
Bayesian Latent Variable Models for Collaborative Item
Rating Prediction

Morgan Harvey1, Mark J. Carman2, Ian Ruthven3 and Fabio Crestani4
1Department of Computer Science (8 AI), University of Erlangen, Germany

2Faculty of Informatics, Monash University, Melbourne, Australia
3Department of Computer Science, Strathclyde University, Glasgow, Scotland

4Faculty of Informatics, University of Lugano, Lugano, Switzerland

morgan.harvey@i8.informatik.uni-erlangen.de

ABSTRACT
Collaborative filtering systems based on ratings make it eas-
ier for users to find content of interest on the Web and as
such they constitute an area of much research. In this paper
we first present a Bayesian latent variable model for rat-
ing prediction that models ratings over each user’s latent
interests and also each item’s latent topics. We describe a
Gibbs sampling procedure that can be used to estimate its
parameters and show by experiment that it is competitive
with the gradient descent SVD methods commonly used in
state-of-the-art systems. We then proceed to make an im-
portant and novel extension to this model, enhancing it with
user-dependent and item-dependant biases to significantly
improve rating estimation.

We show by experiment on a large set of real ratings data
that these models are able to outperform 3 common base-
lines, including a very competitive and modern SVD-based
model. Furthermore we illustrate other advantages of our
approach beyond simply its ability to provide more accu-
rate ratings and show that it is able to perform better on
the common and important case where the user profile is
short.

Categories and Subject Descriptors
H.3.3 [Information Storage & Retrieval]: Information
Search & Retrieval

General Terms
Algorithms, Experimentation, Performance

Keywords
Recommender systems, Topic Models, User modelling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

1. INTRODUCTION
The sheer number of items available in online systems

can be overwhelming for users and makes finding items of
interest extremely challenging. Furthermore the rapid and
continual expansion of the Web makes it impossible to man-
ually evaluate each new item to determine if it might be
of interest. Content filtering systems, based on techniques
from information retrieval, are designed to assist in this pro-
cess by narrowing down the number of items a user has
to look through in order to fulfil a particular information
need. These systems rely on textual descriptions of items
and seek to match these descriptions with a user’s profile in
order to suggest useful items. One significant issue with this
content-based filtering is that for some types of items it can
be extremely difficult to choose suitable descriptive terms to
search for.

Another, more accurate, approach to discovering items of
interest is provided by ratings-based collaborative filtering
systems, which use past ratings to predict items the user
may like. Such systems predict which items a given user
will be interested in based on the information provided in
their user profile. These profiles consist of votes or ratings
for items in the system that the user has already viewed
and evaluated. The profiles of other users are frequently
also exploited to improve predictions for the target user.

Profiles are generally constructed explicitly from user rat-
ings, however they may also be compiled implicitly by con-
sidering a user’s purchase or bookmark history. Explicit rat-
ings systems are commonly found on movie and music rec-
ommendation sites such as MovieLens [14] or imdb where
users can give each item a rating from 0 to 5 stars. Zero
indicates that the user strongly dislikes the item and five
indicates that they really like the item, however any dis-
crete set of values could be used. Implicit systems can also
be used, for example in online retail stores such as Amazon
[12] where users purchase items or add them to a “wish list”,
indicating that they are interested in that kind of item.

Given the collection of ratings provided by users, the goal
is to use the data to suggest additional items or resources
that a particular user may like or be interested in. This pro-
cess of machine recommendation is frequently called“ratings-
based collaborative filtering” or simply “collaborative filter-
ing”and the systems themselves are often referred to as“rec-
ommender systems”. Note that if a system is able to predict
unknown ratings then the suggestion task can be achieved by

699

simply ordering unrated items in descending order of their
predicted rating. In doing so, such an algorithm is effectively
achieving two outcomes: the “forced prediction” of whether
or not a user will have a preference for an item and the “free
prediction” of the expected rating itself.

In this work we focus on the problem of recommending
items to users based purely on the explicit ratings they have
assigned to other items in the system. We introduce 2 novel
(and related) Bayesian probabilistic models designed to ac-
curately predict ratings given the very sparse training data
commonly found on e-commerce and recommendation web
sites. We go on to show by experiment with a large set of
real ratings data that our models are able to outperform 3
common baselines, including a very competitive and modern
SVD-based model. Furthermore we illustrate a number of
other advantages of our approach, beyond simply its ability
to provide more accurate ratings.

The rest of the paper is structured as follows: we first dis-
cuss some relevant related work in the field of collaborative
filtering and describe how the majority of modern methods
approach the problem. In section 3 we describe the rating
estimation problem in more detail and outline common mea-
sures for algorithm performance. In section 4 we introduce
a pair of novel Bayesian models designed to decompose the
problem by use of latent factors and describe how these mod-
els can be used to estimate unknown ratings. In sections 5
and 6 we describe experiments conducted with a large data
set of 10 million movie ratings comparing the performance of
these new models to 3 appropriate baselines and discuss the
result of these experiments. Finally we offer our conclud-
ing remarks and make suggestions of possible future work
building upon the results of this paper.

2. RELATED WORK
Collaborative filtering systems can be placed in the con-

text of information retrieval by considering that in a retrieval
system items are “pulled” by users through the issuing of ex-
plicit search queries. Filtering systems on the other hand are
described as “push” systems since they quite literally push
items at a user that is predicted he/she will like. Much early
work was done in the 90s and the field has seen a resurgence
of interest lately, primarily due to the Netflix prize [11]. Col-
laborative filtering algorithms can be generally classified into
2 distinct types: memory-based and model-based.

2.1 Memory-based CF
Early systems were memory-based and made use of the

original ratings matrix to formulate predictions. Such sys-
tems follow a relatively simple 2 step process: First they
identify a neighbourhood of users similar to the target user
and then use an aggregate weighted summation of the neigh-
bours’ ratings for an item in order to predict the rating for
the target user. These algorithms form the basis of most fil-
tering currently performed on the Web including sites such
as Amazon and CDNow and were the cornerstone of much
early research in the field [7, 4]. We refer to [1] for a com-
prehensive description of how these methods operate. It has
been speculated that their popularity is due to their relative
simplicity and their inherently intuitive nature [10].

Unfortunately these simple, memory-based algorithms suf-
fer from 2 major shortcomings. Firstly the number of items
rated by most users is oftentimes small and therefore it can
be difficult to choose a good neighbourhood of similar users.

Once a neighbourhood is chosen only a very small number
of similar users may have rated the item for which we wish
to predict a rating. Secondly, these algorithms require all
of the ratings data to be utilised when making a prediction
and, although it is possible to maintain a cache of user sim-
ilarities, this will have to be updated whenever new ratings
are made. This shortcoming is perhaps the most problem-
atic as without clever implementation, it severely restricts
the potential growth of the recommendation system. This
is because, over time the amount of ratings data becomes
too large to allow for the efficient computation of both the
neighbourhoods and the predictions themselves.

2.2 Model-based CF
These issues led to the development of the second general

type of collaborative filtering algorithm: the model-based
approach. In this approach we use the observed ratings to
construct a model of the data and we decompose the ob-
served ratings into a sum of biases; one for the user, one for
the item and a third joint bias. Modern examples of these
models frequently use some form of dimensionality reduc-
tion to uncover latent factors and to calculate the joint bias.
These latent factors are constructed in a manner that best
explains the training ratings and if we make the assumption
that any further ratings will be drawn IID1 from the same
distribution then the model should be able to predict new
ratings well.

These model-based algorithms are able to overcome many
of the scalability problems associated with the earlier memory-
based systems. This is particularly the case when real-time
recommendations are required, which is obviously the most
likely situation given the on-line nature of the systems where
collaborative filtering is most often used. The most time-
consuming task is the generation of the model itself, after
which the task of new predictions is extremely quick due to
the significant reduction in dimensionality afforded by the
latent factors. With model-based systems the entire mod-
eling operation can be completed off-line thus allowing for
near-instantaneous real-time predictions as and when users
need them.

Many examples of this approach, including most attempts
at the Netflix prize, use gradient descent algorithms to esti-
mate an approximation of the Singular Value Decomposition
(SVD) of the original sparse ratings matrix [15]. The val-
ues computed for the SVD matrices are regularised so as to
prevent over-fitting and individual biases for each user and
movie are commonly added to improve prediction perfor-
mance. Other techniques use probability theory to construct
the models where observed ratings are assumed to arise from
some latent variables which have to be estimated. In [13],
Marlin represents each user as a mixture of “attitudes” with
each rating being generated by selecting one of these atti-
tudes and then selecting the rating based on the ratings dis-
tribution for that attitude. Hofmann [10] extends his earlier
pLSI model to model ratings by again assuming that users
have a distribution over “interests” or “attitudes” and that
each rating is associated with a single interest drawn from
the user’s interest distribution. His work differs from that of
Marlin [13] however by then assuming that there is a rating
distribution for each latent interest and item pair. So the
observed rating is assumed conditional on both the latent

1IID stands for independently and identically distributed.

700

interest of the user who rated the item and also on the item
itself.

Other probabilistic approaches include [19] in which the
authors introduce a novel adaptation of the EM algorithm
to learn the parameters of a prediction model for person-
alised content-based prediction. Stern et. al. [17] instead
use Expectation Propagation and Variational Message Pass-
ing to learn a model using both ratings data and content. In
other recent work Chen et al. [5] compare the performance of
Latent Dirichlet Allocation (LDA) [2] with association rule
mining (ARM) for the purpose of community recommen-
dation. This is a similar problem to rating prediction but
instead involves the suggestion of online communities of in-
terest rather than items. They show that LDA consistently
outperforms ARM for this task, particularly when consider-
ing later recommendation. They also demonstrate that it is
less likely to make extreme errors due to its Bayesian nature,
certainly a useful property when recommending items.

In this paper we discuss 2 probabilistic model-based col-
laborative filtering algorithms that can be seen as compara-
ble to these models and draw on similar background theory.
Blei [2] in fact uses collaborative filtering as an example of
a problem for which LDA could be used and shows that it
is able to outperform both probabilistic LSA [9] and a sim-
ple unigram model. Our models do not use LDA itself in
order to predict ratings but use its ability to extrude latent
factors from sparse data as a strong basis from which to
build models more suited to the task at hand. Also in this
work we extend the basic ratings model by including indi-
vidual biases for each user and item requiring an iterative
fixed-point optimisation procedure to be interleaved with
the Gibbs sampler and providing significant improvements
in performance.

3. PROBLEM DEFINITION
Before proceeding any further we will formally define the

problem of rating prediction and describe the format of the
data we have to work with. We have a set of users of the
system U = {u1, . . . , uU}, a set of items M = {m1, . . . , mM}
and a discrete set of possible ratings {1, . . . , R}. Our training
data is a collection of ratings given by the users to items.
We can view each individual rating as a tuple: (ui,mi, ri)
for i := 1 . . . Ntrain. For example the tuple (ui = 1,mi =
1, ri = 4) would indicate that user 1 had given item 1 a
rating of 4. It can sometimes be convenient to visualise the
complete collection of user ratings as a large and very sparse
matrix R of size U×M where rum would indicate the rating
given by user u to item m. The prediction problem is best
described by saying that we would like to “fill in” the sparse
ratings matrix, extrapolating (or predicting) a rating r̂um for
every possible user-item pair from the limited data available.
More practically we wish to define some function or model
which will minimise the root mean squared prediction error
over the test data:

RMSE =

√√√√ 1

Ntest

Ntest∑
i=1

(ri − r̂i)2 (1)

The RMSE is commonly used in statistics for measuring the
difference between the set of values predicted by a model and
the values actually observed from the system being mod-
elled. It is a good measure of precision and is an unbiased
estimator of the standard deviation of the predictions and

α β

θu ϕm

 ri
N

zi

ui mi

byz
YZ

yi

σ μ

bm
M

bu
U

α β

θu ϕm
U

 ri
N

zi

ui mi

byz
YZ

yi
M

σ μ

α β

θu ϕm

 ri
N

zi

ui mi

byz
YZ

yi

σ μ

bm
M

bu
U

α β

θu ϕm
U

 ri
N

zi

ui mi

byz
YZ

yi
M

σ μ

Figure 1: Latent Interest and Topic Ratings Model
(LITR) where each observed change in the rating
from the mean is due to both a user interest and
an item topic or genre and Biased-LITR (BLITR)
where it is also dependent on the bias for the user
and the item.

is therefore a good choice of error function for collaborative
filtering. We also report the Mean Absolute Error (MAE)
which is simply the mean absolute difference between the
predicted rating and the actual rating, over the whole test
set.

4. LATENT INTEREST AND TOPIC RAT-
INGS MODELS

In order to implement a new latent variable model for col-
laborative filtering it is necessary to choose how best to rep-
resent the latent factors and how to incorporate the ratings
data, both in terms of statistical distributions. A popular
modern latent variable model called Latent Dirichlet Allo-
cation is commonly used to estimate latent variable distri-
butions and serves as a good starting point for a new model.
LDA is predominantly used to model textual data where it
represents documents as random mixtures over latent topics
where each topic is a distribution over the observed words in

701

Symbol Description

M number of items

U number of users

N number of ratings

Y number of topics/genres

Z number of user interests

ri rating at position i

mi item for rating at position i

ui user who contributed rating at position i

yi topic/genre allocation at position i

zi user interest allocation at position i

r̂um predicted rating for user u and item m

φm distribution over topics for item m

θu distribution over interests for user u

bm bias due to item m

bu bias due to user u

byz bias due to interest/topic pair yz

α parameter of Dirichlet prior over Θ

β parameter of Dirichlet prior over Φ

ρ smoothing parameter for bias estimates

σ standard deviation over all ratings

µ mean rating

Table 1: List of notation for Ratings Models

the vocabulary. Each word position i in the document col-
lection is assigned a latent random variable zi which ranges
over the latent topics.

The model possesses a number of advantageous attributes;
it is fully generative meaning that it is easy to make infer-
ences on new documents and its Bayesian nature helps to
overcome the over-fitting problem present in models such
as Probabilistic Latent Semantic Indexing (pLSI) [9]. Also
since in LDA each document is a mixture of topics it is far
more flexible than models that assume each document is only
drawn from a single topic. These advantages also extend to
models based on LDA with both the added flexibility and
ability to easily incorporate new data being very important
for our own models, as we shall discuss later. Many useful
models have used LDA as a base to work from, for example
the Author-Topic model [18] which models academic pub-
lications and citations. It has even been used to develop
models to annotate images based on their visual features
[3].

As we can see from these publications, LDA can serve as
a very flexible starting point for more complex models even
when those models are not just using discrete data. In the
case of collaborative filtering we do not have documents and
terms, but rather a collection of observed ratings from a set
of users over a set of items. We must therefore significantly
adapt the model to fit the problem. Since we are primarily
interested in predicting ratings with the smallest possible er-
ror in aggregate it is sensible to consider models (and there-
fore distributions) that are continuous in nature. In doing
so the predictions will not be constrained to be bound to the
finite discrete values of the original ratings but will have the
freedom to model the complex interactions of biases in the
data at higher granularity.

4.1 Basic Generative Model
Perhaps the simplest possible prediction algorithm one

could imagine would be to assign the mean rating over the
training data, denoted µ (where µ̂ = 1

N

∑
i ri), as a pre-

diction to each item for every user, (i.e. r̂um = µ). This
overly simplistic model corresponds to a generative process
in which each rating ri is considered a normally distributed
random variable with mean µ and standard deviation σ:

ri ∼ N (µ, σ2) (2)

This model makes a large number of assumptions and ig-
nores a lot of the complexity in the data. It assumes that
ratings are completely independent of both the item and
user and that there are no interactions between the combi-
nations of user and item that would affect the rating. We
relax some of these assumptions and extend this model by
following similar conclusions to both Hofmann [10] and Mar-
lin [13]. That is that the change in the rating is dependent
on the user and that each user can be characterised by a
distribution over a small number of latent interests.

In addition, (and in contrast to previous work) we then as-
sume that the change in rating is also equally dependent on
the items, which themselves can be characterised by a distri-
bution over a small number of latent topics. For example in
the case of movies this may be more intuitively thought of as
their latent genres or for general items in a web store it could
be the category/ies to which they could be assigned. This
conjecture leads to a more useful generative model for per-
sonalised item filtering and ranking involving three random
variables: a user interest zi, an item topic (or movie genre)
yi and a rating ri, where only the last variable, the rating
itself, is observed. Following previous work on topic models,
we then assume the user-interest and item-topic variables
are drawn from Multinomial distributions.2 The same as-
sumption could also be made regarding the ratings, as the
original ratings assigned by users are indeed drawn from a
discrete set. However as noted earlier, the flexibility of the
model can be increased as can the granularity of its predic-
tions, by instead modelling them as being drawn from Nor-
mal distributions. These assumptions can be summarised as
follows:

zi ∼ Mult(θui) (3)

yi ∼ Mult(φmi) (4)

ri ∼ N (µ+byizi , σ
2) (5)

Thus the model consists of a discrete probability distribu-
tion over interests for each user θu, a discrete distribution
over topics for each item φm, a mean rating µ, a bias value
byz for every pair of interests and topics, and a standard
deviation parameter σ. A graphical model corresponding to
this generative process is shown at the top of Figure 1.

The intuition for introducing the bias byz in this model
is that we believe each interest and topic combination will
have an effect on how the item is rated. For example in
the case of movies we might expect that a user who likes
romance would give a horror movie a lower than average
rating, meaning that the bias byz for this interest-topic pair
would be negative. Similarly if the same user was to rate a
romance movie then we would expect them to give a higher

2The interest and topic variables are actually drawn from
discrete distributions, but we use the term Multinomial in
keeping with the literature.

702

than average rating and the bias would therefore be positive.
Since these biases are calculated over the low-dimensionality
latent spaces they will not be sparse and should allow the
model to generalise well to unseen user-item combinations,
a key objective of any collaborative filtering model.

Given suitable estimates for these parameters, we can pre-
dict the rating for a user u and item m by calculating the
expected value as follows:

r̂um = E[r|u,m] =
∑
y,z

E[r|y, z]P (y|m)P (z|u) (6)

= µ+
∑
y,z

byzφy|mθz|u (7)

Here θz|u and φy|m denote probability of an interest given a
user and a topic given an item respectively. This model is
quite intuitive. It states that the rating given by a user to an
item will be the product of a user’s affinity for an interest,
the item’s probability of belonging to a topic and the average
bias for that interest-topic combination, summed over all
possible combinations of interests and topics.

In this model we have associated a possibly non-zero bias
with every pair of interest topic dimensions. Thus not only
is a positive bias associated with “corresponding”’ interests
and topics (e.g. the user-interest “horror” and the movie-
genre “horror”) but also a possibly negative bias with “non-
corresponding”’ interests and topics. For instance if a user’s
primary interest is “horror”, they may still have a positive
bias towards a “thriller” while having a negative bias against
a “comedy”. In SVD terms this is to some extent equivalent
to replacing the diagonal singular-value matrix with a ma-
trix containing non-zero off-diagonal values. These values
then allow us to model both positive and negative correla-
tions across different factors. By defining the predictions in
terms of a generative model, we can interpret and explain
the parameters of the model in a way that is not possible
with SVD-based prediction algorithms.

4.2 Parameter Estimation
Given vectors of latent variable assignments z = (z1, ..., zN)

and y = (y1, ..., yN), we can compute estimates of both the
probability of an interest given a user θz|u and a topic given
an item φy|m. Following principles from LDA, and in keeping
with Bayesian statistics, we place symmetric Dirichlet pri-
ors on both of these distributions, resulting in the following
expectations for the parameter values under their respective
posterior distributions:

θ̂z|u =
Nzu + α 1

Z

Nu + α
(8)

φ̂y|m =
Nym + β 1

Y

Nm + β
(9)

Here Nzu, Nym, Nu and Nu are counts denoting the number
of times the interest z appears (in z) together with user u,
the number of times topic y appears (in y) with item m,
and the total ratings by user u and for item m respectively.
Z is the number of interests and Y is the number of topics.
The hyperparameters α and β act as pseudo-counts, allowing
the model to fall back on the (uniform) prior probability in
the event of sparse data, which is particularly useful in this
setting where sparse data is common.

In addition to estimating the distributions over interests

and topics we need to estimate the bias for each interest and
topic pair denoted byz. Given that we have a complete set
of assignments for these latent variables for each observed
ri we can calculate an estimate of this bias as follows:

b̂yz =

∑
i:(yi=y)∧(zi=z)(ri − µ)

Nyz + ρ
(10)

Here Nyz denotes the number of ratings for which y and
z appear together and ρ is a smoothing parameter. It is
related to the variance of the zero mean Gaussian prior on
byz, which keeps the model Bayesian and helps to deal with
sparsity in the data.3 We note that it would also be possible
to estimate a variance parameter separately for each (y, z)
pair, but we instead make the simplifying assumption that
all biases have the same fixed variance.

While exact inference of latent variable models such as
LITR is intractable, a number of methods of approximating
the posterior distribution exist including mean field varia-
tional inference [2] and Gibbs sampling [8]. Gibbs sampling
is a Markov chain Monte Carlo method where a Markov
chain is constructed that converges to the target distribution
of interest over a number of iterations. In Gibbs sampling
the next state in the chain is reached by sampling all vari-
ables from their conditional distribution given the current
values of all other variables [6].

Gibbs sampling for this model involves sampling first zi
and then yi for each rating ri. To sample for zi we cal-
culate distribution P (z|ri, yi, ui, µ, σ, z−i), which is condi-
tioned on the current assignment to all interest variables
except zi. Similarly for yi we sample from the distribution
P (y|ri, zi,mi, µ, σ,y−i). Note that our estimates for the pa-
rameters θz|u, φy|m and byz depend on the interest and topic
assignments z and y, so when calculating estimates using
Equations 8, 9 and 10, we simply remove the ith rating from
the sample. The conditional probability distributions are
then estimated as follows:

P (z|ri, ...) ∝ p(ri|yi, z)P (z|ui)

∝ exp

(
(ri−(µ+byiz))2

σ2

)
Nzu + α 1

Z

Nu + α
(11)

P (y|ri, ...) ∝ p(ri|y, zi)P (y|mi)

∝ exp

(
(ri−(µ+byzi))

2

σ2

)
Nym + β 1

Y

Nm + β
(12)

Here p(r|y, z) denotes the conditional probability density at
rating r for the interest y and topic z. Since the algorithm
only require estimates proportional to the true probabilities
the normalising factor of the Normal distribution is not re-
quired. Therefore the first parts of Equations 11 and 12
are the unnormalised probabilities of a Normal distribution.
This model provides a method of predicting ratings by con-
sidering perturbations from the mean rating over a number
of latent interests and topics.

After sufficient iterations of the sampler, the Markov chain
converges and the parameters of the model can then be esti-
mated from the assignments z and y via equations 8 and 9.
For increased accuracy, we average parameter estimates over
consecutive samples from the Markov chain. Gibbs sampling
is a preferable alternative to methods such as Expectation

3The value ρ is equal to the ratio of the variances of the
likelihood and the prior (both Normal distributions).

703

Maximisation as it is able to sample from the entire pos-
terior distribution and is therefore unlikely to get “stuck”
in local maxima and does not require the use of additional
machinery such as simulated annealing to get around this
problem [16]. Another benefit of this technique is the ability
to quickly “fold-in” new data into the model, this is partic-
ularly useful for this task as new ratings, items and users
are likely to appear quite frequently. To include this new
data into the model we can simply run the Gibbs sampler
over the new data, holding all of the pre-existing interest
and topic allocations fixed. After the sampler has converged
on this new data (which usually occurs within less than 50
iterations) we can simply recalculate parameter estimates in
equations 8 and 9.

4.3 Adding User and Movie Biases
As noted in section 2, the most successful models compet-

ing in the Netflix prize also estimate a bias for each user and
a bias for each item as well as the bias due to the user and
the item together. This is a sensible assumption as some
users may naturally rate items higher than others and some
may naturally choose from a lower baseline score. Simi-
larly some items are intrinsically better than others and are
therefore likely to be rated higher by all users, while items
of a lesser quality will be given a lower than average score
by most users. While we would expect that these biases
would be at least partially accounted for by the joint biases
over the reduced genre and interest spaces it is likely that
users and movies that give/have unusually high or low rat-
ings (outliers) would affect the accuracy of the biases for
other users. By calculating a separate bias for each user
and item separately we effectively remove these eccentrici-
ties from the ratings, giving the joint biases the freedom to
deal purely with the variations caused by observing the var-
ious interest/genre pairs. The Biased-LITR model (BLITR)
is therefore an extension of the model described previously
to also include these biases in order to improve prediction
accuracy. The graphical representation for this model is on
the bottom in Figure 1.

The generative model is the same as the previous case,
except that the mean of the Gaussian distribution that gen-
erates the rating ri takes into account the user and item
biases bui and bmi as follows:

ri ∼ N (µ+bui +bmi +byizi , σ
2) (13)

Given estimates for the parameters of this more compli-
cated model, the predicted rating for a user u and an item
m is now:

r̂um = E[r|u,m] = µ+ bu + bm +
∑
y,z

byzφy|mθz|u (14)

Note that the prediction under this new model and the
previous model can be viewed as perturbing the mean µ
by a combination of biases. Both models add a bias for the
likely interests and topics given the user and item pair, while
the second model adds also explicit biases for the user and
for the item.

Estimates for the parameters θz|u and φy|m are the same
as in the previous model, while the estimate for byz must
now include the effects of the extra biases as follows:

b̂yz =

∑
i:(yi=y)∧(zi=z)(ri − (µ+ bui + bmi))

Nyz + ρ

Furthermore we must also compute estimates for the new
user and item-dependent biases. The most obvious way to
compute these biases is to take the mean difference of all
ratings for a given user/item from the mean rating for all
users/items. However since we are also computing an im-
plied bias (denoted bum) for each user-item pair we need
to include the effects of this bias in the estimations. We
therefore estimate the user and item biases as follows:

b̂u =

∑
i:(ui=u)(ri − (µ+ bmi + bumi))

Nu + ρ
(15)

b̂m =

∑
i:(mi=m)(ri − (µ+ bui + buim))

Nm + ρ
(16)

where bum =
∑
y,z

byzφy|mθz|u (17)

We note that the Equations 15 and 16 are mutually depen-
dent and thus an iterative fixed-point calculation is required
to estimate the biases. Holding the joint bum biases fixed
this procedure converges very quickly and stabilises within
less than ten iterations. Finally the distributions used for
the Gibbs sampling routine must also be updated to include
the new biases:

P (z|...) ∝ exp(
(ri−(µ+bui +bmi +byiz))2

σ2
)θz|ui

(18)

P (y|...) ∝ exp(
(ri−(µ+bui +bmi +byzi))

2

σ2
)φy|mi

(19)

Since the user and item biases are not strongly dependent
on the allocations of ratings to y and z we can simply esti-
mate them after every kth iteration of the Gibbs sampler and
the algorithm will still converge. Not only does this speed
up computation of the model but it also gives the sampler
time to re-converge after changes to the user and item bi-
ases. In all the experiments performed we re-calculate these
biases after every 10 Gibbs iterations.

5. EXPERIMENTS
We now discuss the experiments we performed on a large

sample of ranking data from the MovieLens4 movie rating
web site, this data is freely available from the GroupLens
website.5 The data consists of 10 million ratings for 10,681
movies made by 71,567 users. The users are selected at
random and have all rated at least 10 movies. Consequently
the average number of ratings per user is 140 and per movie
is 936. The ratings are all given on a scale of 0 to 5 stars
with increments of 0.5 stars. The mean rating over all users
and movies is 3.53 and the variance is 0.96.

We separated this data set into training and test sets by
randomly choosing k percent of the ratings to be kept for
testing and used the remaining ratings to train the models.
For our experiments we set k to be 20%. Therefore the
results reported in the remainder of the paper are based on

4http://www.movielens.org/
5http://grouplens.org/node/73

704

predictions over all of the test data, amounting to almost 2
million individual predictions.

To evaluate the relative performance of the various mod-
els we report both the RMSE, as described previously, and
also the Mean Absolute Error (MAE). This is simply the
mean absolute difference between the predicted rating and
the actual rating over all testing examples. We report both
metrics as they provide different information regarding the
performance of predictions: the RMSE penalises large errors
much more than small errors while the MAE penalises all
errors equally relative to their size.

5.1 Baselines
In order to evaluate the utility of our new models we must

choose suitable baseline methods with which to compare
their performance. For this work we compare our methods
to 3 baselines from CF literature:

mean-r a näıve, simple baseline which returns the mean
rating as an estimate for all user-item pairs.

neighbourhood a nearest-neighbour method using Pear-
son correlation coefficient as the similarity metric with
case amplification and significance weighting [4]. Rep-
resents earlier memory-based CF systems.

SVD a fully-regularised gradient descent SVD model with
user and item biases providing a thoroughly modern
and highly competitive baseline.

5.2 Parameter settings and sampling
For the LITR and BLITR models we set the concentra-

tion parameters of both α and β to 5, providing some light
smoothing to the user-interest and item-topic distributions.
The settings for ρ and σ were 0.5 and 0.1 respectively. The
models were not particularly sensitive to parameter values,
provided excessively low or high values were not chosen,
i.e. applying almost no smoothing, or in the other extreme
smoothing out the information from the data completely.

For the SVD method we optimised the parameter val-
ues based on performance over a small sub-sample of the
test set. The values obtained in doing this are very similar
to the standard best performing parameters values as de-
scribed in the literature[15]. Specifically the learning rate
was set to 0.002 and the 2 regularisation constants λ and
λ2 were set to 0.02 and 0.05. For the gradient descent algo-
rithm, prediction errors on a sub-sample of the test set were
observed to stabilise after approximately 30 iterations, how-
ever to ensure convergence we continued until 50 iterations
had elapsed. For the neighbourhood method the number of
neighbours used for the estimates was set to 100.

For sampling in the LITR models we use the Rao-Blackwellised
Gibbs sampler [8]. For both models we sampled the chain
for 300 iterations in total, as this appeared to consistently
give good convergence in terms of model likelihood. We dis-
carded the first 200 samples from the chain as “burn-in”.
The remaining 100 samples from the end of the chain were
averaged to obtain the final parameter values.

6. RESULTS
The results from our experiments are summarised in ta-

ble 2. We can see, somewhat unsurprisingly, that all of the
methods significantly outperform the most simple choice of
estimate: the mean over all ratings. The nearest-neighbour

Table 2: Comparison of best results from each
model. For latent factor/variable models the num-
ber of latent variables is set to 50. Percentages in-
dicate improvement over baseline.

Prediction error Improvement

Model MAE RMSE MAE RMSE

µ rating 0.8516 1.0521 - -

n’hood 0.6582 0.8481 22.7% 19.4%

SVD 0.6516 0.8401 23.5% 20.1%

LITR 0.6496 0.8384 23.7% 20.3%

BLITR 0.6334 0.8236 25.6% 21.7%

0.820

0.831

0.843

0.854

0.865

5 10 20 30 40 50

Chart 2

R
M

S
E

Number of latent topics/factors

N’hood SVD LITR BLITR

Figure 2: RMSE over different numbers of latent
topics/factors.

method performs well, however the more modern model-
based approaches are all able to outperform it by a large
margin. In testing we encountered one of the main disad-
vantages of memory-based approaches as prediction using
the neighbourhood model took orders of magnitude longer
than the model-based approaches.

In comparing the model-based approaches, we see that
LITR, which does not include individual biases for each user
and item, is still able to outperform the SVD method, how-
ever not by a significant margin. The more complex BLITR
model on the other hand, which is able to leverage predic-
tive power from the user and item biases as well as from the
latent variable mixture of Gaussians, is able to outperform
all of the other methods over both reported metrics by a sta-
tistically significant margin. In terms of MAE the BLITR
model outperforms SVD by 2.7% and by 2% in terms of
RMSE (paired t-test, 99% confidence, p-value = 4.5 ∗ 10−05

and 1.2 ∗ 10−05). Furthermore it improves upon the nearest
neighbour approach by 3.8% for the MAE metric and 2.9%
for the RMSE metric.

These results demonstrate the appropriateness of the LITR
models to the problem of rating prediction and indicate that
the generative models are able to make predictions with less
error. Considering that the SVD model includes individual
item and user biases it is notable that the LITR model with-
out these additional biases is able to remain competitive. By
incorporating these biases in the BLITR model we are able

705

to significantly outperform SVD, however. Thus it is clear
that the inclusion of these biases into the generative process
is important if we are to achieve optimal prediction results.

6.1 Varying the number of latent factors
We now look at how performance of the models vary as we

increase the number of topics. By referring to the chart in
Figure 2 we can see that all of the model-based approaches
increase in performance as we increase the number of topics
or latent factors. Notice that when the number of latent
topics is set to 5 only BLITR is able to clearly outperform
the memory-based nearest neighbour model, however as the
number of factors is increased all of the model-based ap-
proaches begin to outperform it.

Initially the performance of the LITR model appears to be
quite poor in comparison to the other latent variable mod-
els. This is because when the number of latent variables is
small both SVD and BLITR can rely on user and item bi-
ases to explain the differences in ratings and thus improve
their predictions while LITR cannot. As the number of fac-
tors increases we see that LITR is able to approach and then
eventually exceed the performance of SVD, however it is still
unable to come close to the performance of BLITR. The
performance of all of the models appears to have reached a
plateau by around 40 factors with any further improvements
after this point being quite small.

6.2 Performance for “difficult” users

Table 3: Comparison of results over different user
profile sizes.

Prediction error (RMSE)

#ratings/user ≤ 20 ≤ 50 ≤ 100 all

SVD 0.9115 0.8840 0.8692 0.8401

BLITR 0.8536 0.8435 0.8379 0.8236

#users 9,404 33,965 50,297 71,567

100 200 300 400 500

0.
84

0.
86

0.
88

0.
90

0.
92

Minimum number of ratings

E
rr
or

density.default(x = errors$ratingCount[errors$ratingCount < 500 &
 errors$ratingCount > 19], freq = FALSE)

0.
00
0
0.
00
2
0.
00
4
0.
00
6
0.
00
8
0.
01
0
0.
01
2User density

BLITR error
SVD error

Figure 3: Prediction error and user count for vary-
ing profile sizes

As discussed earlier, an important consideration for any

collaborative filtering algorithm is how well it does in the
most difficult cases. This is generally users (or items) with
a very small number of training ratings, for example the case
of a new user or item. Analysing the data set we find that
13.4% of all users have 20 or fewer ratings and nearly half
(47.5%) have 50 or fewer. We expect that these will be the
users for whom the algorithms struggle the most to make
accurate predictions for.

Table 3 shows how the performance of the best performing
baseline and the best of the new models (SVD and BLITR)
vary over different user profiles sizes. The results show that
the BLITR model performs much better for smaller pro-
files (relative to its performance over all users) than SVD.
The SVD model’s performance decreases by 8.4% when deal-
ing with small user profiles (20 or fewer ratings) whereas
BLITR’s performance only sees a very small decrease of
3.6%.

This result is perhaps illustrated more clearly in Figure 3,
which shows the mean error over varying user profile sizes,
for all users with a profile size smaller than or equal to the
value on the x-axis. This is plotted for both SVD (dotted
red line) and BLITR (dashed blue lines). The figure also
shows on the right-hand y-axis the density of user counts
over profile sizes (solid black line). We can see clearly that a
large proportion of the users have a small number of ratings
with very, very few having a large number. The maximum
number of ratings for any user is 2876, 97% of users have
fewer than 500 ratings and the minimum is 10 (this lower
limit is imposed by the MovieLens web site). We can see
from this plot that SVD’s error for users with small profiles
is quite high and that it fairly rapidly decreases as the profile
size increases. On the other hand LITR has much smaller
error for users with small profiles and is able to produce
much smaller errors than SVD over the whole range of profile
sizes.

This is an important outcome as it demonstrates that our
models are able to perform much better when data is par-
ticularly sparse which is the most common case and are the
situations for which we are most interested in improving
performance. We speculate that this is a consequence of the
Bayesian nature of the models; allowing them to cope better
when there is little data available to base predictions on. It
may also be because the LITR models are better at leverag-
ing the limited information obtained from the small number
of ratings that are available in these cases.

6.3 Variance of errors
The main focus of rating prediction is of course to make

predictions with minimal error, however of course there will
always be some error and it is not possible to always make
perfect predictions. This being the case, a secondary focus
is to try to ensure that when errors are made they are not
too large as this can frustrate and confuse users and even a
single instance of poor prediction can cause a user to lose
faith in the system’s abilities. Figure 4 shows a density plot
of mean errors for users over the testing data made by both
SVD and the BLITR model. The plot shows that the errors
made by SVD have larger variance (0.065 versus 0.045 for
BLITR) and also have a much thicker tail at the higher end
of the errors. This means that not only are the predictions
made by BLITR better in the expectation but they are also
less likely to be extreme and as a result are less likely to
frustrate users.

706

0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

density.default(x = errors$error[errors$error < 1.8])

Mean error over users

D
en
si
ty

BLITR
SVD

Figure 4: Density plot of mean error over all users

7. CONCLUSIONS AND FUTURE WORK
In this work we have presented two Bayesian models for

collaborative rating prediction based on clustering users and
items into latent interests and latent topics simultaneously.
We first introduced the concept of collaborative filtering and
briefly discussed related work, including both memory and
model-based methods. We motivated our work by outlining
the benefits of model-based collaborative filtering systems
and of the Bayesian approach to data modelling. The first
model predicts a user-item rating by perturbing the mean
rating across items and users by the weighted summation of
interest and topic biases, where the weights are the proba-
bility of the interest-topic pair given the particular user and
item. The second model is an important and novel exten-
sion of the first, including user and item specific biases in
the prediction.

We describe an estimation procedure for this model which
alternates between Gibbs sampling of the latent variables
and an iterative fixed-point estimation of the additional bi-
ases. We explain reasons why Gibbs sampling is both suit-
able and necessary for this task, in particular that it allows
new data to be easily, quickly and accurately folded into
the existing model. We motivate the use of latent topics in
the model due to their flexibility and the ease of interpreta-
tion of results that they permit. We concede that the ideas
of performing item recommendation using Bayesian proba-
bilistic models and the inclusion of user and item biases are
not in themselves novel. However the combination of these
techniques via the interleaving of Gibbs sampling and fixed-
point optimisation and the use of multinomial distributions
for latent vectors for users and items and the byz matrix
presents an important new contribution.

By experiment over a large, freely-available and commonly
used data set of real item ratings we have shown that the
models are extremely competitive, with the extended model
significantly outperforming the most competitive baselines.
Furthermore we investigated how well the strongest base-
line and our best model performed in cases where the user
profiles were very short (where the user had rated very few
items). We found that our model is able to cope far better
than the SVD baseline in these cases which is an important

result as such cases are both common and an area where
improvement in performance is most useful. Lastly, analy-
sis of the residual errors showed that BLITR’s errors had
much smaller variance than those of SVD and as such is
much less likely to generate extremely erroneous predictions
which could frustrate and confuse users.

This work opens up many potential opportunities for fu-
ture research by taking advantage of the modular structure
of the models to provide a framework for various extensions.
Here we make a number of suggestions for future work:

• The models could be extended to include more infor-
mation such as the time when each rating was made.
It is likely that this would yield good improvements to
the predictive power of the models as it did for partic-
ipants in the Netflix prize.

• Improvements could be made to the fit of the models
by estimating the variances of the various Gaussian
mixture components separately, rather than using a
fixed value. This may serve to improve the accuracy
of predictions made.

• As noted earlier in the paper we calculate a point esti-
mate for the user and item biases. The Bayesian ide-
ology could be taken further by instead treating these
as random variables with their own priors and calcu-
lating a posterior for them in order to obtain a more
principled, and potentially more accurate, estimate.

• To leverage the tag data provided about the movie in
the latest release of the MovieLens data set to make
up for some of the sparsity in the ratings data. It
may be possible to use this information to create an
informative prior over P (y|m), replacing the uniform
prior we currently use.

707

8. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: A survey of the
state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions on,
17(6):734–749, 2005.

[2] D. Blei, A. Ng, and M. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
(3):993–1022, 2003.

[3] D. M. Blei and M. I. Jordan. Modeling annotated
data. In SIGIR ’03: Proceedings of the 26th annual
international ACM SIGIR conference on Research and
development in informaion retrieval, pages 127–134,
New York, NY, USA, 2003. ACM.

[4] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the14th Annual Conference
on Uncertainty in Artificial Intelligence (UAI98),
pages 43–52, 1998.

[5] Wen Y. Chen, Jon C. Chu, Junyi Luan, Hongjie Bai,
Yi Wang, and Edward Y. Chang. Collaborative
filtering for orkut communities: discovery of user
latent behavior. In Proceedings of the 18th
international conference on World wide web, WWW
’09, pages 681–690, New York, NY, USA, 2009. ACM.

[6] Andrew Gelman, John B. Carlin, Hal S. Stern, and
Donald B. Rubin. Bayesian Data Analysis. London:
Chapman and Hall, 2004.

[7] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35:61–70,
1992.

[8] T. Griffiths and M. Steyvers. Finding scientific topics.
National Academy of Science, 2004.

[9] T. Hofmann. Unsupervised learning by probabilistic
latent semantic analysis. Machine Learning,
42(1/2):177–196, 2001.

[10] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1):89–115,
January 2004.

[11] Yehuda Koren. Factorization meets the neighborhood:
a multifaceted collaborative filtering model. In KDD
’08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 426–434, New York, NY, USA,
2008. ACM.

[12] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
IEEE Internet Computing Jan/Feb, 2003.

[13] B. Marlin. Modeling user rating profiles for
collaborative filtering. In NIPS17, 2003.

[14] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and
J. Riedl. Movielens unplugged: Experiences with an
occasionally connected recommender system. In
Proceedings of ACM 2003 Conference on Intelligent
User Interfaces (IUI’03), 2003.

[15] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In
KDDCup.07, 2007.

[16] A. F. M. Smith and G. O. Roberts. Bayesian
computation via the gibbs sampler and related markov
chain monte-carlo methods (with discussion). In
Journal of the Royal Statistical Society, volume 55,
pages 3–23, 1993.

[17] David H. Stern, Ralf Herbrich, and Thore Graepel.
Matchbox: large scale online bayesian
recommendations. In Proceedings of the 18th
international conference on World wide web, WWW
’09, pages 111–120, New York, NY, USA, 2009. ACM.

[18] Mark Steyvers, Padhraic Smyth, Michal R. Zvi, and
Thomas Griffiths. Probabilistic author-topic models
for information discovery. In KDD ’04: Proceedings of
the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 306–315,
New York, NY, USA, 2004. ACM.

[19] Yi Zhang and Jonathan Koren. Efficient bayesian
hierarchical user modeling for recommendation
system. In SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 47–54,
New York, NY, USA, 2007. ACM.

708

