications to reserve network nesmfor
the exclusive use between end sites. The ability to resestweank
resources is enabled via inter domain controllers (IDCs$uath
networks. An example of IDC is the on-demand secure cireunts
advance reservation system (OSCARS) within EsNet.

As a next step in enabling QoS guarantees, end site applcatiat
can intelligently reserve network resources are needech Sppli-
cations communicate with IDCs and reserve the requirediress.
The design of such applications can vary depending uponitite k
of reservation requests the IDCs can accept, and the fligxibfl
the reservations needed between end sites. Terapathss[b@pi
example of such network reservation tools that can comnatmic
with the IDCs of EsNet and Internet2 to reserve network recsesi

However, there are two major shortcoming of the existingvoet
reservation tools that we address in this paper. Firstngility of
existing tools to intelligently schedule reservationsha presence
of multiple/concurrent reservation requests. The curreatha-
nism to handle multiple reservation requests is to try andme the
requests in the order in which they are generated. As we show i
this paper, in the presence of multiple reservation reguest can
significantly improve the performance if we schedule theuests
intelligently. We have developed an algorithm that can troics an
efficient schedule for multiple/concurrent requests betwa pair
of end sites.

Second, we address the inability of existing tools to expha flex-
ibility in reservation requests. In our experience of cominating
with the end users of such systems, we have determined that th
reservation requests can have some flexibility. As an exanipl
stead of requiring a fixed amount of bandwidth, a data tramséy
have an upper limit on how much bandwidth it can use. Further-
more, as opposed to having a rigid start time, it may be aabégpt

as long as a data transfer gets finished before a certaininieadl
However, given the presence of such flexibilities, existiesgerva-
tion tools still submit a fixed request to the IDCs. Existingls
usually try to reserve the maximum bandwidth that the eneksit
can support. The IDC of the intermediate network may not e ab
to support the maximum bandwidth, but it may easily finish the
data transfer using a lower bandwidth before the deadling.aA
result, the IDC will have to reject the request to reserventia-
imum amount of bandwidth. In the presence of limited feelbac
from IDCs, the existing reservation tools then modify ansute

mit the modified request to IDCs. It may require multiple rdsin



of submissions before the request is modified in a way that-is a
ceptable to IDC. Our work in this paper specifically addrasshs
inefficient mechanism to reserve resources. To addressiseth
ficiencies, we allow reservation tools/applications to ek IDC
for the available resources. IDCs of the next generatiowordis
will have the ability to provide such availability to the digations
on request [11]. Once such availability information is &aalie,

it becomes possible for reservation tools to intelligesthedule
the requests. The algorithm developed by us in this papes tom
construct such intelligent schedules. As a result, the IB&Psnow
accommodate all the submitted requests, and there is nofaeed
modifying and re-submitting the requests one by one to IDCs.

We plan to integrate the developed algorithm into our existiet-
work reservation tool called TeraPaths [10]. Our resultsasthat
the developed algorithm can significantly improve the olvenes-
tem performance.

In Section 2, we describe our problem in detail and the peecis
objective that we want to achieve. Section 3 shows the priodgPo
hardness for our problem. In Section 4, we provide the detson

of the algorithm that we have developed, and Section 5 ptesen
the simulation results. Section 6 discuss some related ,veordt
Section 7 concludes the paper.

2. PROBLEM DESCRIPTION
In this section, we give the description of our problem usingo-
tivational example.

Figure 1 shows a simple scenario where the network can eserv
bandwidth of 10 Gb/s between two end sites. However, theatate
which the data can be read from/written to the storage demtice
an end host is limited to 8 Gb/s. In this scenario, it is adsMis&o
reserve a maximum of 8 Gb/s of bandwidth along the networtk. pat
A single reservation request between two end sites incl(ipiése
maximum bandwidth that the end sites can support (8. Gb/s in
the above example), (ii) the amount of data that needs toalns-tr
ferred, and (iii) the start and end times between which tlikesites
needs the data transfer to begin and finish. As an exampléntae
varying bandwidth availability of the network between thetend
sites of Fig. 1 is shown in Fig. 2. The bandwidth availabititaph

is a step function, with different available bandwidth beén dif-
ferent time intervals (or steps). For Fig. 2, the availaid-&-end
bandwidth for time intervall — 3] is 4 Gb/s, and for the interval
[3 — 7], the available bandwidth becom@<Gb/s (say due to ter-
mination of some other network flows within the network). Now
assume that end site 1 wants to make two reservations beftveen
self and end site 2. Both of these reservations can suponé#x-
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Figure 1: An example scenario.
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Figure 3: Two feasible schedules.

From the above example, it is easy to see that finding a feasiidl
optimal schedule becomes much more challenging if the btkw

imum bandwidth o8 Gb/s. Assume that the start and end times availability graph contains many more variations. Funthere, the

for both the reservations isand7 secs respectively. Furthermore,
assume that both reservations need to trarigf&b of data. Once
a reservation is confirmed for a request, the allocated bftialw
for that reservation remains fixed for its duration. Givea iand-
width availability information, and the reservation reqtse the ob-
jective is to schedule the data transfers if possible. Theduale
should be able to finish the data transfers for all resematvathin

the requested time window and at the same time optimize a cer-

tain objective function. Without an objective functionetk could
be multiple feasible schedules that will accommodate thaests.
Figure 3 shows two feasible schedules for the above exariyde.
can see that the schedule in Fig. 3(a) is optimal if we wannisHi
the data transfers as early as possible, and the scheduilg B(I5)
is optimal if we want to minimize the total data transfer time

problem becomes even more challenging if we introduce the fo
lowing four generalizations: (i) the requested start and tmes

for different reservations can be different, (ii) the ambahdata

that needs to be transferred for every reservation can alsiffler-
ent, (iii) the maximum bandwidth that a particular resepratcan
use may vary from one reservation to another, and (iv) theze a
multiple reservation requests that need to be scheduled.

In this paper, we consider all these generalizations angk dble
scheduling problem with two goals: (i) accommodate as masgr

vation requests as possible (all the requests in best case)ii)

minimize the sum of total times that is required to transfetad
for all accommodated requests. We name our problem as3SMR
(Scheduling_ Multiple Resource Rservation Rquests).
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Figure 4: Piecewise bandwidth availability graph in simple-
SMR?.

3. PROBLEM COMPLEXITY

In this section, we prove the NP-hardness of our SNWRoblem.

We consider a known NP-hard variation of the generalize@jass
ment problem (GAP), and convert an instance of this GAP into a
special instance of our problem in polynomial time. We first d
scribe the special instance of our SMBroblem, which we call
simpleSMR?,

Available Bandwidth (Gb/s)

AR-2
Step 2 AR-3

0125’.4@,:%

Time (secs)

Figure 5: An example showing accommodating regions.

Based on lemma 1, we now have the following theorem.

THEOREM 1. The SVR® problem is an NP-hard problem.

PrROOF. The SMR problem is a generalized version of timple-
SMR? problem. As thesimple-SMR?® problem is shown to be NP-

In simple-SMR?, all reservation requests have same start and end hard, SMR is also NP-hard. [J

times, same values for the maximum bandwidth that they can us
but different amounts of data that they need to transfer. btmel-
width availability curve irsimple-SMR? is a piecewise linear func-
tion. An example of this is shown in Fig. 4. The available band
width during all intervals is exactly the same as the maxinivamd-
width requested in the individual reservation requestswéler,
the time duration of every interval in which the bandwidtlaigil-
able can be different. We can make two important observation
from the definition ofsi aneSMR3. First, in any solution, the time
taken to complete the data transfer for a particular requékbe
same irrespective of the interval in which it is schedulethisTs
because all intervals have the same amount of bandwidttabiei
for every request. As a consequence, every feasible sehedlll
have the same total time taken to transfer data for all reserv
requests. Second, for tisample-SMR® problem, the objective of
finding a feasible schedule with minimum data transfer tismeow
reduced to finding just a feasible schedule. We now have the fo
lowing lemma.

LEMMA 1. Thesimple SMR? problemis an NP-hard problem.

PrROOF We consider the following variation of GAP that is known
to be NP-hard [3]:

Given n bins, m items, the capacity of each bin, and the size of
each item: the goal is to determine a feasible assignmen¢mfi

to bins such that the sum of the size of items in each bin does no
exceed the bin’s capacity.

An instance of the above problem can be converted intgithgle-
SMR? problem by considering the bins as the intervals in the piece
wise bandwidth availability graph. The capacity of eachdasn be
considered as the area under each interval where the bahdeid
available. Each item can be considered as the bandwidthveese
tion request, where the size of each item is equivalent tanmaunt

of data that needs to be transferred for that request. Fjrthi
goal of finding a feasible assignment of items to bins can Ime co
sidered equivalent to finding a feasible schedule of retiervae-
quests within the intervals of the piecewise bandwidthlafdity
graph. O

Given that the SMR problem is an NP-hard problem, it is not pos-
sible to develop a polynomial time solution procedure toveadt
optimally. As a result, we develop an efficient algorithmiwgioly-
nomial running time that can construct effective solutions

4. RRA: THE RESOURCE RESERVATION
ALGORITHM

In this section, we develop an algorithm, called RRA (reseur
reservation algorithm) to solve our SMRroblem. We begin by
providing an overview of the RRA in Section 4.1, which is fol-
lowed by the detailed description in Section 4.2. In Secdd}
we illustrate the working of the RRA algorithm via an example
In Section 4.4, we show the polynomial running time of the RRA
algorithm.

4.1 Algorithm Overview

The RRA algorithm runs in iterations. During every iterati®@RA

will try to reserve resources for some of those requests dhat
have a large effect on the objective function, i.e., the estgithat
can utilize the largest amount of bandwidth. At the end oftar i
ation, there may be few reservation requests that were gohac
modated in the bandwidth availability graph. The RRA altjon
then updates the bandwidth availability graph to reflectctimeent
reservation of requests that were accommodated. Thisldwvied

by more iterations in which RRA tries to reserve resourceste
remaining requests (if any) in the updated bandwidth alvaiitg
graph. An obvious question here is: how subsequent iteratian
accommodate the requests if the current one cannot? Theeansw
will become clear during the detailed description of theoatym.

If, during some iterationnone of the remaining requests could be
accommodated, then the RRA algorithm will stop. The remain-
ing requests that were not accommodated cannot be sati$tied.
RRA algorithm runs in polynomial time and can construct effe
solutions.

4.2 Detailed Description

In this section, we will provide detailed description of tRKRA
algorithm. Every iteration within RRA consists of three paa.
We will describe these phases here.
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Figure 6: Assigning an AR to a request.
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Figure 7: An example illustrating the need for feasibility check.

4.2.1 Phasel: Identify Accommodating Regions

The RRA algorithm begins an iteration by identifying oneaoe
modating region (AR) for every step in the bandwidth avaligb
graph. For a particular step size, RRA identifies the comedp

ing AR as a rectangle within the bandwidth availability grapat

(i) contains the step, (ii) has a height that correspondbeartax-
imum available bandwidth of that step, and (iii) has the ksig
length possible while maintaining the bandwidth. These ARs

be efficiently constructed using an algorithm proposed Jn The
current pending reservation requests needs to be acconteddda
these ARs. Note that an AR for a step may span multiple other
steps, and a single AR may accommodate multiple reservegion
quests. As an example, Fig 5 shows the ARs for all three sTeyss.
region AR-1 for step-1 spans from tinj@-7], region AR-2 spans
from time [2-5], and region AR-3 spans from tinj2-7]. Regions
AR-1 (with bandwidthd Gb/s) and AR-3 (with bandwidth Gb/s)

are spanning multiple time steps, and their height is cpmed-

ing to the bandwidth of their respective time steps. Regift2A
(with bandwidth8 Gb/s) spans only step-2 because the bandwidth
of adjacent steps 1 and 2 is less than that of step-2.

4.2.2 Phasell: Initial Assignment

After identifying all ARs, the next step in the RRA algorithimto
assign individual requests to these ARs. In order to acdsmfiis,
for every requesp;, RRA identifies the AR that can finish the re-
quest in the shortest amount of time (while satisfying tlaetstnd
end time requirements of the request). In case there arépfault
ARs that can finish the request in shortest time, RRA will gissi
the AR with smallest bandwidth to request This will ensure
that the ARs with excessive bandwidth availability can bedulsy
requests that can utilize such large bandwidth. Figure &/skzm
example where Request-1 witl8 Gb of data can utilize a maxi-
mum bandwidth o Gb/s with earliest start time and completion
deadline as 0 and 7 respectively. It also shows all three ARS t
fall within the start and end time requirements of the retuésit

of the three ARs, only two, i.e., AR-2 withGb/s and AR-3 witl6
Gbl/s, can satisfy Request-13secs. AR-1 witht Gb/s will require
4.5 secs to satisfy the request. In this case, the RRA algoritiim w
assign AR-3, i.e., the AR with minimum bandwidth among the tw
best ARs, to Request-1. If a certain request cannot be acoemm
dated inside any AR, then that request can not be satisfiediéind
be removed from further consideration.

A situation is possible where none of the available ARs igassl

to more than one reservation requests, and none of the tsques
gets assigned to overlapping ARs. In such a situation, theicu
initial assignment is considered as a feasible assignritantever,

itis also possible that some ARs (overlapping/non-oveilag) get
assigned to multiple reservation requests (e.g., see Fi¢n Buch

a scenario, the RRA algorithm needs to make sure that thergurr
assignments are indeed feasible, i.e., whether all/feheofequests
can be accommodated inside the assigned RAs.

4.2.3 Phaselll: Ensuring Feasibility

This is the most important phase of the RRA algorithm. The gba
this phase is to determine whether the assigned ARs can atgom
date the requests to which they were assigned. Furtherriiose,
phase also calculates the actual bandwidth and the stareraohd
times that will be assigned to each request that can be acoemm
dated. For this phase, RRA needs to maintain the followifgrin
mation for every identified AR: (i) the start time of the AR) the
end time of the AR, (iii) a list of other overlapping ARs, arid) @ll

the requests to which it was assigned. The RRA algorithmtlagih
iterate through the ARs one by one. It is likely that the ARghwi
large bandwidth can complete the requests in less amouimef t
As a result, for the benefit of the objective, the RRA alganithill
iterate through the ARs in a decreasing order of bandwidliega
(ties are broken randomly). For every AR considered, théigda
see if it can accommodate all the requests to which it wagasdi

If not, then the goal should be to accommodate as many as possi
ble. Furthermore, once a request is accommodated insideRan A
the size of other overlapping ARs should be adjusted aswisllo

If the accommodated request splits some overlapping ARI&fto
and right portions, then the larger portion will be retainadd the
smaller portion will be removed from that AR. Note that, iced,
the available bandwidth in the removed portion can be takem i
consideration during the next iteration of the RRA algarith

To accommodate the requests within an AR, the RRA algorithm
follows a greedy approach. It will iterate over the requésts-
creasing order of starting times, breaking ties randomlye fea-
son to iterate in increasing order of starting times is taioedthe
amount of time gaps between accommodated requests within th
AR.



To understand the processing of each request within thatier
we use the following notation. We dend®= {po, p1, - , pn-1}
as the set of allV requests. For requegt, denote the maximum
bandwidth that can be used &%p;) b/s, the requested start time
before which the data transfer should not startSgs;), the re-

quested end time by which the data transfer should compkete a

C(ps), and the amount of data that need to be transferrdd(as)
bits. For requesp;, denote the actual start time of data transfer in
a solution ass(p;), the actual bandwidth that was reserved gor
asb(p;) bls. The actual completion time fg; can be calculated
asc(pi) = s(ps) + % For each request; under the greedy
approach, the RRA algorithm will do the following:

e The starting time of requegt (i.e., s(p;)) will be calculated
as the maximum of(p;) (earliest possible start time) and
the starting time of the AR. If this value comes out to be
larger thanC'(p;) (the completion deadline for the request),

then this request cannot be accommodated during this itera-

tion, and will be considered in the later iterations.

e The bandwidth allotted to requestwill be calculated as the
minimum of B(p;) (maximum possible value that the can
support) and the maximum bandwidth available in the AR.

e Using the above values of start time and allotted bandwidth,
the completion time of the request will be calculated. If
the value of completion time exceeds the end time of the AR,
then the request; cannot be accommodated during this iter-
ation of the RRA algorithm.

e Finally, if p; can be accommodated within the AR, then the
start time of AR will be updated to the completion time of

pi-

Once the algorithm has finished iterating over the requesesar-
ticular AR, it is possible that there are few requests reimgithat
still need to be accommodated. There requests will be ceresid
during the next iteration of the RRA algorithm. Within thier-
ation, the RRA algorithm will now move on to the AR with next
highest bandwidth, and will repeat the greedy approach tidit
requests to which this AR was assigned.

4.2.4 Preparing for the next Iteration
An iteration of RRA ends when the RRA algorithm finish itengti
through all ARs. At this time, there may be some remainingres

RRA_AIgorithm(Request s Reqs, Steps S) FSis
the bandwidth availability graph */
1. Use [7] to create a s@& of accommodating regions
fromS
2. For every request € Regs
3. Identify ARs that can satisfy in smallest amount
of time
4. Among the identified ARs, assign the one with
minimum bandwidth te
5. If there is no identified AR fog, theng cannot be
satisfied and is removed froReqs
6. Consider each AR € R in decreasing order of
bandwidth values
7. Consider all requestse Reqgs to which regionr
was assigned in the increasing order of earliest
possible start times
8. If ¢ cannot fit in region, theng cannot be
satisfied in this iteration
9. If ¢ can fit inside regiom, then
10. Mark the actual start time gfas the current
start time of region
11. Assign the bandwidth afas the actual
bandwidth allotted tg
12. Using the allotted bandwidth and start tima,
calculate the finish time aof
13. Update the start time of regierto the finish
time ofq
14. For all overlapping regionspartitioned byg
15. Remove the smaller portion 6f
16. If the number of requests assigned in the previous step is
not zero
17. Use the C-BAG algorithm to update the bandwidtk
availability graphS while considering all the
accommodated requestsRags
18. Remove the accommodated requests freqs
19. Goto step 1
20. The requests that were not accommodated cannot be
satisfied

Figure 8: Pseudocode of the RRA algorithm.

function, the insertion can be made a constant time operatio
can be verified that the size 88t minus1 will be the number of
steps in the new updated BAG. The value$et and the number

of steps in the new BAG are needed for the next operation in the
C-BAG algorithm.

After calculating the number of steps in the new BAG, the O=BA
algorithm iterates oveBet in increasing order of stored values.
Every encountered value 8et marks the beginning of a new step,

vation requests that RRA was not able to accommodate. The RRA 54 ending of the previous step in the updated BAG. To obtmin t

algorithm will now update the bandwidth availability grapiile
taking into consideration the current accommodated regu&te
have developed an efficient algorithm, called C-BAG (Carcitr
ing an Updated Bandwidth Availability Graph), that constsuan
updated bandwidth availability graph given the requesttdte ac-
commodated within the current graph. The details of the GGBA
algorithm are as follows:

The C-BAG Algorithm.  To begin with, the C-BAG algorithm
will calculate the number of steps that will be there in thelated
BAG. To achieve this objective, C-BAG uses an efficient déatacs
ture calledSet . TheSet data structure is a collection of unique
values. The C-BAG algorithm first inserts the start and emes
of all steps in the current BAG intSet . This is followed by the
insertion of all actual start and end times of the accommemtieg-
quests within the current BAG int8et . With an efficient hash

available bandwidth in these steps for the new BAG, the C-BAG
algorithm maintains and updates two variables: (i) the amhot
bandwidth that is currently in use by the accommodated rggue
(denoted byBW USE), and (ii) the bandwidth of the step that is
active at this time in the old BAG (denoted BW STEP). For
every step in the new BAG (i.e., at every encountered timaeval
in the Set ), the amount of bandwidth for this new step is equal to
BW STEP minusBW USE.

After constructing a new bandwidth availability graph, BRiRA al-
gorithm will run through the three described phases agaiate N
that in this new iteration, an AR that gets assigned to a pusly
non accommodated request will be different from ARs in the pr
vious iteration. This is the reason that a request that maypeo
accommodated inside an AR during one iteration may get accom
modated during some subsequent iteration.



C-BAG_Algorithm(Request s Reqgs, Steps S)

Create a newget
Add the actual start and actual end time of the satisfig
requests to th&et
Add the start and end times of all the steps§ito
the Set
The number of steps in new bandwidth availability graph
will be sizeofSet ) -1
Sort the values within th8et in increasing order
Initialize: = 0
For each time valugin the sortedSet
if i < sizeofSet )

Mark ¢ as the beginning of theth step in the

new bandwidth availability grap
10. If(i > 0)
11. Markt as the end time of the — 1)-th step
12. If ¢ is the start time of some step éne S
13. Denote the current available bandwidthias
14. For all the accommodated requests that start at
15. Denotesum; as the sum of used bandwidth

values in these requests
16. For all the accommodated requests that end at
17. Denotesums as the sum of used bandwidth
values in these requests

18. DenoteJ = sumi — sums as the bandwidth in use
19. if i < sizeofSet )

20. Mark the bandwidth of-th step inS asB — U
21. Increment by one

22. UpdateS = S

o

LNt A~ W NE

Figure 9: Pseudocode of the C-BAG algorithm.
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Figure 10: An example.

Table 1: A set of requests.

Data
(Gb)

Max BW | Earliest Startf Completion Deadling
(Gbl/s) (secs) (secs)

The RRA algorithm stops if it cannot accommodate any reguest
during an iteration, or if there are no more remaining retpsat
need to be accommodated. Figure 8 shows the pseudo code of the|

RRA algorithm, and Fig. 9 shows the pseudo code of the C-BAG
algorithm.

4.3 An Example

In this section, we will walk through an example to illusedhe
workings of the RRA algorithm. Figure 10(a) shows an initial
bandwidth availability graph with four steps. Step-0 spawer
the interval [0-2] with6 Gb/s bandwidth, step-1 spans [2-4] with
10 Gb/s bandwidth, step-2 spans [4-5] wittGb/s bandwidth, and
step-3 spans [5-7] witB Gb/s bandwidth. Table 1 shows the reser-
vation requests that are to be accommodated in the bandawdih
ability graph of Fig. 10(a). The units used in this example far
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the illustration purpose only. As a example, the time doratian For the third phase of this iteration, the RRA algorithm iilbt
be in minutes or hours instead of seconds that we have used her select the AR with the largest available bandwidth, whicARs1
The first iteration of the RRA algorithm will operate on thétia (see Fig. 10(b)). As there is only one request (i.e., #2) tckvthis

bandwidth availability graph of Fig. 10(a).

AR was assigned initially, request #2 will be accommodatetthis

The first phase in this iteration is to build a set of accomniada

regions for every step in the graph. Figure 10(b) shows the &R

the steps in Fig. 10(a).

The second phase, i.e., the initialization phase involtesting
through the requests and assigning ARs to them. The ARsw&sbig
to individual requests during the second phase are showhein t
second column of Table 2. Request #0 can thké7 seconds to
finish within ARs 0, 1 and 3. However, it will be assigned AR-
0 because the bandwidth of AR-0 is closest to the maximu of
Gb/s bandwidth that the request can use. Similarly, requst#2,
and #3 will be assigned ARs 0, 1, and 0 respectively.

AR with starting time of 2, ending time of 4, and bandwidth of 8
Gbl/s. At this point, the boundaries of the overlapping AR na
adjusted. Thatis, the end time of AR-0 will be updated to 2, the
start time of AR-2 will be updated to 4. As there is no otheuesj

to which AR-0 was assigned, the RRA algorithm will move onto
AR-3 that has the next highest bandwidth. However, AR-3 ts no
assigned to any request. So, the RRA will move over to the next
AR, i.e., AR-0. Now, there are three requests to which AR-8 wa
assigned. The RRA algorithm will iterate over these requiesthe
increasing order of their earliest start time possible.t Tt will

first check request #3, which will be accommodated with $teue

of 0, end time of 2, and allotted bandwidth of 6 Gb/s. Sincestig
time of AR-O was updated to 2, the remaining two requestsa@ann
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Figure 11: Updated steps and regions after the first iteratia.
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Figure 12: Final solution for Fig. 10(a) and Table 1.

be accommodated within this AR. The RRA will next move over
to the last region, i.e., AR-2. As this AR was not assignednyp a
request, the first iteration is completed.

After the first iteration, there are still two requests remiag that
were not accommodated. So, the RRA will update the bandwidth
availability graph taking into consideration the two accoouated
requests. The updated bandwidth availability graph is shiow
Fig. 11(a), and the corresponding ARs are shown in Fig. 11(b)
Following the same approach as the first iteration, the RRIA wi
accommodate request #1 in AR-3 during this iteration. Intlttel
iteration, the RRA algorithm will finally accommodate requ#0.

The final accommodated requests are shown in Fig. 12.

4.4 Complexity of the RRA Algorithm

In this section, we will show that the RRA algorithm develdpe
this paper has polynomial time complexity. We denote thelmm
of requests that need to be accommodated asnd the number
of steps in the initial bandwidth availability graph ¢. Every
iteration in RRA runs in three phase. We will analyze thesaspb
one by one.

Phase I. For the first phase, the accommodating regions can be

identified by using an algorithm [7] that runs in linear timétw
respect to the number of steps in the bandwidth availalgliaph.

However, due to the accommodation of requests, the number of
steps in the graph can increase with every subsequentidrerdm

the worst case, every accommodated request can increasenhe

ber of steps by two. As a result, the running time of the firgtggh

in worst case can b@(N + M).

Phase Il.  For the second phase, the RRA algorithm identifies
the best region corresponding to every request. The nunilver o
quests can b@(V), and the number of regions in worst case can be
O(N + M) (as calculated for the first phase). Therefore, the worst
case running time of this phase comes out teXé&v - (N + M)).

Phase Ill.  For the third phase, the RRA algorithm iterates over
all ARs, i.e.,O(N + M) ARs in worst case. For every AR, it
checks for the feasibility of accommodatiay V) requests within
that AR. As a result, the running time of the third phas@{$N +

M) - N).

After the third phase, the RRA algorithm constructs a newdban
width availability graph using the C-BAG algorithm. In theorgt
case, the number of steps in any bandwidth availability lyzgn

be O(M + N). The number of accommodated requests can be
O(n). As aresult, the cost of sorting all valuesSat is O((M +

N) -log(M + N)). The bandwidth for the individual steps in the
new BAG can be calculated in one pass over the sorted values in
Set, i.e., inO(M + N) time. As a result, the overall running time

of C-BAG isO((M + N)log(M + N)).

The RRA algorithm stops if an iteration cannot accommodate a
reservation request. This means that at least one requsstom-
modated during every iteration of the RRA algorithm. As autes
the number of iterations are limited @(N). This gives us the fi-
nal runtime complexity of the RRA algorithm &N - (N + M +
(N-(N+ M)+ (N+ M) -N)+ (N+ M) log(N+ M)),
which can be reduced ©(N® + N2M).

5. NUMERICAL RESULTS

In this section, we present simulation results to show tfieiefhcy
of our RRA algorithm.

5.1 Operation of RRA

To begin with, we construct a schedule of requests using & R
algorithm on a sample of randomly generated reservationesq
and bandwidth availability graph.

Input. Table 3 shows details of the 30 steps in the bandwidth
availability graph. Column 1 of Table 3 shows the step number
column 2 shows the start time of the step, column 3 shows ttie en
time of the step, and the last column shows the amount of band-
width available in the step. Table 4 shows a set of 15 requlests
needs to be accommodated inside the bandwidth availabiyh

of Table 3. The first column of Table 4 shows the request number
Column 2 shows the time in seconds before which data trafafer
this request cannot start. Column 3 shows the time limit bictwh
the data transfer for this request should finish. Column 4aing

the maximum bandwidth that this request can use and thedast ¢
umn shows the amount of data that needs to be transferredigor t
request. The final row of Table 3 shows the total amount of data
that needs to be transferred for all the requestsl&89.39 Gbh.

Output.  After providing the steps and requests as an input to
the RRA algorithm, the schedule of the accommodated resjigest



Table 3: A bandwidth availability graph.

Step #| Start Time| End Time | Available
Bandwidth

(secs) (secs) (Gb)
0 0 29 8.98
1 29 181 9.75
2 181 305 6.28
3 305 309 8.39
4 309 394 2.30
5 394 490 9.81
6 490 592 8.04
7 592 663 3.99
8 663 691 4.07
9 691 815 4.27
10 815 907 7.69
11 907 1106 3.59
12 1106 1211 8.50
13 1211 1411 3.01
14 1411 1566 6.01
15 1566 1577 8.43
16 1577 1746 9.47
17 1746 1875 9.15
18 1875 1944 9.48
19 1944 2028 6.53
20 2028 2059 2.38
21 2059 2084 5.42
22 2084 2251 6.50
23 2251 2293 491
24 2293 2351 8.49
25 2351 2530 4.54
26 2530 2606 6.79
27 2606 2626 9.74
28 2626 2728 3.21
29 2728 2842 9.22

Table 4: A set of requests.

Request#| Earliest Latest Maximum Data
Start Time | End Time | Bandwidth
(secs) (secs) (Gbis) (Gb)

0 364.31 1917.31 2.20 1139.13
1 1028.44 1099.47 5.15 121.84
2 988.20 1823.2 3.22 896.82
3 1707.58 1869.64 8.54 461.26
4 988.64 1078.64 6.91 207.31
5 1156.31 2263.43 8.15 3007.78
6 714.70 1612.70 7.70 2304.95
7 1288.25 1570.84 5.73 539.72
8 1871.83 2719.83 5.47 1545.57
9 1811.35 1926.49 5.64 216.59
10 2657.56 2720.56 5.72 120.09
11 2797.77 2841.03 8.79 126.72
12 2651.57 2681.57 7.30 72.98
13 2363.70 2585.31 4.00 295.43
14 2464.11 2549.11 9.64 273.20

Total Data 11329.39

shown in Table 5. Column 1 of Table 5 shows the request num-
ber. Columns 2 show the actual start time when this requdbt wi
start transmitting the data. Column 3 shows the time when the
data transmission for this request will finish. Column 4 shidlae
amount of bandwidth that will be reserved for this requesd, the

last column shows the difference between columns 3 and. 2tHee
total time for which this request will transmit data. We cae shat

requests #5 and #6 were not accommodated in the final schedule

As a result, these requests are considered as unsatisfie¢awe
also see that requests #2 and #7 have overlapping schedeles,

Table 5: Schedule for the requests.

Request# Actual Actual Alloted Time Taken
Start Time | End Time | Bandwidth

(secs) (secs) (Gh/s) (secs)
0 364.31 881.97 2.20 517.66
1 1046.33 1080.24 3.59 33.91
2 1411.00 1689.33 3.22 278.33
3 1707.58 1761.60 8.54 54.02
4 988.64 1046.33 3.59 57.69
5 N/A N/A N/A N/A
6 N/A N/A N/A N/A
7 1288.25 1482.13 2.78 193.88
8 2059.00 2399.13 4.54 340.13
9 1811.35 1849.73 5.64 38.38
10 2674.28 2711.65 3.21 37.37
11 2797.77 2812.19 8.79 14.42
12 2651.57 2674.28 3.21 22.71
13 2399.13 2473.00 4.00 73.87
14 2473.00 2533.12 4.54 60.12

Total Time 1722.49

they will be active at the same time for some duration. Thertag
of Table 5 shows the total time needed to complete the datsfea
for all the requests akr22.49 secs..

5.2 Comparison with other heuristics

We next consider a network setup where the bandwidth aviilab
ity of the network, i.e., the height each step, and the domadif
each step between two end sites vary randomly. The heigit var
between zero and 10 Gb/s, and the duration vary between mdro a
100 seconds. Each reservation request is given a random value fo
the earliest start time, the completion deadline, and theimman
usable bandwidth (which can take on a value between zero@nd 1
Gbh/s). The earliest start times and the completion deaslliare
restricted to the times for which bandwidth availabilitykisown.
Furthermore, for every request, the amount of data thatsaed
be transferred is limited by some fraction of a so-catek-data-
value. This max-data-value for a request is the amount of data that
can be feasibly transferred between the earliest start dingethe
completion deadline given the maximum usable bandwidtltfer
request.

Given the procedure to construct steps and requests, wgdinst-

ate a pair of 300 random steps and 150 random requests thht nee
to be accommodated within these steps. These serve as thedanp
the RRA algorithm. The results of RRA for this pair of stepslan
requests serve ame data point for the results. We then continue
to generate random pairs of steps and requests, and cogeémde
erating schedules using the RRA algorithm. All these sulseq
schedules gives us more data points for the results.

As a comparison, we also consider the schedules constrirotad
following two seemingly efficient heuristics.

First come first serve (FCFS). In this heuristic, the requests are
considered for reservation within the bandwidth avaiigbiraph

in the order in which requests are generated. Each requast is
commodated in the AR where it can be completed in the shortest
amount of time.

Largest bandwidth first (LBF). In this heuristic, the requests are
considered for reservation within the bandwidth avaiigbiraph
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is approximately same. Under RRA, the data transferrditess

in the decreasing order of maximum bandwidth value that ¢he r than that under LBF, angf% less than that under FCFS.

quests can use. A request under consideration is accomeabidat
the AR where it can be completed in the shortest amount of. time
It may seem that accommodating requests that can use tlestarg
bandwidth may reduce the total data transfer time for theraec
modated requests. However, as the results will show, thistithe
case.

Next, one may ask that if all the schemes were able to transfer
similar amounts of data, then what is the advantage of RR4? Fi
ure 15(a) shows that the amount of time taken to transferdata
under RRA is significantly lower than total time under theesth
two schemes. Both FCFS and LBF takd$% more time than the
time taken under RRA. Furthermore, Fig. 15(b) shows thatthe
fective bandwidth utilization (the ratio of data transétrand the
time taken to transfer the data) under RRA is largest amdribeal
three schemes.

Figure 13 shows the comparison of the number of accommodated
requests under RRA, FCFS, and LBF. X-axis shows the datagoin
and Y-axis show the cumulative number of requests that were a
commodated under a particular scheme upto every data pgomt.

an average, the number of requests that were accommodated un
RRA are75% higher than the LBF scheme, ad% higher than

the FCFS scheme.

To alleviate a practical concern, we calculated the runming
used by the RRA algorithm for the complete simulation o2&
GHz Intel Core i5. The time comes out out to be just un@lar
milisecs, which is orders of magnitude smaller than thegmithe

Intuitively, one may think that the RRA algorithm may havesén data transfer time due to the RRA algorithm (see Fig. 15(a)).

the requests that have small amount of data to transfeghiién-
creasing the number of accepted requests. However, FigdlMss Discussion. The results show that RRA is clearly a better algo-
that the total amount of data transferred under all the thchemes rithm than the FCFS scheme. The reason is that RRA benefits fro



the additional knowledge about the input that it gets by c@ring
multiple requests for reservation at the same time. Wheteas
FCFS algorithm blindly accommodate the requests as théyearr
without taking into consideration any other requests.

The LBF scheme, like RRA, also have the additional knowledge
about the input. However, while accommodating requestd; LB
still accommodate requests one by one in isolation. On therot
hand, instead of accommodating requests in isolation, tRA R
algorithm distributes the requests among accommodatigigns,
and then tries to satisfy them. This makes RRA perform muc¢h be
ter than LBF.

To summarize, our results show that the RRA algorithm can con
struct schedules that accommodate large number of regervat
quests while transferring similar amount of data compaoddBF

and FCFS schemes. Furthermore, the time taken to transfdath

is much smaller under RRA when compared with time under LBF
and FCFS schemes.

6. RELATED WORK

There has been significant amount of existing research iartgeof
network QoS. This research can be broadly divided into twmma
categories: (i) QoS architectures/routing mechanisms(iénce-
source reservation protocols. QoS architectures anchguaiecha-
nisms provides procedures to create network paths thatrcaitp

some kind of QoS between end sites. A comprehensive survey of

QoS/constraint based routing can be found in [13]. A frantéwo
for QoS-based routing can also be found in [4]. Details of @oS
chitectures such as DiffServ and IntServ architecturedegound

in [1] and [2] respectively. In next generation networks;isas Es-
Net [5] and Internet2 [9], these QoS mechanisms are implézden
by inter domain controllers, also known as IDCs. Resourserka-
tion protocols (see e.g., [14, 10]), on the other hand, develech-
anisms for applications to convey QoS requests to the ID®& T
focus of our work is not to develop another QoS mechanism. In-
stead, we assume that such a QoS mechanism already extsts wit
the IDC. Our focus is on how the applications at the end sies ¢
exploit such QoS mechanisms to their advantage. That isngiv
the QoS characteristics of the network, we develop an dlgari
to help a resource reservation protocol in constructing @mal
schedule of reservation requests.

There are some efforts that consider the possibility the¢me-
tion requests can be available in advance [8], or that trexvaton
requests can be flexible [7]. Usually, for flexible requests,ap-
plications at the end sites submit a fixed reservation redaeke
network domain controllers. The application then gets paese
from IDC on whether the request can be satisfied or not [7héf t
request cannot be satisfied, it is then modified by the apjits,
and re-submitted for reservation. It may require a few tters
before a request is modified in way that can be accepted. dturth
more, in the presence of multiple requests, existing mesiren
naively submit the reservation requests one by one, usimtlye
order of their arrival.

In contrast to such mechanisms, when multiple flexible rkeser
tion requests are available, (i) we exploit the notion ofifigity
in all known reservation requests, and (ii) we do not subsser-
vation requests one by one to the domain controller. Instead
develop and follow a completely novel approach. In our apping
applications ask the IDCs for the available resources. Timeaih
controllers in the next generation networks can providé sofor-

mation to applications on request [5, 9]. As a result, aniagpbn
can now gather the information about available resourcdstiza
details about the multiple flexible requests. Given suchrinb-
tion, we then develop an algorithm that can be used to cartsiru
schedule of reservations that the network domain contrsheuld
be able to accommodate. In contract to existing mechanisors,
approach avoids the multiple iterations where applicati@eps on
modifying and re-submitting requests to the domain colgrslin
the hope of getting accepted. Our results show the signtfipemn
formance improvements of our approach over the existingtite
and sequential approaches of request submission.

7. CONCLUSION

In this paper, we solved an important problem, called SMBac-
commodate multiple and concurrent network reservationgstp
between a pair of end-sites. Given the varying availabdftipand-
width within the network, our goal was to accommodate as many
reservation requests as possible while minimizing thel titze
needed to complete the data transfers. We proved that the’ ®VR
an NP-hard problem, and then developed a polynomial-timese

tic, called RRA, to solve the problem. The RRA algorithm tgng

on an efficient mechanism to accommodate large number of re-
quests by minimizing the bandwidth wastage. Finally, vienati-

cal results, we showed that RRA constructs schedules thatrac
modate significantly larger number of requests comparedhero
seemingly efficient, heuristics.
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