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End-to-End Network QoS via Scheduling of Flexible
Resource Reservation Requests

Sushant Sharma Dimitrios Katramatos Dantong Yu
Computational Science Center

Brookhaven National Laboratory, Upton, NY 11705.

ABSTRACT
Modern data-intensive applications move vast amounts of data be-
tween multiple locations around the world. To enable predictable
and reliable data transfer, next generation networks allowsuch ap-
plications to reserve network resources for exclusive use.In this
paper, we solve an important problem (called SMR3) to accommo-
date multiple and concurrent network reservation requestsbetween
a pair of end-sites. Given the varying availability of bandwidth
within the network, our goal is to accommodate as many reserva-
tion requests as possible while minimizing the total time needed to
complete the data transfers. We first prove that SMR3 is an NP-hard
problem. Then we solve it by developing a polynomial-time heuris-
tic, called RRA. The RRA algorithm hinges on an efficient mecha-
nism to accommodate large number of requests by minimizing the
bandwidth wastage. Finally, via numerical results, we showthat
RRA constructs schedules that accommodate significantly larger
number of requests compared to other, seemingly efficient, heuris-
tics.
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1. INTRODUCTION
Extreme scale scientific computations within collaborative environ-
ments are highly dependent on the availability of data that they need
to process. The data in such environments is usually distributed
among national and international data repositories. As a result, any
scientific data analysis requires frequent and time-sensitive trans-
fers of large volumes of data from one repository to another over
the network. This fact highlights the extreme importance ofreliable
network services. However, the default behavior of today’sbest ef-
fort networks is to treat all data flows equally. This causes the data
flows of higher priority and/or urgency to be adversely impacted
by competing flows of lower priority. In distributed data-intensive
environments, such behavior is unwarranted and can degradethe
effective “goodput” of the overall system. Furthermore, such be-
havior makes it impossible to guarantee any type of Quality of Ser-
vice (QoS) which is often required for time sensitive data transfers.

As a first step to alleviate such concerns, next generation networks
such as EsNet [5] and Internet2 [9] have dedicated large bandwidth
links between sites distributed across distant geographical regions.
These networks allow applications to reserve network resources for
the exclusive use between end sites. The ability to reserve network
resources is enabled via inter domain controllers (IDCs) ofsuch
networks. An example of IDC is the on-demand secure circuitsand
advance reservation system (OSCARS) within EsNet.

As a next step in enabling QoS guarantees, end site applications that
can intelligently reserve network resources are needed. Such appli-
cations communicate with IDCs and reserve the required resources.
The design of such applications can vary depending upon the kind
of reservation requests the IDCs can accept, and the flexibility of
the reservations needed between end sites. Terapaths [10] is one
example of such network reservation tools that can communicate
with the IDCs of EsNet and Internet2 to reserve network resources.

However, there are two major shortcoming of the existing network
reservation tools that we address in this paper. First, the inability of
existing tools to intelligently schedule reservations in the presence
of multiple/concurrent reservation requests. The currentmecha-
nism to handle multiple reservation requests is to try and reserve the
requests in the order in which they are generated. As we show in
this paper, in the presence of multiple reservation requests, we can
significantly improve the performance if we schedule the requests
intelligently. We have developed an algorithm that can construct an
efficient schedule for multiple/concurrent requests between a pair
of end sites.

Second, we address the inability of existing tools to exploit the flex-
ibility in reservation requests. In our experience of communicating
with the end users of such systems, we have determined that the
reservation requests can have some flexibility. As an example, in-
stead of requiring a fixed amount of bandwidth, a data transfer may
have an upper limit on how much bandwidth it can use. Further-
more, as opposed to having a rigid start time, it may be acceptable
as long as a data transfer gets finished before a certain deadline.
However, given the presence of such flexibilities, existingreserva-
tion tools still submit a fixed request to the IDCs. Existing tools
usually try to reserve the maximum bandwidth that the end sites
can support. The IDC of the intermediate network may not be able
to support the maximum bandwidth, but it may easily finish the
data transfer using a lower bandwidth before the deadline. As a
result, the IDC will have to reject the request to reserve themax-
imum amount of bandwidth. In the presence of limited feedback
from IDCs, the existing reservation tools then modify and resub-
mit the modified request to IDCs. It may require multiple rounds



of submissions before the request is modified in a way that is ac-
ceptable to IDC. Our work in this paper specifically address such
inefficient mechanism to reserve resources. To address suchinef-
ficiencies, we allow reservation tools/applications to askthe IDC
for the available resources. IDCs of the next generation networks
will have the ability to provide such availability to the applications
on request [11]. Once such availability information is available,
it becomes possible for reservation tools to intelligentlyschedule
the requests. The algorithm developed by us in this paper aims to
construct such intelligent schedules. As a result, the IDCscan now
accommodate all the submitted requests, and there is no needfor
modifying and re-submitting the requests one by one to IDCs.

We plan to integrate the developed algorithm into our existing net-
work reservation tool called TeraPaths [10]. Our results show that
the developed algorithm can significantly improve the overall sys-
tem performance.

In Section 2, we describe our problem in detail and the precise
objective that we want to achieve. Section 3 shows the proof of NP-
hardness for our problem. In Section 4, we provide the description
of the algorithm that we have developed, and Section 5 presents
the simulation results. Section 6 discuss some related work, and
Section 7 concludes the paper.

2. PROBLEM DESCRIPTION
In this section, we give the description of our problem usinga mo-
tivational example.

Figure 1 shows a simple scenario where the network can reserve a
bandwidth of 10 Gb/s between two end sites. However, the rateat
which the data can be read from/written to the storage deviceon
an end host is limited to 8 Gb/s. In this scenario, it is advisable to
reserve a maximum of 8 Gb/s of bandwidth along the network path.
A single reservation request between two end sites includes(i) the
maximum bandwidth that the end sites can support (e.g.,8 Gb/s in
the above example), (ii) the amount of data that needs to be trans-
ferred, and (iii) the start and end times between which the end sites
needs the data transfer to begin and finish. As an example, thetime
varying bandwidth availability of the network between the two end
sites of Fig. 1 is shown in Fig. 2. The bandwidth availabilitygraph
is a step function, with different available bandwidth between dif-
ferent time intervals (or steps). For Fig. 2, the available end-to-end
bandwidth for time interval[1 − 3] is 4 Gb/s, and for the interval
[3 − 7], the available bandwidth becomes8 Gb/s (say due to ter-
mination of some other network flows within the network). Now
assume that end site 1 wants to make two reservations betweenit-
self and end site 2. Both of these reservations can support the max-
imum bandwidth of8 Gb/s. Assume that the start and end times
for both the reservations is1 and7 secs respectively. Furthermore,
assume that both reservations need to transfer16 Gb of data. Once
a reservation is confirmed for a request, the allocated bandwidth
for that reservation remains fixed for its duration. Given the band-
width availability information, and the reservation requests, the ob-
jective is to schedule the data transfers if possible. The schedule
should be able to finish the data transfers for all reservations within
the requested time window and at the same time optimize a cer-
tain objective function. Without an objective function, there could
be multiple feasible schedules that will accommodate the requests.
Figure 3 shows two feasible schedules for the above example.We
can see that the schedule in Fig. 3(a) is optimal if we want to finish
the data transfers as early as possible, and the schedule in Fig. 3(b)
is optimal if we want to minimize the total data transfer time.

Figure 1: An example scenario.
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Figure 2: Bandwidth availability graph.
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Figure 3: Two feasible schedules.

From the above example, it is easy to see that finding a feasible and
optimal schedule becomes much more challenging if the bandwidth
availability graph contains many more variations. Furthermore, the
problem becomes even more challenging if we introduce the fol-
lowing four generalizations: (i) the requested start and end times
for different reservations can be different, (ii) the amount of data
that needs to be transferred for every reservation can also be differ-
ent, (iii) the maximum bandwidth that a particular reservation can
use may vary from one reservation to another, and (iv) there are
multiple reservation requests that need to be scheduled.

In this paper, we consider all these generalizations and solve the
scheduling problem with two goals: (i) accommodate as many reser-
vation requests as possible (all the requests in best case),and (ii)
minimize the sum of total times that is required to transfer data
for all accommodated requests. We name our problem as SMR3

(Scheduling Multiple Resource Reservation Requests).
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Figure 4: Piecewise bandwidth availability graph in simple-
SMR3.

3. PROBLEM COMPLEXITY
In this section, we prove the NP-hardness of our SMR3 problem.
We consider a known NP-hard variation of the generalized assign-
ment problem (GAP), and convert an instance of this GAP into a
special instance of our problem in polynomial time. We first de-
scribe the special instance of our SMR3 problem, which we call
simple-SMR3.

In simple-SMR3, all reservation requests have same start and end
times, same values for the maximum bandwidth that they can use,
but different amounts of data that they need to transfer. Theband-
width availability curve insimple-SMR3 is a piecewise linear func-
tion. An example of this is shown in Fig. 4. The available band-
width during all intervals is exactly the same as the maximumband-
width requested in the individual reservation requests. However,
the time duration of every interval in which the bandwidth isavail-
able can be different. We can make two important observations
from the definition ofsimple-SMR3. First, in any solution, the time
taken to complete the data transfer for a particular requestwill be
same irrespective of the interval in which it is scheduled. This is
because all intervals have the same amount of bandwidth available
for every request. As a consequence, every feasible schedule will
have the same total time taken to transfer data for all reservation
requests. Second, for thesimple-SMR3 problem, the objective of
finding a feasible schedule with minimum data transfer time is now
reduced to finding just a feasible schedule. We now have the fol-
lowing lemma.

LEMMA 1. The simple-SMR3 problem is an NP-hard problem.

PROOF. We consider the following variation of GAP that is known
to be NP-hard [3]:

Given n bins,m items, the capacity of each bin, and the size of
each item: the goal is to determine a feasible assignment of items
to bins such that the sum of the size of items in each bin does not
exceed the bin’s capacity.

An instance of the above problem can be converted into thesimple-
SMR3 problem by considering the bins as the intervals in the piece-
wise bandwidth availability graph. The capacity of each bincan be
considered as the area under each interval where the bandwidth is
available. Each item can be considered as the bandwidth reserva-
tion request, where the size of each item is equivalent to theamount
of data that needs to be transferred for that request. Finally, the
goal of finding a feasible assignment of items to bins can be con-
sidered equivalent to finding a feasible schedule of reservation re-
quests within the intervals of the piecewise bandwidth availability
graph.
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Figure 5: An example showing accommodating regions.

Based on lemma 1, we now have the following theorem.

THEOREM 1. The SMR3 problem is an NP-hard problem.

PROOF. The SMR3 problem is a generalized version of thesimple-
SMR3 problem. As thesimple-SMR3 problem is shown to be NP-
hard, SMR3 is also NP-hard.

Given that the SMR3 problem is an NP-hard problem, it is not pos-
sible to develop a polynomial time solution procedure to solve it
optimally. As a result, we develop an efficient algorithm with poly-
nomial running time that can construct effective solutions.

4. RRA: THE RESOURCE RESERVATION
ALGORITHM

In this section, we develop an algorithm, called RRA (resource
reservation algorithm) to solve our SMR3 problem. We begin by
providing an overview of the RRA in Section 4.1, which is fol-
lowed by the detailed description in Section 4.2. In Section4.3,
we illustrate the working of the RRA algorithm via an example.
In Section 4.4, we show the polynomial running time of the RRA
algorithm.

4.1 Algorithm Overview
The RRA algorithm runs in iterations. During every iteration, RRA
will try to reserve resources for some of those requests thatcan
have a large effect on the objective function, i.e., the requests that
can utilize the largest amount of bandwidth. At the end of an iter-
ation, there may be few reservation requests that were not accom-
modated in the bandwidth availability graph. The RRA algorithm
then updates the bandwidth availability graph to reflect thecurrent
reservation of requests that were accommodated. This is followed
by more iterations in which RRA tries to reserve resources for the
remaining requests (if any) in the updated bandwidth availability
graph. An obvious question here is: how subsequent iterations can
accommodate the requests if the current one cannot? The answer
will become clear during the detailed description of the algorithm.
If, during some iteration,none of the remaining requests could be
accommodated, then the RRA algorithm will stop. The remain-
ing requests that were not accommodated cannot be satisfied.The
RRA algorithm runs in polynomial time and can construct effective
solutions.

4.2 Detailed Description
In this section, we will provide detailed description of theRRA
algorithm. Every iteration within RRA consists of three phases.
We will describe these phases here.
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Figure 7: An example illustrating the need for feasibility check.

4.2.1 Phase I: Identify Accommodating Regions
The RRA algorithm begins an iteration by identifying one accom-
modating region (AR) for every step in the bandwidth availability
graph. For a particular step size, RRA identifies the correspond-
ing AR as a rectangle within the bandwidth availability graph that
(i) contains the step, (ii) has a height that corresponds to the max-
imum available bandwidth of that step, and (iii) has the longest
length possible while maintaining the bandwidth. These ARscan
be efficiently constructed using an algorithm proposed in [7]. The
current pending reservation requests needs to be accommodated in
these ARs. Note that an AR for a step may span multiple other
steps, and a single AR may accommodate multiple reservationre-
quests. As an example, Fig 5 shows the ARs for all three steps.The
region AR-1 for step-1 spans from time[0–7], region AR-2 spans
from time [2–5], and region AR-3 spans from time[2–7]. Regions
AR-1 (with bandwidth4 Gb/s) and AR-3 (with bandwidth6 Gb/s)
are spanning multiple time steps, and their height is correspond-
ing to the bandwidth of their respective time steps. Region AR-2
(with bandwidth8 Gb/s) spans only step-2 because the bandwidth
of adjacent steps 1 and 2 is less than that of step-2.

4.2.2 Phase II: Initial Assignment
After identifying all ARs, the next step in the RRA algorithmis to
assign individual requests to these ARs. In order to accomplish this,
for every requestρi, RRA identifies the AR that can finish the re-
quest in the shortest amount of time (while satisfying the start and
end time requirements of the request). In case there are multiple
ARs that can finish the request in shortest time, RRA will assign
the AR with smallest bandwidth to requestρi. This will ensure
that the ARs with excessive bandwidth availability can be used by
requests that can utilize such large bandwidth. Figure 6 shows an
example where Request-1 with18 Gb of data can utilize a maxi-
mum bandwidth of6 Gb/s with earliest start time and completion
deadline as 0 and 7 respectively. It also shows all three ARs that
fall within the start and end time requirements of the request. Out
of the three ARs, only two, i.e., AR-2 with8 Gb/s and AR-3 with6
Gb/s, can satisfy Request-1 in3 secs. AR-1 with4 Gb/s will require
4.5 secs to satisfy the request. In this case, the RRA algorithm will
assign AR-3, i.e., the AR with minimum bandwidth among the two
best ARs, to Request-1. If a certain request cannot be accommo-
dated inside any AR, then that request can not be satisfied andwill
be removed from further consideration.

A situation is possible where none of the available ARs is assigned
to more than one reservation requests, and none of the requests
gets assigned to overlapping ARs. In such a situation, the current
initial assignment is considered as a feasible assignment.However,
it is also possible that some ARs (overlapping/non-overlapping) get
assigned to multiple reservation requests (e.g., see Fig. 7). In such
a scenario, the RRA algorithm needs to make sure that the current
assignments are indeed feasible, i.e., whether all/few of the requests
can be accommodated inside the assigned RAs.

4.2.3 Phase III: Ensuring Feasibility
This is the most important phase of the RRA algorithm. The goal of
this phase is to determine whether the assigned ARs can accommo-
date the requests to which they were assigned. Furthermore,this
phase also calculates the actual bandwidth and the start andend
times that will be assigned to each request that can be accommo-
dated. For this phase, RRA needs to maintain the following infor-
mation for every identified AR: (i) the start time of the AR, (ii) the
end time of the AR, (iii) a list of other overlapping ARs, and (iv) all
the requests to which it was assigned. The RRA algorithm willthen
iterate through the ARs one by one. It is likely that the ARs with
large bandwidth can complete the requests in less amount of time.
As a result, for the benefit of the objective, the RRA algorithm will
iterate through the ARs in a decreasing order of bandwidth values
(ties are broken randomly). For every AR considered, the goal is to
see if it can accommodate all the requests to which it was assigned.
If not, then the goal should be to accommodate as many as possi-
ble. Furthermore, once a request is accommodated inside an AR,
the size of other overlapping ARs should be adjusted as follows.
If the accommodated request splits some overlapping AR intoleft
and right portions, then the larger portion will be retained, and the
smaller portion will be removed from that AR. Note that, if needed,
the available bandwidth in the removed portion can be taken into
consideration during the next iteration of the RRA algorithm.

To accommodate the requests within an AR, the RRA algorithm
follows a greedy approach. It will iterate over the requestsin in-
creasing order of starting times, breaking ties randomly. The rea-
son to iterate in increasing order of starting times is to reduce the
amount of time gaps between accommodated requests within the
AR.



To understand the processing of each request within the iteration,
we use the following notation. We denoteR = {ρ0, ρ1, · · · , ρN -1}
as the set of allN requests. For requestρi, denote the maximum
bandwidth that can be used asB(ρi) b/s, the requested start time
before which the data transfer should not start asS(ρi), the re-
quested end time by which the data transfer should complete as
C(ρi), and the amount of data that need to be transferred asD(ρi)
bits. For requestρi, denote the actual start time of data transfer in
a solution ass(ρi), the actual bandwidth that was reserved forρi
asb(ρi) b/s. The actual completion time forρi can be calculated
asc(ρi) = s(ρi) +

D(ρi)
b(ρi)

. For each requestρi under the greedy
approach, the RRA algorithm will do the following:

• The starting time of requestρi (i.e.,s(ρi)) will be calculated
as the maximum ofS(ρi) (earliest possible start time) and
the starting time of the AR. If this value comes out to be
larger thanC(ρi) (the completion deadline for the request),
then this request cannot be accommodated during this itera-
tion, and will be considered in the later iterations.

• The bandwidth allotted to requestρi will be calculated as the
minimum ofB(ρi) (maximum possible value that theρi can
support) and the maximum bandwidth available in the AR.

• Using the above values of start time and allotted bandwidth,
the completion time of the requestρi will be calculated. If
the value of completion time exceeds the end time of the AR,
then the requestρi cannot be accommodated during this iter-
ation of the RRA algorithm.

• Finally, if ρi can be accommodated within the AR, then the
start time of AR will be updated to the completion time of
ρi.

Once the algorithm has finished iterating over the requests for a par-
ticular AR, it is possible that there are few requests remaining that
still need to be accommodated. There requests will be considered
during the next iteration of the RRA algorithm. Within this iter-
ation, the RRA algorithm will now move on to the AR with next
highest bandwidth, and will repeat the greedy approach to fitthe
requests to which this AR was assigned.

4.2.4 Preparing for the next Iteration
An iteration of RRA ends when the RRA algorithm finish iterating
through all ARs. At this time, there may be some remaining reser-
vation requests that RRA was not able to accommodate. The RRA
algorithm will now update the bandwidth availability graphwhile
taking into consideration the current accommodated requests. We
have developed an efficient algorithm, called C-BAG (Construct-
ing an Updated Bandwidth Availability Graph), that constructs an
updated bandwidth availability graph given the requests that are ac-
commodated within the current graph. The details of the C-BAG
algorithm are as follows:

The C-BAG Algorithm. To begin with, the C-BAG algorithm
will calculate the number of steps that will be there in the updated
BAG. To achieve this objective, C-BAG uses an efficient data struc-
ture calledSet. TheSet data structure is a collection of unique
values. The C-BAG algorithm first inserts the start and end times
of all steps in the current BAG intoSet. This is followed by the
insertion of all actual start and end times of the accommodated re-
quests within the current BAG intoSet. With an efficient hash

RRA_Algorithm( Requests Reqs, Steps S) /*S is
the bandwidth availability graph */

1. Use [7] to create a setR of accommodating regions
from S

2. For every requestq ∈ Reqs
3. Identify ARs that can satisfyq in smallest amount

of time
4. Among the identified ARs, assign the one with

minimum bandwidth toq
5. If there is no identified AR forq, thenq cannot be

satisfied and is removed fromReqs
6. Consider each ARr ∈ R in decreasing order of

bandwidth values
7. Consider all requestsq ∈ Reqs to which regionr

was assigned in the increasing order of earliest
possible start times

8. If q cannot fit in regionr, thenq cannot be
satisfied in this iteration

9. If q can fit inside regionr, then
10. Mark the actual start time ofq as the current

start time of regionr
11. Assign the bandwidth ofr as the actual

bandwidth allotted toq
12. Using the allotted bandwidth and start time,

calculate the finish time ofq
13. Update the start time of regionr to the finish

time of q
14. For all overlapping regionŝr partitioned byq
15. Remove the smaller portion ofr̂.
16. If the number of requests assigned in the previous step is

not zero
17. Use the C-BAG algorithm to update the bandwidth

availability graphS while considering all the
accommodated requests inReqs

18. Remove the accommodated requests fromReqs
19. Goto step 1
20. The requests that were not accommodated cannot be

satisfied

Figure 8: Pseudocode of the RRA algorithm.

function, the insertion can be made a constant time operation. It
can be verified that the size ofSet minus1 will be the number of
steps in the new updated BAG. The values inSet and the number
of steps in the new BAG are needed for the next operation in the
C-BAG algorithm.

After calculating the number of steps in the new BAG, the C-BAG
algorithm iterates overSet in increasing order of stored values.
Every encountered value inSetmarks the beginning of a new step,
and ending of the previous step in the updated BAG. To obtain the
available bandwidth in these steps for the new BAG, the C-BAG
algorithm maintains and updates two variables: (i) the amount of
bandwidth that is currently in use by the accommodated requests
(denoted byBW-USE), and (ii) the bandwidth of the step that is
active at this time in the old BAG (denoted byBW-STEP). For
every step in the new BAG (i.e., at every encountered time value
in theSet), the amount of bandwidth for this new step is equal to
BW-STEP minusBW-USE.

After constructing a new bandwidth availability graph, theRRA al-
gorithm will run through the three described phases again. Note
that in this new iteration, an AR that gets assigned to a previously
non accommodated request will be different from ARs in the pre-
vious iteration. This is the reason that a request that may not be
accommodated inside an AR during one iteration may get accom-
modated during some subsequent iteration.



C-BAG_Algorithm( Requests Reqs, Steps S)

1. Create a newSet
2. Add the actual start and actual end time of the satisfied

requests to theSet
3. Add the start and end times of all the steps inS to

theSet
4. The number of steps in new bandwidth availability graph

will be sizeof(Set) -1
5. Sort the values within theSet in increasing order
6. Initializei = 0
7. For each time valuet in the sortedSet
8. if i < sizeof(Set)
9. Mark t as the beginning of thei-th step in the

new bandwidth availability grapĥS
10. If(i > 0)
11. Markt as the end time of the(i− 1)-th step
12. If t is the start time of some step ins ∈ S
13. Denote the current available bandwidth asB
14. For all the accommodated requests that start att
15. Denotesum1 as the sum of used bandwidth

values in these requests
16. For all the accommodated requests that end att
17. Denotesum2 as the sum of used bandwidth

values in these requests
18. DenoteU = sum1 − sum2 as the bandwidth in use
19. if i < sizeof(Set)
20. Mark the bandwidth ofi-th step inŜ asB − U
21. Incrementi by one
22. UpdateS = Ŝ

Figure 9: Pseudocode of the C-BAG algorithm.

The RRA algorithm stops if it cannot accommodate any requests
during an iteration, or if there are no more remaining requests that
need to be accommodated. Figure 8 shows the pseudo code of the
RRA algorithm, and Fig. 9 shows the pseudo code of the C-BAG
algorithm.

4.3 An Example
In this section, we will walk through an example to illustrate the
workings of the RRA algorithm. Figure 10(a) shows an initial
bandwidth availability graph with four steps. Step-0 spansover
the interval [0-2] with6 Gb/s bandwidth, step-1 spans [2-4] with
10 Gb/s bandwidth, step-2 spans [4-5] with4 Gb/s bandwidth, and
step-3 spans [5-7] with8 Gb/s bandwidth. Table 1 shows the reser-
vation requests that are to be accommodated in the bandwidthavail-
ability graph of Fig. 10(a). The units used in this example are for
the illustration purpose only. As a example, the time duration can
be in minutes or hours instead of seconds that we have used here.
The first iteration of the RRA algorithm will operate on the initial
bandwidth availability graph of Fig. 10(a).

The first phase in this iteration is to build a set of accommodating
regions for every step in the graph. Figure 10(b) shows the ARs for
the steps in Fig. 10(a).

The second phase, i.e., the initialization phase involves iterating
through the requests and assigning ARs to them. The ARs assigned
to individual requests during the second phase are shown in the
second column of Table 2. Request #0 can take1.667 seconds to
finish within ARs 0, 1 and 3. However, it will be assigned AR-
0 because the bandwidth of AR-0 is closest to the maximum of6
Gb/s bandwidth that the request can use. Similarly, requests #1, #2,
and #3 will be assigned ARs 0, 1, and 0 respectively.
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Figure 10: An example.

Table 1: A set of requests.
# Data Max BW Earliest Start Completion Deadline

(Gb) (Gb/s) (secs) (secs)
0 10 6 2 7
1 8 6 1 7
2 16 8 2 5
3 12 6 0 7

Table 2: ARs during Iteration1.
# Initial AR Accommodated
0 0 NO
1 0 NO
2 1 YES
3 0 YES

For the third phase of this iteration, the RRA algorithm willfirst
select the AR with the largest available bandwidth, which isAR-1
(see Fig. 10(b)). As there is only one request (i.e., #2) to which this
AR was assigned initially, request #2 will be accommodated in this
AR with starting time of 2, ending time of 4, and bandwidth of 8
Gb/s. At this point, the boundaries of the overlapping ARs will be
adjusted. That is, the end time of AR-0 will be updated to 2, and the
start time of AR-2 will be updated to 4. As there is no other request
to which AR-0 was assigned, the RRA algorithm will move onto
AR-3 that has the next highest bandwidth. However, AR-3 is not
assigned to any request. So, the RRA will move over to the next
AR, i.e., AR-0. Now, there are three requests to which AR-0 was
assigned. The RRA algorithm will iterate over these requests in the
increasing order of their earliest start time possible. That is, it will
first check request #3, which will be accommodated with starttime
of 0, end time of 2, and allotted bandwidth of 6 Gb/s. Since theend
time of AR-0 was updated to 2, the remaining two requests cannot
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Figure 11: Updated steps and regions after the first iteration.
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Figure 12: Final solution for Fig. 10(a) and Table 1.

be accommodated within this AR. The RRA will next move over
to the last region, i.e., AR-2. As this AR was not assigned to any
request, the first iteration is completed.

After the first iteration, there are still two requests remaining that
were not accommodated. So, the RRA will update the bandwidth
availability graph taking into consideration the two accommodated
requests. The updated bandwidth availability graph is shown in
Fig. 11(a), and the corresponding ARs are shown in Fig. 11(b).
Following the same approach as the first iteration, the RRA will
accommodate request #1 in AR-3 during this iteration. In thethird
iteration, the RRA algorithm will finally accommodate request #0.
The final accommodated requests are shown in Fig. 12.

4.4 Complexity of the RRA Algorithm
In this section, we will show that the RRA algorithm developed in
this paper has polynomial time complexity. We denote the number
of requests that need to be accommodated asN , and the number
of steps in the initial bandwidth availability graph asM . Every
iteration in RRA runs in three phase. We will analyze these phases
one by one.

Phase I. For the first phase, the accommodating regions can be
identified by using an algorithm [7] that runs in linear time with
respect to the number of steps in the bandwidth availabilitygraph.

However, due to the accommodation of requests, the number of
steps in the graph can increase with every subsequent iteration. In
the worst case, every accommodated request can increase thenum-
ber of steps by two. As a result, the running time of the first phase
in worst case can beO(N +M).

Phase II. For the second phase, the RRA algorithm identifies
the best region corresponding to every request. The number of re-
quests can beO(N), and the number of regions in worst case can be
O(N +M) (as calculated for the first phase). Therefore, the worst
case running time of this phase comes out to beO(N · (N +M)).

Phase III. For the third phase, the RRA algorithm iterates over
all ARs, i.e.,O(N + M) ARs in worst case. For every AR, it
checks for the feasibility of accommodatingO(N) requests within
that AR. As a result, the running time of the third phase isO((N +
M) ·N).

After the third phase, the RRA algorithm constructs a new band-
width availability graph using the C-BAG algorithm. In the worst
case, the number of steps in any bandwidth availability graph can
be O(M + N). The number of accommodated requests can be
O(n). As a result, the cost of sorting all values inSet isO((M +
N) · log(M +N)). The bandwidth for the individual steps in the
new BAG can be calculated in one pass over the sorted values in
Set, i.e., inO(M +N) time. As a result, the overall running time
of C-BAG isO((M +N) log(M +N)).

The RRA algorithm stops if an iteration cannot accommodate any
reservation request. This means that at least one request isaccom-
modated during every iteration of the RRA algorithm. As a result,
the number of iterations are limited toO(N). This gives us the fi-
nal runtime complexity of the RRA algorithm asO(N · (N +M +
(N · (N +M)) + ((N +M) ·N) + (N +M) · log(N +M)),
which can be reduced toO(N3 +N2M).

5. NUMERICAL RESULTS
In this section, we present simulation results to show the efficiency
of our RRA algorithm.

5.1 Operation of RRA
To begin with, we construct a schedule of requests using the RRA
algorithm on a sample of randomly generated reservation requests
and bandwidth availability graph.

Input. Table 3 shows details of the 30 steps in the bandwidth
availability graph. Column 1 of Table 3 shows the step number,
column 2 shows the start time of the step, column 3 shows the end
time of the step, and the last column shows the amount of band-
width available in the step. Table 4 shows a set of 15 requeststhat
needs to be accommodated inside the bandwidth availabilitygraph
of Table 3. The first column of Table 4 shows the request number.
Column 2 shows the time in seconds before which data transferfor
this request cannot start. Column 3 shows the time limit by which
the data transfer for this request should finish. Column 4 contains
the maximum bandwidth that this request can use and the last col-
umn shows the amount of data that needs to be transferred for this
request. The final row of Table 3 shows the total amount of data
that needs to be transferred for all the requests as11329.39 Gb.

Output. After providing the steps and requests as an input to
the RRA algorithm, the schedule of the accommodated requests is



Table 3: A bandwidth availability graph.
Step # Start Time End Time Available

Bandwidth
(secs) (secs) (Gb)

0 0 29 8.98
1 29 181 9.75
2 181 305 6.28
3 305 309 8.39
4 309 394 2.30
5 394 490 9.81
6 490 592 8.04
7 592 663 3.99
8 663 691 4.07
9 691 815 4.27
10 815 907 7.69
11 907 1106 3.59
12 1106 1211 8.50
13 1211 1411 3.01
14 1411 1566 6.01
15 1566 1577 8.43
16 1577 1746 9.47
17 1746 1875 9.15
18 1875 1944 9.48
19 1944 2028 6.53
20 2028 2059 2.38
21 2059 2084 5.42
22 2084 2251 6.50
23 2251 2293 4.91
24 2293 2351 8.49
25 2351 2530 4.54
26 2530 2606 6.79
27 2606 2626 9.74
28 2626 2728 3.21
29 2728 2842 9.22

Table 4: A set of requests.
Request# Earliest Latest Maximum Data

Start Time End Time Bandwidth
(secs) (secs) (Gb/s) (Gb)

0 364.31 1917.31 2.20 1139.13
1 1028.44 1099.47 5.15 121.84
2 988.20 1823.2 3.22 896.82
3 1707.58 1869.64 8.54 461.26
4 988.64 1078.64 6.91 207.31
5 1156.31 2263.43 8.15 3007.78
6 714.70 1612.70 7.70 2304.95
7 1288.25 1570.84 5.73 539.72
8 1871.83 2719.83 5.47 1545.57
9 1811.35 1926.49 5.64 216.59
10 2657.56 2720.56 5.72 120.09
11 2797.77 2841.03 8.79 126.72
12 2651.57 2681.57 7.30 72.98
13 2363.70 2585.31 4.00 295.43
14 2464.11 2549.11 9.64 273.20

Total Data 11329.39

shown in Table 5. Column 1 of Table 5 shows the request num-
ber. Columns 2 show the actual start time when this request will
start transmitting the data. Column 3 shows the time when the
data transmission for this request will finish. Column 4 shows the
amount of bandwidth that will be reserved for this request, and the
last column shows the difference between columns 3 and 2, i.e., the
total time for which this request will transmit data. We can see that
requests #5 and #6 were not accommodated in the final schedule.
As a result, these requests are considered as unsatisfied. Wecan
also see that requests #2 and #7 have overlapping schedules,i.e.,

Table 5: Schedule for the requests.
Request# Actual Actual Alloted Time Taken

Start Time End Time Bandwidth
(secs) (secs) (Gb/s) (secs)

0 364.31 881.97 2.20 517.66
1 1046.33 1080.24 3.59 33.91
2 1411.00 1689.33 3.22 278.33
3 1707.58 1761.60 8.54 54.02
4 988.64 1046.33 3.59 57.69
5 N/A N/A N/A N/A
6 N/A N/A N/A N/A
7 1288.25 1482.13 2.78 193.88
8 2059.00 2399.13 4.54 340.13
9 1811.35 1849.73 5.64 38.38
10 2674.28 2711.65 3.21 37.37
11 2797.77 2812.19 8.79 14.42
12 2651.57 2674.28 3.21 22.71
13 2399.13 2473.00 4.00 73.87
14 2473.00 2533.12 4.54 60.12

Total Time 1722.49

they will be active at the same time for some duration. The last row
of Table 5 shows the total time needed to complete the data transfer
for all the requests as1722.49 secs..

5.2 Comparison with other heuristics
We next consider a network setup where the bandwidth availabil-
ity of the network, i.e., the height each step, and the duration of
each step between two end sites vary randomly. The height vary
between zero and 10 Gb/s, and the duration vary between zero and
100 seconds. Each reservation request is given a random value for
the earliest start time, the completion deadline, and the maximum
usable bandwidth (which can take on a value between zero and 10
Gb/s). The earliest start times and the completion deadlines are
restricted to the times for which bandwidth availability isknown.
Furthermore, for every request, the amount of data that needs to
be transferred is limited by some fraction of a so-calledmax-data-
value. This max-data-value for a request is the amount of data that
can be feasibly transferred between the earliest start timeand the
completion deadline given the maximum usable bandwidth forthe
request.

Given the procedure to construct steps and requests, we firstgener-
ate a pair of 300 random steps and 150 random requests that need
to be accommodated within these steps. These serve as the input to
the RRA algorithm. The results of RRA for this pair of steps and
requests serve asone data point for the results. We then continue
to generate random pairs of steps and requests, and continuegen-
erating schedules using the RRA algorithm. All these subsequent
schedules gives us more data points for the results.

As a comparison, we also consider the schedules constructedfrom
following two seemingly efficient heuristics.

First come first serve (FCFS). In this heuristic, the requests are
considered for reservation within the bandwidth availability graph
in the order in which requests are generated. Each request isac-
commodated in the AR where it can be completed in the shortest
amount of time.

Largest bandwidth first (LBF). In this heuristic, the requests are
considered for reservation within the bandwidth availability graph
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Figure 13: Comparison of the number of accommodated re-
quests.
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Figure 14: Comparison of total data transferred under three
schemes.

in the decreasing order of maximum bandwidth value that the re-
quests can use. A request under consideration is accommodated in
the AR where it can be completed in the shortest amount of time.
It may seem that accommodating requests that can use the largest
bandwidth may reduce the total data transfer time for the accom-
modated requests. However, as the results will show, this isnot the
case.

Figure 13 shows the comparison of the number of accommodated
requests under RRA, FCFS, and LBF. X-axis shows the data points,
and Y-axis show the cumulative number of requests that were ac-
commodated under a particular scheme upto every data point.On
an average, the number of requests that were accommodated under
RRA are75% higher than the LBF scheme, and33% higher than
the FCFS scheme.

Intuitively, one may think that the RRA algorithm may have chosen
the requests that have small amount of data to transfer, thereby in-
creasing the number of accepted requests. However, Fig. 14 shows
that the total amount of data transferred under all the threeschemes
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Figure 15: Comparison of total transfer time and effective
bandwidth under three schemes.

is approximately same. Under RRA, the data transferred is4% less
than that under LBF, and8% less than that under FCFS.

Next, one may ask that if all the schemes were able to transfer
similar amounts of data, then what is the advantage of RRA? Fig-
ure 15(a) shows that the amount of time taken to transfer total data
under RRA is significantly lower than total time under the other
two schemes. Both FCFS and LBF takes21% more time than the
time taken under RRA. Furthermore, Fig. 15(b) shows that theef-
fective bandwidth utilization (the ratio of data transferred and the
time taken to transfer the data) under RRA is largest among all the
three schemes.

To alleviate a practical concern, we calculated the runningtime
used by the RRA algorithm for the complete simulation on a2.8
GHz Intel Core i5. The time comes out out to be just under900
milisecs, which is orders of magnitude smaller than the gains in the
data transfer time due to the RRA algorithm (see Fig. 15(a)).

Discussion. The results show that RRA is clearly a better algo-
rithm than the FCFS scheme. The reason is that RRA benefits from



the additional knowledge about the input that it gets by considering
multiple requests for reservation at the same time. Whereas, the
FCFS algorithm blindly accommodate the requests as they arrive
without taking into consideration any other requests.

The LBF scheme, like RRA, also have the additional knowledge
about the input. However, while accommodating requests, LBF
still accommodate requests one by one in isolation. On the other
hand, instead of accommodating requests in isolation, the RRA
algorithm distributes the requests among accommodating regions,
and then tries to satisfy them. This makes RRA perform much bet-
ter than LBF.

To summarize, our results show that the RRA algorithm can con-
struct schedules that accommodate large number of reservation re-
quests while transferring similar amount of data compared to LBF
and FCFS schemes. Furthermore, the time taken to transfer the data
is much smaller under RRA when compared with time under LBF
and FCFS schemes.

6. RELATED WORK
There has been significant amount of existing research in thearea of
network QoS. This research can be broadly divided into two main
categories: (i) QoS architectures/routing mechanisms and(ii) re-
source reservation protocols. QoS architectures and routing mecha-
nisms provides procedures to create network paths that can provide
some kind of QoS between end sites. A comprehensive survey of
QoS/constraint based routing can be found in [13]. A framework
for QoS-based routing can also be found in [4]. Details of QoSar-
chitectures such as DiffServ and IntServ architectures canbe found
in [1] and [2] respectively. In next generation networks, such as Es-
Net [5] and Internet2 [9], these QoS mechanisms are implemented
by inter domain controllers, also known as IDCs. Resource reserva-
tion protocols (see e.g., [14, 10]), on the other hand, develop mech-
anisms for applications to convey QoS requests to the IDCs. The
focus of our work is not to develop another QoS mechanism. In-
stead, we assume that such a QoS mechanism already exists within
the IDC. Our focus is on how the applications at the end sites can
exploit such QoS mechanisms to their advantage. That is, given
the QoS characteristics of the network, we develop an algorithm
to help a resource reservation protocol in constructing an optimal
schedule of reservation requests.

There are some efforts that consider the possibility that reserva-
tion requests can be available in advance [8], or that the reservation
requests can be flexible [7]. Usually, for flexible requests,the ap-
plications at the end sites submit a fixed reservation request to the
network domain controllers. The application then gets a response
from IDC on whether the request can be satisfied or not [7]. If the
request cannot be satisfied, it is then modified by the applications,
and re-submitted for reservation. It may require a few iterations
before a request is modified in way that can be accepted. Further-
more, in the presence of multiple requests, existing mechanisms
naively submit the reservation requests one by one, usuallyin the
order of their arrival.

In contrast to such mechanisms, when multiple flexible reserva-
tion requests are available, (i) we exploit the notion of flexibility
in all known reservation requests, and (ii) we do not submit reser-
vation requests one by one to the domain controller. Instead, we
develop and follow a completely novel approach. In our approach,
applications ask the IDCs for the available resources. The domain
controllers in the next generation networks can provide such infor-

mation to applications on request [5, 9]. As a result, an application
can now gather the information about available resources and the
details about the multiple flexible requests. Given such informa-
tion, we then develop an algorithm that can be used to construct a
schedule of reservations that the network domain controller should
be able to accommodate. In contract to existing mechanisms,our
approach avoids the multiple iterations where applications keeps on
modifying and re-submitting requests to the domain controllers in
the hope of getting accepted. Our results show the significant per-
formance improvements of our approach over the existing iterative
and sequential approaches of request submission.

7. CONCLUSION
In this paper, we solved an important problem, called SMR3, to ac-
commodate multiple and concurrent network reservation requests
between a pair of end-sites. Given the varying availabilityof band-
width within the network, our goal was to accommodate as many
reservation requests as possible while minimizing the total time
needed to complete the data transfers. We proved that the SMR3 is
an NP-hard problem, and then developed a polynomial-time heuris-
tic, called RRA, to solve the problem. The RRA algorithm hinges
on an efficient mechanism to accommodate large number of re-
quests by minimizing the bandwidth wastage. Finally, via numeri-
cal results, we showed that RRA constructs schedules that accom-
modate significantly larger number of requests compared to other,
seemingly efficient, heuristics.
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