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Abstract

Spreadsheets are used by millions of knowledge workers (e.g., accountants, sales

persons, project managers, executives, teachers, and programmers) as a routine all-

purpose tool for the storage, analysis and manipulation of data. Given the ubiquity

and utility of spreadsheets, it has been indispensable to allow data stored in spread-

sheets to interact with external applications and Web services. To enable other

applications and services to consume or generate spreadsheet data, online spread-

sheet applications often provide Web service interfaces (APIs).

In this dissertation, we study the problem of spreadsheet-based data transfor-

mation, which transforms spreadsheet data to the structured formats required by

external applications and Web services (i.e., spreadsheet-based data transformation).

We propose a novel framework, namely TranSheet, including methods and tools for

supporting both professional programmers and knowledge workers without program-

ming background to transform spreadsheet data to structured formats effectively and

easily.

Unlike prior methods, we propose a novel approach in which transformation

logic is embedded into a familiar and expressive spreadsheet-like formula mapping

language. In terms of expressiveness, popular transformation patterns provided by

transformation languages and mapping tools, that are relevant to spreadsheet-based

data transformation, are supported in the language via spreadsheet formulas and

functions. Consequently, the language avoids cluttering the source document with

transformations and turns out to be helpful when multiple schemas are targeted.

Furthermore, the language supports the generalization of a mapping from instance-

level to template-level element, which allows the mapping to be applied to multiple

spreadsheets with similar structure.

Although the reuse of previously specified mappings promises a significant re-

duction in manual and time-consuming transformation tasks, its potential has not

been fully realized in current approaches and systems. To enable users to reuse
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previously specified mappings using the above proposed language, we formulate the

spreadsheet-based data transformation reuse problem and propose a solution that

relies on the notions of spreadsheet templates, mapping generalization, and similar-

ity join. Given a spreadsheet instance that is being mapped to the target schema, we

efficiently and effectively recommend a list of previously specified mapping formulas

that can be potentially reused for the instance.

In order to make the aforementioned proposed language available to knowledge

workers without programming background as well as boost the productivity of pro-

fessional programmers, we propose a number of novel end-user oriented transfor-

mation techniques. We redesign the mapping interface of TranSheet to make it

more intuitive and easy-to-use based on nested tables. We develop a collection of

form-based transformation operators that help users graphically specify mappings,

instead of remembering and writing complex mapping formulas. Users can not

only customize an existing operator to suit transformation needs, but also modify

a specified transformation operation using a history list. Furthermore, we provide

a mechanism for automatically suggesting transformations from source columns to

atomic target labels, which is helpful when it is difficult and complicated to specify

transformations via formulas or form-based operators.

The approaches proposed in this dissertation have been implemented in proto-

types. Moreover, these approaches are validated via experiments in real applications.

Real users are also used to evaluate the usability of TranSheet. The experimental

results show that : (i) TranSheet is expressive and flexible enough to support numer-

ous practical spreadsheet-based transformation scenarios; (ii) TranSheet is efficient

and effective enough to support transformation reuse; (iii) TranSheet significantly

reduces transformation specification time and promotes users’ satisfaction in com-

parison with state-of-the-art mapping tools.
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Chapter 1

Introduction

Information integration is the problem of combining information from different

sources into a unified format, which is considered as a major challenge faced by

modern organizations [49]. Two specific facets of information integration are data

exchange and data integration. Transformation of data from one schema to an-

other is frequently necessary when there is a need of integrating or exchanging data

between independently developed applications [84, 94, 71, 105].

Data transformation converts data structured under one schema (the source

schema) into data structured under another schema (the target schema) [74]. It has

been recently renewed with the increasing explosion of relational data, XML files,

and office documents (e.g., emails, spreadsheets, and text documents) on the Web,

within enterprises, and in large-scale scientific projects [36, 109, 86].

In the last several years, there has been a rich body of research in terms of theo-

retical foundations and practical tools on data transformation [10, 111, 127]. Match-

ing techniques [119, 44, 64, 108, 50] (semi)-automatically help users find semantic

correspondences between the source and target schemas. Users deal with transfor-

mations at a higher level of abstraction using the graphical user interfaces (GUIs)

of mapping tools [127], instead of writing difficult and error-prone programs using

powerful transformation languages (e.g., XSLT [17], SQL/XML [66], XQuery [16]).

Besides research prototypes Clio [85, 116, 79], Clip [117], and +Spicy [112] with

solid theoretical foundations [100, 71], there has been a proliferation of industry

1
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mapping tools (e.g., IBM Relational Data Architect [7], Altova MapForce [1], Stylus

Studio [9], MS BizTalk Mapper [3]).

However, data transformation is still a labour-intensive, time-consuming, and

cumbersome task [85]. Mainstream solutions to data transformation rely on speci-

fying mappings between elements of the source and target schemas to transform a

source instance to the target format [72, 143]. However, there are many cases in

which the schema of the source instance is unknown and transformation is performed

directly from the source instance to the target format. For example, end-user visual-

ization websites [136, 136, 5] let users upload a data set (i.e., a source instance) and

assist them in transforming it to the format required by a given visualization type

(e.g., chart, map, and timeline) with its own target schema. Moreover, these solu-

tions are mainly developed with an enterprise setting, which requires the expertise

of professional programmers. In addition to that, these solutions mainly focus on

the development of an ad-hoc program that can handle only exactly one data source,

without an explicit intent for future reuse [128]. In other words, past transformation

efforts are not effectively leveraged to save time and avoid effort duplication.

Spreadsheets are ubiquitous tools used for the storage, analysis and manipulation

of data [133]. There are several reasons for their popularity. Spreadsheet-based data

management offers important flexibility in data formatting over a tabular grid [34].

Spreadsheets do not impose many constraints regarding the data layout. Data can

be organized according to subjective importance, preferences, and styles (e.g., by

placing important data in the top-left corner or placing related elements of data

next to each other). Furthermore, spreadsheets offer a simple, but effective formula

language using spatial relationships that shield users from the low-level details of

traditional programming [96]. To use the language, a user only needs to master two

concepts, namely cells as variables and functions for expressing relations between

cells. Consequently, spreadsheets are widely used by knowledge workers (e.g., ac-

countants, sales persons, teachers, project managers, executives, and programmers),

who play a key role in critical enterprise activities [93].

Given the ubiquity and utility of spreadsheets, it is increasingly necessary to

allow data stored in spreadsheets to interact with external applications and ser-
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vices [114, 125]. One of the key problems is transforming spreadsheet data to

the structured formats required by these services and applications [60]. There has

been a proliferation of online spreadsheet-like applications including Google Spread-

sheets [6], Excel Web App [4], and Zoho Spreadsheet [22]. To enable other applica-

tions to consume or generate spreadsheet data, some of these applications provide

Web service interfaces (APIs). The authors in [93] report that spreadsheets often

serve as hubs for organizing and manipulating information, which is later transferred

to other services for archiving or processing.

This dissertation studies the problem of spreadsheet-based data transformation,

which transforms spreadsheet data to the structured formats required by external

applications and Web services (i.e., spreadsheet-based data transformation). We be-

lieve that facilitating interoperation between spreadsheets, applications, and Web

services will profoundly improve the effectiveness of information and services man-

agement in a variety of domains. We particularly aim at enabling both professional

programmers and knowledge workers, who do not possess programming background,

to effectively, easily, and conveniently transform spreadsheet data to structured for-

mats.

This chapter is organized as follows. Section 1.1 provides an overview of data

transformation including its applications and some main challenges that make data

transformation cumbersome, time-consuming, and labor-intensive. Next, Section 1.2

outlines the research issues tackled in this dissertation. Afterwards, Section 1.3

summarizes our main contributions and presents some applications of our work.

Finally, Section 1.4 gives the roadmap for the whole dissertation.

1.1 Applications and challenges of data transfor-

mation

In this section, to motivate the importance of data transformation, we summarize

its usefulness in several application domains in Section 1.1.1. Section 1.1.2 presents

some main challenges of data transformation.
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1.1.1 Applications of data transformation

Data Exchange

Data exchange (i.e., data translation) is basically process of transforming an instance

of a given source schema to an instance of a given target schema according to the

relationship between the source and target schemas [71, 100, 88, 73]. In particular,

data exchange entails the materialization of data, after the data have been extracted

from the source and restructured into the unified format.

Data Integration

The main objective of data integration is to provide users with a uniform inter-

face (i.e. mediated schema or global schema) to query multiple autonomous and

highly diverse data sources, therefore shielding users from locating and interacting

with each data source, and then manually combining results [105, 86]. Data inte-

gration systems formed a new industry, namely Enterprise-Information Integration

(EII) [87]. Data sources must be transformed to match with the global schema (tar-

get schema) as part of semantic query processing. It is worth noting that, unlike

data exchange, an instance of the target schema is just a virtual view, not being

materialized.

SOA

Service-Oriented Architecture (SOA) enables organizations to quickly respond to

ever changing business requirements by reusing and leveraging existing applications

and resources in which their functionality is exposed via XML-based Web services.

SOA largely focuses on developing composite applications [39, 55]. To develop a

composite application, it is necessary to transform the messages of constituent ap-

plications into the internal format required by the composite one. Together with

workflow technology and traditional Enterprise Application Integration (EAI) sys-

tems, SOA is one of the main approaches of application integration.
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Data Warehousing

A data warehouse is a decision support database that consolidates data from multi-

ple data sources [45]. Data coming from external data sources must be transformed

to the internal representation (schema) of data warehouse. External data may be

overlapped and needs to be cleaned to remove duplicates. Extract-Transform-Load

(ETL) tools are used to address these problems, including a collection of cleaning

operations (e.g., detection of approximate duplicates) and transformation opera-

tions [99].

Data Cleaning

Data cleaning (i.e., data cleansing or scrubbing) is the process of detecting and

removing errors (e.g., misspellings and invalid data) and inconsistencies (e.g., dupli-

cate information) from data to improve the quality of data [120]. Data cleaning is

typically performed together with data transformation [121]. Data is first analyzed

to find errors and then suitable transformations are applied to fix them.

1.1.2 Challenges of data transformation

Despite its pervasiveness and importance, data transformation is still a cumbersome

and time-consuming task. Given the source (S) and target (T) schemas, and an

instance I of S, data transformation produces a target instance J conforming to T

according to a specified mapping
∑

ST between S and T. This problem is challenging

because of the following reasons:

Schema matching

Before a mapping specification begins, it is first needed to establish semantic corre-

spondences between the elements of S and T, which is also termed schema matching,

ontology matching, and ontology alignment in the literature [108, 119, 64, 44]. For

example, elements FirstName and LastName of S correspond to element Name of T.

The semantics of the source and target elements can be only inferred from a few
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sources, including creators of data, related documentation, and associated schemas

and data [65]. Unfortunately, data creators may have retired or forgotten about the

data; related documentation may be sketchy, outdated, or unavailable.

Thus, the major information source relies on the clues of schemas and data, such

as element names, types, data values, schema structures, and integrity constraints.

However, these clues may be unreliable and insufficient. For example, two elements

with the same name can refer to different real-world entities (e.g., area can refer

to either the location or square-feet area). Conversely, two elements with different

names can refer to the same entity (e.g., area and location both refer to the

location of a house).

Furthermore, matching may be subjective and depends on application domains.

As a result, users often need to involve themselves in matching processes. Sometimes,

the involvement of a single user is considered subjective and a large group of people

must participate in decision making activities [65].

Mapping specification

Writing transformations using powerful transformation languages (such as SQL/XML [66],

XSLT [12], and XQuery [16]) by hand is very difficult, tedious, and error-prone. As a

result, mapping technology has been developed to help automate this process [127].

A visual mapping tool is used to specify at higher and language-neutral level how

to transform the source instance I to the target instance J. The mapping specifica-

tion is then translated into executable code (e.g., XSLT, XQuery, Java, C#), which

can be later deployed to a runtime engine (e.g., Saxon [26], AltovaXML [40], and

Xalan [78]) for transformation execution.

In regard to mapping interface, most mapping tools follow relationship-based

metaphor, in which the source schema (S) is located on the left side of the screen

and the target schema (T) is located on the right side of the screen [127]. Lines are

connected between the elements of the two schemas and these lines may be annotated

with one or more functions to specify a complex relationship. This flow-chart-like

interface is typically cluttered and unintuitive for knowledge workers as pointed
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out in the literature [126, 19, 113, 140]. This may be aggravated if the number of

elements of the source and target schemas are large and there are multiple lines with

annotated functions connecting between the elements of the two schemas.

In addition to that, the built-in functions provided by these mapping tools are

unfamiliar to knowledge workers without programming background since these func-

tions are similar to the ones of low-level programming languages. For example, Al-

tova Mapforce’s functions [1] are based on the ones of XPath, XSLT, XQuery, Java,

C#, C++; the functions of MS BizTalk Mapper [3] are powered by the program-

ming languages (e.g., C# and VB.NET) of .NET framework [61]; the functions of

Stylus Studio [9] are identical the ones of XSLT, XQuery, and Java.

Moreover, these mapping tools separate between two modes, namely development

mode and execution mode. Like professional programming environments, users must

compile a mapping specification to see transformation result. This raises another

hassle because instant feedback is not available for each step of the mapping speci-

fication.

Last but not least, the transformed target instance and the source instance

are located in two separate windows, which make comparison between these two

instances cumbersome. As a result of that, transformation validation and refinement

often take time.

1.2 Key Research Issues

In Section 1.1.2, we outlined some key challenges of data transformation. In this

section, we present several specific research issues in the context of spreadsheet-based

data transformation that will be tackled in this dissertation.

1.2.1 Spreadsheet-based data transformation language

Given the fact that a significant amount of the world’s data is maintained in spread-

sheets, it has been indispensable for using data stored in spreadsheets to interact

with external applications and Web services [114, 125]. We consider the problem



1.2. Key Research Issues 8

of developing a language for transforming spreadsheet data to the structured for-

mats required by these applications and services. This problem is different from

traditional data transformation [71] because of: (i) the characteristics of the source

data model (spreadsheets); (ii) the users that we aim at, who are familiar with the

spreadsheet programming paradigm.

This problem is challenging because of the nature of spreadsheet documents.

First, the data spreadsheets contain is not organized following a predefined schema

due to the flexibility of spreadsheets in terms of data formatting. Second, there may

be mismatches between the organization of spreadsheet data and the structure ex-

pected by an external application. For example, while spreadsheet data is organized

in a table, the schema used by a bar chart (used by ManyEyes [136]) consists of a

list of labels, each comprising a list of bars.

The language should meet the following requirements. First, the language should

leverage existing users’ programming experience (e.g., spreadsheet-like formulas).

This ensures that the investment made by users in learning spreadsheet programming

is paid off. Second, the language should preserve the important characteristics

of the spreadsheet programming paradigm (e.g., instant feedback at each step) in

order to make mapping specification productive. Third, the language should provide

utilities to help users work around structural mismatches between spreadsheet data

organization and the target schema. Fourth, the language should be expressive

enough to support numerous spreadsheet-based transformation scenarios compared

with other popular transformation languages (e.g., XSLT and XQuery) and mapping

tools [37]. Finally, since a spreadsheet may be mapped to multiple target schemas

(e.g., visualize a data set using multiple visualization types), the language should

preserve the presentation of the spreadsheet when specifying a mapping. As a result,

users do not have to tediously and laboriously modify a spreadsheet to specify

mappings as well as maintain multiple versions of the spreadsheet.
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1.2.2 Spreadsheet-based data transformation reuse

Given that data transformation is a labour-intensive and error-prone process [85], it

is useful to reuse previously specified mappings as much as possible to save time and

reduce effort duplication. We consider problem of reuse in transforming spreadsheet

data to the structured formats required by external applications and Web services.

The problem is challenging because: (i) Spreadsheet systems do not impose many

constraints on spatial layout of data, and users can organize same data according

to their own preferences and styles, not in a pre-defined way. Therefore, given two

spreadsheet instances, it is programmatically difficult to uncover if they are similar

in terms of structure. Mapping a spreadsheet instance to a target schema typically

depends on the spatial layout of the instance; (ii) Given a spreadsheet instance

and a target schema, there may have multiple ways of mapping the instance to the

schema. For instance, an optional attribute of the target schema can be mapped or

not mapped to spreadsheet data; (iii) A mapping of a spreadsheet instance to the

target schema is only applied exactly to this instance, not to other instances with

similar structure that also need to be mapped to the target schema; (iv) Since a

mapping repository may contain a large number of mappings (up to a few hundred

thousand mappings), the reuse recommendation mechanism should suggest previ-

ously specified mappings in an effective and efficient way.

1.2.3 Simplification of spreadsheet-based data transforma-

tion

On one hand, mainstream data transformation solutions mainly target professional

programmers. Consequently, it is still unintuitive and difficult for knowledge work-

ers without programming background to specify transformations. On the other

hand, data transformation has been increasingly necessary for knowledge workers

to analyze, manipulate and visualize data (e.g., social data analysis [137], Web

mashup [139, 142], and SOA [39]).

Although the language we mentioned in Section 1.2.1 leverages users’ spreadsheet
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programming experience, we mainly focus on the foundations and semantics of the

language, rather than its usability aspects.

We consider the problem of simplification in transformation spreadsheet data to

structured formats, which makes spreadsheet-based data transformation available

to non-technical users. Also, professional programmers can boost their productiv-

ity by using more usable techniques. The main challenges are: (i) to provide an

intuitive and familiar interface for transformation specification, instead of relying

on the cluttered and unintuitive interface of relationship-based mapping tools [127];

(ii) to provide utilities that enables the user to specify transformations via the reuse

and customization of pre-defined transformation operators, rather than remembering

complex syntax and writing transformation programs from scratch; (iii) to automat-

ically suggest transformations from source columns to target labels. This is helpful

when specifying transformations using the language mentioned in Section 1.2.1 or

the above pre-defined transformation operators is complicated and difficult.

1.3 Contributions and Application Scenarios

We summarize the main contributions of the dissertation in Section 1.3.1. We then

describe some real application scenarios of our work in Section 1.3.2.

1.3.1 Contributions

To address the research issues outlined in Section 1.2, we develop a novel framework,

namely TranSheet, with the global architecture depicted in Figure 1.1. In a nut-

shell, this framework enables users to: (i) transform spreadsheet data to structured

formats using a familiar and expressive spreadsheet-like formula mapping language;

(ii) reuse previously specified mappings effectively and efficiently to save time and

reduce effort duplication; (iii) specify transformations in an intuitive and easy-to-use

way without requiring deep programming background. We believe that our frame-

work will benefit both professional programmers and knowledge workers without

programming background.



1.3. Contributions and Application Scenarios 11

GUI
(Spreadsheet-based Interface using nested tables)

Executable Code
Generation Engine

Transformation 
Execution Engine

(Saxon)

Target 
Instance

Mapping
Repository

Reuse 
Recommendation

Engine

Mapping 
Generation

Engine

Mapping Specification

Template 
Inference

Engine

Schema
Matching

Engine

Form-based
Operator

Interpretation
Engine

Transformation
Suggestion

Engine

Topes
Repository

Tgds

XQuery

Formulas

Spreadsheet data

Target schemas

Figure 1.1: Global architecture of TranSheet

We choose MS Excel as the main spreadsheet environment for development due

to its ubiquity. However, the concepts presented in this dissertation are generic and,

therefore, are applicable to other spreadsheet environments as well (e.g., OpenOf-

fice [25], Gnumeric [28], Google Spreadsheets [6], and Apple Numbers [20]).

To achieve the aforementioned goals, we first build the foundations of TranSheet

by developing a spreadsheet-like formula mapping language that takes into account

the expressiveness in comparison with popular transformation languages [17, 16]

and mapping tools [38]. We then provide users with facilities to effectively and

efficiently reuse previously specified mapping formulas by extending this language.

Finally, we propose some novel end-user oriented transformation techniques so that

knowledge workers without programming background can make the most of the

language by specifying mappings easily and professional programmers can boost

their productivity with the language. In this dissertation, we make a number of

unique and significant contributions which are summarized in the following.
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Spreadsheet-like formula mapping language.

We propose a novel approach, which enables users to perform mappings via a fa-

miliar and expressive spreadsheet-like formula language. Our work differs from

existing approaches on spreadsheet-based data transformation [60, 123, 136] in the

sense that: (i) we leverage existing users’ experience in spreadsheet programming

and preserve important characteristics of spreadsheet programming; (ii) we exploit

frequently used formatting features of spreadsheets to generalize a mapping from

instance level to template level; (iii) we avoid cluttering spreadsheet documents

with transformations by embedding transformation logic into the language. More

specifically, the main contributions are as follows:

• A spreadsheet-like formula language is designed for specifying mappings be-

tween spreadsheet content and the target schema. In terms of expressive-

ness, we demonstrate that popular transformation patterns that are rele-

vant to spreadsheet-based transformation are supported in the language using

spreadsheet formulas and functions. These patterns are the result of a care-

ful analysis of commonly needed mapping scenarios supported by transfor-

mation languages (e.g., XSLT/XQuery), mapping tools [37], and spreadsheet

corpuses [77]. This enables the language to avoid cluttering the source spread-

sheet with transformations and it turns out to be helpful when multiple target

schemas are mapped (e.g., visualize a data set using multiple visualization

types).

• Target schema restructuring is proposed to allow users to resolve the mis-

matches between the source spreadsheet and the target schema. It is a com-

mon occurrence that the target schema, which is defined externally, does not

coincide with the spreadsheet organization. Our solution is to allow users to

organize a view of the target schema by a set of rearrangement operations.

By rearranging the schema view, users do not modify the underlying target

schema; they merely specify how mapping formulas should be interpreted.

• The language supports the generalization of a mapping from instance-level to

template-level element that allows applying the mapping for multiple instances
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with similar structure. Formatting features frequently used in spreadsheets

templates (e.g., relationships between cells, cell styles, and border styles) are

exploited to generalize mappings. As a result of that, TranSheet is able to

transform a large number of naturally occurring spreadsheets belonging to

this class, which cannot be handled by the alternative approaches.

• We use tuple generating dependencies (tgds) [72, 143], a widely used schema

mapping formalism, to describe the semantics of TranSheet. In comparison

with the state-of-the-art, we introduce a collection of new functions to tgd ex-

pressions. We then extend a previous query generation algorithm [79, 118] to

generate executable queries (i.e., XQuery) for these functions. Consequently,

each target document generated by TranSheet corresponds to a canonical uni-

versal solution of data exchange [71].

• We implemented a prototype of the language and evaluated the expressiveness

and mapping generalization of TranSheet in two real applications. The exper-

imental results show that our language is expressive and flexible enough to

support numerous practical spreadsheet-based data transformation scenarios.

Transformation reuse recommendation.

We extend the above language (Section 1.3.1) to address the problem of spreadsheet-

based data transformation reuse. We formulate the problem and propose a solution

that relies on the notions of spreadsheet templates, mapping generalization, and

similarity join. Given a spreadsheet instance that is being mapped to the target

schema, we recommend a list of previously specified mapping formulas that can be

potentially reused for the instance. To the best of our knowledge, the problem of

spreadsheet-based transformation reuse has not been addressed before in the setting

we consider here. More specifically, we make the following contributions:

• We formulate the problem of spreadsheet-based transformation reuse as a vari-

ant of similarity join [43, 57, 141], which is a well-known similarity search prob-

lem that finds all pairs of objects whose similarity is above a given threshold.
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• We define spreadsheet templates that are used to characterize spreadsheet

structures. We propose techniques to infer a template from an existing spread-

sheet based on common spreadsheet presentation patterns. We then generate

the string-based representation of an inferred template.

• We propose an algorithm to recommend previously specified mappings for

a new spreadsheet instance that needs to be mapped to the target schema.

This relies on computing similarity between string-based representations of

templates.

• We design a repository to organize mapping information. We implemented

a prototype of the proposed solution and evaluated its performance. The

experimental results show that our solution is efficient enough to support a

few hundred thousand mappings stored in the mapping repository. TranSheet

is also effective enough to support transformation reuse.

End-user centric data transformation techniques.

Some people use spreadsheets for nothing more than managing and printing a list of

data items. Others know how to use very simple formula, such as A11 = SUM(A1 :

A10), but nothing more. As a result, the formula mapping language described in

Section 1.3.1 may be complex for them. Furthermore, even expert users, who are

already familiar with the syntax of the language, sometimes wish to boost their

productivity by not having to remember and write complex syntax.

To tackle the challenges in simplifying spreadsheet-based data transformation

presented in Section 1.2.3, we make the following contributions:

• The mapping interface is designed based on nested tables, which is more intu-

itive and easy-to-use for non-technical users. With this new interface, users can

preview the whole transformation result right in the sheet containing source

data. This is convenient for side-by-side comparison in order to validate and

refine transformations. Besides, a matching module is integrated to help users
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semi-automatically find semantic correspondences between the source spread-

sheet and the target schema.

• A set of form-based transformation operators are proposed allowing users to

specify mappings graphically. The benefits of these operators are two-fold: (i)

they enable users who do not have expertise in spreadsheet programming to

specify transformation easily; (ii) they boost the productivity of users who are

already experts in spreadsheet programming. We define these operators in a

generic way in order to cover numerous transformation patterns. We provide

a form customization mechanism allowing users to customize an existing op-

erator to suit transformation needs. We also offer a history list allowing users

to modify specified transformation operations.

• TranSheet automatically suggests transformations from source columns to

atomic target labels. This relies on employing Topes [132], where each Tope

is a category of data with different formats and functions for transforming

between these formats. Automated transformations are helpful when specify-

ing transformations using formulas or form-based transformation operators is

complicated and difficult.

• We implemented a prototype and conducted an extensive user study across

a set of real spreadsheet-based transformation tasks to evaluate the usability

of our approach. The experimental results show that TranSheet significantly

reduces specification time and promotes users’ satisfaction in comparison with

state-of-the-art mapping tools.

1.3.2 Application scenarios

Since a significant amount of the world’s data is stored in spreadsheets, we be-

lieve TranSheet has numerous applications in data exchange for both desktop and

Web-based environments. From Office 2007, Microsoft uses Office Open XML

(OpenXML) as the default format for data storage instead of the binary file for-

mats [125]. Recently, OpenXML is approved by International Organization for

Standardization (ISO) as an international standard. Due to the ubiquity of Excel,
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this will further facilitate the exchange of spreadsheet data with other applications

and services. In the following, we describe some real application scenarios. They

are only part of an almost unlimited list of possibilities.

Business users can use TranSheet to interact with the enterprise business sys-

tems of their organization, such as CRM and ERP, to get information for analysis.

For instance, to analyze sales performance using a spreadsheet, a salesperson may

use TranSheet to interact with the services exposed by Salesforce CRM to retrieve

notifications of new sales leads.

TranSheet can be used as a transformation plug-in for end-user visualization

websites, such as ManyEyes [136] and Google Fusion Tables [5]. TranSheet enables

users to map a dataset to different visualization types while keeping the dataset

unmodified. Regarding what currently offers by these websites, users must perform

multiple manipulations on source documents as well as maintain many versions of

them, each for a visualization. This makes transformation cumbersome and labori-

ous.

A small retailer might use TranSheet to request quotations from several big online

suppliers such as Amazon, Ebay, and PriceGrabber. These quotations may be stored

in a spreadsheet containing product information for making reports and selecting

the most appropriate price - regardless of differences in the various suppliers’ Web

service interfaces.

1.4 Thesis Organization

The remainder of the dissertation is organized as follows. In Chapter 2, we pro-

vide a background as well as the state-of-the-art of data transformation. The main

objective is to review the literature on data transformation and uncover its short-

comings. We first describe the basic steps of a transformation task. We then briefly

present key schema matching techniques, which is not the main focus of this dis-

sertation. Next, popular transformation languages and visual mapping tools are

discussed in details with examples. Data exchange theory, which is a generalization
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of the mapping generation algorithms of tgd-based mapping tools, is presented af-

ter that. We also look at string-based data transformation and transformation by

examples techniques. Finally, we summarize and point out some main drawbacks of

the state-of-the-art.

In Chapter 3, we lay the foundations of TranSheet by developing a spreadsheet-

like formula mapping language that enables users to express mappings between

spreadsheet data and the elements of the target schema. We first characterize the

problem by defining the data models of spreadsheets and the target schema. We

then explain the main constructs of the language in details. Target schema re-

structuring is presented after that. Next, we describe the mapping generalization

constructs, allowing a mapping to be applied to a set of spreadsheet instances with

similar structure. Afterwards, we formally present the semantics of the language

using tgds. We then describe how to generate executable code (i.e., XQuery) from

produced tgds. Finally, we present the prototype implementation and evaluate the

expressiveness and mapping generalization of TranSheet in two real applications.

In Chapter 4, we study the problem of reuse in transforming spreadsheet data to

structured formats. First, we formulate this problem as a variant of a similarity join.

Next, we define spreadsheet templates, which are used to characterize spreadsheet

structures. We then propose techniques to infer templates from existing spread-

sheets. We then generate the string-based representation of an inferred template.

Afterwards, we propose an algorithm to recommend previously specified mappings

for a new spreadsheet instance that needs to be mapped to the target schema. We

then design a repository to organize mapping information. Finally, we implement a

prototype of the proposed solution and evaluate its performance and effectiveness.

In Chapter 5, we propose some novel techniques to simplify spreadsheet-based

data transformation. We first redesign the mapping interface based on nest tables to

make mapping specification more intuitive, and then discuss how a matching mod-

ule is integrated. Next, we present form-based transformation operators (including

operator definition, operator customization, operator interface design and seman-

tics, transformation operation modification, and the expressiveness of operators)

that help users specify mappings graphically, instead of writing complex mapping
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formulas from scratch. Afterwards, we describe automated transformation sugges-

tions supported by TranSheet. Finally, we discuss the prototype implementation

and conduct an extensive user study to evaluate the usability of our techniques.

Finally, Chapter 6 gives concluding remarks and discusses possible directions for

future work.



Chapter 2

Background and state-of-the-art

on data transformation

In this chapter, we focus on providing central concepts in data transformation and

then reviewing the state-of-the-art. The chapter is structured as follows. We first

describe the running example in Section 2.1 that is used throughout the chapter

for illustration purpose. We present the basic steps of a data transformation task

in Section 2.2. Afterwards, we explain the key techniques of schema matching in

Section 2.3. We then describe two popular transformation languages, namely XSLT

and XQuery, in Section 2.4. Next, some major mapping systems are outlined in

Section 2.5. Data exchange theory is briefly discussed in Section 2.6. We also look

at some work on string-based data transformation and transformation by examples

techniques in Sections 2.7 and 2.8, respectively. Finally, we summarize and describe

some limitations of the state-of-the-art in Section 2.9.

2.1 Running Example

We now describe the running example depicted in Figure 2.1 for this chapter. There

is a new incoming order (Listing 2.1) conforming to the source schema shown on the

left side in Figure 2.1 that must be transformed to the internal format conforming

to the target schema shown on the right side in Figure 2.1. More specifically, the

19
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Source

Order[1..*]

Id
Name
Address

Street
City
State

ProdName

Quantity
Price

Target

Order[1..*]

OrderId
FirstName
LastName

Address
Items[1..*]

ProductName
Quantity

Price

Figure 2.1: Running Example

following mappings are performed:

• Values of Id are copied to values of OrderId. Similarly, values of ProdName

and Quantity of the source are copied to values of ProductName and Quantity

of the target, respectively.

• Values of the source element Price are converted to formats expected by values

of the targe element Price (e.g., convert Australia dollar to US dollar)

• Split values of element Name into values of FirstName and LastName according

to delimiter whitespace “ ” in the middle of values of element Name.

• Merge values of elements Street, City, and State into values of Address

with delimiters whitespace “ ” between elements Street and City, City and

State.

2.2 Basic steps of data transformation

In order to review existing approaches on data transformation, we describe the basic

steps of a data transformation task shown in Figure 2.2. First, semantic correspon-
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Figure 2.2: Basic steps of data transformation

dences must be identified between elements of the source and target schemas (e.g.,

element Id corresponds to element OrderId; element Name corresponds to elements

FirstName and LastName; elements Street, City, and State correspond to element

Address). This is done via a schema matching engine [119, 108, 44, 64].

Second, it is needed to precisely specify how to relate the source instances to the

target instances according to the above identified correspondences, which is called

schema mapping. Such correspondences strongly affect quality of a mapping system:

faulty correspondences lead to invalid mappings, and therefore producing incorrect

target instances [51]. Schema mapping can be seen as interpretations with runtime

consequences of the correspondences that result after schema matching [85]. For

example in Figure 2.1, while schema matching only suggests that FirstName and

LastName in one schema are related to Name in the other schema, schema mapping

says that concatenating the former yields the later (e.g., Name =FirstName + “ ”

+ LastName) [50].



2.2. Basic steps of data transformation 22

Then, executable code (e.g., Java, C#, SQL, XSLT, and XQuery) is generated

from a mapping specification to implement data transformation via a code gener-

ation engine. Note that some transformation systems may generate intermediate

code for mapping optimization, reuse, and manipulation (e.g., mapping composition

and mapping inversion [143]).

Next, the source instance is transformed to the target instance by executing the

generated code using an execution engine (e.g., AltovaXML [40] and Saxon [26]).

Finally, the target instance is shown up to users for transformation verification

and refinement. Note that schemas and mappings can be stored in a repository for

future reuse.

Listing 2.1: An instance of the source schema of the running example stored in file

Orders.xml

<?xml ve r s i on=”1.0”?>

<Source>

<Order>

<Id>42</Id>

<Name>Ford Pre fec t</Name>

<Address>

<Street>Addison</Street>

<City>Sydney</City>

<State>NSW</State>

</Address>

<ProdName>Beer</ProdName>

<Quantity>3</Quantity>

<Price >1.5</Price>

</Order>

<Order>

<Id>525</Id>

<Name>Arthur Dent</name>

<Address>

<Street>Evans</Street>

<City>Sydney</City>

<State>NSW</State>

</Address>

<ProdName>Beer</ProdName>

<Quantity>4</Quantity>

<Price>2</Price>

</Order>

</Source>
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2.3 Schema Matching

The main goal of schema matching is to identify semantic correspondences between

the source and target schemas (i.e., identify similar elements between two schemas).

For example, in Figure 2.1, Id is semantically related to OrderId, while it has no

semantic relationship with FirstName. Schema matching is a difficult task to auto-

mate since only schema designers full understand semantics of schema elements and

design documentation is often poor and cannot capture completely semantics [65].

One solution is a human expert manually provides correspondences after thoroughly

investigating the source and target schemas. However, when the structures of the

source and target schemas are complex and the number of elements is large, such

manual process is very time-consuming and labor-intensive.

To increase productivity, a schema matching module can be used to semi-automatically

return a set of correspondences. Matching is often performed at either schema level

or instance (data contents-based) level [119]. Various types of information at schema

level can be exploited to find correspondences. Some of them are as follows:

• Element name-based matching matches elements with equal names (e.g., Price

vs Price and Quantity vs Quantity) or similar names (e.g., ProdName vs

ProductName and Id vs OrderId).

• Structural level matching refers to matching combinations of elements appear-

ing together in a structure. For example, Source.Order partially structurally

matches Target.Order.

• Constraint-based matching uses constraints on data types, value ranges, unique-

ness, and so on to identify the similarity of elements. For example, ProdName

and ProductName have the same type string; Id and OrderId are both unique

keys in the source and target schemas.

Each matcher (i.e., a matching algorithm) uses the above information to solve

a given match task. While a hybrid matcher directly combines multiple informa-

tion to determine matching candidates (e.g., name-based matching combines with
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data type-based matching, namely name-type matcher, to identify the correspon-

dence ProdName vs ProductName), a composite matcher combines results of several

independently executed matchers including hybrid matchers (e.g., first use type-

name matcher and then use name-path matcher [64]). The result of executing each

matcher is usually a similarity matrix, in which candidates are entries of the ma-

trix with highest similarities. This produces different matching cardinalities 1-1

(e.g., Id vs OrderId in Figure 2.1), 1-n (e.g., Name vs FirstName and LastName in

Figure 2.1), or n-1 (e.g., Street, City, and State vs Address) mappings. For a

comprehensive survey on matching approaches, we refer the readers to the work of

Rahm et al. [119].

For example, in the case of the running example, COMA++ [44] gives us the

result shown in Table 2.1 by running the default matching strategy. As can be

seen, COMA++ chooses the correspondences with highest scores and beyond a pre-

defined threshold (0.6) from the similarity matrix. Also, COMA++ provides the

wrong correspondence Source.Order.Address vs Target.Order.Address. Instead,

Street, City, and State of the source schema correspond to Address of the target

schema.

Mapping Element Source Target Score

1 Order Order 0.748

2 Id OrderId 0.684

3 Quantity Quantity 0.849

4 Price Price 0.855

5 ProdName ProductName 0.736

6 Address Address 0.608

7 Name FirstName & LastName 0.687

Table 2.1: List of the semantic correspondences produced by COMA++ for the
running example

Despite the development of numerous matching techniques, schema matching

generally suffers from poor precision and recall as presented in [80] (e.g., 40% pre-

cision and 45% recall in ontology-matching tasks). As a result, human intervention

is usually needed to validate and refine matching result. Spicy [51] proposes a new

way to mitigate human intervention, namely mapping verification. This approach

assumes that the instance of the target data source are available, in addition to the

target schema (e.g., in the cases of Web data sources). Whenever a set of candidate



2.4. Transformation Languages 25

correspondences is produced via a schema matching module, the generated trans-

formation result is compared against the available target instance. Based on such

comparison, users are able to determine plausible correspondences produced by the

schema matching module.

Apart from COMA++ [44], current matching systems are mainly not readily

public for download and testing and matching results are only available in publi-

cations, such as Cupid [108] and Similarity Flooding [13]. As a result of that, a

recent integration project, namely Open Information Integration (OpenII) [24, 30],

has been developed to provide open integration components. One of them is the

open-source schema matching component, namely Harmony.

2.4 Transformation Languages

Due to ubiquity of XML as a standard for heterogeneous data exchange [127], we

mainly focus on XML-to-XML transformation languages in this section. Several lan-

guages have been proposed for transforming between XML documents (e.g., XML-

QL [63], Quilt [56], XSLT and XQuery). Among these languages, XSLT [12], [17]

and XQuery [16] are the most well-known and widely adopted ones, which are rec-

ommended by W3C. Two languages are equally capable as they are all largely based

on XPath [11], [15]. It is worth noting that while XSLT is designed to transform

documents, the main design purpose of XQuery is to query documents. However,

the line between querying and transformation is increasingly blurred. There is an

enormous overlap between features and capabilities of these two languages. Most

industry mapping tools and research prototypes support generating both XSLT and

XQuery. Section 2.4.1 provides an overview of XPath, which is the foundation for

both XSLT and XQuery. Sections 2.4.2 and 2.4.3 describe the key features of XSLT

and XQuery, respectively. Finally, Section 2.4.4 discusses differences between XSLT

and XQuery as well as points out the limitations of the two languages.
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2.4.1 XPath

XPath is an expression language that allows users to navigate through elements and

attributes in an XML document. An expression takes one or more input and returns

a value as output. The XPath value that results from evaluating an expression is

known as a sequence, which is a collection of items and may contain atomic values as

well as nodes. The syntax is a mix of basic programming languages (e.g., $Price*5)

and Unix-like path expressions (e.g., /Source/Order/Id). The syntax of XPath is

primarily similar to Uniform Resource Identifiers (URI), but navigation is via nodes

in a XML tree rather than a physical file structure. Paths are interpreted regarding

the current context node (the node is being processed). For example, simple location

expressions are: (i) “/”, which selects the root node; (ii) “.”, which is shorthand

for the current context node; (iii) “..”, which selects the parent node of the context

node.

XPath is declarative, rather than procedural: It relies on patterns to describe

types of nodes to look for, including axis (specify a directional relationship in the

node tree such as parent::), test (define the nodes to select using the node name or

type, such as “*” “@*”, “node()”), and predicate (use to filter a selection by using

conditions on nodes,, such as //Order[Name=‘‘Ford Prefect’’]).

Besides, XPath provides a set of useful functions on strings (e.g., concat, contains,

substring-before), numbers (e.g., avg, sum, max ), and date/time (e.g., current-date,

current-time) that allow manipulating various node values in an XML document.

For example, given the XML document in Listing 2.1, some valid XPath expres-

sions are:

• /Source/Order/Name using the absolute XPath expression selects all the Name

elements which are children of the Order elements; the Order elements, in turn,

are children of the root element Source.

• The expression //Order[Name="Ford Prefect"] using the relative path with

a predicate returns all the Order elements and each of which has the child

element Name equalling “Ford Prefect”.
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• Function concat can be used to merge values of three fields Street, City, and

State with delimiters whitespace “ ”, and returns a string value.

2.4.2 XSLT

An XSLT program (i.e., stylesheet) is a set of template rules and each of which has

two parts including a matching pattern that is matched against nodes of a source

XML document and template content that can be instantiated to form part of the

result tree. A template declaration is of the form:

<x s l : template match=”match exp r e s s i on”>

content

</x s l : template>

where match expression is an XPath expression selecting source nodes that the

template applies to, and content is a sequence of XSLT elements containing opera-

tions for transforming selected nodes as well as inserting nodes and textual content

into the result tree. Some common operations are writing textual content, copy-

ing nodes and values from the source document, and generating new elements and

attributes.

A template is applied by means of xsl:apply-templates and xsl:call-template

(for named templates) elements inside content part of xsl:template elements. The

execution of an XSLT style sheet on an XML instance starts with applying the tem-

plate matching the outermost element of the instance. Afterward, the execution pro-

cess is directed by elements xsl:apply-templates and xsl:call-templates. Some

instructions for generating output content are <xsl:copy-of select=’expression’>

and <xsl:value-of select=’expression’>. Attributes values can be generated

by <element-name attribute=’expression’>.

Other advanced feature of XSLT 2.0 [31] are branching elements including <xsl:if>,

<xsl:choose>, <xsl:for-each> , <xsl:variable> (for variables declaration), and

<xsl:sort> (for sorting). XSLT 2.0 also supports grouping via element

<xsl:for-each-group> with attribute group-by for selecting grouping attributes.

With this element, functions current-group() and current-grouping-key() are
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used to work with grouping data.

For example, Listing 2.2 shows XSLT code for transforming the source instance

in Listing 2.1 to the target format conforming to the target schema according to the

transformation scenario in Figure 2.1.

Listing 2.2: Part of XSLT Code for implementing the running example

<?xml ve r s i on=”1.0”?>

<x s l : s t y l e s h e e t v e r s i on =”2.0”

xmlns : x s l=”http ://www.w3 . org /1999/XSL/Transform”>

<x s l : output method=”xml” indent=”yes”/>

<x s l : template match=”/Source”>

<Target>

<x s l : apply−templates s e l e c t=”Order”/>

</Target>

</x s l : template>

<x s l : template match=”Order”>

<Order>

<x s l : apply−templates s e l e c t=”Id” />

<x s l : apply−templates s e l e c t=”Name” />

<x s l : apply−templates s e l e c t=”Address ” />

<x s l : apply−templates s e l e c t=”ProdName”/>

<x s l : apply−templates s e l e c t=”Quantity”/>

<x s l : apply−templates s e l e c t=”Pr i ce”/>

</Contact>

</x s l : template>

<x s l : template match=”Id”>

<OrderId>

<x s l : value−o f s e l e c t =”.”/>

</OrderId>

</x s l : template>

<x s l : template match=”Name”>

<FirstName>

<x s l : value−o f s e l e c t=”subst r ing−be f o r e ( . , ’ ’)”/>

</FirstName>

<LastName>

<x s l : value−o f s e l e c t=”subst r ing−a f t e r ( . , ’ ’)”/>

</LastName>

</x s l : template>

<x s l : template match=”Address”>

<Address>

<x s l : apply−templates s e l e c t=”S t r e e t ” />

<x s l : text> </x s l : text>

<x s l : apply−templates s e l e c t=”City ” />

<x s l : text> </x s l : text>

<x s l : apply−templates s e l e c t=”State ” />

</Address>

http://www.w3
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</x s l : template>

. . .

</x s l : s t y l e s h e e t>

2.4.3 XQuery

As mentioned earlier, XQuery is primarily designed as a query language for data

stored in XML documents. The simplest kind of query is to select elements or at-

tributes from an input document known as path expressions [138]. Path expressions

consist of a series of steps, separated by slashes, and each of which traverses the

elements and attributes in the XML documents. Syntax of a path expression is

identical to the one of XPath. Path expressions are simple and easy-to-learn, but

their limitation is that they can only return elements and attributes appearing in

input documents. FLOWR (“for, let, where, order by, return”) expressions over-

come this limitation by allowing users to manipulate, transform, sort, group, and

join results returned by path expressions: for is used to set up an iteration through

a set of nodes; where is used to set up conditions for selecting nodes; order by

sort the query results according to source atomic nodes in a certain order; return

indicates results that should be returned; let is used to set the value of a variable,

and unlike for, it does not set up an iteration.

XQuery also provides more than 100 functions that can be used to manip-

ulate strings (e.g., substring, concat, string-len) and dates (e.g., dateTime,

years-from-duration, hours-from-time), perform mathematical operations (e.g.,

number, round, floor), and other useful scenarios. In addition to these built-in

functions, users are able to define their own functions.

Here are some examples of valid XQuery snippet:

• doc(‘‘Orders.xml’’)//Order returns all Order elements of the Order.xml

document.

• Listing 2.3 performs the transformation scenario depicted in Figure 2.1.

• Listing 2.4 shows an example of user-defined function for reformatting date
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from Australian format (dd/mm/yyyy) to US format (mm/dd/yyyy).

Listing 2.3: Part of XQuery code for implementing the running example

<Target>

{
f o r $Order in doc ( ‘ ‘ Orders . xml ’ ’ ) / Source /Order

re turn

<Order>

<OrderId>{$Order/ Id/ text ()}</OrderId>

<FirstName>

{ t oken i z e ( $Order/Name/ text ( ) , ‘ ‘ ’ ’ ) [ 1 ] }
</FirstName>

<LastName>

{ t oken i z e ( $Order/Name/ text ( ) , ‘ ‘ ’ ’ ) [ 2 ] }
</LastName>

<Address>

{ concatenate ( $Order/Address / Street , ‘ ‘ ’ ’ , $Order/Address /City ,

‘ ‘ ’ ’ , $Order/Address / State )}
</Address>

<Item>

<ProductName>{$Order/ProdName/ text ()}</ProductName>

<Quantity>{$Order/Quantity/ tex t ()}</Quantity>

<Price>{$Order/ Pr i c e / text ()}</Price>

</Item>

</Order>

}
</Target>

Listing 2.4: An XQuery User-defined Function

de c l a r e func t i on func : format−date ( $dt as xs : s t r i n g ) as xs : s t r i n g

{
l e t $ re fDateSt r := s t r i n g ( $dt )

l e t $year := subs t r i ng ( $re fDateStr , 1 , 4 )

l e t $month:= subs t r i ng ( $re fDateStr , 6 , 2 )

l e t $day := subs t r i ng ( $re fDateStr , 9 , 2 )

re turn concat ( $month , ’ / ’ , $day , ’ / ’ , $year )

} ;

2.4.4 Discussion

XQuery is designed for querying XML documents, but also often used for trans-

forming between XML documents that directly competes with XSLT. One is not
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powerful than other (both of them are Turing-complete [98]); the choice of a lan-

guage is mainly a matter of personal preference. XQuery code is less verbose than

XSLT and is more familiar with SQL users. XSLT 2.0 and XQuery 1.0 share many

components:

• Both languages share the same data model including concepts of sequences,

atomic values, nodes, and items.

• While XQuery 1.0 is a superset of XPath 2.0, XSLT 2.0 makes use of XPath

2.0 expressions from matching templates to copy nodes from input documents.

• Most built-in functions of both languages are identical. All of operators, such

as comparison and arithmetic operators, yield the same values in both lan-

guages.

There are also some subtle differences between two of them due to design pur-

poses [110]:

• While XSLT focuses on processing most of document which is reasonable for

publishing, XQuery assumes users want to zoom in a few sections of document.

• XSLT assumes the process information is mostly textual, so XSLT is not a

strongly type language. XQuery, in contrast, is a strongly typed language.

• XSLT assumes the generated document is presented in a markup language so

XSLT is presented in an XML vocabulary while the syntax of XQuery is not

XML-based.

Although the two languages are quite powerful, it is very tedious and error-prone

to express transformations by hand in these languages (as shown in Listings 2.2

and 2.3. Code is typically verbose that makes programs difficult to maintain and

debug. More importantly, it requires deep programming expertise which is far be-

yond the level of knowledge workers. Mapping technology is, therefore, proposed to

help automate transformation tasks. We will discuss mapping technology in details

in the next section.



2.5. Mapping systems 32

2.5 Mapping systems

Mapping tools are designed to help users (semi)-automatically specify transforma-

tions using graphical user interfaces (GUI). Then, mapping tools translate a trans-

formation specification into executable language (e.g., XSLT or XQuery), which can

later deployed to an execution engine to perform transformation over input data

instances. Different tools have different levels of language support. For example,

Stylus Studio supports many more XSLT functions than Clio does [38].

Most mapping tools, either research prototypes (Clio [85], Clip [117], +Spicy[112])

or industry tools (e.g., Atova MapForce [1], IBM Rational Data Architect [7], Stylus

Studio [9], Microsoft BizTalk Mapper [3]) are basically relationship-based mapping

systems [127]. More specifically, the visual interface of such mapping system dis-

plays the source schema and the target schema on the left side and the right side of

the screen, respectively. Relationships between the source and target schemas are

specified via connecting lines from the source elements to the target elements. In

complex transformation scenarios, lines may be annotated with one or more func-

tions/conditions of a built-in library for performing various transformation patterns,

such as sorting, grouping, and filtering values.

For instance, a screenshot of mapping tool Altova MapForce for implementing

the running example is shown in Figure 2.3. The mapping interface (shown in the

Mapping tab) can be described as follows:

• While function concat of XPath is used to merge values of three source at-

tributes Street, City, and State into values of target attribute Address,

function substring-before is used to split values of attribute Name into values

of attribute FirstName.

• Copying values of attributes Id, ProdName, and Quantity to values of at-

tributes OrderId, ProductName, and Quantity are performed by connecting

lines without requiring any functions.

• Functionmultiply is used to convert values of source attribute Price to formats

required by values of target attribute Price.
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• Source structural element Order is connected to target structural element

Order to establish a structural mapping.

As can be seen, a library of built-in functions is located on the Libraries pane;

the Message pane displays validation warnings or error warnings; the Overview

pane displays the current mapping area as a red rectangle, which is helpful when a

mapping is complex; the Output tab can be clicked to see the transformation result;

the XQuery tab can be clicked to see generated XQuery code; the Database Query

tab allows directly querying any major database.

Note that the structural mapping connected between two source and target el-

ement Order is needed to generate a valid target instance (with two orders 42 and

525). If this structural mapping is missing, an invalid target instance is produced,

in which each element of the target schema appears twice. Meanwhile, in the case

of Clio [85] and Stylus Studio [9], users do not have to establish this structural map-

ping to generate the valid target instance. This is because there is no standard for

the interpretation of visual metaphors and constructs [37].

In the following, we focus on describing two recent research prototypes, namely

Clio [85, 115] and Clip [117, 118], along with their theoretical foundations.

2.5.1 Clio

Clio [115, 79, 85] is the first mapping system that formalizes the relationship be-

tween the correspondences of the source and target attributes and the constraints of

the source and target schemas. It uses tuple-generating dependencies (tgds) [71] to

describe this formalism. More specifically, in the first phase (namely semantic trans-

lation), a set of inter-schema correspondences is converted into a set of mappings

that capture the design choices made between the source and target schemas. The

second phase (namely data translation) translates these mappings into executable

queries that translating the source instance into the target format satisfying the

constraints and structure of the target schema. The mapping generation algorithm

of Clio can be briefly described as follows.
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Figure 2.3: Mapping interface of commercial tool Altova MapForce for implementing
the running example

First, it is needed to identify logical relations of the source and target schemas.

Logical relations are maximal tableaux. A tableau is a set of semantically related

schema elements: elements are related when they are siblings under the same set

element or when set elements are related via a parent-child relationship. In order to

generate logical relations, the algorithm finds primary paths in each schema. These

are linear tableaux obtained by the enumeration of all paths from roots to any

intermediate node of set type in the schema. Then logical relations are retrieved by

chasing intra-schema constraints (e.g., key/foreign keys) against primary paths.

After the source and target logical relations are computed, a 2-dimensional ma-

trix is created where one dimension is source logical relations and the other is target

logical relations. Each entry in this matrix relates a source logical relation with a

target logical relation and is called a mapping skeleton. A mapping skeleton is called

active if it contains at least one established value mapping. Each active skeleton,

that is not implied or subsumed by others, emits a logical mapping [115]. Each

logical mapping is characterized by a tuple generating dependency (tgd) [71]. Such

tgds represent different ways to cover the correspondences and generate tuples in
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the target.

After that, generated logical mappings are possibly related in the sense that

they share part of source and target expressions. In such cases, it is possible to

nest logical mappings inside each other to reduce the overall number of mapping

expressions which are called nested mappings [79]. As a result, the execution stage

will generate much less redundancy in the target data.

For example, consider the mapping generation for the running example. We have

the following logical relations:

• S1 = {o ∈ Source.Order}

• T1 = {o′ ∈ Target.Order}

• T2 = {o′ ∈ Target.Order, l′ ∈ o′.Item}

There are two active mapping skeletons, namely (S1, T1) and (S1, T2), but (S1, T1)

is implied by (S1, T2). Hence, only one logical mapping is emitted by (S1, T2). The

corresponding tgd is:

∃ concatenate, left, right, len, search(∀ o ∈ Source.Order → ∃ o’ ∈
Target.Order, l’ ∈ o’.Item | o’.OrderId = o.Id, l’.Address =

concatenate(o.Street,’’,o.City,’’,o.State), l’.FirstName =

left(o.Name,search(’’,o.Name)), l’.LastName =

right(o.Name,len(o.Name)-search(’’,o.Name)), l’.Price = o.Price/0.85

+ 5, l’.Quantity = o.Quantity, l’.ProductName = o.ProdName)

As can be seen, functions concatenate, left, search, len, and right (Excel-

like functions) are included in the mapping. Additionally, Clio is also equipped with

a matching component to reduce the burden of discovering semantic correspondences

for users.

The code generation step produces XQuery code from generated tgds. The query

generation algorithm of Clio [79] takes as input a nested mapping M and produces

an XQuery FLWOR expression as output. Each sub-mapping of M is translated
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into one nested FLWOR expression of F. F has the following structure: a “for”

clause captures the iteration implied by every universally quantified variable of M ;

a “where” clause captures the join and filtering predicates; a “return” clause con-

structs the XML items for the target schema elements mentioned in the existentially

quantified part of the mapping; elements bound to some of the variables defined in

the for clauses are copied to the proper positions according to the values mappings

expressed in the mapping M . In turn, the sub-mappings of M recursively replicate

this structure. The target data is then nested by default according to Partioned

Normal Form (PNF) [33]. Moreover, target required attributes with no correspon-

dences to the source elements are created using Skolem functions. For example,

XQuery code generated from the above tgd-based mapping description of the run-

ning example is as follows (without PNF):

<Target>

{
foreach $o in Source/Order

return

<Order>

<OrderId>$o/Id/text()</OrderId>

<FirstName>left($o/Name/text(),search(’ ’,$o/Name/text()))

</FirstName>

<LastName>right($o/Name/text(),string-length($o/Name/text())

- search(’’,$o/Name/text()))</LastName>

<Address>concat($o/Street/text(),’’,$o/City/text(),’’

,$o/State/text())</Address>

<Item>

<ProductName>$o/ProdName/text()</ProductName>

<Quantity>$o/Quantity/text()</Quantity>

<Price>$o/Price/text()/0.85 + 5</Price>

</Item>

</Order>

}
</Target>



2.5. Mapping systems 37

There has been numerous extensions to Clio to implement the model manage-

ment vision pioneered by Bernstein et al. [47, 48]. So far, two operators for mapping

manipulation, namely mapping composition [74] and mapping inversion [70, 75], are

supported by Clio.

Recent work on schema covering, the problem of identifying easily understand-

able objects for describing large and complex schemas, is a major step towards

enabling transformation reuse for Clio [128]. It assumes that there is a repository

of concepts and transformations among them. A concept represents a basic busi-

ness object such as employee, product, article, and so on that is at higher-level

abstraction than a schema and therefore is easier to understand for users. Given

the repository, schema covering finds the relevant concepts and the mappings from

the source and target schemas to those concepts. Then using existing mappings

between concepts in the repository, transformation from the source to the target

can be computed by composing such individual mappings.

2.5.2 Clip

Clip [118] extends Clio’s mapping generation algorithm which allows users to ex-

plicitly control structural mappings. In other words, besides value mappings (i.e.,

mappings between two attributes of the source and target schemas), it introduces

structural mappings that connect between structural elements (i.e., SetOf elements)

of the source and target schemas. As a result of that, it produces more accurate

and expressive mappings, such as filtering, sorting, and explicit grouping. Clip al-

lows users to explicitly build nesting mappings via structural mappings and context

propagations trees (CPTs). A structural mapping may be associated with a build

node. Build nodes can also be connected from one to another via context arcs to

form CPTs. A CPT is indeed a nested mapping.

Additionally, Clip’s build nodes correspond to Clio’s mapping skeletons. For each

build node, source side builders are matched against the computed source tableaux.

If a build node appears in a CPT, source-side builder are matched against source

tableaux. If no source tableau is found, a new tableau is created that will cover
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source builders and added to the list of Clio’s tableaux. It is done similarly for

the target side of each builder. At the end, the source and target tableaux that

form the context of the build node are identified. Thus, this tableaux pair is the

Clio mapping skeleton that matches the build node. Clip also extends the query

generation algorithm of Clio to take into account minimum-cardinality assumption,

explicit grouping, and aggregating.

For instance, in the case of the running example, suppose that the target instance

is grouped by the grouping attributes {Id, Name, Street, City, and State}. The

user needs to use function groupby and its input parameters are these grouping

attributes. Clip generates the following second-order tgd to describe this mapping:

∃ groupby, concatenate, left, right, len, search(∀ o ∈ Source.Order

→ ∃ o’ ∈ Target.Order, l’ ∈ o’.Item | o’ =

groupby(o,o.Id,o.Name,o.Street,o.City,o.State), o’.OrderId = o.Id,

l’.Address = concatenate(o.Street,’’,o.City,’’,o.State), l’.FirstName

= left(o.Name,search(’’,o.Name)), l’.LastName =

right(o.Name,len(o.Name)-search(’’,o.Name)), l’.Price = o.Price/0.85

+ 5, l’.Quantity = o.Quantity, l’.ProductName = o.ProdName)

2.6 Data exchange

Data exchange generalizes the theoretical foundation of the mapping system Clio

to develop more generic solutions for the data exchange setting. In general, given a

source instance I, there may be possible multiple solutions for the target instance

under a schema mappingM = {S, T,Σst,Σt}, instead of only one canonical universal

solution as in the case of mapping tools. Here, S and T are the source and target

schema respectively; Σst is a set of source-to-target dependencies; Σt is a set of target

dependencies. The space of all solutions for I under M is denoted as Sol(M, I).

Suppose that Σt is the union of a weakly acyclic set of tgds with a set of equality-

generating dependencies [46], chase I under Σst ∪Σt produces a universal solutions

in polynomial time [71] if a solution exists. In a nutshell, a universal solution
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has no more or no less data than required for the data exchange problem, and is

therefore preferable. In fact, Clio and other tgd-based mapping systems (e.g., Clip

and +Spicy [111]) implement a naive chaise compared with data exchange.

For example, consider a data exchange problem in which the source schema has

two relation symbols P and Q, each of which with attributes A and B, while the

target schema has one relation symbol T also with attributes A and B. Suppose that

Σt = 0. The source-to-target dependencies and the source instance are:

• P (a, b)→ ∃XT (a,X)

• Q(a, b)→ ∃Y T (Y, b)

• I = {P (a0, b
′
0), Q(a′′0, b0)}

Note that the dependencies in Σst do not completely specify the target instance.

As a result, there may be solutions for I. Two of them are:

• J0 = {T (a0, X0), T (Y0, b0)} where X0 and Y0 represent unknown values called

labelled nulls.

• J1 = {T (a0, b0)}

We can see that J1 does not use labelled nulls and are replaced with source

values. Solution J1 seems to be less general than J0 since it makes assumption

that all two tuples required by the dependencies are equal to the tuple {T (a0, b0))}.
In fact, J0 is a universal solution that contains no more or no less than what the

specification requires.

As we mentioned above, another problem with current mapping systems is that

they generate a lot of redundancy for the target data. Although the work [79]

propose nested mappings to remove redundancy of Clio’s algorithm, its solution is

not generic enough to apply to a large number of cases. The notion of core solution

is introduced in [73] to deal with redundancy in a generic way. In a nutshell, a core

solution is the optimal solution for data exchange. +Spicy [111] is the first mapping

system that integrates and implements core solutions by rewriting tgd expressions

of Clio.
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2.7 String-based data transformation

There has been some work specifically focusing on string-based transformation,

which converts one or more strings to another. Tope [132] enables users to de-

fine string-based types at higher level of abstraction in comparison with types of

traditional programming languages (e.g., strings, integer, float), such as address,

phone number, person name, email, and currency. This is done via an easy-to-use

and form-based editor, namely Toped++ [130]. Context-free grammar (CFG) is

then generated accordingly for each defined type [131]. Each type (Tope) has mul-

tiple formats. For example, Tope person name has at least two formats, namely

“FirstName LastName” and “LastName, FirstName”.

A format of a Tope has its constituent parts. For example, a US phone number

has three parts: area code, exchange, and local number. The user can add remove,

and reorder parts, and can specify constraint-like facts on parts. A US phone number

format can be described by the following CFG:

• number → area - exch - local

• area → d d d {c=60}

• exch → d d d

• local → d d d d

• d → 0 — 1 — 2 — 3 — 4 — 5 — 6 — 7 — 8 — 9

It means that area code, exchange, and local number contain three, three, and

four digits respectively. Note that c stands for a “confidence” in the range of 0 and

100; 100 indicates that the constraint is always true; 0 indicates that it is never true.

In this example, constraint c=60 is “often” true.

Based on generated CFGs of formats, a parser can be developed to validate an

input string against a given format. The validation result returns a number between

0 and 1 to indicate the parser’s confidence in each string’s validity. The parser rejects

any input with a confidence of 0 and accepts any input with a confidence of 1. If
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the confidence is between 0 and 1, the parser consults the user’s confirmation rather

than rejecting the input. This is less constraining than using regular expressions.

A Tope has its own functions for automatically transforming one format to an-

other [130]. For example, it is able to automatically transform “Bill Gates” to

“Gates, Bill” using a reformatting function of Tope person name.

Potter’s Wheel [121] is an interactive data cleaning up system that tightly couple

transformation and discrepancy detection inside a spreadsheet-like interface which

is very familiar to end-users. Data cleaning basically has three components: audit-

ing data to find the discrepancies, choosing transformations to them, and applying

them on the data set. Users gradually add or undo transformations in a intuitive

and graphical manner through the spreadsheet-like interface. The result of a trans-

formation is shown instantly on screen and it can be undone easily if its effect is

undesirable.

By proposing a number of common form-based transformation operators (e.g.,

format, add, drop, copy, merge, split), Potter’s Wheel enables users to perform

various transformations graphically instead of writing complex programs; writing

code for transformation is time-consuming and error-prone, and distracts users from

the main job of detecting discrepancies and choosing transformations to fix them.

Instead, transformations should be specified via intuitively GUI-based operations, or

at worst by outlining the desired effect on example values, which will be discussed in

Section 2.8. For example, operator split allows the user to graphically split string

“Gates, Bill” into two strings “Bill” and “Gates” according to splitters “ ” and “,”.

Wrangler [97] extends Potter’s Wheel with additional operators for common

cleaning tasks such as positional operators, aggregation, semantic roles, complex

reshaping operators, and conditional mapping operators (e.g., update country to

“US” where state=“California”). As users select data, Wrangler suggests applicable

transformations based on the current context of interaction. Transformation steps

of users are recorded in a script to facilitate reuse and provide documentation of

data provenance. Wrangler’s interactive history viewer supports review, refinement,

and annotation of these scripts.
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Figure 2.4: Simultaneous editing interface of PotLuck

PotLuck is a Web-based integration tool designed for end-users to mashup data [89].

It let casual users pool together data from several sources, supports drag and drop

for merging fields, integrates and extends the facet browsing paradigm for focus-

ing on subsets of data to align, and applies simultaneously editing for cleaning up

data syntactically. Regarding simultaneous editing, PotLuck groups field values into

columns by structural similarity (e.g., the phone numbers in a column all have area

code 212). These are used to visually separate out values of different forms and let

the user edit different forms differently. The user can click on any field value to

get focus, start editing, and all editing changes are applied to other values in the

same column in a similar fashion. An example of simultaneous editing is shown in

Figure 2.4.

These techniques of PotLuck are further developed and improved in GridWorks [22],

a tool of Metaweb for cleaning and analyzing data which is uploaded by users or

come from Freebase [21]. This tool is recently renamed Google Refine [90].

2.8 Transformation by examples

An effective way to reduce hassle for casual users in transformation specification is to

learn transformation rules from examples provided by the user, and then apply those

rules to the transformation task at hand. It is similar to the principle of programming

by example (or programming by demonstration) systems [62]. Specifically, the user

demonstrates a set of actions on an example, these systems tries to infer application
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(transformation) logic via learning (generalization) from the example. The logic can

then be applied to other similar tasks.

CopyCat [18] is a form of programming by examples: (i) The user demonstrates

the actions to be performed to integrate data (copying data from source appli-

cations to CopyCat); (ii) The system learns to generalize users’ actions; (iii) The

system immediately shows the effects of applying these generalizations in the form of

auto-complete suggestions, and solicit feedback on these suggestions. For example,

suppose one integration task is to take a list of shelters from a television Website,

combine it with the shelters’ contact stored in a spreadsheet. The user can load the

page of shelters into her Web browser. She then selects and copies the first item,

then pastes it into the CopyCat workspace. CopyCat tries to generalize the user’s

action and copies other shelters from the same page and adding new rows to the

workspace. The user might accept or reject these new rows.

As an example of transformation by examples, Potter’s Wheel [121] enables users

to specify most splits by performing them on examples. As a result, the user is able

to parse and split values without specifying complex regular expressions or writing

programs. More specifically, the user selects a few examples values v1, v2,...,vn and

in a graphical and direct-manipulation way shows how these are to be split into

components (w11 w12...w1m),...,(wn1,...,wnm). Potter’s Wheel then infers a structure

for each of m new columns and uses these structures to split the rest of values.

Arvind et al. proposes methods [42] to learn string transformations from exam-

ples in the context of record matching [67]. In reality, “Robert” and “Bob” may re-

fer to the same first name, but are syntactically different. Consequently, traditional

string similarity functions are not flexible enough to account for such synonyms.

Work [41] proposes a framework for addressing such representational variations by

incorporating a priori knowledge of such variations into record matching process. It

uses string transformations to refer to such alternate representations (e.g., Robert→
Bob). Unfortunately, for a real-world matching task, thousands of string transforma-

tions could be too time-consuming and labour-intensive and it is a challenging task

for a programmer to compile such set of relevant transformations. Thus, work [42]

considers the approach of learning transformations from user-provided examples of
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matching strings. The key idea is that by drawing examples from the data sets being

matched, it is able to identify transformations that are appropriate for the matching

task at hand.

2.9 Summary

In this chapter, we have provided a background and briefly described main ap-

proaches in data transformations. In summary, there are two main limitations with

respect to current approaches:

• Data transformation solutions mainly target professional developers, rather

than knowledge workers with no programming background, who wish to apply

data transformation to their daily jobs. Although visual mapping tools have

been designed to help users specify mappings via GUI, instead of writing low-

level code, they are still unintuitive and cumbersome in terms of mapping

interface and transformation functions.

• Previous transformation efforts are not leveraged effectively in order to reduce

effort duplication. Schema covering is first proposed in [128] as a step towards

transformation reuse. However, this work assumes the existence of a repository

of concepts and mappings among those concepts. Building such repository is

challenging and time-consuming. Moreover, existing mappings between these

concepts must be composed, which is also a complicated task.

Given such limitations, we believe that there are two issues that mapping tech-

nology should facilitate and deserve further work: (i) an intuitive and familiar envi-

ronment for knowledge workers to specify transformations; (ii) a reuse mechanism

for leveraging past transformations effectively and efficiently. In this dissertation,

we will try to address these issues in the context of spreadsheet-based data trans-

formation.



Chapter 3

Spreadsheet-based data

transformation language

In this chapter, we investigate the problem of developing a spreadsheet-based data

transformation language. Unlike prior methods, we propose a novel approach in

which transformation logic is embedded into a familiar and expressive spreadsheet-

like formula mapping language. All transformation patterns commonly provided by

popular transformation languages and mapping tools are supported in the language.

Consequently, the language avoids cluttering the source document with transforma-

tions and turns out to be helpful when multiple schemas are targeted. Further-

more, the language supports the generalization of a mapping from instance-level to

template-level element. This enables the language to transform a large number of

naturally occurring spreadsheets, which cannot be effectively handled by the alter-

native approaches. We implemented a prototype and evaluated the benefits of our

approach via experiments in two real applications.

3.1 Introduction

As mentioned earlier in Section 2.1, given the fact that a significant amount of

the world’s data is maintained in spreadsheets, it is now increasingly necessary

for using data stored in spreadsheets to interact with external applications and

45
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services [114]. One of the key problems is transforming spreadsheet data to the

structured formats required by these services and applications. This problem is

different from traditional data transformation [71] because of: (i) characteristics of

the source data model (spreadsheets); (ii) users that we aim at, who are familiar

with the spreadsheet programming paradigm.

In this chapter, we consider the problem of developing a spreadsheet-based data

transformation language. We believe that facilitating interoperation between spread-

sheets, applications and Web services will profoundly improve the effectiveness of

information and services management in a variety of domains. However, the prob-

lem is challenging because of the nature of spreadsheets: (i) the data they contain

does not conform to a predefined schema; (ii) there may be a mismatch between the

organization of spreadsheet data and the structure expected by an external appli-

cation. For example, the spreadsheet in Figure 3.1(a) contains data arranged in a

table while the schema used by a bar chart (Figure 3.1(d)) consists of a list of labels,

each comprising a list of bars.

(a)

PieChart

Pies [ ]

Pie

Name

Value

(b)

ScatterPlot

Dots [ ]

Dot

X

Y

Label

Size

(c)

BarChart

Labels [ ]

Label

Name

Bars[ ]

Bar

X

Y

(d)

Figure 3.1: (a) The Swine Flu data set; (b) Pie Chart schema; (c) Scatter Plot
schema; (d) Bar Chart schema

Mainstream solutions to data transformation rely on specifying mappings be-

tween elements of the source and target schemas to transform a source instance to

the target format [72]. However, there are many cases in which the schema of the

source instance is unknown and transformation is performed directly from the source

instance to the target format. For example, end-user visualization websites [136, 8, 5]

let users upload a data set (i.e., a source instance) and assist them in transforming it

to the format required by a given visualization type (e.g., chart, map, and timeline)

with its own target schema.

There are three main existing approaches. The first approach, namely schema-
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based, allows users to specify schemas of spreadsheets via a layout specification

language [104, 60], and then transformation can be performed at schema level using

either low-level transformation languages (e.g., XSLT/XQuery), or high-level map-

ping tools, such as Clio [79], Clip [118], +Spicy [111], and Altova MapForce [2].

However, users must learn a new language, e.g., by creating correspondences be-

tween the source and target elements and annotating those correspondences with

one or more unfamiliar functions (e.g., functions of XSLT/XQuery, Java, C#) in

the case of mapping tools [127]. This flowchart-like mapping interface is typically

cluttered when schemas are large and mappings are complex [126]. On the con-

trary, spreadsheet users are familiar with formulas and an incremental approach to

building applications with instant feedback [96, 106, 135, 139].

The second approach, namely column-based [123, 53], enables users to spec-

ify simple mappings between spreadsheet columns and target attributes (atomic

elements) via drag-and-drop operations . This approach requires direct correspon-

dences between spreadsheet column contents and the values of target attributes. For

example, after dragging attribute Y of scatter plot (Figure 3.1(c)) onto source col-

umn Infection Rate (Figure 3.1(a)), the values of the column are copied to values

of the attribute. Such straightforward correspondences, however, are unlikely when

the target application and the spreadsheet have been developed independently. For

instance, while the infection rate is expressed per million in the source, the target

scatter plot expects a rate of per one hundred thousand. To correct this issue, the

source spreadsheet must be modified, e.g., the values of column Infection Rate

must be changed.

The third approach, visualization specific, supports simple mappings in the con-

text of visualization [136, 5]. It compares atomic types of source columns and target

attributes of visualization types to suggest mappings to users. For example, to vi-

sualize the Swine Flu data set (Figure 3.1(a)) using a pie chart (Figure 3.1(b)),

one of five candidate columns Confirmed Cases, Deaths, Infection Rate, Death

Rate, Population can be mapped to attribute Value since all of them have the

same type float. Similar to the column-based approach, source column data directly

corresponds to the values of target attributes.
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In summary, all three approaches suffer from at least one of the following draw-

backs: (i) Existing programming experience of spreadsheet users (e.g., spreadsheet

formulas with instant feedback at each step) is not leveraged; (ii) The transforma-

tion may be tedious to accomplish since it can involve multiple manipulations on

the spreadsheet. It can also clutter the original organization of the spreadsheet with

transformations. This issue may be aggravated if users need to interact with sev-

eral different target applications, e.g., if requesting quotations by interacting with

various supplier Web services or if targeting several visualizations as depicted in

Figure 3.1; (iii) There is no reuse support of a mapping for multiple spreadsheets

with similar structure, which makes the transformation of these spreadsheets very

time-consuming.

To address these issues, we propose a novel approach, namely TranSheet, which

enables users to perform mappings via a familiar and expressive spreadsheet-like for-

mula language. The syntax and semantics of the language are mainly based on MS

Excel due to its ubiquity, but our design is also applicable to other spreadsheet sys-

tems (e.g., OpenOffice Calc, Google Spreadsheets, Gnumeric, and Apple Numbers).

The main contributions of this paper are as follows:

• A spreadsheet-like formula language is designed for specifying mappings be-

tween spreadsheet data and the target schema. In terms of expressiveness,

we demonstrate that popular transformation patterns that are relevant to

spreadsheet-based transformation are supported in the language via spread-

sheet formulas and functions. These patterns are the result of a careful analysis

of comonly needed mapping scenarios provided by transformation languages

(e.g., XSLT/XQuery), mapping tools [37], and spreadsheet corpuses [77]. This

enables the language to avoid cluttering the spreadsheet with transformations

and it turns out to be helpful when multiple schemas are targeted (Section 3.3).

• Target schema restructuring is proposed to allow users to resolve the mis-

matches between the source spreadsheet and the target schema. It is a com-

mon occurrence that the target schema, which is defined externally, does not

coincide with the spreadsheet organization. Our solution is to allow users to
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organize a view of the target schema by a set of rearrangement operations to

match the spreadsheet organization. By rearranging the schema view, users

do not modify the underlying target schema; they merely specify how mapping

formulas should be interpreted (Section 3.4).

• The proposed language supports the generalization of a mapping from instance-

level to template-level element allowing the mapping to be applied to multi-

ple instances with similar structure. Frequently used formatting features of

spreadsheet templates are exploited to generalize mappings. Consequently,

TranSheet can transform a large number of naturally occurring spreadsheets,

that cannot be effectively handled by the alternative approaches (Section 3.5).

• We use tuple generating dependencies (tgds) [72, 143], a widely used schema

mapping formalism, to describe the semantics of TranSheet. We introduce

a collection of new functions to tgd expressions. We then extend a previous

query generation algorithm [79, 118] to generate executable queries for these

functions (Section 3.6).

• We implemented a prototype and evaluated the expressiveness and mapping

generalization of TranSheet in two real applications. The experimental results

show that our language is expressive and flexible enough to support numerous

practical spreadsheet-based data transformation scenarios (Section 3.8).

Note that within this chapter, we mainly focus the foundations and semantics

of the language, rather than its usuability aspects. The usability of the language is

addressed in Chapter 4.

The rest of this chapter is structured as follows. Section 3.2 presents the data

models of spreadsheets and target schemas. Next, Section 3.3 describes in details the

formula mapping language. Section 3.4 introduces schema restructuring details that

help users work around structural mismatches between the source spreadsheet and

the target schema. Section 3.5 then provides the generalization of mapping formulas.

Section 3.6 formally describes semantics of the language and how executable code

is generated for transformation execution. Section 3.7 presents the implementation
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details of TranSheet. Section 3.8 describe experiments in two real-world applications.

We discuss related work in Section 3.9 and conlude in Section 3.10.

3.2 Data Model

We present the spreadsheet data model in Section 3.2.1 and then target data model

in Section 3.2.2.

3.2.1 Spreadsheet data model

Unlike traditional database, a spreadsheet contains data in a poorly structured way.

Spreadsheets are collections of cells organized in a grid or large table. Each cell is

either empty or contains an atomic value. In that respect, spreadsheets are, at least,

more structured than, say, free text.

Very often, a spreadsheet conveys much additional structuring information through

the spatial organization of cells, i.e., through the way users lay out data on the grid.

For example, a spreadsheet may contain data organized into tables where each col-

umn corresponds to an attribute. Unfortunately, this structuring remains implicit:

It is known to the user who organized the data layout, it may be understandable

to another human looking at the spreadsheet, but it cannot readily be used for

mapping purposes since it is not available in an explicit and formal representation.

Note that some explicit and semi-formal structuring is also possible in modern

spreadsheet environments. For example, MS Excel allows creating tables (list is

the name used in Excel terminology) to distinguish header cells from content cells.

Availability of such structure would ease the mapping problem. However, we will

discuss here the most general settings, in which no such structures are available.

A spreadsheet S (where S, from now on, will stand indifferently for Source or

Spreadsheet) is modelled as a two-dimensional matrix of cells.

Each cell is identified by its coordinates. We use the coordinate 〈x, y〉 to denote

the cell corresponding to column x and row y. Following spreadsheet conventions,
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cell coordinates are numbered starting from 1 and can also be denoted using capital

letters for column numbering followed by numbers for rows numbering. For example,

cell 〈1, 5〉 can also be denoted as cell A5. Cell A1 is the upper-leftmost cell. A

rectangular subset of cells is called a range and is denoted by its upper-leftmost

and lower-rightmost cells separated by a colon. For example, D3:E13= {〈x, y〉 | 4 ≤
x ≤ 5, 3 ≤ y ≤ 13}. A range 〈x1, y1〉:〈x2, y2〉 always verifies 1 ≤ x1 ≤ x2 and

1 ≤ y1 ≤ y2. The spreadsheet environment also allows for the definition of ranges

of non-contiguous cells. These are denoted by separating each cell or range of cells

with a comma.

Each cell has an atomic value with associated type τa: τa ::={empty, int, float,

string, datetime}. The type empty represents the special case of an empty cell.

The spreadsheet data model has very special characteristics of being essentially

“visual”: its structuring occurs through a combination of spatial elements (i.e.,

layout on the grid) and graphical elements (i.e., font style, borders). These are

significantly different from the data model of XML or the relational data model,

where the structuring can be referred to in terms of the symbols (e.g. XML elements,

table names and attributes). These characteristics will be later exploited in mapping

generalization.

3.2.2 Target Data Model

In this chapter, we focus on transformation of spreadsheet data to XML, which is a

popular standard for heterogeneous data exchange [127]. For this purpose, we use a

slight variation of nested relational model proposed in [79, 116]. The purpose of this

data model is to retain the essential features of the hierarchical XML data model

while abstracting away representation details such as whether a label is an element

or an attribute. Note that it is straightforward to convert XML to JSON [29], which

is a standard format for Web mashups.

We model a schema as a set of typed labels (i.e., elements). The set τt of

label types is defined as follows: τt ::= τa | SetOf [li:τ
i
t ] | Rcd(l1:τt1, . . . , ln:τ

n
t )

| Choice[l1:τt1, . . . , ln:τ
n
t ]. In this notation, lis are label names and τ it s are their
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respective types. The symbol SetOf represents repeating elements of an XML

schema as an unordered set of any number of the same label, Choice represents

choice constructs and Rcd represents tuples (i.e., collection of ordered label-value

pairs). For example, in Figure 3.2(b), we have:

• Label Orders consists of a set of labels Order.

• Label Order consists of a tuple {Id, ShipTo, OrderDetails}; label Id has

type integer.

• Label ShipTo consists of three atomic labels FirstName, LastName, and Address;

three labels FirstName, LastName, and Address have type string.

• Label OrderDetails consists of three atomic labels Quantity, ProdName, and

Price. Label Quantity has type integer; label ProdName has type string; label

Price has type float.

For presentation in the user interface, we use an equivalent notation illustrated

in Figure 3.2(b), where indentation is used to denote children labels or a label of

type Rcd or SetOf . The Rcd construct is implicit and the symbol [ ] is used to

denote the SetOf construct. Consequently, only atomic types need to be denoted.

In the remainder of this chapter, we assume that atomic types τa are identical

in both the spreadsheet and the XML worlds. In reality, atomic type systems may

differ (e.g., XML Schema allows to specify domain restrictions on simple types). If

there is a transtyping violation when assigning a value of the spreadsheet to a given

label, instant feedback is provided to users.

3.3 Formula Mapping Language

While atomic labels hold actual values, structural labels control the structural infor-

mation of schema. Thus, we consider two kinds of mappings, namely value mapping

(map one or more cells to an atomic label) and structural mapping (map a range of

cells to a SetOf label). A mapping formula has the form l =f, where l is a target

label and f is a spreadsheet-like formula.
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Types Transformation patterns
Value mapping Copying, Reformatting, Constant Value

Generation, Merging, Splitting
Structural mapping Nesting, Filtering, Sorting, Grouping with

aggregation, Join and Cartesian product,
Union/Minus/Intersect, Branching

Table 3.1: Transformation patterns of TranSheet

In the following, we formally define the syntax of the language and we demon-

strate via examples that all popular transformation patterns provided by trans-

formation languages and mapping tools are supported in our language (shown in

Table 3.1). We emphasize that these patterns are not intended to cover all trans-

formations; instead, they are proposed to capture common transformation scenarios

that are relevant for spreadsheet-based data transformation. This is done by a care-

ful analysis of commonly needed mapping scenarios of spreadsheet corpuses [77],

transformation languages (e.g., XSLT/XQuery), and mapping tools [37, 118].

More specifically, Section 3.3.1 defines the context-free grammar of language’s

syntax. In Section 3.3.2, we present the transformation patterns of value mappings.

Next, Section 3.3.3 describes the transformation patterns of structural mappings.

User-defined function support is discussed in Section 3.3.4. For each pattern, we de-

fine the semantics of its syntactical construct anf illustrate via at least one example.

3.3.1 Formal definitions of language’s constructs

Formulas may refer to a cell or an expression of multiple cell references and other

formulas. A formula expression is a composition of cell references, cell ranges, set

operators, filter predicates, aggregations, sort operator, join operator, branching op-

erator, and atomic value manipulations; each of which is optional. The composition

of formula expressions must adhere to the following context-free grammar:

formula => formula + term | formula - term | term

term => term * factor | term / factor | factor

factor => cellref
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=> |cellrange

=> |number

=> |aggregations

=> |setopr

=> |joinopr

=> |branchopr

=> |avm

aggregations => aggrname(cellrange)

aggrname => min|max|sum|

=> avg|count

setopr => setoprname(setargs)

setoprname => union

=> |intersect

=> |minus

setargs => cellrange

=> |cellrange,cellrange

joinopr => joinoprname(cellrange,cellrange,joincondition)

joinoprname => join

joincondition => cellrange = cellrange

branchopr => branchoprname(filterexp,attrvalue,attrvalue)

branchoprname => if

avm => cellref|cellrange|attrvalue|avmfunction

avmfunction => upper|lower|trim|...

=> |abs|ceiling|round|...

=> |date|time|hour|...

=> |concatenate

=> |left|search|right|len

cellref => filterpred

cellrange => filterpred:filterpred

=> |filterpred:filterpred[sortopr]

=> |filterpred:filterpred[groupopr]

=> |filterpred:filterpred[filterexp]

sortopr => sortoprname({cellrange,sortvalue}+)

sortoprname => sort

sortvalue => ascending|descending

groupopr => groupoprname(groupattr,groupattr)

groupoprname => groupby

groupattr => cellrange

=> |cellrange,cellrange

filterexp => AND(filterexp,filterexp)

=> |OR(filterexpt, filterexp)

=> |NOT(filterexp)

=> |attrname = attrvalue

=> |attrname != attrvalue

=> |attrname > attrvalue

=> |attrname >= attrvalue

=> |attrname < attrvalue

=> |attrname <= attrvalue

filterpred => cellid

cellid => {$} {a-z}+ {$} {0-9}+
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attrname => {a-z, 0-9}+

attrvalue => {a-z, 0-9}+

=> |{0-9}+

number => {0-9}+

In the next sections, we illustrate the semantics of each of these syntactical

constructs of the language in details using examples.

3.3.2 Value mappings

Copying

This pattern simply copies a cell value to a target value of a label. It has the form

l =c where l is a target label and c is a single cell or a mono-dimensional range.

For example, in Figure 3.2(b), we have the following mappings:

• Id=A1 copies the value corresponding to A1 to the value of Id. Instant

feedback for the mapping is provided in the curly brackets {0042} adjacent to
label Id.

• ProdName=C3:C5 copies three values of cells C3, C4, and C5 to the values of

label ProdName.

In the last example, a mono-dimensional range expression is associated to an

atomic label. In spreadsheet programming, range expressions are only used as func-

tion parameters (e.g., for computing the total sum of a collection of cells). Tran-

Sheet, however, leverages the familiarity users have with the range notation to conve-

niently express mappings of schema labels with cell collections called range formulas.

A range formula is valid only for an atomic label that has a SetOf label as ancestor.

To show that the OrderDetails label allows repetition of label ProdName, the text

“(3 items)” (number of label ProdName) is displayed as an additional metadata.

Special care needs to be taken for range formulas associated with atomic lables.

Suppose that instead of the mapping shown in Figure 3.2(b), the user inputs the

mapping formulas Quantity=B3:B17 (15 Quantity items) and ProdName=C3:C5 (3
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A B C D
1 0042
2 Ford Prefect Addison Sydney NSW
3 150 Beer 75.64
4 2 Towel 5.26
5 1 Babel Fish 4.32
6
7 0525
8 Arthur Dent Evans Melbourne VIC
9 1 Towel 2.75
10 . . .

(a) Source spreadsheet with hierarchical represen-
tation of orders

QuoteRequest

Account

Login=“MyLogin” {MyLogin}
Password=“MyPass” {MyPass}

Orders [ ] (1 item)
Order

Id=A1 {0042}
ShipTo

FirstName=left(A2,search(’ ’, A2)){Ford}
LastName=right(A2,len(A2)-search(’ ’,A2)){Prefect}
Address=concatenate(B2,’ ’,C2,’ ’,D2){Addison...}

OrderDetails [ ] (3 items)
OrderLine

Quantity=B3:B5*10 {1500, 20, ...}
ProdName=C3:C5 {Beer, Towel, ...}
Price=round(D3:D5,0) {76, 5, ...}

(b) Schema view with mapping specifications for order
0042

Figure 3.2: A spreadsheet and its mapping specification
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ProdName items). Taken together, these two mapping formulas violate the schema

constraint which states that the target document should contain the same number

of Quantity and ProdName labels. In this situation, the metadata associated with

the label OrderDetails shows the warning message:

OrderDetails [ ] Warning– Number of items should be the same for all children labels

TranSheet generates a target document even in the presence of warnings. In our

example, only three OrderDetails items whose children labels have definite values

would be generated. Note those ranges need not be contiguous or even follow the

same direction (i.e., column or row). For instance, the pair of mapping formulas

Quantity=A2:A6 and ProdName=F13:J13 are valid and express that the five values

for Quantity label are found in a same column, while the five values for ProdName

label are found in a same row.

Constant Value Generation

In some special cases, it is needed to copy a constant to a target value where the

constant value is independent of the source. This pattern has the form l=const

where l is a target label and const is a constant.

For example, in Figure 3.2(b) mapping formulas Login=“MyLogin” and Password

=“MyPass” associate constants to the values of Login and Password, respectively.

Derivation

This kind of mapping allows users to use one or more Excel-like functions on strings

(e.g., upper, lower, trim), numbers (e.g., “+”, “*”, “-”, “/”, abs, ceiling, round),

and dates (e.g., date, time, hour) to bring the format of a cell value to the required

format of a target value. It has the form l=f(c1,...cn) where l is an atomic label, f

is a function, and ci is a cell or a mono-dimensional range.

For example, in Figure 3.2(b):

• Mapping Quantity=B3:B5*10 uses a range formula to state that values of

Quantity correspond to three values in the spreadsheet multiplied by 10.
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• Mapping Price=round(A3:A5,0) rounds values in the range A3:A5 to the

nearest integers and copies to values of Price.

Merging

This pattern merges multiple cell values into one value of a target label. It has the

form l=concatenate(c1,const1,...,constn−1,cn) where l is a target label, ci is a cell

or a mono-dimensional range, and consti is a constant.

For example, in Figure 3.2(b), the mapping formula Address=concatenate(B2,“

”,C2,“ ”,D2) merges the values of three cells B2, C2, D2, which contain information

on street, city, state, into the value of label Address with delimiters whitespace “ ”

using Excel-like function concatenate.

Splitting

This kind of mapping is used when splitting one cell value into one or multiple

target values. It has the form c = concatenate(l1, const1, ..., constn−1, ln) where li

is a target atomic labels; c is a cell or a mono-dimensional range; and consti is a

constant delimiter between li and li+1.

For example, mapping formulas FirstName=left(A2, search(“ ”, A2)) and

LastName=right(A2, len(A2)-search(“ ”,A2)) in Figure 3.2(b) split the value of

cell A2, which contains information on customer name, into the values of labels

FirstName and LastName according to the whitespace “ ” using Excel-like functions

left, search, right, and len.

3.3.3 Structural mapping

We first provide an overview about structural mappings and then we present trans-

formation patterns at structural level.
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A B C D E
1 OrderId FirstName LastName ProdName Quantity
2 0042 Ford Prefect Beer 150
3 0042 Ford Prefect Towel 2
4 0042 Ford Prefect Babel Fish 1
5 0525 Arthur Dent Towel 1
6 0525 Arthur Dent Tea Bags 20
7 . . .

(a) Tabular representation of orders

QuoteRequest

Orders [ ] =A2:E50 (49 items)
Order

Id {0042, 0525, . . . }
ShipTo

FirstName =C2:C50 {Ford, Arthur, . . . }
LastName =B2:B50 {Prefect, Dent, . . . }

OrderDetails [ ]
OrderLine

ProdName {{Beer, Towel, . . . }, . . . }
Quantity {{150, 2, . . . }, {1, 20, . . . }, . . . }
(b) Mapping specification

Figure 3.3: A tabular representation of orders and its corresponding mapping

Formula inheritance

When using a structural mapping ls =f , formula f is interpreted in terms of mapping

formulas associated with the atomic children labels of structural label ls. To intu-

itively illustrate this formula inheritance, the structural mapping OrderDetails=B3:C5

in Figure 3.2 is interpreted in terms of lower level mapping formulas in the following

two steps:

OrderDetails=B3:C5

⇓
OrderLine=B〈i〉:C〈i〉, 3 ≤ i ≤ 5

⇓
Quantity=B〈i〉, ProdName=C〈i〉, 3 ≤ i ≤ 5

As can be seen, by using formula inheritance, the children atomic labels Quantity

and ProdName of label OrderDetails obtain values from ranges (columns) B3:B5

and C3:C5, respectively.
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Defaults of a structural mapping

Figure 3.3 presents a simple structural mapping Orders =A2:E50, where several

orders are organized in a single denormalized table (nested table). The interpretation

process, as presented so far, uses certain defaults: (i) TranSheet assumes that data

is organized in a table with attributes as columns and tuples as rows; (ii) TranSheet

also takes advantage of the same ordering of columns in the source spreadsheet

and target atomic labels (e.g., quantity comes “before” product name in both the

spreadsheet and the target schema).

These defaults can be overridden: the first by using function transpose to indicate

that a table is represented with attributes as row and tuples as column; the second

by the schema restructuring features described in Section 3.4.

Nesting

The mapping illustrated in Figure 3.3 is potentially ambiguous since two distinct

target instances are possible: either (i) grouping products per order, as could be

expected, or (ii) mimicking the data organization of the spreadsheet document with

as many order labels as there are products. In this example, both generated docu-

ments satisfy the mapping specification as well as the target schema. However, the

document where products are grouped per orders is often desirable [116, 79]. By

default, the target document is nested according to order identifier, first name, and

last name.

Filtering

This kind of structural mapping allows users to select data from a set of source tuples

according to specific filtering conditions. It has the form l=c[filterexpr] where l is

a target label, c is a two-dimensional cell range, and filterexp is a filter condition.

Only cells in which filterexp evaluates to true are returned.

For example, in Figure 3.3 the user wants to select orders from the source whose

product name is equal to “Towel” and quantity is greater than 1. This can be ob-



3.3. Formula Mapping Language 61

tained by associating a filtering predicate filterexp to the structural mapping Orders

= A2:E50. Filterexp is typically a combination of Excel-like logical functions AND,

OR, and NOT. For example, the following mapping is employed:

Orders =A2:E50[AND(D2:D50=“Towel”, E2:E50>1)]

Sorting

This kind of structural mapping allows users to sort tuples in the source spreadsheet

according to values of columns. It has the form l=c[sort(c1,sortorder1,...)] where

l is a target label, ci is a mono-dimensional range (column), and sortorderi is the

corresponding sorting order of ci with value “ascending” or “descending”.

For example, the list of orders in Figure 3.3 can be sorted according to the

product name in ascending order, and then according to the quantity in descending

order as follows:

Orders =A2:E50[sort(D2:D50, ascending, E2:E50, descending)]

Grouping with aggregation

This pattern combines grouping with aggregate functions. Grouping has the form

l=groupby(c1,c2,...) where l is a target label and ci is a grouping attribute (one-

dimensional range).

Aggregation has the form l=f(c) where l is a target label, f is an aggregate

function, and c is a one-dimensional range (column).

In this example, the user wants to group the source spreadsheet in Figure 3.3(a)

by order identifier, first name, and last name. Excel-like aggregate functions (e.g.,

count, sum, avg, min, and max ) can then be used together with grouping to calculate

values for product name and quantity in each group. The target schema to be

mapped is:
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Target

Orders [ ] =A2:E50[groupby(A2:A50, B2:B50, C2:C50)]

Order

Id {0042, 0525, . . . }
FirstName {Ford, Arthur, . . . }
LastName {Prefect, Dent, . . . }
ProdName =count(D2:D50) {3,2, . . . }
Quantity =max(E2:E50) {150,20, . . . }

The following mappings are employed:

• Orders =A2:E50[groupby(A2:A50, B2:B50, C2:C50)] where function

groupby(column1,column2, ...) groups a set of tuples according to values in

columns column1, column2, and so on. This structural mapping is then refined

at leaf level on atomic labels ProdName and Quantity.

• ProdName =count(D2:D50) counts the number of products for each order.

• Quantity =max(E2:E50) finds the maximum value in the set of quantities as-

sociated with an order.

Join

This pattern allows users to join two tables according to a condition. It has the form

l= join(c1,c2,joincondition) where c1 and c2 are two-dimensional ranges (tables),

and joincondition is a condition to join two ranges c1 and c2.

Suppose that the source spreadsheet in Figure 3.3(a) is divided into tables A2:C6

and D2:F3 where table A2:C6 contains order details and table D2:F3 contains cus-

tomer information:



3.3. Formula Mapping Language 63

A B C D E F

1 OrderID ProdName Quantity OrderID FirstName LastName

2 42 Beer 180 42 Ford Prefect

3 42 Towel 2 525 Arthur Dent

4 42 Fish 1

5 525 Towel 1

6 525 Teabags 20

The two above tables are joined according to order identifiers and mapped to the

target schema in Figure 3.3(b). This can be achieved via function join(table1, table2,

joincondition) where table1 and table2 are two tables defined by two-dimensional

ranges and joincondition is the optional condition to join two tables. We have the

following mappings:

Orders =join(D2:F3, A2:C6, D2:D3=A2:A6)

Id =D2:D3; FirstName =E2:E3; LastName =F2:F3

OrderDetails =B2:C6

When joincondition is missing, a full Cartesian product is computed between

two tables. For instance Orders =join(D2:F3, B2:C6), a full Cartesian product is

computed between two tables: Each customer information in a row of table D1:F3

is associated with all product information in rows of table A1:C6.

Union/Intersect/Minus

The union function allows users to union two tables with the corresponding signa-

ture union(table1, table2,...) where table1, table2,... are tables to be unioned. By

default, union is duplicate-eliminating. Other set operators intersect and minus can

be specified via functions intersect(table1, table2,...) and minus(table1, table2,...),

respectively. We have the following rules:

• union(c1) = c1

• intersect(c1) = c1



3.3. Formula Mapping Language 64

• minus(c1) = c1

• union(c1,...,cn) = union(union(c1,c2),...,cn)

• intersect(c1,...,cn) = intersect(intersect(c1,c2),...,cn)

• minus(c1,...,cn) = minus(minus(c1,c2),...,cn)

For example, the user wants to union two the following two tables with duplicate

removal and map them to the target schema shown in Figure 3.3(b):

A B C D E F

1 42 Ford Prefect Beer 150

2 42 Ford Prefect Towel 2

3 42 Ford Prefect Babel Fish 1

4

5 525 Arthur Dent Towel 1

6 525 Arthur Dent Tea Bags 20

The following structural mapping is associated with the label Orders: Orders

=union(A1:E3, A5:E6).

Branching

This kind of mapping allows users to map different sets of data to a target el-

ement depending on the outcome of a preset condition. It is specified via the

form l=if(condition, value if true, value if false). The target label l is assigned

value value if true if condition evaluates to true. Otherwise, l is assigned to value

value if false.

For example, suppose that there is an additional attribute named Description

located right below element Quantity of the target schema in Figure 3.3(b) to

indicate that whether the quantity of an order item is small or large. The following

mapping is used together with the structural mapping Orders =A2:E50:

Description =if(E2:E50>20, “large”, “small”)
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That is if the quantity of an order item is greater than 20, then attribute

Description is assigned “large”; otherwise it is associated with “small”. In this

example, only the order item with quantity 150 in the second row in Figure 3.3(a)

is assigned “large”.

Composition and refinement of mappings

A complex transformation is typically composed of multiple basic patterns of struc-

tural and value mappings. For example, the user can perform sorting and then

filtering at structural level in Figure 3.3: Orders =A2:E50[sort(D2:D50, ascending),

D2:D50=“Towel”]

Additionally, a formula specified on a label may collide with a formula inherited

from one of its ancestor labels. Regarding the mapping Orders=A2:E50 in Figure 3.3,

the user can see that, by inheritance, the values associated to label ProdName are

{150, 2, . . .} which is a copy of the quantity column of the spreadsheet. However,

the user expects that values of label Quantity should correspond to values of this

column multiplied by 10.

In such situation, the user can specify mapping formulas at high level (i.e. struc-

tural labels) and refine them at lower level (e.g., leaf level). These will have prece-

dence over the values derived by the automated mechanism. For instance, mapping

Quantity=E2:E50*10 is used to correct the problem. An interactive refinement can

be performed until the user is satisfied with the example values displayed as a map-

ping preview.

3.3.4 User-defined functions

A user-defined function (UDF) is necessary when users want to reuse code. It avoids

repetition of code which spreadsheets lack of. In this section, we describe how users

can define and invoke UDFs right in spreadsheet environment rather than using an

external environment and a low-level programming language such as Visual Basic.

We extend the work of Johnes et al [95].
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Professional programmers start defining a new function in the following steps.

First, they realize that they want to define a function. Second, they define the

function via a programming language. Finally, they invoke the function to test its

functionality. With such steps, it requires premature commitment [82] in the sense

that the user needs to think about the function before she writes the code [95].

However, this is unfamiliar with many spreadsheet users. Therefore, the sequence is

as follows. First, the user has written some code (a formula) that works well for her

task. Second, the user decides the code needs to be reused in future tasks. Third,

the user reuses the code by converting the formula into a UDF via a right-click on

the formula textbox. Fourth, the system guesses the number of parameters from

the formula and shows up a dialogue enabling the user to configure the function

(e.g., name of the function and parameters). The guess is done by parsing the

formula and checking leaves of the parse tree. A leaf is a parameter if it is a cell

coordinate. Finally, the original formula is replaced by the newly defined function.

For consistency with built-in functions, a UDF appears in the list of functions shown

up to users, once defined.

Let us consider an example of defining a UDF. After specifying the value mapping

to convert format of source element Price to the format of target element Price:

Price = D3/0.85 + 5, the user wants to turn it into a UDF. The parse tree of the

formula is as follows (See Section 3.3.1 for a detailed description on the grammar of

the language’s formulas):

formula

/ \ \

term + formula

/ | \ |

term / factor term

| | |

factor 0.85 factor

| |

H2 5

As shown in the parse tree, there is one parameter D3. The UDF is named

ConvertPrice. The formula Price = D3/0.85 + 5 turns into Price =ConvertPrice(D3)

and it is immediately reflected in the formula textbox.
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If there is a problem with a UDF, the user may want to jump inside the function

to investigate the problem. Traditional programming languages typically provide

debugging techniques with the notions of breakpoints, stepping into, and stepping

over. However, these concepts are unfamiliar with end-users. In order to address

this issue, our system employs the technique in [95], based on progressive evalua-

tion [82]. Intermediate values for each arithmetic operation (i.e., +,-,*,/) in the

process of computing the function are readily shown up to the user and may be

associated with any comments related to those values. These values can also be

calculated based on the parse tree of the formula. The user clicks on the link as-

sociated with a target value generated by the UDF in the instance sheet to open

up a new worksheet and see all intermediate values in that sheet. For example, the

user wants to understand why function Price =ConvertPrice(D3) produces target

value 9.12 from the source value 3.5 in the instance sheet. The user clicks on the

link under the value 9.12 and another sheet is opened up which is an instance of

function ConvertPrice shown as follows:

A B C D

1

2 Input 3.5 = Sheet1.D3

3 AUD 4.12 = C2/0.85

4 After tax 9.12 = C3 + 5

5

6 . . .

The input parameter locates in cell C2 and cell C3 contains an intermediate

value while the final result is in cell C4. Formula 3.5 =Sheet1.D3 indicates that the

input is obtained from cell D3 of instance sheet named Sheet1. Cells B2-B4 contain

commentary written by the user.
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3.4 Target Schema Restructuring

We have seen that TranSheet relies on the order and nesting of elements in the

schema view in order to interpret the mapping specification. This feature allows

mapping formula to be very concise in the case where the spreadsheet and the target

schema have a matching organization. However, it is a common occurrence that

target schemas, which are defined externally, do not coincide with the spreadsheet

organization. In some cases, it is possible to work around structural mismatches

by specifying formula at a lower level, i.e., by defining mappings on atomic labels

rather than on their parents. But this approach is limited and also makes the task

of defining mappings more tedious since more formulas are needed.

Our solution to this problem is to allow users to organize a view of the target

schema to their convenience. This is achieved by a set of rearrangement operations

achieved in an interactive way through essentially mouse-based manipulation of the

schema labels. By rearranging the schema view, users do not modify the underlying

target schema; they merely specify, in a graphical way, how spreadsheet data are

organized and—implicitly—how mapping formulas should be interpreted.

3.4.1 Isomorphic view rearrangement

Isomorphic rearrangements correspond to operations that leave unaltered the nest-

ing organization of the schema. They correspond to label reordering, adding and

removing within a same nesting level corresponding to a Rcd label.

Label reordering

Label reordering consists of modifying the order of labels within a Rcd construct

to work around the mismatch between the orderings of source columns and atomic

labels of the target schema. For example, without moving of label Price to the top of

labels Quantity and ProdName in Figure 3.2(b), the mapping OrderDetails=A3:C5

would not have been possible. Instead, we would have had to specify lower level

mappings: Price =A3:A5, Quantity =B3:B5, and ProdName =C3:C5. Both ways
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produce the same interpretation. However, the benefit of label ordering becomes

significant when mapping larger tables. The operation is performed by dragging a

label and dropping it above or below other labels. Note that since Rcd labels do

not introduce new nesting, children label of a Rcd label can be moved to the level

of the Rcd construct itself.

Ignoring and adding labels

Ignoring labels. If a table in the spreadsheet contains fewer columns than the

number of atomic labels of the target schema, the structural mapping will not work

properly since the range will not match the number of atomic labels. To this end,

users can ignore a label through a context menu. The resulting display leaves the la-

bel in place but shows it in gray and with a red cross icon. This allows easy reversal

of the operation. Suppose that two columns B2:B50 and C2:C50 in the spreadsheet

in Figure 3.3 are merged with delimiter whitespace into column B containing names

of customers (e.g., “Ford Prefect”); columns A, C, and D contain order identifiers,

product names and quantities, respectively. While the spreadsheet has 4 columns,

the target schema consists of 5 atomic labels. The user can, for instance, ignore

label LastName to make the structural mapping Orders =A2:D50 work properly.

Values of labels Id, ProdName, and Quantity are correctly obtained from columns

A2:A50, C2:C50, and D2:D50, respectively. To correct the mapping associated with

label FirstName whose values are currently customer names, mapping FirstName

=left(B2:B50, search(’ ’, B2:B50)) is used to refine. Then, label LastName is recov-

ered and associated with mapping LastName =right(B2:B50, len(B2:B50)-search(’

’, B2:B50)).

Adding labels. Conversely, if a table in the spreadsheet contains more columns

than the number of atomic labels of the target schema, users can add new labels and

give them any name provided it is not already used in the schema. Labels added

this way are shown in a different color and with a ‘+’ icon. No mapping formula

evaluation is shown for these labels. Suppose that labels FirstName and LastName of

the target schema in Figure 3.3 are merged into label Name. While the spreadsheet

contains 5 columns, the target schema consists of 4 atomic labels. To make the
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structural mapping Orders =A2:E50 work properly, the user can add a new label

located right below label Name. Values of columns A2:A50, D2:D50, and E2:E50 are

correctly copied into values of labels Id, ProdName, and Quantity, respectively. The

mapping associated with Name must then be refined (it is incorrectly mapped with

B2:B50): Name =concatenate(B2:B50, “ ”, C2:C50).

3.4.2 Anisomorphic view rearrangements

This category of view rearrangements corresponds to the case where labels are nested

in the target schema in a way that does not match the nesting used in the spread-

sheet. For example, the spreadsheet represented in Figure 3.4(a) is not isomorphic

to the target Quotation Request schema (in Figure 3.3(b)), although it uses ex-

actly the same data. The difference is that spreadsheet in Figure 3.4(a) groups

data per product while the target schema groups them per order. Similar to label

reordering (Section 3.4.1), TranSheet allows users to rearrange the schema in a way

that matches this spreadsheet via drag&drop manipulation of labels. For example,

Figure 3.4(b) shows such an rearranged view of the Quotation Request schema to

resolve the above mismatch. Then, within a nesting level, label reordering, adding,

and ignoring can be also performed as described in Section 3.4.1. Note that if a

SetOf label is emptied from its entire children atomic labels as a result of such op-

erations, it is displayed in a gray style and there is no mapping formulas interpreted

or specified on it.

In the background, TranSheet produces tgds [79, 118] to describe the mapping

where the source schema is the new view and the target schema is the original

schema. The user specifies mappings on this view and then the generated doc-

ument is translated into a new document conforming to the original schema by

executing tgds. For example, TranSheet generates the following tgd to describe the

mapping between the restructured schema in Figure 3.4(b) and the original one in

Figure 3.3(b):

∀d ∈ QuoteRequest.OrderDetails, o ∈ d.Orders → ∃o’ ∈ QuoteRequest.Orders

| o’.Order.Id = o.Order.Id, o’.Order.ShipTo.FirstName =
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o.Order.ShipTo.FirstName, o’.Order.ShipTo.LastName =

o.Order.ShipTo.LastName, [∀d2 ∈ OrderDetails, o ∈ d2.Orders → ∃d’ ∈
o’.Order.OrderDetails | d’.OrderLine.ProdName = d2.ProdName,

d’.OrderLine.Quantity = o.Order.Quantity]

3.4.3 Specializing the multiplicity of repeating labels

Mapping between spreadsheet content and an atomic label of the target schema

that does not repeat is straightforward. It corresponds to a simple assignment of

a unique atomic value. Mapping of repeating elements, however, is more tedious.

It is easily done if the source data is suitably organized (e.g., as in the tabular

form, Figure 3.3(a)) but it is less obvious in the case of the spreadsheet presented

in Figure 3.2(a).

By specializing the target schema, i.e., by explicitly specifying schema to a

smaller subset of possible instances, it is possible to simplify greatly the mapping

of small datasets. Suppose now that the spreadsheet in Figure 3.2(a) contains three

orders. Although data are simple and of small size, they cannot be mapped easily

to the target schema presented in Figure 3.2(b). This target schema view allows

mapping of one order, as shown in Figure 3.2(b), but it has no room for a second

order. That is, users have the choice to express mapping either for one or for all

orders (3 orders) described in Section 3.5, but they can not specify a mapping of

exactly two orders.

We can alleviate that problem by allowing a specialization of the schema view

for labels of type SetOf . The specialization, proposed through context menu on

SetOf labels, lets users choose exactly how many instances of the repeating label

they wish to map. Each order can then be mapped easily using distinct copies of the

repeating label. For example, the spreadsheet in Figure 3.2(a) can be exported using

the following schema view (we show only the relevant part) and its corresponding

mapping:
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Orders (specialized: 2 items)

Order #1

Id =A1 {0042}
ShipTo

FirstName =left(A2,search(’ ’,A2)) {Ford}
LastName =right(A2,len(A2)-search(’ ’, A2)) {Prefect}
Address =concatenate(B2,’ ’,C2,’ ’,D2) {Addison...}

OrderDetails [ ] (3 items)

OrderLine

Quantity =B3:B5*10 {1500, 20, ...}
ProdName =C3:C5 {Beer, Towel, ...}
Price =round(A3:A5,0) {76, 5, ...}

Order #2

Id =A7 {0525}
ShipTo

FirstName =left(A8,search(’ ’,A8)) {Arthur}
...

3.4.4 Specializing choice constructs

In the target data model defined in Section 3.2.2 appears the Choice construct.

However, so far we do not provide interpretation of mapping formulas associated

to Choice labels. This is because, in current TranSheet proposal, our decision is

to handle choice construct only through UI manipulations of the schema view. We

enable users to specialize the schema by choosing one of the options of Choice

constructs. By doing so, choice labels are never used for specifying mapping, only

one of their children label, of type τa, SetOf or Rcd, is used. From UI point of

view, the choice is represented as a drop down list, allowing users to select one of

the elements of the list, and updating the sub-tree of this label accordingly.

An alternative would be to allow users to specify a case condition associated

with each option of a Choice as well as a mapping formula for each option. Our

decision not to do so was motivated by an emphasis on simplicity over expressiveness

and our empirical observation that conditional mapping toward choice construct is

rather rare and altogether not a typical end-user need.
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A B C D E
1 Towel
2 0042 Ford Prefect 2
3 0525 Arthur Dent 1
4
5 Beer
6 0042 Ford Prefect 150
7 0007 Zaphod Beeblebrox 300
8
9 Babel Fish
10 0525 Arthur Dent 1
11 . . .

(a) Source spreadsheet with data grouped per prod-
uct name

QuoteRequest

OrderDetails [ ] {8 items}
ProdName =A1:A〈next=bottom(Orders)+2)〉 {Towel, Beer, . . . }
Orders [ ] =A〈bottom(ProdName)+1〉:D〈value=empty〉 (1 item)

Order

Id {{0042, 0525, . . . }, . . . }
ShipTo

FirstName {{Ford, Arthur, . . . }, . . . }
LastName {{Prefect, Dent, . . . }, . . . }

Quantity {{2, 1, . . . }, . . . }

(b) Schema view and mapping specification

Figure 3.4: A generalized mapping specification for exporting datasets of varying
sizes

3.5 Generalizing mapping formulas

In this section, we focus on how a mapping formula can be generalized to transform

multiple spreadsheet documents containing different data but organized according

to the same template. Some built-in spreadsheet functions can be used together

for generalizing mapping formulas (e.g., offset and counta) (Section 3.5.1). There

are situations, however, in which such built-in functions are insufficient for express-

ing required mappings. We present these situations via an example and propose

some novel extensions based on frequently formatting features of spreadsheets (Sec-

tion 3.5.2).

3.5.1 Generalization using native spreadsheet formula func-

tions

A mapping formula is not specific to a spreadsheet instance. It is applicable to a

class of spreadsheet instances where cells at same locations have the same types. For
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instance, changing the value of cell E2 in Figure 3.3(a) from 150 to, say, 200 has no

impact on the transformation mapping formula of Figure 3.3(b) (i.e., this formula

could be used to export both spreadsheet instances). However, the organization of

data that can be exported using the mapping in Figure 3.3(b) is very constrained.

For instance, this mapping can be used only for documents with exactly 49 items.

This is due to the formula Orders=A2:E50 which indicates a fixed size range. It is

desirable that adding or removing a row in the table does not invalidate the mapping

(i.e., the mapping should be generic enough to export tables of any size).

Spreadsheet environments already provide native functions that are useful for

generalizing mappings. For instance, using MS Excel formula language, the mapping

of Figure 3.3(a) can be expressed with Orders=OFFSET(A1, 0, 0, COUNTA(A:A),

5).

This formula returns a range starting at cell A1 and spanning 5 columns. This

range is dynamic since the number of rows is computed using COUNTA(A:A), which

returns the number of non-empty cells in column A. Users familiar with such notation

can readily apply this knowledge in specifying mapping formulas. However, there

are situations where built-in spreadsheet functions are not sufficient for expressing

required mappings. We discuss these situations via an example in the next section.

3.5.2 New notations for generalizing mappings

The organization of data in the spreadsheet shown in Figure 3.4(a) could be de-

scribed, as follows:

“A list of product names each followed by its corresponding orders.”

In order to capture this intuitive description of the spreadsheet content, the

mapping formula language has to provide:

• A means to express the spatial location of entities by reference to each other.

In this example, orders are located one row below product names.

• A means to control iterations over collections of cells. In this example, there
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are two iterations. First, the list of products needs to be enumerated and

then, for each product, the list of its corresponding orders also needs to be

enumerated. An additional difficulty is that product names are not located in

consecutive rows, which makes traditional range expressions unusable.

In the following, we propose extensions to the formula language of existing

spreadsheet environments in order to address the above requirements. Our ex-

tensions are based on exploiting common formatting features used by spreadsheet

templates (described in Section 3.2.1). For example, Figure 3.4(b) illustrates how

these extensions can be used to export the spreadsheet in Figure 3.4(a):

ProdName = A1:A〈next=bottom(Orders) + 2〉
Orders = A〈bottom(ProdName) + 1〉:D〈value=empty〉

These formulas express the following mappings. The first formula states that the

first product name can be found in cell A1 and the subsequent product names are

located one row after the end of the list of orders. The second formula states that

orders are located in ranges spanning from column A to D and, in terms of rows,

spanning from after the row containing a product name until the next empty row.

The recursion stops when empty value of product name is found.

Specifying relative location of spreadsheet data

A natural way to describe the content in a spreadsheet is by indicating the relative

location of data. For instance, one may describe prices as being located in the

column to the right of that containing quantities.

TranSheet allows users to refer, when specifying a mapping for a given label, to

the “location” of other labels of the schema. By location of a label l, we mean the

coordinates on the spreadsheet of a cell or a range of cells from which the value(s)

of l is(are) derived. As detailed in previous sections, values are obtained from the

spreadsheet by specifying a coordinate in the mapping formula (e.g. Quantity=A3),

or by formula interpretation (see Section 3.3.3).

Given a label l = (x1, y1) : (x2, y2), its value(s) can be obtained through the

four following functions: top(l)=y1, left(l)=x1, bottom(l)=y2, and right(l)=x2.
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For example, considering the mapping l = A2 : C5, we have top(l)=2, left(l)=1,

right(l)=3 and bottom(l)=5.

Dynamic Range Length

We showed in Section 3.5.1 that it is possible to dynamically define the length of

range expression using native spreadsheet functions. In this section, we extend the

range notation to allow expressing ranges of dynamic lengths. Two extensions are

proposed:

Dynamic range boundary coordinates. Users can refer to the location of other

labels for indicating the boundaries of ranges. For instance, the range

A〈bottom(Order)-1〉:〈right(Order), bottom(Order)+5〉.
corresponds to fixed number of rows (7 rows) spanning from column A to the left-

most column of the range associated to label Order.

Conditional range boundaries. Often, the presentation style of data is used to

identify data semantics in a spreadsheet. Users usually rely on visual styles, such as

cell font, cell color, an empty row or a border (e.g., a line surrounding a group of cell)

to isolate data from each other. For example, an empty row is used in Figure 3.4(a)

to isolate the list of orders of a product from the next product. TranSheet allows

users to indicate boundaries of a range through conditions on the visual styles used to

isolate data. Such ranges have the form 〈x1,y1〉:〈predc,y2〉 or 〈x1,y1〉:〈x2,predr〉 where
predc and predr are two predicates specified over a column and a row respectively;

these two predicates have the same semantic as in the repeat...until construct, except

that there is no processing done for the column/row for which the boolean expression

predc or predr is true. A predicate is expressed either on the value of a cell or on

its style properties using the keywords value and style, respectively.

For example, to specify that a range starting at coordinate at A1 ends at an

empty row, one may use A1:A〈value=empty〉.

In Figure 3.4(b), both above extensions are used in the mapping formula

Orders=A〈bottom(ProdName)+1〉:D〈value=empty〉. This formula uses a range

expression such that:



3.5. Generalizing mapping formulas 77

• The range left-most and right-most columns are fixed (i.e., A and D respec-

tively);

• The top-most row coordinate is given by

“bottom(ProdName)+1”, meaning that the range starts one row after the

product name;

• The bottom-most row is defined as the last non-empty row through the con-

dition “value=empty”;

Note that predicates predc and predr can be also used to locate a cell at varying

coordinates: 〈x,predr〉 and 〉:〈predc,y2〉. This is a special case of conditional range

boundaries, in which a range has only one cell. For example, to find a cell containing

label “FirstName” locating in column B, but with varying row, one might use:

B〈value=“FirstName”〉.

Mapping of non-adjacent collections of cells

Range expressions are convenient for enumerating collections of cells. The previous

examples illustrated that through mapping collection of values to their corresponding

labels. However, the product names that appear on the spreadsheet illustrated in

Figure 3.4(a) cannot be enumerated easily using a range expression because the

various product names are not stored in adjacent cells.

Existing spreadsheet environments provide a notation for ranges of non-contiguous

cells which consists of enumerating each cell of the range (see Section 3.2.1). Using

this notation, product names in Figure 3.4(a) could be mapped to the ProdName

label using ProdName = A1,A5,A9.

However, the above notation is not convenient since it imposes to manually

enumerate the location of each product name in the spreadsheet. This may be ac-

ceptable for small datasets but does not scale to larger ones. Another problem is

that the exact locations of cells containing product names may vary from a spread-

sheet instance to another. For instance, inserting a row after row 4 in Figure 3.4(a)

to add a new towel order would render the above mapping invalid.
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To alleviate this problem, we introduce a range notation that allows specifying

the location of a first cell of a range and of subsequent cells through the keyword

“next”. Intuitively, the main reason why a collection of cells is not contiguous is

because there are cells containing different information in between.

Coming back to the example of Figure 3.4(a), the various product names are not

located in contiguous cells because there are order details in between them. Consid-

ering a given product name cell (e.g., cell A1), the “next” product name is located

after its corresponding list of orders (in this case, cell A5). This is specified using the

mapping ProdName=A1:A〈next=bottom(Orders)+2〉. The above formula uses a

reference to the label Orders to denote the location of each subsequent product

names (i.e., two rows after the last row (bottom) of orders). The keyword “next”

can be used for any (or both) of the two dimensions of a range. In its absence, rows

and columns of a range are enumerated one by one. By default, iterations specified

via “next” stop when an empty cell is found. Stopping criteria can be modified

using conditions on font, color, and border (e.g., style=bold). For example, we

could use the mapping formula ProdName=A1:A〈next=bottom(Orders)+2 un-

til:style=bold〉 to specify that the iteration stops when a cell with the bold font

is found.

The user can combine the constructs presented above to transform a more com-

plex template (e.g., the template depicted in Figure 3.4).

3.6 Mapping formula interpretation

We first illustrate how tgds are used to formally describe mappings of TranSheet

and focus on the new functions that we introduce in tgd expressions (Section 3.6.1).

We then present the novelty in query generation from tgds (Section 3.6.2).

3.6.1 TGD Generation

In this section, we formally present the semantics of TranSheet. As presented so

far, TranSheet mainly maps one table (e.g., sorting, filtering) or multiple tables
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(e.g., join, union) to the target schema (except mappings in Figures 3.2 and 3.4).

As mentioned in Section 3.3.3, to employ a structural mapping, TranSheet makes

two assumptions which can be overridden. One of them is the ordering of source

columns is identical to the ordering of atomic labels of the target schema. That is

when traversing the spreadsheet and the target schema from left to right, the first

source column corresponds to the first atomic label, the second source column corre-

sponds to the second atomic label, and so on. Consider the simple mapping in Fig-

ure 3.3, source columns A2:A50, B2:B50, C2:C50, D2:D50, and E2:E50 correspond

to atomic labels Id, FirstName, LastName, ProdName, and Quantity of the target

schema, respectively. Let us represent these columns by the relation Orders(Id,

FirstName, LastName, ProdName, Quantity). Note that names of the relation

and the attributes can be arbitrary in implementation, but for the sake of readabil-

ity we choose names that are identical to labels of the target schema. Given the

above value correspondences, using Clio’s mapping generation algorithm [79, 116],

the following tgd (adopting the syntax used by Clip [118] to represent mappings)

can be emitted for describing the structural mapping Orders =A2:E50 between the

source spreadsheet and the target schema:

∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈
o’.OrderDetails | o’.Order.Id = o.Id, o’.Order.ShipTo.FirstName =

o.FirstName, o’.Order.ShipTo.LastName = o.LastName,

d’.OrderLine.ProdName = o.ProdName, d’.OrderLine.Quantity =

o.Quantity

Similarly, based on the mapping generation algorithms of Clio [79, 116] and

Clip [118], the semantics of all other examples in Sections 3.3 and 3.5 can be formally

described using tgds. In a nutshell, Clio identifies the logical relations (i.e., maximal

tableaux [32]) of the source and target schemas. To identify them, primary paths

are first discovered. A primary path is basically a linear tableau which is generated

by enumerating all paths from the root to any intermediate node of set type in a

schema. Logical relations are then generated by chasing nested referential integrity

constraints against primary paths. Next, correspondences between two schemas are



3.6. Mapping formula interpretation 80

used to produce mappings. Each source logical relation is paired with a target logical

relation. A pair makes a mapping if it contains at least one value correspondence.

To remove redundancy, if a mapping is implied or subsumed by others, then it is

discarded [79]. Each mapping is described via a tgd expression. Clip [118] extends

Clio’s algorithm to deal with structural correspondences explicitly, in addition to

value correspondences (For a detailed description, see Section 2.5.)

We use second-order tgds of Clio [79, 116] and Clip [118] to describe the seman-

tics of the language. In comparison with Clio [79, 116] and Clip [118], we extend

tgd expressions with a collection of new functions, in addition to Skolem functions,

ranging from data cleaning/data reorganizing to adding full Boolean expressivity

allowing conditional branching and set difference/intersection/union in the queries

(described below). This allows the languages to express popular transformation pat-

terns that are relevant to spreadsheet-based data transformation. In the following,

we present tgd expressions used to describe the semantics of mapping examples in

Sections 3.3.2 and 3.3.3. We also present new functions that we introduce to tgd

expressions.

Filtering. The filtering example presented in Section 3.3.3 can be described by

the following tgd:

∀o ∈ Source.Orders | (o.ProdName = ‘‘Towel’’) && (o.Quantity > 1) →
∃o’ ∈ QuoteRequest.Orders, d’ ∈ o’.OrderDetails | o’.Order.Id =

o.Id, o’.Order.ShipTo.FirstName = o.FirstName,

o’.Order.ShipTo.LastName = o.LastName, d’.OrderLine.ProdName =

o.ProdName, d’.OrderLine.Quantity = o.Quantity

Grouping with aggregation. The tgd for the grouping with aggregation

example presented in Section 3.3.3 is as follows:

∃groupby, count, max(∀o ∈ Source.Orders → ∃o’ ∈ Target.Orders | o’
= groupby(⊥, o.OrderId, o.FirstName, o.LastName) o’.Order.Id = o.Id,

o’.Order.FirstName = o.FirstName, o’.Order.LastName = o.LastName,

o’.Order.ProdName = count(o.ProdName), o’.Order.Quantity =

max(o.Quantity))
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Join. The tgd corresponding to the join example presented in Section 3.3.3 is:

∀o ∈ Source.Orders, c ∈ Source.Customers |o.Id = c.Id → ∃o’ ∈
QuoteRequest.Orders, d’ ∈ o’.OrderDetails | o’.Order.Id = c.Id,

o’.Order.ShipTo.FirstName = c’.FirstName, o’.Order.ShipTo.LastName =

c’.LastName, d’.OrderLine.ProdName = o.ProdName,

d’.OrderLine.Quantity = o.Quantity

Refinement of mappings. The tgd corresponding to the mapping refinement

example presented in Section 3.3.3 is as follows:

∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈
o’.OrderDetails | o’.Order.Id = o.Id, o’.Order.ShipTo.FirstName =

o.FirstName, o’.Order.ShipTo.LastName = o.LastName,

d’.OrderLine.ProdName = o.ProdName, d’.OrderLine.Quantity =

o.Quantity*10

Examples in Figures 3.4 and 3.2. In the mapping depicted in Figure 3.4, the

mapping is specified at the atomic label ProdName, rather than at its correspond-

ing SetOf label OrderDetails, which offers an increased flexibility compared with

mappings expressed at the level of SetOf labels. Regarding the source spreadsheet

in Figure 3.4(a), for each product in the list of products, the product appears only

once and the rest of its corresponding orders is “nested” within it. For example

in Figure 3.4(a), there is one product Towel with two corresponding orders (with

identifiers 0042 and 0525) located under it. This is also a natural way to organize

spreadsheet data besides the tabular representation [104]. It is different from the

spreadsheet in Figure 3.3(a) where each product explicitly appears in each row of

the table.

In this example, TranSheet flattens each product with its corresponding order

information in the source spreadsheet into a relation where attributes are identical to

atomic labels of the target schema: Orders(ProdName, Id, FirstName, LastName,

Quantity). Values of the attributes are computed based on the mapping formu-

las associated with labels of the target schema. Regarding the mapping in Fig-
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ure 3.4 (suppose there are three products), we have: ProdName =A1,A5,A9; Orders

=A2:D3, A6:D7, A10:D10. Values of attributes Id, FirstName, LastName, Quantity

are obtained from the mapping formulas associated with Orders by formula inheri-

tance. For example, product Towel (i.e., ProdName =A1) is combined with 2 tuples

of order identifier, first name, last name, and quantity, namely {0042, Ford, Prefect,
2} and {0525, Arthur, Dent, 1}, to form two new rows. It is similar for other two

products Beer and Babel Fish. Finally, the following relational view is created:

A B C D E F

1 ProdName Id FirstName LastName Quantity

2 Towel 0042 Ford Prefect 2

3 Towel 0525 Arthur Dent 1

4 Beer 0042 Ford Prefect 150

5 Beer 0007 Zaphod Beeblebrox 300

6 Babel Fish 0525 Arthur Dent 1

The tgd is then generated to describe the mapping between the relation and the

target schema as follows:

∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.OrderDetails, d’ ∈
o’.Orders | o’.ProdName = o.ProdName, d’.Order.Id = o.Id,

d’.Order.ShipTo.FirstName = o.FirstName, d’.Order.ShipTo.LastName =

o.LastName, d’.Order.Quantity = o.Quantity

With respect to the mapping in Figure 3.2, the source spreadsheet (Figure 3.2(b))

is organized in a similar way where order items are “nested” within each customer

detail. Note that the difference is that labels Quantity, ProdName, and Price are

obtained values from range formulas associated directly with them, rather than

inheriting from the SetOf label OrderDetails.

New functions in tgd expressions

In the following, we focus on describing the mappings containing the new functions

that we introduce to tgd expressions. To support sorting, we introduce the new

function sort(sorting-context, sorting-attribute1, sorting-order1,...) where sorting-

context is the scope of sorting; sorting-attribute1 and sorting-order1 are sorting
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attribute and its corresponding sorting order (with value “ASC” or “DESC”), re-

spectively. For example, the tgd for the mapping example in Section 3.3.3 is:

∃sort(∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈
o’.OrderDetails | o’ = sort(⊥, o.ProdName, ASC, o.Quantity, DESC),

o’.Order.Id = o.Id, o’.Order.ShipTo.FirstName =

o.FirstName,o’.Order.ShipTo.LastName = o.LastName,

d’.OrderLine.ProdName = o.ProdName, d’.OrderLine.Quantity =

o.Quantity)

To support branching, we introduce the function if(condition, value-if-true, value-

if-false) where condition is the preset condition; value-if-true is the value assigned

to the function if condition is true; value-if-false is the value assigned to the function

if condition is false. For example, the tgd corresponding to the mapping example in

Section 3.3.3 is:

∃if(∀o ∈ Source.Orders → ∃o’ ∈ QuoteRequest.Orders, d’ ∈
o’.OrderDetails | o’.Order.Id = o.Id,o’.Order.ShipTo.FirstName =

o.FirstName, o’.Order.ShipTo.LastName = o.LastName,

d’.OrderLine.ProdName = o.ProdName, d’.OrderLine.Quantity =

o.Quantity, d’.OrderLine.Description = if(o.Quantity>20, ’large’,

’small’))

To support the set operators union, intersect, and minus, we introduce the

functions union(variable1, variable2,...), intersect(variable1, variable2,...), and mi-

nus(variable1, variable2,...) where variable1, variable2, and so on are set source

variables. The tgd for the mapping example in Section 3.3.3 is:

∃union(∀o1 ∈ Source.Orders1, o2 ∈ Source.Orders2 → ∃o’ ∈
QuoteRequest.Orders | o’ = union(o1, o2))

To support various patterns of value mapping, we introduce a collection of Excel-

like functions in tgd expressions, such as left, right, search, len, and concatenate. For

example, the tgd for the mapping example in Section 3.4.1 is:
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∃left,search,right,len(∀o ∈ Source.Orders → ∃o’ ∈
QuoteRequest.Orders, d’ ∈ o’.OrderDetails | o’.Order.Id = o.Id,

o’.Order.ShipTo.FirstName = left(o.Name, search(’ ’,o.Name)),

o’.Order.ShipTo.LastName = right(o.Name,len(o.Name)-search(’

’,o.Name)),d’.OrderLine.ProdName = o.ProdName,...)

3.6.2 Query Generation

Once the tgds have been generated, they are used to produce executable query

XQuery for transformation as presented in [79, 118] (See Section 2.5). We first

summarize data translation algorithms of Clio and Clip and important properties

of these algorithms. We then describe the new extensions that we make to these

algorithms.

Basic steps and properties of query generation

The main idea is that each tgd is translated in to a query (i.e., XQuery script).

After that, resulting queries are unioned to obtain final result [116]. Let d be a

tgd from source logical relation A to target logical relation B, the individual query

generated for d is divided into two steps. First, it materializes the flat relational

view A and projects on the attributes that are used by d. After some renaming from

attributes of A to attributes of B, the result is basically a projection of B. Second,

it nests the result according to the structure of the target and creates new values

for undetermined attributes using Skolemization.

The authors in [79] extend the above algorithm to deal with nested mappings.

This algorithm takes as input a nested mappingM and produces an XQuery FLWOR

expression as output. Each sub-mapping of M is translated into one nested FLWOR

expression of F. F has the following structure: a “for” clause captures the iteration

implied by every universally quantified variable of M ; a “where” clause captures

the join and filtering predicates; a “return” clause constructs the XML items for

the target schema elements mentioned in the existentially quantified part of the

mapping; elements bound to some of the variables defined in the for clauses are
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copied to the proper positions according to the values mappings expressed in the

mapping M . In turn, the sub-mappings of M recursively replicate this structure.

Clip [118] presents some extensions to support minimum-cardinality assumption,

grouping, and aggregate functions.

The algorithm has the following crucial properties [116]:

• The resulting target instance is in Partition Normal Form (PNF) [33]. This

means that in any set, at any nesting level of the target instance, the atomic

type attributes functionality determine the set type attributes. PNF is impor-

tant because it ensures that the redundancy that can occur due to nesting has

been minimized.

• More importantly, the generated query populates the target with the source

data that is intended to be mapped by the logical mapping (i.e., information

preservation). In other words, given a source instance, the algorithm gen-

erates a single canonical universal solution that is the result of the logical

mapping [71] (See Section 2.6 for a detailed description on universal solution).

Indeed, the algorithm described above is a special case of the chase procedures

of the general data exchange problem presented in [71].

Since our query generation algorithm is developed on top of the aforementioned

algorithm, it guarantees that each target document of TranSheet corresponds to a

canonical universal solution.

Novelty in query generation

In what follows, we focus on the novelty involving XQuery generation for the new

functions described above.

The order by clause of the XQuery FLWORs is used to generate query for func-

tion sort in a tgd expression. The order by clause consists of one or more ordering

specifications, separated by commas. Each specification contains an ordering at-

tribute and its related sorting order, corresponding to parameters sorting-attribute1
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and sorting-order1 of function sort. The XQuery for the mapping example in Sec-

tion 3.3.3 is:

<QuoteRequest>

{
for $o in Source/Order

let $p = $o/Price

let $q = $o/Quantity

order by $p ascending, $q descending

return

<Orders>

<Order>

<Id>{$o/Id/text()}</Id>
...

}</QuoteRequest>

The if-then-else construct of XQuery is used to generate query for function if in

a tgd expression. While branch if-then corresponds to value-if-true, branch then-else

corresponds to value-of-false. For example, the XQuery for the mapping example in

Section 3.3.3 is:

<QuoteRequest>

{
for $o in Source/Orders

return

...

if ($o.Quantity>20)

then <Description>large</Description>

else <Description>small</Description>

...

} </QuoteRequest>

XQuery provides the union, intersect, and except operators that are used by

TranSheet to implement functions union, intersect, and minus, respectively, in tgd
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expressions. For instance, in the case of function union(variable1, variable2), the

set node corresponding to variable1 is unioned with the set node corresponding to

variable2. The XQuery for the mapping example in Section 3.3.3 is:

<QuoteRequest>

{
let $orders = Source/Orders1 union Source/Orders2

for $o in $orders

return

<Orders>

<Order>

<Id>{$o/Id/text()}</Id>
...

} </QuoteRequest>

For each function f of TranSheet appearing in tgds for value mappings, if there

is a direct correspondence with a function fX of XQuery, we use fX in XQuery

expressions. Otherwise, we create a new XQuery user-defined function whose name

and parameters are identical to those of f . For example, while function len directly

corresponds to function string-length of XQuery, function left has no direct corre-

spondence. As a result, function left is defined as an XQuery function as follows:

declare function local:left($str as xs:string,$num_char as xs:integer)

as xs:string {
return substring($str,1,$num_char); }

3.7 Implementation

Architecture. TranSheet has been implemented as an Excel plug-in using C# 3.0

and Visual Studio 2008. Figure 3.5 depicts the architecture of TranSheet with the

following main components: (i) GUI enables users to specify mappings via formu-

las. While spreadsheet data is imported using the built-in functionality of Excel,
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target schemas are imported using TranSheet functionality; (ii) Mapping generation

engine takes input mapping formulas from GUI and generates corresponding tgds

(Section 3.6.1); (iii) Query generation engine generates XQuery from input tgds

(Section 3.6.2); (iv) Execution engine is responsible for executing input XQuery and

then returning the transformation result to GUI for validation. TranSheet currently

employs the open-source execution engine Saxon 1.

User interface. The user interface of TranSheet is shown in Figure 3.6. While

the left side corresponds to the source spreadsheet, the target schema is located in

the Excel task pane on the right. To specify a mapping, the user selects a target

label and enters a formula into the formula editor located in the task pane. Instant

feedback for the mapping is then displayed adjacent to the target labels. For a

detailed demonstration on how TranSheet works, see Appendix A.2.

Similar to [123], for simple mappings like copying (e.g., mappings Id =A1,

ProdName =C3:C5, OrderDetails =B3:C5 in Figure 3.2), the user can select a

single cell or a (mono-dimensional or bi-dimensional) range and drag-and-drop it

onto a target label. The corresponding mapping formula is then automatically gen-

erated for the label. For complex transformation operators, such as filtering, sorting,

merging, splitting, and join, TranSheet provides a collection of form-based wizards

that help users specify mapping graphically, rather than writing complicated for-

mulas from scratch. Details with examples about these wizards can be found in

Chapter 5.

Warnings. There are two level of warning display in the user interface: warnings

at the label level and warning at document level:

Warnings at label level

Some schema constraints are attached to particular schema labels. For example,

labels expect a particular type, or some label of a tuple should have the same

cardinality as the other label of the tuple (See Section 3.3.2).

For instance, if a label expects an integer and its mapping formula is set to ‘=A1’,

1http://saxon.sourceforge.net/
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Figure 3.5: Architecture of TranSheet for the spreadsheet-based data transformation
language

a warning message “#type mismatch: integer value expected” is displayed as long

as A1 does not contain the correct data type. When there is warnings generated

during formula evaluation and validation, the result of the formula evaluation is

displayed (i.e., in this case, the content of cell A1).

Warnings at document level

TranSheet dynamically generate XML document for each modification of either the

spreadsheet or the mapping specification. This gives an immediate feedback on the

final form of the message. Although displaying XML documents may be of little

interest to end-users, we use this document for a final validation against the schema.

It allows highlighting constraints violation that does not appear in our simplified

schema representation.

For example, XML Schema allows defining identifier attributes as well as refer-

ences to these identifiers. To check for such constraints, we use a generic schema

validation tool and display its output in a separate zone of the UI. Our plan is



3.8. Experiments 90

to progressively take into account as much constraints as possible directly at the

schema or element level, as well as for the interpretation of mapping formula, so

that these errors get displayed in their closest related location.

3.8 Experiments

So far, within the scope of this chapter, we mainly present the semantics and foun-

dation of the language, rather than its usability features. Thus, in this section, we

only focus on evaluating two major benefits of TranSheet, namely the expressive

power and mapping generalization.

To evaluate the expressiveness, we compare TranSheet with Excel XML Mapping

(Excel XMLMapping) [123] and IBMManyEyes [136, 8] in the visualization context,

which maps spreadsheets to visualization types (Section 3.8.1). To evaluate the

effectiveness of mapping generalization, we consider a medical data transfer case

study, which exports a collection of spreadsheets representing orthodontic patient

records to the target schema of an office management application (Section 3.8.2).

3.8.1 Expressiveness

Experimental setup. We selected 5 real data sets from the public repositories of

Australian government agencies 2 (4 large data sets) and ManyEyes [8] (1 data set);

each data set has column headers. The NSW Crime dataset is a table showing crimes

level in New South Wales - Australia by offence type, month and local government

area from 1995 to 2009 with 184 columns and 10541 rows. The Economic Stimulus

Package data set contains national building - economic stimulus plan projects of

Australia with 29 columns and 4271 rows. The School Locations data set consists

of addresses of schools in Victoria - Australia with 12 columns and 2294 rows. The

Frog Atlas contains various kinds of frogs in South Australia recorded at different

places with 13 columns and 6732 rows. The expensive cities data set indicates the

most expensive cities in the world from 2002 to 2009 with 9 columns and 144 rows.

2http://data.australia.gov.au/
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Mapping
Scenario

Data Set Visualization Type Description

Copying NSW
Crime

Pie Chart Visualize the top 10 number of
crimes in December 2009 using a pie
chart.

Merging School Lo-
cations

Map Merge street, town, and post code
information to put school locations
on a map.

Derivation Frog Atlas Time Line Visualize the names and descrip-
tions of frogs along with their sight-
ing dates using a time line, in which
format dd/mm/yyyy (Australia for-
mat) is converted to format mm/d-
d/yyyy (US format).

Splitting Expensive
Cities

Map Put the 143 most expensive cities in
2009 on a world map. Split the city
information in the data set to get
country names for visualization.

Sorting Economic
Stimulus
Package

Pie Chart Visualize the projects along with
corresponding government funding
for each project in the descending
order of funding using a pie chart.

Filtering NSW
Crime

Scatter Plot Use a scatter plot find correlation
between crimes in November 2009
and crimes in December 2009, but
only focus on area Marrickville.

Grouping
with aggre-
gation

Economic
Stimulus
Package

Pie Chart Group the data set by program
type, and then average funding for
each program type; visualize pro-
gram types with their corresponding
average fundings using a pie chart.

Nesting NSW
Crime

Bar Chart Visualize a bar chart of different
types of crimes in area Botany Bay
in October 2009.

Table 3.2: Mapping Scenarios



3.8. Experiments 92

Our test schemas are five structurally different visualization types Pie Chart,

Scatter Plot, Bar Chart,Map of ManyEyes [136], and Time Line of SIMILE project 3.

Schemas corresponding to some visualization types are shown in Figure 3.1. All data

sets and schemas can be found on our web page 4.

Eight popular mapping scenarios commonly used by the ManyEyes community

for visualization [8, 136] are considered in this experiment and are summarized in

Table 3.2. Each row of the table indicates name of a mapping scenario, data set and

visualization type to be used, and the mapping scenario description.

Methodology. Prior to implementing mapping scenarios, we familiarized our-

selves with all functionalities offered by Excel XML Mapping and ManyEyes. For

each mapping scenario in Table 3.2, if it can be implemented using a system, we

record manipulation operations on the source data set, if any. These operations in-

clude column deletion (CD), column insertion (CI), row deletion (RD), row insertion

(RI), data set sorting (DS), data set filtering (DF), and cell value changing (VC).

Observations. In a nutshell, TranSheet can implement all mapping scenarios

using mapping formulas without modifying data sets. On the other hand, both

Excel XML Mapping and ManyEyes need multiple manipulations on data sets to

accomplish mapping scenarios (summarized in Table 3.3). Excel XML Mapping

generally requires fewer manipulations than ManyEyes and multiple manipulations

of Excel XML Mapping can be done using graphical wizards. This is because Excel

provides many advanced features to support data manipulation. However, Excel

XML Mapping cannot implement mapping scenario nesting. While Excel XML

Mapping supports only one nesting level in the target schema, a bar chart consists

of two nesting levels.

Excel XMLMapping supports copying by dragging target attributes onto columns

containing local government area and crimes in December 2009. In the case of

ManyEyes, while the column containing local government area is selected from 4

candidates to map with the text target attribute, the column containing crimes in

December 2009 is selected from 180 candidates to map with the numeric target at-

3http://www.simile-widgets.org/
4http://cgi.cse.unsw.edu.au/∼vthung/

http://www.simile-widgets.org/
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Mapping Scenari-
o/Tool

EXM ManyEyes

Source Manipulation Source Manipulation

Copying 10530RD 10530RD

Merging 1CI+2293VC 1CI+2293VC

Derivation 6731VC 6731VC

Splitting 123RD+1CI+20VC 123RD+1CI+20VC

Sorting 1DS 4270RD+4270RI

Filtering 1DF 10473RD

Grouping with
aggregation

2CI+5RI+10VC 2CI+5RI+10VC+
29CD

Nesting Not supported 2CI+69RI+138VC +
184CD

Table 3.3: Source manipulation operations of EXM and ManyEyes in implementing
mapping scenarios

tribute. However, 10530 unwanted rows must be deleted for both tools. Although

Excel offers range notation, Excel XML Mapping selects by default the entire col-

umn, even if a specific range of the column is selected. TranSheet supports copying

via either range formulas or drag-and-drop operations.

To implement derivation, Excel XML Mapping and ManyEyes require 6731 val-

ues in the sighting date column must be converted to the mm/dd/yyyy format.

Similarly, a new column is inserted and its values are changed in the case of the

splitting or merging scenario to store splitting/merging values. TranSheet supports

derivation, merging, and splitting via applying functions on range formulas. For

instance, function concatenate is used to merge three columns containing street,

town, and postcode into a single address and then this address is mapped to the

text target attribute of the visualization type map.

Excel XML Mapping requires fewer manipulations than ManyEyes in imple-

menting sorting and filtering since Excel provides corresponding graphical wizards

for users to implement these mapping scenarios. The user needs to perform these

manually in the case of ManyEyes. Although ManyEyes offers sorting functional-

ity, it works only for text, not numbers. To sort government funding in descending

order, for instance, the user must manually select, cut and paste all required rows

individually. To filter area Marickville, the rows containing other areas are deleted

from the data set. TranSheet supports filtering and sorting by performing struc-
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tural mappings via formulas or wizards. For instance, the structural mapping Dots

=A2:GB10541[B2:B10541=“Marickville”] is used for filtering.

To implement grouping with aggregation using Excel XML Mapping, a new table

is created with 2 columns and 5 rows, in which each row contains a program type and

its average funding. To perform grouping, ManyEyes selects by default three text

columns containing project type, program type, and agency as grouping candidates

and calculates totals for column funding. Moreover, it supports only one grouping

attribute and one aggregate function to compute totals. As a result, this mapping

scenario cannot be implemented using the default grouping of ManyEyes. Instead,

like Excel XML Mapping, the user must create a new table and then deletes 29

old columns to avoid default grouping. TranSheet supports this mapping scenario

by grouping the data set according to program type and then using the aggregate

function average.

Since Excel XMLMapping does not support nesting, we only focus on ManyEyes.

To implement this scenario using ManyEyes, a new table with is created with 2

columns and 69 rows, where each row contains different types of crimes in October

2009, except the header row. In addition, 184 old columns must be deleted. Tran-

Sheet supports nesting by mapping range formulas to 2 attributes of the bar chart.

The title of the bar chart is assigned with value “Botany”.

3.8.2 Mapping generalization

Experimental setup. Themedical (orthodontic) dataset corresponds to more than

700 spreadsheet documents that were created and used by a French orthodontist.

Each document contains the personal information and medical records of a patient.

For each new patient, the orthodontist uses a new empty spreadsheet template and

manually fills the necessary cells with the patient data. While following the same

overall template, the resultant spreadsheets are slightly different from each other.

For instance, both the list of treatments and the table for containing consultation

times and charges vary in size from patient to patient. An extract of a document

and the target schema is shown in Figure 3.6, in which the personal information
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Figure 3.6: TranSheet user interface

is presented as single cells adjacent to their labels on the top, while the list of

treatments is located at the bottom in column D. For confidentiality reasons, the

source of data is not provided.

Methodology. We consider only Excel XML Mapping because ManyEyes is

limited to predefined schemas for visualization. With respect to Excel XML Map-

ping, a mapping is bound to a specific document and, strictly speaking, exportation

of multiple instances is not supported. However, this aspect can be ignored since

we merely want to uncover the potential problems posed by the column-based ap-

proach based on drag-and-drop operations for mapping specifications on multiple

structurally similar spreadsheets.

Observations. We encountered two types of problem when using Excel XML

Mapping for the exportation of the medical dataset. The first is related to the

exportation of lists and tables of varying size. For instance, a list of treatments is

represented by a series of cells in a column and delimited only through visual clues

(column D in Figure 3.6). To handle lists and tables of varying size, EXM insists

that columns of lists or tables are first transformed into data lists. However, doing
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so clutters the spreadsheet by inserting header rows and it must be done manually

for each spreadsheet instance. The second problem concerns the mapping of values

that appear at varying coordinates depending on each spreadsheet. For instance,

in Figure 3.6, the field SAP (which stands for Antero-Posterior Situation) is located

in cell B13 and its value is in cell C13. This field may be located at another row

in another spreadsheet, but always in column B or entirely missing. Therefore,

to obtain the value for SAP, it is necessary to automatically lookup the coordinate

of the cell containing this label and take the value of the cell located to its right.

Looking up labels is usual in spreadsheet programming (e.g., Excel supports this

feature through function vlookup). However, to exploit this feature for exportation,

one would have to prepare a separate spreadsheet where each of the field values is

assigned a definite cell whose value is obtained by a formula that uses the lookup

function. Building such a spreadsheet is tedious and time-consuming.

TranSheet addresses the first problem through mapping formulas for ranges of

varying length (Section 3.5.2) and the second problem through the expression of

relative locations of varying coordinate cells (Sections 3.5.2 and 3.5.2). For instance,

we use the mapping formula SAP =C〈bottom(B〈value=”SAP”〉)〉 to obtain the value

for the label SAP. This formula evaluates the value to the right of the cell in column

B which contains the text “SAP”. The list of current treatments is retrieved by

using the mapping formula: Records =D12:D〈value=empty〉

3.9 Related Work

3.9.1 Transformation Languages and Mapping Tools

A language for the description of spreadsheet content as a series of relational tables

is proposed in [104, 60]. Once defined, the schema can be used with either low-

level transformation languages (e.g., XSLT/XQuery) or visual mapping tools (e.g.,

Clio [79], Clip [118], +Spicy [111], and Altova MapForce [2]) to perform transfor-

mation. However, spreadsheet users must learn a new complex language to perform

transformations and their existing programming experience is not leveraged. By
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contrast, TranSheet provides a familiar spreadsheet-like formula mapping language

as well as GUI-based utilities to ease transformation specification.

3.9.2 Exportation of spreadsheet data

Several existing approaches support the exportation of spreadsheet data to struc-

tured formats [123, 53, 136, 5]. Regarding these approaches, data representation or

structural mismatches between a source spreadsheet and target XML schema are

addressed by modifying the spreadsheet document before exportation. Most of the

transformation logic is embedded in modifications of the source spreadsheet. By

contrast, TranSheet separates the transformation logic from source manipulations

through the notion of mapping formulas. The benefits are increased expressiveness

and preservation of the source document presentation. The reuse of a mapping to

export multiple structurally similar spreadsheets is another benefit.

3.9.3 Schema Mapping and Data Exchange

Data exchange studies how to transform an instance of a source schema into data

structured under a target schema and the restructured data is materialized. In data

exchange, given a source instance, there are many possible solutions for the tar-

get [72]. A universal solution has no more and no less data than required for the

data exchange problem, and is therefore preferable. Each document generated by

TranSheet corresponds to a canonical universal solution. We use the tgds to describe

the semantics of TranSheet. With respect to existing approaches [79, 118], Tran-

Sheet introduces a collection of new functions in tgd expressions to cover numerous

transformation patterns provided by other transformation languages and mapping

tools [37]. TranSheet also extends a previous query generation algorithm [118] to

generate XQuery for these new functions.

It is shown in [79] that target data may contain a lot of redundancy when using

existing mapping generation algorithms [79, 116]. Fagin et al. [73] introduce the

notion of core solutions which are optimal solutions for the data exchange problem.

The post-processing algorithm for computing core solutions in [73] can be adopted
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by our language to remove such redundancy.

Currently, a formal description of the exact class of mapping scenarios that can be

handled by tgd-based mapping systems (including TranSheet) is still missing [143].

3.9.4 Spreadsheet-based data access and manipulation

The spreadsheet programming paradigm is leveraged in [106, 135] to simplify spec-

ification of SQL queries using formulas. Mashroom [139] used this paradigm to

display the nested relational data and developed a set of mashup operators for that

data model to build mashup applications. Our work is also based on the simplicity

and effectiveness of the spreadsheet programming paradigm, but we focus on trans-

forming spreadsheet data to XML, rather than extracting data from the spread-

sheet, including macros and formulas. The recently proposed file format, namely

OpenXML [125], allows external applications to extract data from Excel 2007 files

(XLSX).

Our previous work [102] focused on importation external data into spreadsheets

and proposed a number of widgets to present such data. Some generic notations

described in Section 3.5 are used to bind data to those widgets. Instead, in this

chapter, those notations are differently employed to generalize mappings for trans-

formation purpose. We also introduce new notations for specifying conditional range

boundaries based on visual styles.

3.9.5 Domain specific and data description languages

Various high level languages have been developed to address the generic problem of

accessing and representing data stored in a poorly structured way using higher level

conceptual representation. In [76], the authors propose to formalize a family of Data

Description Languages (DDL) in a framework called Data Description Calculus.

This framework allows correctness criteria to be expressed and proved.

The DDL family of language however is geared toward parsing of data repre-

sented as a sequence of bytes (ad-hoc data). Spreadsheets are not only more struc-
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tured than ad-hoc data, but they are very special in the spatial organization of data

they offer. They claim for a different family of data description language.

To the best of our knowledge, the first proposal of spreadsheet-specific DDL is

in [104]. The language they propose allows to specify the semantics of a spreadsheet

content as well as materialize the corresponding view. This language and the one we

propose in this chapter share many similar concepts (e.g., the use of variable ranges

associated with concepts is equivalent to our use of labels associated with ranges).

With respect to this seminal work, our contributions are: (i) we target the

XML nested data model rather than the relational model and focus on expressing

a mapping toward a given target schema rather than describing the spreadsheet

content as-is; (ii) the language proposed in [104] is specialized to pattern description,

meaning it is not possible to express irregular layouts or to simplify the expression of

layout when there are very few instances. TranSheet on the other hand allows freely

choosing to specify an ‘instance level’ or a ‘pattern level’ mapping, depending on the

actual spreadsheet layout or, more likely, on the user expertise. Moreover, schema

view specialization allows to handle irregular layout cases; (iii) and this is probably

the most important, we claim that TranSheet is more suited to end-users: while

users in [104] have to make an explicit use of iteration variables, TranSheet abstracts

this mechanism away from users thanks to the formula interpretation mechanism.

Moreover, TranSheet combines visual programming (through view manipulation)

with formula-based specification where formulas are very alike spreadsheet formulas.

3.10 Summary

In this chapter, we have proposed an approach for transforming spreadsheet data to

XML. The approach is based on a mapping language which reuses most of the famil-

iar concepts of spreadsheet formulas and implements popular transformation pat-

terns that are relevant to spreadsheet-based data transformation using spreadsheet

formulas and functions. It supports users through the immediate evaluation and

preview of the transformation to help building incrementally the desired mapping,

while keeping the source document unmodified. It also addresses the re-usability of
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the mapping for various spreadsheets through the concept of generalized mappings.

The experimental results show that TranSheet is flexible and expressive enough to

support numerous practical spreadsheet-based transformation scenarios.

We have found the proposed language expressive enough for a large range of

practical scenarios. Moreover, the expressiveness of the language can easily be ex-

tended through new mapping primitives. Since spreadsheets have proved a very

versatile medium for data exchange, we believe this work has a great potential for

both desktop and Web-based applications.



Chapter 4

Spreadsheet-based Data

Transformation Reuse

Although the reuse of previously specified mappings promises a significant reduction

in manual and time-consuming transformation tasks, its potential has not been fully

realized in current approaches and systems. In this chapter, we study the problem of

reuse in transforming spreadsheet data to structured formats based on extending the

language presented in Chapter 3. We formulate the problem and propose a solution

that relies on the notions of spreadsheet templates, mapping generalization, and

similarity join. Given a spreadsheet instance that is being mapped to the target

schema, we recommend a list of previously specified mapping formulas that can be

potentially reused for the instance. We implemented a prototype of of the proposed

solution and evaluated its performance via synthetic datasets.

4.1 Introduction

It has been known that data transformation is a labour-intensive and error-prone

process, which includes the various steps, namely schema matching, mapping speci-

fication, code generation, and transformation execution [85, 127] (See Section 1.1.2

for more details). Thus, it is useful to reuse previously specified mappings as much

as possible to save time and avoid duplication of efforts [119]. However, most exist-

101



4.1. Introduction 102

ing work on data transformation mainly focuses on the development of an ad-hoc

program that can handle only exactly one data source without explicit intent for

future reuse [128]. As a consequence, it is cumbersome as regards to maintenance

and extensibility when dealing with new data sources.

In this chapter, we consider the problem of reuse in transforming spreadsheet

data to structured formats. The problem is challenging because of several reasons:

(i) Spreadsheets do not impose constraints on the data layout and data is, therefore,

not organized in a pre-defined way. Given two spreadsheet instances, it is hard to

automatically uncover if they are similar in terms of structure; (ii) A mapping of a

spreadsheet instance to the target schema is only applied exactly to this instance,

not to other instances with similar structure that also need to be mapped to the

target schema.

Figure 4.1 shows the transformation scenario used throughout the whole chapter

for illustration purpose. We consider the three spreadsheets (in Figures 4.1(a), 4.1(b),

and 4.1(c)) containing similar data that must be mapped to the target schema (Fig-

ure 4.1(d)). The instance in Figure 4.1(a) is a table presentation [101] with headers

in the first row and data in subsequent rows. The instance in Figure 4.1(b) is a ver-

tical repeater presentation [101] where different values of tuples (Dept, ID, Name) are

presented vertically, each of which is separated by two empty rows. The instance in

Figure 4.1(c) is also a vertical repeater presentation where different values of tuples

(Dept, ID, Address, Name) are presented vertically, each of which is separated by

one empty row. Note that spreadsheet data in Figure 4.1(b) is similar to the one in

Figure 4.1(c) in terms of structure, but it does not include address information of

employees.

Suppose that the two spreadsheets in Figures 4.1(a) and 4.1(b) are already

mapped to the target schema. Now the user wants to map the spreadsheet in

Figure 4.1(c) to this schema. The important question to ask is if previous mapping

efforts can be reused for this new mapping. The structure of the spreadsheet in

Figure 4.1(b) is similar to the one of the spreadsheet in Figure 4.1(c) so it is desir-

able that we can reuse the mapping used to transform the instance in Figure 4.1(b)

to the target format for the new mapping. In what follows, we review two related
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(a)

(b)

(c)

Target
Emp [1..*]

Dept =B1 {IT}
EmployeeID =B2 {1111}
EmployeeName =B3 {Ann}
Address?

(d)

Figure 4.1: Motivating example: (a) Employees organized in a table presentation;
(b) Employees organized in a vertical repeater presentation without address infor-
mation; (c) Employees organized in a vertical repeater presentation with address
information; (d) The target schema.

state-of-the-art approaches for dealing with this scenario.

The first approach, namely schema-based, helps users specify a schema of a

spreadsheet [104]. Then, either low-level transformation languages (e.g., XSLT/X-

Query) or visual mapping tools (e.g., Clio [79], Clip [118], +Spicy [111], Altova

MapForce [2]) is used for specifying transformation at schema level. Finally, the

spreadsheet instance is translated into an instance of the target schema. How-

ever, users must learn a new language, e.g., by creating correspondences between

the source and target elements and annotating these correspondences with one or

more unfamiliar functions (e.g., functions of XSLT/XQuery or .NET Framework) in

the case of mapping tools [127]. This flowchart-like mapping interface is typically

cluttered when schemas are large and mappings are complex [126]. In contrast,

spreadsheet users are familiar with formulas and an incremental approach to build-

ing applications with instant feedback at each step [96].

The second approach, namely column-based, allows users to specify mappings

between target elements and spreadsheet columns via drag-and-drop operations [124,
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52]. The user can select a target atomic element and drag it onto a source column

to specify a mapping. However, this approach offers no reuse support. For example,

to map the spreadsheet in Figure 4.1(a), the user can select target atomic elements

Dept, EmployeeID, EmployeeName, Address and drag them onto source columns

A1:A5, B1:B5, C1:C5, D1:D5, respectively. To map the spreadsheet in Figure 4.1(b),

the user must modify the presentation of this spreadsheet in order to conform to the

structure shown in Figure 4.1(a) (i.e., table presentation) and then repeat the steps

described in the case of the spreadsheet in Figure 4.1(a). Regarding the spreadsheet

in Figure 4.1(c), again, the user must modify this spreadsheet as in the case of the

instance in Figure 4.1(b). It is a tedious and time-consuming process with no reuse

support.

In Chapter 3, we developed a spreadsheet-like formula mapping language that

enables users to specify mappings between spreadsheet data and the target schema.

In this chapter, we extend this language allowing users to reuse previously specified

mapping formulas for a new spreadsheet instance that needs to be mapped to the

target schema. To the best of our knowledge, the problem of spreadsheet-based

transformation reuse has not been addressed before in the setting we consider here.

More specifically, to address this problem, we make the following main contributions:

• We formulate the problem of spreadsheet-based transformation reuse as a vari-

ant of similarity join [43, 57, 141], which is a well-known similarity search prob-

lem that finds all pairs of objects whose similarity is above a given threshold

(Section 4.2).

• We define spreadsheet templates that are used to characterize spreadsheet

structures. We propose techniques to infer a template from an existing spread-

sheet based on common spreadsheet presentation patterns. We then generate

the string-based representation of an inferred template (Section 4.3).

• We propose an algorithm to recommend previously specified mappings for

a new spreadsheet instance that needs to be mapped to the target schema.

This relies on computing similarity between string-based representations of

templates (Section 4.4).
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• We design a repository to organize mapping information. We implemented a

prototype of the proposed solution. We then evaluated the performance and

effectiveness of the solution. The experimental results show the viability and

usefulness of our approach (Sections 4.5 and 4.6).

The rest of this chapter is organized as follows. Section 4.2 formulate the

spreadsheet-based data transformation reuse problem. Next, Section 4.3 formally

defines spreadsheet templates and infers templates from existing spreadsheets. The

reuse recommendation algorithm is described in Section 4.4. Section 4.5 presents the

prototype implementation. Section 4.6 evaluates the performance of the proposed

solution. We discuss related work in Section 4.7 and conclude in Section 4.8.

4.2 Problem Definition

Given a schema T and a spreadsheet instance I, the corresponding specified mapping

MI from I to T is stored as a tuple (MI , I, PI , T ) in the mapping repository;

PI is a template of I; MI consists of template-level mappings (See Section 3.5)

that are specified to transform I to a target instance conforming to T . We denote

ΓT as a collection of all tuples containing previously specified mappings from past

spreadsheet instances to T . The main technical problem can be formally stated as

follows.

Definition 4.2.1 Given an instance J conforming to template PJ that is currently

being mapped to schema T , find in ΓT all tuples (MI , I, PI , T ) such that similarity

between PI and PJ is greater than or equal θ where θ is a predefined normalized

threshold (0 < θ ≤ 1).

As presented later, a template is represented as a string generated from a context-

free grammar. Therefore, similarity between PI and PJ can be characterized by a

string similarity function sim: sim(PI , PJ) ≥ θ. It is also worth noting that the

size of ΓT (|ΓT |) may be large (e.g., a few hundred thousand mappings) so we need

a more efficient approach, rather than directly comparing PJ with all templates
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in ΓT using a similarity function (i.e., pair-wise comparison), which is costly when

template lengths are large.

Given two sets of strings R and R′, similarity join [43, 57, 141] finds in all

pairs (x, y) (x ∈ R and y ∈ R′) such that sim(x, y) ≥ θ. Self-join is a special

case of similarity join when R = R′. Instead, given a new string x, we find all

y ∈ R (R′) such that sim(x, y) ≥ θ. The efficient approach to similarity join is a

filtering (probe the inverted lists and use the filtering methods to eliminate as much

as possible false candidates) and verification (check each candidate to find out if the

threshold is satisfied) process [141], which is also applicable to the spreadsheet-based

transformation reuse problem.

A spreadsheet S may contain multiple instances, not only one: S = {I1, ..., In}.
For example, the user can put three instances shown in Figures 4.1(a), 4.1(b),

and 4.1(c) in one spreadsheet, instead of three separate spreadsheets. We assume

the existence of procedures to identify and separate Ii (1 ≤ i ≤ n) from S (See [34]

for an example). Mapping from S to the target schema T can be, therefore, divided

into individual mappings: (I1, T ),...,(In, T ). Thus, in this chapter, we assume that

S contains only one instance.

4.3 Spreadsheet Template

In Section 4.3.1, we formally define the template description language. Section 4.3.2

presents template inference techniques and how to generate the string-based repre-

sentation of an inferred template.

4.3.1 Template Description Language

n many cases, spreadsheets evolve in a number of predictable ways and various

spreadsheets tend to emerge from a common pattern. Structure of spreadsheets

can be characterized via the notion of template. We use a variation of the lan-

guage VITSL developed in [69] with the following context-free grammar to describe

templates:
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1. Temp ::= C | C→ | Temp � Temp

2. C ::= B | B↓ | C � C

3. B ::= F | B − B

4. F ::= ε | const | β | Φ(F, ..., F )

N is a set of non-terminal symbols: N = {Temp,B,C, F}. Σ is a set of terminal

symbols: Σ = ε ∪ const ∪ β ∪ Φ and ε ∩ const ∩ β ∩ Φ = ∅. S is the start symbol:

S = Temp.

Template Temp is a table given by a horizontal composition (�) of fixed columns

(C) or expandable groups of columns (C→). A column (C) is given by a vertical

composition (−) of fixed cells (B) or expandable groups of cells (B↓). A cell (B)

is given by a formula (F ), which consists of an empty value (ε), a constant label

(const), a basic type (β) (e.g., int, string) of a data cell, or a function (Φ(F, ..., F )).

Note that cells of a template can be basically classified according to their content

into four types: empty cell, label cell (e.g., headers), data cell, and formula cell (i.e.,

computation cell) [34].

All columns of a template have to vertically align (i.e., same height and same

expandable groups of cells). An expandable group of columns is called a horizontal

expandable group or hex group for short. An expandable group of cells is called

a vertical expandable group or vex group for short. For comparison purpose, we

replace the hex group symbol C→ and the vex group symbol B↓ by [ C ] and

< B >, respectively. Let us consider some examples on using this language to

describe spreadsheet templates.

For example, template Dept − < string > � ID − < int > � Name − < string

> � Address − < string > describes a class of tabular spreadsheet instances with

four fixed columns, each of which consists of a description label (i.e., header, such

as Dept, ID, Name, Address) at the top and a set of subsequent text/numberic data

cells (represented by types string, int,...). The spreadsheet in Figure 4.1(a) is an

instance of this template.
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Template < Dept − ID − Name − ε − ε > � < string − int - string − ε − ε

> describes a class of spreadsheet instances with two fixed columns; the first column

contains groups of labels, each of which contains three labels and two empty cells;

the second column contains groups of data cells adjacent to labels, each of which

contains three data cells and two empty cells. The spreadsheet in Figure 4.1(b) is an

instance of this template. Similarly, the spreadsheet in Figure 4.1(c) is an instance

of template < Dept − ID − Address − Name − ε > � < string − int − string −
string − ε >.

4.3.2 Inferring Templates

Given a spreadsheet, it is desirable to infer a template that characterizes its struc-

ture. The problem is challenging since spreadsheets may not impose any restrictions

on how to organize data over a tabular grid. In fact, the spreadsheet may not have

enough information for inferring a template. Therefore, template inference is typ-

ically ambiguous and users generally need to provide input to resolve ambiguities

during inference process [35].

Abraham et al. [35] present an inference technique based on the cells containing

similar formulas to identify hex and vex groups (See Appendix A.1 for a detailed

description). However, there are numerous spreadsheets in which formula cells are

not available [77] (e.g., spreadsheets in Figures 4.1(a), 4.1(b), and 4.1(c)). As a

result, in addition to that technique, we also provide an inference technique based

on the common spreadsheet presentation patterns we proposed in [101], including

the table, repeater, and hierarchical presentations. For instance, the inference algo-

rithm for a repeater presentation in the vertical direction is shown in Algorithm 1.

Recall that a vertical repeater presentation contains two columns, each of which

contains instances of a vex group. Algorithm 1 extracts the two first instances, that

characterize these vex groups, based on identifying the last empty row of the two

instances. By using this algorithm, the template of the instance in Figure 4.1(b) is

inferred as shown in Figure 4.2 in a new worksheet (table A1:B5), where the two

vex groups with some default values are shaded light orange (vex groups A1:A5 and
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B1:B5).

Input: Start and end coordinates of the instance: (x, y) and (x+ 1, y′)
Output: Start and end coordinates of the inferred template
begin

i←− 0 ;
repeat

i←− i+ 1;
until (x, y + i) = ε and (x, y + i+ 1) �= ε;
return (x, y) and (x+ 1, y + i)

end
Algorithm 1: Template inference for a vertical repeater presentation.

To generate a string-based representation of an inferred template (e.g., the tem-

plate in Figure 4.2), the following main steps are performed:

• First, stand at the start coordinate (i.e., top-left cell) of the inferred template

(e.g., cell A1 in Figure 4.2).

• Then, traverse all columns of the template from left to right. If meet a hex

group, generate a pair of (“[”,“]”) and put the result of traversing each column

in the hex group in this pair. Between two columns (e.g., columns A1:A5 and

B1:B5 in Figure 4.2), a column and a hex group, or two hex groups, generate

“�”.

• For each column, traverse all cells of the column from top to bottom. If meet a

vex group, then generate a pair of (“<”, “>”) and put the result of traversing

each cell in the vex group in this pair. Between two cells (e.g., cells A1 and

A2 in Figure 4.2), a cell and a vex group, or two vex groups, generate “−”.

• For each cell : (i) If the cell contains a formula f , generate “f”; (ii) If the cell

is an empty cell, generate “ε”; (iii) If the cell contains a label l, generate “l”;

(iv) If the cell is a data cell, generate its type. To decide whether a cell inside

a hex group/vex group is a data cell or a label, we rely on the observation: If

the cell is referenced by a formula or values of the cell are changed in instances

of the hex group/vex group in the original spreadsheet (i.e., the spreadsheet
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Figure 4.2: Inferred template of the instance in Figure 4.1(b) in a new worksheet

from which the template is inferred), it is a data cell; otherwise, it is a label.

For example, in Figure 4.2, cell B1 is a data cell (since its values are changed

in vex group instances in the original spreadsheet in Figure 4.1(b)), while cell

A1 is a label. For a cell outside vex groups/hex groups, if the cell is referenced

by a formula, it is a data cell; otherwise, it is a label.

Note that each generated token is separated from the other tokens by a single

whitespace that is convenient for tokenizing later. By applying the above steps, the

string-based representation of the template in Figure 4.2 is generated as “< Dept −
ID − Name − ε − ε > � < string − int − string − ε − ε >”. This string is then

shown up to the user for validation and editing.

4.4 Reuse Recommendation Algorithm

There are numerous similarity functions for measuring similarities, but no single

function is known to be the best one, basically depending on the application domain.

There are mainly two relevant approaches, namely character-based and token-based

similarity metrics [14]. Character-based approach relies on the notion of edit distance

which measures the minimum number of edit operations needed to transform one

string to the other. Edit operation is an insertion, deletion, or substitution of a

single character.

For example, the edit distance between “microsoft” and “mcrosoft” is 1, with

one delete operation. Edit distance captures well typographical errors (words with
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alternative spellings). However, when there is a rearrangement of words in a string,

character-based metrics fail to capture the similarity (e.g., “Bill Gates” and “Gates,

Bill” ). Token-based approach is designed to solve this problem, in which strings are

tokenized according to word boundaries and popular set-based similarity measures

(e.g., Jaccard and Cosine) are then used to compute similarity.

Regarding algorithm illustration, we specifically focus on the Jaccard similarity,

a commonly used function for defining similarity between sets. It has been shown

that supporting Jaccard similarity efficiently leads to sound implementations of other

similarity functions (e.g., edit distance and Cosine similarities) [43, 57, 141]. As

mentioned earlier (Section 4.2), we finds in ΓT all templates that are similar to PJ ,

instead of looking for all similar template pairs in the set of templates ΓT ∪ {PJ}
as in the case of similarity join. Therefore, our algorithm is designed based on

modifying the recently proposed algorithm PPJoin+ [141, 103], which has been shown

to outperform previous ones on similarity join. The main steps of the algorithm are

sketched in Algorithm 2.

We will intuitively illustrate these steps in via the motivating example. Suppose

that ΓT already contains the mappings of the instance I0 (Figure 4.1(a)) and the

instance I1 (Figure 4.1(b)) to the target schema (Figure 4.1(d)). The specified

template-level mapping formulas are:

• Emp =A2:D(value=empty) (for I0)

• Dept =B1:B(next=bottom(Dept)+5) (for I1)

• EmployeeID =B2:B(next=bottom(EmployeeID)+5) (for I1)

• EmployeeName =B3:B(next=bottom(EmployeeName)+5) (for I1).

The user now wants to map instance J in Figure 4.1(c) to the target schema.

The templates of the three instances are described in Section 4.3: PI0=“Dept −
< string > � ID − < int > � Name − < string > � Address − < string >”, PI1=

“< Dept − ID − Name − ε - ε > � < string − int − string − ε − ε >”, and

PJ=“< Dept − ID − Address − Name − ε > � < string − int − string − string

− ε >”. The threshold to be set is 0.8: θ = 0.8.
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Input: A collection of specified mappings ΓT ;
A new instance J conforming to template PJ ;
Jaccard similarity function f and threshold θ
Output: All pairs (PI , PJ), PI ∈ ΓT such that f(PI , PJ) ≥ θ
begin

1. Tokenize templates in ΓT and template PJ into sets of tokens (i.e.,
records).
2. Records are canonicalized according to the document frequency ordering
Odf

3. Create inverted lists on tokens that appear in templates in ΓT and generate
candidates for PJ by probing these inverted lists.
4. Reduce candidate size for PJ using size filtering and positional filtering.
5. Verify final candidates using similarity function f such that f ≥ θ.

end
Algorithm 2: The algorithm for reuse recommendation.

At first step, we transform each template into a set of tokens according to the

delimiter whitespace. Since tokens may occur multiple times in a string, we will

convert a multiset of tokens into a set of tokens by treating each subsequent occur-

rence of the same token as a new token [57]. Such a set of tokens is called a record.

For example, PI0 ={Dept0, −0, <0, string0, >0, �0, ID0, −1, <1, int0, >1, �1, Name0,

−2, <2, string1, >2, �2, Address0, −3, <3, string2, >3, PI1 = {<0, Dept0, −0, ID0,

−1, Name0, −2, ε0, −3, ε1, >0, �0, <1, string0, −4, int0, −5, string1, −6, ε2, −7,

ε3, >1} and PJ = {<0, Dept0, −0, ID0, −1, Address0, −2, Name0, −3, ε0, >0, �0, <1,

string0, −4, int0, −5, string1, −6, string2, −7, ε1, >1}.

In the second step, to compare records, a record is canonicalized by sorting its

tokens according to a certain global ordering O defined on the token universe U .
The document frequency of a token is the number of records containing the token.

A document frequency ordering Odf arranges the tokens of a record according to the

increasing order of tokens’ document frequencies. Odf favors rare tokens in prefixes

and hence produces a small candidate size as presented in next steps. For example,

the token universe, the tokens’ document frequencies, and token’s orders of PI0 , PI1 ,

and PJ are presented in Tables 4.1 and 4.2 (DF is the abbreviation for “Document

Frequency”).
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Token Dept0 −0 <0 string0 >0 �0 ID0 −1 <1 int0 >1 �1 Name0 −2 <2

DF 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1

Order 17 18 19 20 21 22 23 24 25 26 27 1 28 29 2

Table 4.1: Tokens’ document frequencies and token’s orders of PI0 , PI1 , and PJ (Part
1)

Token string1 >2 �2 Address0 −3 <3 string2 >3 −4 −5 −6 −7 ε0 ε1 ε2 ε3

DF 3 1 1 2 3 1 2 1 2 2 2 2 2 2 1 1

Order 30 3 4 9 31 5 10 6 13 14 15 16 11 12 7 8

Table 4.2: Tokens’ document frequencies and token’s orders of PI0 , PI1 , and PJ (Part
2)

Consequently, PI0 , PI1 , and PJ are canonicalized according to Odf with the fol-

lowing results: PI0 = {�1, <2, >2, �2, <3, >3, Address0, string2, Dept0, −0, <0,

string0, >0, �0, ID0, −1, <1, int0, >1, Name0, −2, string1, −3}, PI1 = {ε2, ε3, ε0,
ε1, −4, −5, −6, −7, Dept0, −0, <0, string0, >0, �0, ID0, −1, <1, int0, >1, Name0,

−2, string1, −3 }, and PJ = {Address0, string2, ε0, ε1, −4, −5, −6, −7, Dept0,

−0, <0, string0, >0, �0, ID0, −1, <1, int0, >1, Name0, −2, string1, −3 }.

In the third step, given two canonicalized records x and y with O(x, y) = |x∩ y|
, by using the transformation |x ∪ y| = |x|+ |y| − |x ∩ y|, we have:

Jaccard(x, y) =
|x ∩ y|
|x ∪ y| ≥ θ ⇔ O(x, y) ≥ α =

θ

θ + 1
∗ (|x|+ |y|) (4.1)

Jaccard(x, y) ≥ θ ⇒ θ ∗ |x| ≤ |y|, θ ∗ |y| ≤ |x| (4.2)

Let p-prefix of a record x be the first p tokens of x. Prefix-filtering principle [57]

states that (|x| − α + 1)-prefix of x and (|y| − α + 1)-prefix of y must share at

least one token if (x, y) are a candidate pair. The prefix-filtering principle is used

in building inverted lists (i.e., inverted indices). In terms of information retrieval,

input template PJ can be seen as a query and the templates in ΓT can be considered

as the set of matching documents. The key idea is that we create inverted lists for

each token of existing templates in ΓT and we index prefixes with certain lengths,

instead of the whole records. Obviously, if two records (x, y) are a candidate pair,

then they share at least one token. Given a candidate pair (x, y), the prefix of
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length |x| − �θ ∗ |x|� + 1 of x and the prefix of length |y| − �θ ∗ |y|� + 1 of y must

share at least one token. This is because |x| − �θ ∗ |x|� + 1 ≥ |x| − α + 1 and

|y| − �θ ∗ |y|�+ 1 ≥ |y| − α + 1 (based on Equation 4.2).

Therefore, given a template PI in ΓT , we only need to index a prefix of length

|PI|− �θ ∗ |PI|�+1. We index both tokens and their positions in the prefixes so that

positional filtering can be applied later. Then, with respect to the input template

PJ, we match each token of the (|PJ|− �θ ∗ |PJ|�+1)-prefix of PJ against the inverted

lists and generate candidates for PJ by union the matched lists.

For example, the 5-prefix of PI0 to be indexed is {�1, <2, >2, �2, <3} with the

following lists: list(�1) = {(PI0 ,1)}; list(<2) = {(PI0 , 2)}; list(>2) = {(PI0 , 3)};
list(�2) = {(PI0 , 4)}; list(<3) = {(PI0 , 5)}. Also, 5-prefix of PI1 to be indexed

is {ε2, ε3, ε0, ε1, −4} with the following lists: list(ε2) = {(PI1 ,1)}; list(ε3)

= {(PI1 , 2)}; list(ε0) = {(PI1 , 3)}; list(ε1) = {(PI1 , 4)}; list(−4) = {(PI1 , 5)}.
Next, each token in the 5-prefix of PJ = {Address0, string2, ε0, ε1, −4} is matched

against the above lists. Finally, the candidate set is created by applying the union

operation on the matched lists: list(ε0) ∪ list(ε1) ∪ list(−4) = {(PI1 , 3),
(PI1 , 4), (PI1 , 5)}. As can be seen, PI0 is filtered out and only PI1 is passed to the

next step.

In the fourth step, given a candidate pair (x, y), we reduce the candidate size

based on size filtering (see Equation 4.2) and positional filtering. The positional

filtering is stated as follows:

• Let token ω = x[i], ω partitions the record x into the left partition xl(ω) =

x[1..i] and the right partition xr(ω) = x[i + 1..|x|]. If O(x, y) ≥ α, then for

every token ω ∈ x ∩ y, O(xl(ω), yl(ω)) +min(|xr(ω)|, |yr(ω)|) ≥ α.

We have |PI1 | = |PJ| = 23 so size filtering is satisfied. For the common token ‘ε0’,

O(PI1l(ε0), PJl(ε0))+min(|PI1r(ε0)|, |PJr(ε0)|) = 1 + min(20, 20) = 21 > α = 20.44.

Similarly, positional filtering is also valid for the other common tokens ‘ε1’ and ‘−4’

since:

• O(PI1l(ε1), PJl(ε1)) + min(|PI1r(ε1)|, |PJr(ε1)|) = 2 + min(19,19) = 21 > α =
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20.44

• O(PI1l(−4), PJl(−4)) + min(|PI1r(−4)|, |PJr(−4)|) = 3 + min(18,18) = 21 >

α = 20.44

Hence, the pair (PI1 , PJ) can be passed to the final step for verification. Note

that for really large datasets, suffix filtering [141] can also be used to prune more

candidates. This filtering method is a generalization of the positional filtering to

the suffixes of the records by converting the overlap constraint to the equivalent

Hamming distance constraint.

Our example has |PI1 | = |PJ| = 23 so size filtering is satisfied. For the com-

mon token ‘ε0’, O(PI1l(ε0), PJl(ε0)) + min(|PI1r(ε0)|, |PJr(ε0)|) = 1 + min(20,20)

= 21 > α = 20.44. Positional filtering is also valid for the other common to-

kens ‘ε1’ and ‘−4’ because: min(|PI1r(ε1)|, |PJr(ε1)|) = 2 + min(19,19) = 21 and

min(|PI1r(−4)|, |PJr(−4)|) = 3 + min(18,18) = 21. As a result, the pair (PI1 , PJ) can

be passed to the final step for verification.

In the final step, Jaccard similarity function is computed to verify the candidate

pair (PI1 , PJ). Recall that threshold θ can be equivalently converted to the overlap

threshold α according to Equation (4.1). Jaccard(PI1 , PJ) =
|PI1

⋂
PJ|

|PI1
⋃

PJ| =
21
25

= 0.84 >

θ ⇔ O(PI1 , PJ) = 21 > α. Thus, MI1 can be potentially reused for MJ. In particular,

the two following mapping formulas are reused completely:

• Dept =B1:B(next=bottom(Dept)+5)

• EmployeeID =B2:B(next=bottom(EmployeeID)+5).

The mapping formula EmployeeName =B3:B(next=bottom(EmployeeName)+5)

needs to be modified slightly to EmployeeName=B4:B(next=bottom(EmployeeName)+5).

In addition to that, the user needs to write a new mapping formula for the optional

label Address: Address =B3:B(next=bottom(Address)+5). MJ is then stored in

the mapping repository for future reuse.

It is worth noting that the start coordinate (i.e, top-left cell) of an instance is

important in reuse. In the above example, starting coordinates of PI1 and PJ are both
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(1, 1) so we do not need to change mapping formulas in a recommendation. Suppose

that the starting coordinate of PJ is now (2,2), then mapping formulas of PI1 should

be offset based on the row and column differences between two start coordinates.

For example, two mappings that can be reused completely are offset as follows: Dept

=C2:C(next=bottom(Dept)+5) and ID =C3:C(next=bottom(ID)+5).

The algorithm we presented above can be easily switched to other similarity

metrics [141]. In the case of cosine similarity, the length of prefix to be indexed for a

string x is |x| − [θ ∗ |x|] + 1; the size filtering threshold is [θ2 ∗ |x|]; overlap threshold

for positional filtering is α = [θ ∗√|x| ∗ |y|]. The algorithm is also applicable to

the edit distance with threshold δ if we tokenize strings to q-grams. The necessary

condition for two strings (x, y) satisfying the threshold δ is their corresponding q-

gram sets must have overlap no less than α = (max(|x|, |y|) + q − 1) − q ∗ δ [81].

Hence, prefix to be indexed for a string x is q ∗ δ + 1; the filtering size threshold is

|x| − δ; threshold for positional filtering is x− q ∗ δ.

4.5 Implementation

4.5.1 Architecture

Figure 4.3 extends the architecture of TranSheet presented in Chapter 3 with the

following main components: (i) Template inference engine infers the template of

an existing spreadsheet and generates the corresponding string (Section 4.3); (ii)

Mapping repository stores specified mapping information (presented below); (iii)

Reuse recommendation engine uses information stored in the mappping repository

and recommends specified mapping formulas for reuse (Section 4.4).

4.5.2 Mapping Repository Organization

The main tables that form the basis for designing the mapping repository are as

follows:

• Mappings(MId, InstanceId, TemplateId, SchemaId)
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Figure 4.3: TranSheet architecture for spreadsheet-based data transformation reuse

• MappingFormulas(MEId, MId, EId, MappingFormula)

• Schemas(SchemaId, SchemaName)

• Elements(EId, Name, Type, Parent, SchemaId)

• Instances(InstanceId, StartCoordinate, EndCoordinate)

• Cells(CellId, Coordinate, Value, Formula, InstanceId)

• Templates(TemplateId, Representation)

Table Mappings encodes mappings from spreadsheet instances to target schemas

where attributes MId, InstanceId, TemplateId, and SchemaId are a mapping iden-

tifier, an instance identifier, a template identifier, and a target schema identifier,

respectively. Each mapping in table Mappings consists of a set of mapping for-

mulas stored in table MappingFormulas, in which attributes MEId, MId, EId, and

MappingFormula are a mapping formula identifier, a mapping identifier, a schema

element identifier, and a mapping formula, respectively.

Tables Schemas and Elements encode the target schemas and their correspond-

ing elements, respectively. Table Schemas stores a schema identifier SchemaId and a
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schema name SchemaName. Table Elements represents the graph representation of

a target schema (Section 3.2). Each tuple of this table corresponds to a node of the

graph where attributes Name, Type, Parent, and SchemaID specify a node’s label, a

node’s type, a node’s parent, and an identifier of a target schema, respectively.

Tables Instances and Cells are used to model a spreadsheet instance and its

non-empty cells. Table Templates stores a template identifier TemplateId and its

corresponding string representation Representation. For example, tables in Fig-

ure 4.4 are created for mapping instances I0 in Figure 4.1(a) and I1 in Figure 4.1(b)

to the target schema in Figure 4.1(d).

4.6 Evaluation

4.6.1 Performance

Experimental setup. We use the EUSES spreadsheet corpus [77], which consists

of 4498 spreadsheets collected from various sources (e.g., teaching courses, personal
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Figure 4.5: Performance graph of Jaccard similarity.

databases, and financial data), for evaluation. This corpus was widely used by

many works on spreadsheet research (e.g., [35]). These spreadsheets has been used

by numerous works on spreadsheet template inference [35].

We select 10 spreadsheets in the corpus whose templates can be inferred using

techniques presented in Section 4.3. The average length of these templates is 104.

For each spreadsheet S, the corresponding template TempS is modified based on

small incremental changes to generate 25000, 50000, 100000, and 200000 variants

of it. The following operations are applied: (i) Insert a new column (row) inside a

hex group (vex group) of TempS at an arbitrary position; (ii) Insert a new column

(row) outside the hex groups (vex groups) of TempS at an arbitrary position; (iii)

Delete an existing column (row) inside a hex group (vex group) of TempS; (iv)

Delete an existing column (row) outside the hex groups (vex groups) of TempS.

Then, apply these operations again to the newly generated templates and so on. All

experiments were performed on a laptop with Intel Core 2 Duo 2.1GHz, 3GB RAM,

and Windows Vista Home Premium SP2.

Methodology. Template TempS of spreadsheet S is matched against its gen-
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Figure 4.6: Performance graph of Cosine similarity.

erated variants stored in the mapping repository. We measure the running time of

this matching for each fixed threshold. We use four thresholds, namely 0.9, 0.85,

0.8, and 0.75. Each experiment covers two similarity measures, namely Jaccard and

Cosine. We then average the results of the 10 above selected spreadsheets.

Observations. The experimental results on performance are shown in Figures 4.5

and 4.6. There was no problem with the amount of available memory during experi-

mentation (e.g., out of memory error). Consider the performance graph for Jaccard

similarity in Figure 4.5. As can be seen, the running time increases when the thresh-

old decreases and this trend is clearer when the number of variants is larger. This

can be explained by two main reasons: (i) the number of inverted lists is larger for a

small threshold so it takes more time to build and probe them; (ii) the candidate size

increases for a smaller threshold. Basically, the running time grows almost linearly

with the increase of the number of variants for each threshold.

Regarding Cosine similarity (Figure 4.6), the findings are essentially similar to

those of Jaccard similarity. However, for each threshold, the running time is gen-

erally longer since the constraints of Cosine (e.g., length of the prefix, size filtering
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threshold and overlap threshold) are looser than those of Jaccard. Furthermore, the

running time increases considerably when changing from threshold 0.8 to 0.75 due

to a surge of the candidate size at threshold 0.75, while it is a modest growth for

other threshold changes, namely from 0.9 to 0.85 and from 0.85 to 0.8.

4.6.2 Effectiveness

Experimental setup. Since the size of the above repository (See Section 4.6.1) is

quite big, to properly evaluate the reuse effectiveness, we create a smaller reposi-

tory as the following. We select 10 spreadsheets from the EUSES corpus. For each

spreadsheet, we represent it using table, repeater (separated by one blank column),

and hierarchical (separated by one blank column) presentations. We then modify

the table presentation by inserting a new column at an arbitrary position, deleting

an existing column, or exchanging the orders of two existing columns. Afterwards,

the modified table presentation is represented using corresponding repeater and hi-

erarchical presentations with one separated blank column. Based on this procedure,

for each spreadsheet S, we generate 50 variants of it. We also design the target

schema TS based on data of S. For each variant VS of S, we manually write the

mappings from VS to TS and save these mappings into the repository along with the

template of VS.

Methodology. To evaluate the effectiveness of our algorithm in the repository,

we map S to TS by reusing previously specified mappings of the variants of S stored

in the repository, if any. We compared the real reusable mappings R (found manu-

ally) and the recommended mappings P found by our algorithm at four thresholds,

namely 0.9, 0.8, 0.7, and 0.6. Let I = R∩P , we use the quality measures employed

by popular information retrieval studies [64, 107]:

• precision =|I|/|P |

• recall =|I|/|R|

Similar to the performance experiments, each experiment covers the Jaccard and

Cosine similarities. The results of the 10 selected spreadsheets are averaged.
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Figure 4.7: Reuse effectiveness of Jaccard similarity.

Figure 4.8: Reuse effectiveness of Cosine similarity.
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Observations. The experimental results on reuse effectiveness are shown in

Figures 4.7 and 4.8 for Jaccard and Cosine similarities, respectively. Consider the

reuse effectiveness graph for Jaccard similarity shown in Figure 4.7. Precisions for

all thresholds are all 100%. Meanwhile, the recall is higher when the threshold is

smaller; at threshold 0.6, recall is 100%. This is because for a larger threshold, more

reusable mappings are filtered out.

Since the constraints of Cosine similarity are looser, the reuse effectiveness results

of Cosine (Figure 4.8) are slightly different from those of Jaccard. Precisions for all

thresholds, except threshold 0.6 (recall is nearly 40%), are 100%. Some unusable

recommended mappings appear at threshold 0.6. Except threshold 0.9 (recall is

more than 80%), recalls for all thresholds are 100%.

4.7 Related Work

Reusing mapping information is first discussed in the survey of Rahm et al. [119]

on schema matching (i.e., find semantic correspondences between the elements of

two schemas). It is expected that in many cases schemas being matched can be

very similar. Therefore, when matching different but similar schemas to the same

destination schema (e.g., integrating new data sources into a data warehouse), it is

possible to reuse existing mappings for entire schema structures, which results in

significant savings of manual effort.

Inspired by that, COMA [64] proposes the MatchCompose operation for per-

forming a join-like operation on a mapping path consisting of two or more mappings

to deduce a new mapping (e.g., combine A-B, B-C, and C-D to derive a new map-

ping between A and D). COMA++ [44] extends COMA to deal with the cases where

such mapping paths are unnecessary (i.e., one or multiple existing mappings can be

reused for the given match problem) or not available(i.e., searching for mapping

paths which are not available yet, but may be computed with less effort than a

direct matching). To handle large and complex schemas, COMA++ also introduces

the fragment-based matching approach, in which the source and target schemas

are divided into fragments and each pair of source and target fragments are then
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compared to detect the best matching pairs.

Madhavan et al. [107] leverage the knowledge in a corpus of schemas and map-

pings to improve schema matching results, in addition to the evidence that is avail-

able in the two schemas being matched. The corpus is used to augment the evidence

about elements in the schemas being matched. Statistics gleaned from the corpus

is used to infer domain constraints, which are crucial in achieving high matching

accuracy. The reuse, however, is limited to element-to-element match, rather than

larger concepts.

Recent work by Saha et al. [128] introduces the schema covering problem as a

first step towards transformation reuse, which is an extension of Clio project [85, 79].

Given a complex schema, schema covering identifies a collection of common concepts

(i.e., business objects) in a repository and creates a cover of the schema by these

concepts. When a complex schema can be divided into smaller concepts, simple

transformations defined among these concepts can be reused to define transforma-

tions among the complex schemas (e.g., by composing these simple transformations).

This work assumes the existence of a concept repository and transformations among

concepts. Building such repository is a challenging task including selection, cleaning,

and unification of objects.

Mapping tool Altova MapForce [2] (MapForce for short) allows mapping an Excel

2007+ (XLSX) file to a target schema. This is done by first helping users specify

the schema of the Excel file based on analyzing the file’s OpenXML [125] format

and then using the GUI of MapForce to specify mappings. Once users have finished

defining mappings and processing functions, MapForce can automatically generate

the program code (e.g., Java or C#) for transforming Excel data to the format

required by an external application. The generated code can be reused for future

mappings. However, this kind of reuse must be performed manually by users.

Our work focuses on reusing transformations from spreadsheet data to XML.

We extend the spreadsheet-like formula mapping language we developed in our pre-

vious work [129] to solve this problem. With respect to the aforementioned reuse

approaches, the main difference is that we allow users to specify mappings using

spreadsheet-like formulas and then reuse previously specified mapping formulas for
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a new spreadsheet instance that needs to be mapped to the target schema. Note

that our work basically transforms data located on the tabular grid of a spreadsheet

to XML, instead of extracting data from the spreadsheet, including macros and for-

mulas. The recently proposed file format, namely OpenXML [125], allows external

applications to easily extract data from Excel 2007 files (XLSX).

4.8 Summary

Transformation reuse is an important topic in information integration for both data

integration and data exchange. In this paper, we considered the problem of reuse in

transforming spreadsheet data to XML. We formulated the problem and proposed

a solution based on the notions of spreadsheet template, mapping generalization,

and similarity join. We extended the formula mapping language developed in our

previous work. Given a spreadsheet instance, our algorithm recommended a list of

previously specified mappings that can be reused for the instance. We implemented a

prototype and evaluated the efficiency and effectiveness of the proposed solution via

synthetic datasets. The experimental results confirmed the usefulness and viability

of our approach. We believe this paper is an important step in building a simple and

reusable data transformation framework (as outlined in the Clio project [128, 85])

in the context of spreadsheet-based data transformation.
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End-user oriented

spreadsheet-based data

transformation

In Chapter 3, we developed a spreadsheet-like formula language allowing users to

specify mappings between spreadsheet data and the target schema. However, users

still have to remember the complex syntax of the language to specify mappings,

which may be challenging for spreadsheet novices. Furthermore, even expert users,

who are already familiar with the language, also want to boost productivity by not

having to write complex formulas from scratch. In this chapter, we study the prob-

lem of simplification in transforming spreadsheet data to structured formats. We

propose a number of novel techniques that make spreadsheet-based data transfor-

mation available to non-technical users. First, we redesign the mapping interface

of TranSheet based on nested tables. A schema matching module is also integrated

to help users find correspondences between the source spreadsheet and the target

schema. In addition, a collection of form-based operators are developed to help users

graphically specify mappings, instead of remembering and writing complex formulas

from scratch. Moreover, we provide a mechanism for automatically suggesting trans-

formations from source columns to atomic target labels. We implement a prototype

and conduct an extensive user study to evaluate the usability of our techniques.

126
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5.1 Introduction

On one hand, powerful transformation languages (e.g., XSLT and XQuery) and

visual mapping tools (e.g., Clio [85], Clip [117], +Spicy [112], Altova MapForce [1],

Stylus Studio [9], MS BizTalk Mapper [3])) are largely developed with an enterprise

setting which requires the expertise of professional programmers. On the other

hand, data transformation has been increasingly necessary for non-technical users

to analyze, manipulate and visualize data (e.g., social data analysis [137], Web

mashup [139, 142], and SOA [39]).

In this chapter, we consider the problem of spreadsheet-based data transforma-

tion simplification, which makes spreadsheet-based data transformation available to

non-technical users. In chapter 3, we developed a spreadsheet-like formula mapping

language for specifying mappings between spreadsheet data and the target schema.

But we mainly focus on the semantics and foundations of the language, rather than

its usability aspects (e.g., interface design, graphical mapping specification, and

transformation suggestion). In what follows, we review the state-of-the-art via a

running example.

5.1.1 Running Example

Figure 5.1 depicts the running example for the whole chapter. Source spreadsheet

containing order information grouped by order identifiers is shown in Figure 5.1(a).

It must be mapped to the target schema shown in Figure 5.1(b).

The state-of-the-art helps users specify the schema of the source spreadsheet

(e.g., using the layout specification language described in [104] or analyzing spread-

sheet content [60]). Transformation can then be performed at schema level. One so-

lution is to write programs using powerful transformation languages, such as XQuery

and XSLT. However, this requires deep programming expertise, which is far beyond

the capability of non-technical users. A more advanced solution is to use visual map-

ping tools to specify transformations via GUI. As described earlier in Section 2.5,

current mapping tools mainly follow relationship-based metaphor [127]. More specif-
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Figure 5.1: Running example: (a) Source spreadsheet; (b) Target schema
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Figure 5.2: Mapping interface of a relationship-based mapping tool

ically, the source and target schemas are displayed on the left side and on the right

side, respectively, of mapping interface. Correspondences are established by draw-

ing lines connecting the source elements to the target elements. These lines may

be annotated by one or more functions that are picked up from a built-in library

to construct a more complex relationship. For instance, the mapping interface of a

relationship-based mapping tool implementing the running example is depicted in

Figure 5.2.

This flow-chart-like interface is typically cluttered and unintuitive as pointed out

in the literature [126, 140] (See Section 1.1.2 for more details). In addition to that,

users must familiarize themselves with the syntax and semantics of the unfamiliar

functions of low-level programming languages, which vary from tool to tool. For
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example, while the functions of Stylus Studio [9] are mainly identical to the ones

of XSLT/XQuery and Java (e.g., FLWORs and IF blocks), MS BizTalk Mapper [3]

provides a pre-defined library of .NET-powered functions. Finally, these mapping

tools separate between two modes, namely development mode and execution mode.

Like professional programming environments, user must compile a mapping speci-

fication to preview transformation result. This also raises another hassle because

instant feedback is not available after each step of the mapping specification.

5.1.2 Contributions

In this chapter, we aim at addressing the aforementioned issues. More specifically,

we make the following major contributions:

• The interface is redesigned based on nested tables, which is more intuitive

and easy-to-use for non-technical users. With this new interface, users can

preview entire transformation result right in the sheet containing the source

data, which is convenient for side-by-side comparison, which is used to refine

a mapping specification. Also, a matching module is integrated to help users

semi-automatically find semantic correspondences between the source spread-

sheet and the target schema (Section 5.2).

• A set of form-based transformation operators are proposed allowing users to

specify mappings graphically. The benefits of these operators are two-fold: (i)

they enable users who do not have expertise in spreadsheet programming to

specify transformation easily; (ii) they boost the productivity of users who are

already experts in spreadsheet programming. We define these operators in a

generic way in order to cover numerous transformation patterns. We provide

a form customization mechanism allowing users to customize an existing op-

erator to suit transformation needs. We also offer a history list allowing users

to modify specified transformation operations (Section 5.3).

• TranSheet automatically suggests transformations from source columns to tar-

get labels. This relies on employing Topes [132], where each Tope is a category
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of data with different formats and functions for transforming between these

formats. Automated transformations are helpful when specifying transforma-

tions using formulas or form-based transformation operators is complicated

and difficult. (Section 5.4).

• We implemented a prototype and conducted an extensive user study across

a set of real spreadsheet-based transformation tasks to evaluate the usabil-

ity of our proposed techniques. The experimental results show that TranSheet

significantly reduces specification time and promotes users’ satisfaction in com-

parison with state-of-the-art mapping tools (Sections 5.5 and 5.6).

The rest of this chapter is organized as follows. Section 5.2 describes how the

mapping interface presented in Chapter 3 is redesigned to be more intuitive. The in-

tegration of a matching module is also discussed this section. We present form-based

transformation operators that help users specify mappings graphically in Section 5.3.

We rely on Topes [132] to automatically suggest transformations in Section 5.4. Sec-

tion 5.5 presents the implementation details of a proof-of-concept prototype for the

proposed techniques. Section 5.6 presents an extensive user study to evaluate the

usability of TranSheet. We discuss related work in Section 5.7 and conclude in

Section 5.8.

5.2 User Interface

Section 5.2.1 describes the new mapping interface of TranSheet. Section 5.2.2

presents the integration of a matching module into TranSheet.

5.2.1 Mapping Sheet

In Chapter 3, the interface of TranSheet is organized as follows (See Section 3.7).

While the source spreadsheet is located inside the tabular grid of Excel on the

left side, the target schema is located in the task pane of Excel on the right side

(roughly similar to the organization depicted in Figure 5.1). However, users can only
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preview some values associated with atomic labels, not the whole target instance.

Additionally, the transformed target data are located outside the tabular grid, which

is inconvenient for users to make side-by-side comparison between the source and

target data.

The nested relational model [83] extends the relational model by relaxing the

first normal assumption (i.e., A column can contain a nested table). This allows

it to represent hierarchical data, which are commonly used in Web applications.

Therefore, it has been widely used to represent semi-structured web data. Besides,

the nested relational model is simple and intuitive for non-technical users to under-

stand and manipulate. In the nested relational model, data is represented as nested

tables.

We use nested tables to represent target data. In particular, the transformed

target instance is a nested table, in which each column represents an atomic attribute

or a sub-relation, each row represents a tuple. An atomic attribute can be one of the

following types: empty (for representing an empty column), integer, string, float, and

datetime. The benefits of using nested tables are two-fold: (i) the target instance is

displayed inside the tabular grid; (ii) the whole target instance can be seen as the

instant feedback of each mapping specification.

For example, in Figure 5.3, with respect to the TranSheet interface, the source

spreadsheet data (Figure 5.3(a)) is displayed next to (separated by one blank col-

umn) the target nested table (Figure 5.3(b)) in a worksheet, namely mapping sheet

(i.e., the sheet for specify mappings between the source spreadsheet and the target

schema).

As can be observed in Figure 5.3(b), relation Order consists of 4 attributes Id,

FirstName, LastName, Address, and one sub-relation Item. Sub-relation Item, in

turn, has 3 attributes ProductName, Quantity, and Price.

In order to specify a mapping, the user selects a target label associated with an

attribute or a sub-relation, and enters a corresponding mapping formula in the for-

mula textbox. For example, in Figure 5.3, to specify the mapping Order =A2:H50,

the user selects cell J1 containing the target label Order and inputs formula A2:H50
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(a) (b)

Figure 5.3: Side-by-side comparison: (a) Source spreadsheet data; (b) Target data
represented using a nested table

in the formula textbox. Instant feedback for the mapping is provided from row 4

onwards shown in Figure 5.3(b).

5.2.2 Matching Sheet

Before starting specifying mappings, it is needed to identify semantic correspon-

dences between source columns and target labels. Numerous schema matching sys-

tems has been developed to deal with this task, but they are mostly not readily

public for integration [119]. Given the variety of available matching systems, our

system is designed to flexibly integrate the outputs of them. Currently, we employ

the matching system COMA++ [44], since it is publically available with multiple

built-in matchers (See Section 2.3 for a detailed description on matchers) and its

matching result can be reused.

Matching sheet is a worksheet designed to display matching result outputted

from COMA++ and let users refine matching result. It is displayed as a two-column

table, where each of the table is a mapping element: the left column consists of one

target label and the right column consists of one or more source labels.

Suppose that the source spreadsheet in Figure 5.3(a) is represented by relation

Order(OrderId, Name, Street, City, State, ProdName, Quantity, Price) (the

names of the attributes are identical to the ones of the column headers in Fig-

ure 5.3(a)). The matching sheet for the running example is shown in Table 5.1.

To specify a mapping for the mapping element of each row in the matching
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A B C D E

1 Target Source

2 Id OrderId

3 FirstName Name

4 LastName Name

5 Address Street, City, State

6 ProductName ProdName

7 Quantity Quantity

8 Price Price

Table 5.1: Matching sheet for the running example

sheet, the user clicks on the link under a target label, and the user is redirected to

the mapping sheet, where corresponding source columns and the target label are

highlighted. The user can then enter a mapping formula in the formula textbox to

specify a relationship between these columns and the target label. In this way, there

is a smooth connection between the matching sheet and the mapping sheet.

For example, the user clicks on the link under label Address (in cell B5) of the

matching sheet in Table 5.1. Then columns C, D, E, and cell M2 containing label

Address are highlighted in the mapping sheet (Figure 5.3). After that, mapping

Address =concatenate(C2:C50, “ ”, D2:D50, “ ”, E2:E50) can be specified.

5.3 Form-based Transformation Operators

In this section, we present a set of visual transformation operators that complements

the formula mapping language presented in Chapter 3. They combine the power of

graphical visualization and transformation patterns. Each operator characterizes a

transformation pattern and is represented as a customizable form. A transformation

operator is usually activated from a contextual menu associated with one target label

and one or more columns of the source spreadsheet. It is contextual because only

operators that are available to the target label and source columns being selected

are shown up to the user.

Section 5.3.1 defines the structure of a transformation operator in a generic way.

Section 5.3.2 provides a form customization mechanism allowing users to customize
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Figure 5.4: Merging Operator

a operator (activated from a contextual menu) to suit transformation needs. Sec-

tion 5.3.3 presents the semantics and interface design of specific transformation op-

erators for both value and structural mappings. Section 5.3.4 presents a history list

allowing users to modify specified transformation operations. Section 5.3.5 describes

the expressiveness of transformations supported by the operators of TranSheet.

5.3.1 Transformation Operator Definition

Given an operator, the corresponding form has various components that correspond

to different parts of the operator. More specifically, while the left side of the form

contains source components, the right side of the form consists of target components.

An operator is defined as a collection of form-elements (elements) laid out according

to their purpose and relationships among them. A form-element is an object (form

control) designed to translate a user’s input into a basic fragment of the operator.

For example, the drop-down list with selected column C2:C50 in Figure 5.4 indicates

one form-element of the source.

The arrangement of elements in the form (possibly along with individual labels)

indicates to the user what each element denotes and how it relates to other elements.

The layout of these elements may involve organizing them into collections spatially
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within the form, and intuitively labelling each collection to show the purpose of the

arrangement which is termed form-groups (groups). In other words, a form-group

is simply a set of related elements and other possible groups organized in a labelled

group. For example, group Delimiter in Figure 5.4 contains a set of delimiter

elements represented by radio button controls.

In the following, we formally define transformation operators in a generic way

so that it is possible to cover numerous transformation patterns.

Definition 5.3.1 A transformation operator is represented as a tuple O = (LP,RP)

where LP is the left panel (source panel) and RP is the right panel (target panel).

LP and RP contain the source and target components, respectively. Each panel P

(either LP or RP) is characterized by an ordered set {g1,...,gn} where:

• gi is a form-element or a form-group, i ∈ {1, ..., n}

• gi is located above gj in P if i < j

• gi(s) are arranged in the order expected by the transformation pattern that the

operator represents.

P itself is considered as the root (outermost) group.

For example, while the source panel of the Merging operator depicted in Fig-

ure 5.4 consists of the set {C2:C50, Delimiter, D2:D50, Delimiter, E2:E50} where
C2:C50, D2:D50, and E2:E50 are three source columns and Delimiter is a group of

delimiters, the target panel contains only one target element Address.

5.3.2 Transformation Operator Customization

In this section, we present a set of available form customization operators offered by

TranSheet. We first describe them in an abstract manner and then show how they

are realized.
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Customization Operator Definition

In the following, we formally define form customization operators.

Form-element Insertion (α) This operator adds a new form-element to a panel

(either source or target panel) or an existing group of this panel. We can express

this operator as αe,g(P ) where e is the form-element to be added, g is the group to

which e is added, and P is a panel:

• P ′ = αe,g(P ) = {g1, ..., gn, e} if g = P .

• P ′ = αe,g(P ) = {g1, ..., g′, ..., gn}|g′ = αe,g(g) if g ∈ P .

As can be seen, the result of applying the operator to panel P is a new panel P ′.

Form-element Deletion (β) This operator removes an existing form-element

from a given panel or a group of this panel. We can define this operator as βe,g(P )

where e is the form-element to be removed, g is the group from which e is removed,

and P is a panel:

• P’ = βe,g(P ) = {g1, ..., gi−1, gi+1, ..., gn} where e = gi, i ∈ {1, ..., n} if g = P .

• P’ = βe,g(P ) = {g1, ..., g′, ..., gn}|g′ = βe,g(g) if g ∈ P .

Form-element Move Up (χ) This operation moves up a form-element one

position in a given panel or a group of this panel. This operator is expressed as

χe,g(P ) where e is an existing element of either panel P or group g of panel P :

• P ′ = χe,g(P ) = {g1, ..., gi, gi−1, ..., gn} where e = gi, i ∈ {2, ..., n} if g = P .

• P ′ = χe,g(P ) = {g1, ..., g′, ..., gn}|g′ = χe,g(g) if g ∈ P .

Form-element Move Down (δ) This operation moves down a form-element

one position in a given panel or a group of this panel. This operator is expressed as

δe,g(P ) where e is an existing element of either panel P or group g of panel P :

• P ′ = δe,g(P ) = {g1, ..., gi+1, gi, ..., gn} where e = gi, i ∈ {1, ..., n− 1} if g = P .
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• P ′ = δe,g(P ) = {g1, ..., g′, ..., gn}|g′ = δe,g(g) if g ∈ P .

Form-group Insertion (ε) This operator inserts a form-group into a given

panel. We can express this operator as εg(P ) where g is a form-group to be inserted

into panel P :

• P ′ = εg(P ) = {g1, ..., gn, g}

Form-group Deletion (η) A form-group can be removed from a panel using

this operator. We can express this operator as ηg(P ) where g is a form-group of

panel P :

• P ′ = ηg(P ) = {g1, ..., gi−1, gi+1, ..., gn} where g = gi, i ∈ {1, .., n}

Form-group Move Up (γ) This operator is used to move up an existing form-

group one position. It is defined as γg(P ) where g is a form-group of panel P :

• P ′ = γg(P ) = {g1, ..., gi, gi−1, ..., gn} where g = gi, i ∈ {2, .., n}

Form-group Move Down (λ) A form-group can be moved down one position

in a given panel. It is defined as λg(P ) where g is a form-group of panel P :

• P ′ = λg(P ) = {g1, ..., gi+1, gi, ..., gn} where g = gi, i ∈ {1, .., n− 1}

Customization Operator Generation

With any form as a starting point, the user can edit it using a form editor in multiple

iterations until the desired form is obtained. The editing mode of a form provides

button-activated operations to modify the form. For instance, to enter the editing

mode of the form shown in Figure 5.5(b), the user clicks on button Edit and a form

editor is shown accordingly in Figure 5.5(a). To complete customization, the user

clicks on button Submit (See Figure 5.5(a)). To reset a form editor to the original

state, the user clicks on button Reset (See Figure 5.5(a)). In the following, we

describe how each customization operator is realized.
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(a) (b)

Figure 5.5: (a) Editing Mode of Filtering Operator; (b) Filtering Operator

Form-element/Form-group Insertion For the sake of simplicity, form-element

and form-group insertion are performed via the same insertion button marked “+”

(Figure 5.5(a)). When this button is activated from the root group, the user selects

either form-elements or form-groups from one of two form-panes: one for the form-

elements and the other for form-groups. For example, when the user clicks on the

insertion button in the source panel (i.e., the root group) of the Filtering operator

shown in Figure 5.5(b), a new form is shown up which enables the user to select

a suitable form-element (i.e., source elements and logical operators) or form-group

(i.e., conditions). Note that form-elements and form-groups are displayed depending

on where a insertion button is activated.

Form-element/Form-group Deletion Form-elements or form-groups of a

form that are irrelevant for transformation can be removed from the form by clicking

on remove button marked “X” (Figure 5.5(a)). In the case of form-group deletion,

if a group is not empty, the user is asked whether to delete this non-empty group.

For example, in the editing mode of the Filtering operator shown in Figure 5.5(b),

either a form-element or a form-group is associated with a remove button.

Form-element/Form-group Move Up The user can move up a form-element

or a form-group of a form one position by clicking on a move-up button marked “⇑”
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(See Figure 5.5(a)). This operator is used to arrange form-elements/form-groups

in the order expected by a transformation. In Figure 5.5(a), while all elements

and groups except the top element A2:H50 of the source panel are associated with

move-up buttons.

Form-element/Form-group Move Down An element or a group of a form

can be moved down one position by clicking on a move-down button marked “⇓”
(See Figure 5.5(a)). Similar to element/group move-up operator, this operator is

used to arrange the elements/groups in the order expected by a transformation. In

Figure 5.5(a), all elements and groups except the last group Condition of the source

panel are associated with move-down buttons.

5.3.3 Design of Transformation Operators

In this section, we introduce specific transformation operators, define their seman-

tics, and present their interface design based on the definition in Section 5.3.1 and

the customization mechanism in Section 5.3.2. Each operator will generate a cor-

responding formula after a completed customization. We present transformation

operators for both value mappings and structural mappings.

Transformation Operators for Value Mappings

Merging Figure 5.4 depicts the interface of a Merging operator. While the source

panel contains multiple form-elements for selecting source columns and groups Delimiter,

which are organized according to the order of the parameters of function concate-

nate, the target panel contains one form-element for selecting a target label. To

specify a delimiter, the user ticks one of the pre-defined delimiters (comma, white

space, tab, and semicolon) or puts his/her own delimiter in a textbox Other.

The mapping formula Address =concatenate(C2:C50, “ ”, D2:D50, “ ”, E2:E50)

of the running example (Figure 5.3) can be specified as follows. First, cell M2 con-

taining label Address and columns C, D, and E are selected; then a Merging operator

is activated. A form is constructed with three source columns C2:C50, D2:D50, and

E2:E50 in the source panel, and one target element Address in the target panel.
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The user turns on the editing mode and inserts two groups Delimiter between two

pairs (C2:C50, D2:D50) and (D2:D50, E2:E50) using the customization operators

presented in Section 5.3.2. Next, two delimiters white spaces “ ” of the two newly

added groups are chosen. Finally, button Submit is clicked to complete customiza-

tion.

Splitting Splitting operator is used to express value mappings of the form s =

concatenate(t1, del1, ..., deln−1, tn) where ti are target atomic labels; s is a source

column; and delj are delimiters between tj and tj+1, i ∈ {1, ..., n} and j ∈ {1, ..., n−
1}.

Figure 5.6 shows the interface of a Splitting operator. In contrast to Merging op-

erators, while the source panel contains one source column, the target panel contains

multiple target attributes and groups Delimiter. Each group Delimiter consists

of a list of pre-defined delimiters represented as radio buttons.

The two mapping formulas of the running example FirstName =left(B2:B50,

search(“ ”, B2:B50)) and LastName=right(B2:B50, len(B2:B50) - search(“ ”, B2:B50))

can be expressed as follows. The user selects the row B and cells K2 containing label

FirstName and L2 containing label LastName and activates a Splitting operator. A

new form is constructed with element B2:B50 in the source panel and two elements

FirstName and LastName in the target panel. The user then customizes the form

by adding a new group Delimiter between FirstName and LastName, and ticks on

radio button Whitespace of the group.

Constant Value Generation In some special cases, a target element do not

correspond to any source spreadsheet content. The transformation operator for this

pattern is defined as t =c where t is a target atomic label and c is a constant. The

source panel contains a textbox for entering a constant and the target panel contains

one atomic label.

Copying This is the simplest operator used for mappings t =s where t is a
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Figure 5.6: Splitting Operator

target element and s is one cell or a collection of cells. The user activates a Copying

operator and values of s are copied into values of t. For example, the mapping for-

mula ProductName =F2:F50 of the running example (Figure 5.1) can be performed

by selecting column F and cell N3 and activating a Copying operator.

Transformation Operators for Structural Mappings

Filtering Filtering operator is designed to cover structural mappings of the form t

= s[filterexp] where t is a structural label; s is a two-dimensional range; filterexp

is a filter expression associated with s.

The interface of a Filtering operator is depicted in Figure 5.5(b). While the

source panel contains one two-dimensional range, condition groups, and form-elements

containing logical operators, the target panel contains one target structural label.

Each condition group consists of an atomic element, a form-element storing com-

parator operators {=, <=, >=, �=, >, <}, and a textbox for entering values. The

logical operator form-element containing {AND, OR} is used to combine condition

groups.

For example, the mapping formula Order =A2:H50[AND(D2:D50 = “Sydney”,

C2:C50 = “Evans”)] of the running example can be specified as follows. The user
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A B C D E F

1 OrderID ProdName Quantity ID FirstName LastName

2 42 Beer 180 42 Ford Prefect

3 42 Towel 2 525 Arthur Dent

4 42 Fish 1

5 525 Towel 1

6 525 Teabags 20

Table 5.2: Two tables need to be joined

first selects the range A2:H50 and cell J1 and activates a Filtering operator. A form

is constructed with one element A2:H50 in the source panel, and the label Order

in the target panel. Then the user adds a condition group representing D2:D50 =

’Sydney’, logical operator element AND, and a condition group representing C2:C50

=“Evans”.

Join. Join operator is used to express structural mappings of the form t =

join(s1, s2, joinexp?) where t is a structural target element, s1, s2 are two-dimensional

ranges, and joinexp is an optional join condition associated with s1 and s2.

Note that joinexp is optional and if it is absent, a Cartesian product is calculated

between s1 and s2. Figure 5.7 illustrates the interface of a Join operator to join two

tables in Table 5.2. While the source panel contains two two-dimensional ranges

that involve in the join and one condition group for expressing join conditions, the

target panel contains one structural target label. Each condition group contains two

source columns and a comparator operator form-element between them.

Grouping with aggregation. This kind of mapping allows users to group the

source spreadsheet according to certain columns, and then aggregate functions can

be applied on each group. In particular, the user needs to use two operators, namely

Grouping and Aggregate.

A Grouping operator covers structural mappings of the form

t = s[groupby(s1, ..., sn)] where t is a target structural label; s is a two-dimensional

range; si are grouping columns of the source, i ∈ {1, ..., n}.
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Figure 5.7: Join Operator

(a) (b)

Figure 5.8: Transformation Operators: (a) Grouping Operator; (b) Aggregate Op-
erator

Figure 5.8(a) illustrates the interface of a Grouping operator. While the source

panel contains one two-dimensional range and one group consisting of a list of group-

ing columns, the target panel contains one structural target label.

The mapping formula Order=A2:H50[groupby(A2:A50, B2:B50, C2:C50, D2:D50,

E2:E50)] of the running example can be specified by selecting range A2:H50 and cell

J1, and activating a Grouping operator. A form is constructed with the range
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Figure 5.9: Sorting Operator

A2:H50 and the structural element Order for the source and target panels, respec-

tively. The user adds a grouping attribute group to the source panel, and then

inserts the source columns A2:A50, B2:B50, C2:C50, D2:D50, and E2:E50 to the

group.

An Aggregate operator is used to express mappings of the form t = aggrname(s)

where t is a target atomic label; s is a source column; aggrname is one of functions

in the set {sum, count, min, max, average}.

Figure 5.8(b) depicts the interface of a Aggregating operator. The mapping

formula ProductName =count(F2:F50) of the running example can be obtained by

selecting row F2:F50 and cell N3 containing label ProductName, and activating a

Aggregate operator. Then the user needs to insert an aggregate function group,

and choose function count in the group. The two mapping formulas Quantity

=sum(G2:G50) and Price =average(H2:H50) are performed similarly.

Sorting. Mappings expressed by this operator is defined as

t = s[sort(s1, o1, ..., sn, on)] where t is a target structural label; s is a two-dimensional

range; function sort is used to sort values of s according to source columns si in

orders oi ∈ {ASC,DESC}, i ∈ {1, ..., n}.

Figure 5.9 depicts the interface of a Sorting operator for the mapping Order
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=A2:H50[sort(G2:G50, ASC, H2:H50, DESC)] of the running example. The source

panel contains one two-dimensional range A2:H50 and a group consisting of sorting

columns (G2:G50 and H2:H50) with their corresponding orders (ASC and DESC);

the target panel contains one target structural label Order.

5.3.4 Transformation Operation Modification

Having introduced all operators, we describe how the user can modify or delete a

specified operation. Suppose the user has performed n operations {O1, O2,...,On} in
sequence (i.e., Oi is performed earlier than Oj if i < j), and he/she wants to modify

or delete the operation Oi, 1 ≤ i ≤ n.

In regard to our mapping interface, the user can interact with one transforma-

tion operation at a time and cannot see other specified transformation operations.

On the contrary, in the case of relationship-based mapping tools [127], specified

transformation operations can be seen via connecting lines and functions associated

with those lines (See Figure 5.2). Therefore, we provide a “History” list which con-

tains all specified operations with corresponding mapping formulas in time order.

By using this list, the user can modify or delete any operation he/she wants and

resubmits it for evaluation. For example, in the case of the running example, we

have the following list:

1. Copying (Id =A2:A50) Modify|Delete

2. Copying (ProductName =F2:F50) Modify|Delete

3. Copying (Quantity =G2:G50) Modify|Delete

4. Merging (Address=concatenate(C2:C50,’ ’,D2:D50,’ ’,E2:E50)) Modify|Delete

5. Copying (Price =H2:H50) Modify|Delete

6. Splitting (FirstName =left(B2:B50, search(’ ’,B2:B50))) &&

(LastName =right(B2:B50,len(B2:B50)-search(’ ’,B2:B50))) Modify|Delete

7. Filtering (Order=A2:H50[AND(D2:D50=’Sydney’,C2:C50=’Evans’)]) Modify|Delete

As can be observed from the above list, the first specified operation is copying
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with mapping formula Id =A2:A50; the last one is filtering with mapping formula

Order =A2:H50[AND(D2:D50=’Sydney’, C2:C50=’Evans’)]. To modify or delete

an operation in the list, the user clicks on the corresponding link under Modify and

Delete, respectively.

5.3.5 Expressiveness

The transformation operators presented in Section 5.3.3 are able to cover a set of

transformation patterns Σ ={Copying, Constant Value Generation, Merging, Split-

ting, Grouping with Aggregation, Join, Catersian Product, Sorting, Filtering}. In

fact, a real-world complex transformation scenario is typically composed of mul-

tiple transformation patterns. We now describe transformation scenarios, which

TranSheet’s operators can cover.

Theorem 5.3.1 TranSheet is able to cover transformation scenarios of the form

(S, T, P ) where S is a source spreadsheet, T is a target schema, and P is a compo-

sition of transformation operations {O1, ..., On}:

• Oi is a transformation operation performed on source columns of S and target

labels of T , and Oi belongs to a transformation pattern in Σ, i ∈ {1, ..., n}.

• Oi is performed before Oj if i < j.

Proof For each operation Oi (1 ≤ i ≤ n), select source columns and a target label

associated with Oi. Then activate a transformation operator that Oi belongs to.

Use the operator customization mechanism to customize the newly generated form

until obtaining Oi �.

Note that the expressiveness of TranSheet is not limited by the aforementioned

patterns. As more patterns emerge, they can be easily incorporated into Tran-

Sheet by designing new operators based on the definition in Section 5.3.1 and the

customization mechanism in Section 5.3.2.

As can be observed, so far, we have not dealt with transformation pattern Deriva-

tion. This pattern is handled in Section 5.4.
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5.4 Automated Transformation Suggestions

A Tope is a high-level category of data (e.g., currency, address, phone number,

person name) with multiple formats [132] (See Section 2.7 for more details). It

also provides functions for automatically transforming among its formats [130]. For

example, Tope person name has at least two formats “FirstName LastName” and

“LastName, FirstName”. Tope person name also offers two functions for trans-

forming “FirstName LastName” to “LastName, FirstName” and vice versa. In this

section, we make use of Topes’ functions to suggest transformations from source

columns to atomic target labels. This is helpful when transforming one format to

another format using formulas or form-based operators is complicated and difficult.

More specifically, given a Tope T , if a source column c is assigned with for-

mat f1 of T and a target atomic label la is associated with format f2 of T , then

transformation from values of c (f1) to values of la (f2) can be performed using a

function of Tope T . For example, with respect to the running example, suppose

that two target labels FirstName and LastName are merged into one label Name and

this label is associated with format “LastName, FirstName” (e.g., “Prefect, Ford”

and “Dent, Arthur”). Meanwhile, the source column B containing person names has

format “FirstName LastName” (e.g., “Ford Prefect” and “Arthur Dent”). Trans-

formation from format “FirstName LastName” to format “LastName, FirstName”

can be performed via a transformation function of Tope person name.

The main technical problem can be stated as follows. Suppose that target

atomic labels are assigned with the formats of a list of Topes and we denote these

Topes as set F . Given a source column c, find in F the relevant Topes, whose

formats are “closest” to the column c. This can be characterized by function Rec-

ommend(ColumnName, V, F, θ, τ), where:

• ColumnName is the name (i.e., header) of the source column c. For exam-

ple, in the case of the running example, the name of column A (A2:A50) is

“OrderID”.

• V is a set of values stored in the column c (e.g., values 42 and 525 of column



5.4. Automated Transformation Suggestions 148

Input: ColumnName, V , F , θ, τ
Output: Topes whose formats are closest to the column c
begin

foreach T in F do
if ed(T ’s name,ColumnName) > τ then

F = F - {T} ;
end

end
foreach T in F do

scoreT = 0 ;
foreach v in V do

isa(v) = max{isaf (v): f is a format of T} ;
scoreT = scoreT + isa(v) ;

end
if (scoreT/|V |) < θ then

F = F - {T} ;
end

end
return F ;

end
Algorithm 3: Automated transformation suggestions using Topes.

A).

• F is a set of Topes, whose formats are associated with atomic labels of the

target schema.

• θ (θ ∈ [0, 1]) is a threshold to measure similarity between the values of the

column c and the formats of Topes in F .

• τ is an edit distance (i.e., Levenshtein distance) threshold to measure similarity

between ColumnName and the names of Topes in F .

Function Recommend is implemented as shown in Algorithm 3. Lines 2-6 of

Algorithm 3 compute the edit distance between the name of each tope T in F and

the column name; if the edit distance is greater than τ then T is removed from

F . Lines 7-16 compute the similarity score (scoreT ) between each tope T in F and

values of the column; if the normalized score (scoreT/|V |) is less than θ, then T is

removed from F . Note that each format f of a Tope T is associated with a function

isaf [132] that is used to check whether a value v matches to f : 0 ≤ isaf (v) ≤ 1. If

isaf (v) = 1, then v totally matches f .
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In the background, we generate corresponding formulas for transformation func-

tions of topes. For example, the function of Tope person name used to transform

format “FirstName LastName” to format “LastName, FirstName” is translated to

the following formula: Name = concatenate(left(B2:B6, search(“ ”, B2:B6)), “, ”,

right(B2:B6, len(B2:B6)-search(“ ”, B2:B6))).

5.5 Implementation

Figure 5.10 illustrates the architecture of TranSheet for implementing the techniques

proposed in this chapter. It extends the architecture presented in Chapter 3 with

the following new components:

• GUI. A traditional spreadsheet consists of a two-dimensional array of cells,

which is unsuitable for displaying nested tables. We extend the tabular grid

of MS Excel to display nested tables-based representation of target data.

• Schema Matching Engine. This component employs the matching system

COMA++ [44] to suggest semantic correspondences between the columns of

the source spreadsheet and the labels of the target schema.

• Transformation Operator Interpretation Engine. This component in-

terprets form-based transformation operators and generates corresponding map-

ping formulas.

• Transformation Recommendation Engine. This component interacts

with the Tope repository and recommends relevant transformations from source

columns to target atomic labels. It implements Algorithm 3.

• Tope Repository. This repository stores Topes created using the Tope edi-

tor [130] or Topes imported from an existing repository available at [27].
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Figure 5.10: Architecture of TranSheet for spreadsheet-based data transformation
simplification

5.6 User study

In this section, we focus on conducting a user study to evaluate the usability of

TranSheet. We would like to compare TranSheet with a mapping tool. There has

been plenty of available mapping tools and they mainly follow the relationship-based

paradigm as described in Section 2.5. We chose Altova MapForce 2011 Enterprise

Edition (MapForce for short) [1], a popular commercial mapping tool, for comparison

since: (i) Unlike research prototypes Clio [79] and Clip [118], MapForce is publically

available for download and evaluation; (ii) Unlike commercial mapping tools MS

BizTalk Mapper [3] and IBM Rational Data Architect [7], MapForce is easy and

quick to install and configure without depending on other complex components.

This study is conducted on a laptop with Intel Core Duo 2.1GHz, 3GB RAM, and

Windows Vista Home Premium SP2.
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5.6.1 Experimental Setup and Methodology

We recruited 10 volunteers without background in using mapping tools, who regu-

larly work with data; each of them has a bachelor degree in various fields, including

accountants, programmers, sales, teachers, and project managers. Each participant

reported their prior experience with Excel either expert or novice. While novice

subjects use spreadsheets to organize information and know some simple functions

such as sum and average, expert subjects can use complex spreadsheet functions on

strings, numbers, and conditions (e.g., functions if, and, or...) to manipulate and

analyze data. According to these criteria, there are 5 novice subjects and 5 expert

subjects.

All subjects had never used MapForce and TranSheet before. A 15-minute tuto-

rial on transformation specification via examples was given to each subject for both

TranSheet and MapForce prior to the experiments. Then, subjects demonstrated

their understanding by completing a sample transformation themselves with the

help of a supervisor if needed.

We then asked subjects to complete eight mapping scenarios (See Table 3.2)

used in the expressiveness experiment in Chapter 3. Schemas of the data sets were

specified using the Excel-to-XML mapping functionality 1 of MapForce. We ran-

domized tasks and tools during experimentation for each subject. For each task,

we asked subjects to specify mappings and presented to them the final result of the

task (i.e., output of a transformation) so that subjects can check the correctness

of their specification. We gave enough time to users to understand each task prior

to measuring speed. We also provide help manuals to subjects for both tools that

could be accessed at any time during each task. Regarding TranSheet, subjects

can use formulas, form-based operators, and automated transformation suggestions

according to their expertise and preference.

For each task, we recorded the time taken by each subject and charted the mean

and median of all subjects for both TranSheet and MapForce. If a subject did not

complete a task in 10 minutes, the task was considered incomplete and the time was

1http://www.altova.com/mapforce/excel-mapping.html

http://www.altova.com/mapforce/excel-mapping.html
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Figure 5.11: User study completion time (mean)

counted as 10 minutes. Finally, each subject completed a post-study questionnaire.

5.6.2 Observations

Figures 5.11 and 5.12 show the mean and median performances of users to complete

8 mapping scenarios in Table 3.2 using TranSheet and MapForce, respectively. In

terms of completion time, both mean and median performances of TranSheet were

generally over twice as fast as MapForce. By using the Mann-Whitney test, these

results are statistically significant with p-value < 0.001 for all mapping scenarios.

Based on our observations on users’ performance, the main reasons why TranSheet

outperforms MapForce can be explained as follows.

Like other relationship-based mapping systems [127], the mapping interface of

MapForce consists of one schema (the source schema) on the left side and the other

schema (the target schema) on the right side. Functions from a predefined library

can also be added to the interface; these functions are identical to the ones of the
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Figure 5.12: User study completion time (median)

programming languages XSLT/XQuery, Java, C#, C++. A function has input and

output parameters; each parameter has its own input/output icon. A mapping spec-

ification is created by connecting lines between MapForce’s components (including

the source schema, the target schema, and functions): (i) the source and target

schemas; (ii) input(s)/output(s) of a function and the source/target schema; (iii)

input(s)/output(s) of two functions.

This leads to some difficulties for spreadsheet users in specifying mappings.

First, finding, locating, and using an unfamiliar function as well as connecting lines

between components are cumbersome and time-consuming. On the other hand,

TranSheet leverages users’ experience with Excel by providing formulas (with many

Excel-like functions) and form-based operators. Second, the interface of MapForce

is cluttered when multiple functions are used and multiple lines are connected be-

tween components (e.g., in the case of mapping scenario derivation). To accomplish

a mapping scenario, users often must spend time in reorganizing components and

lines in order to understand the details of a mapping specification. Meanwhile, Tran-

Sheet avoids this issue since connections between cells and target labels are implicit

via formulas, instead of the explicit line connections of MapForce. Third, instant

feedback is not provided for each step of a mapping specification in the mapping
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interface. Instead, users must click on the Output tab to see the transformation

result. In addition to that, source (spreadsheet) data is not available in the Output

tab window for users to make side-by-side comparison with target data. Conse-

quently, users waste more time in refining and validating a mapping specification

by interacting with three separate windows, namely the mapping interface, Output

tab, and the source spreadsheet. By contrast, TranSheet not only retains source

data in its mapping interface, but also provides instant feedback for each mapping

formula next to source data for comparison convenience. As mappings get more

complicated, we expect that the benefits of TranSheet will be more noticeable.

Users completed mapping scenarios copying, derivation, and sorting with Tran-

Sheet significantly faster than with MapForce. In the case of copying, while Tran-

Sheet supports selecting a subset of source records by using ranges, MapForce re-

quires using three functions, namely position, equal-or-less, and filter.

Only three users could complete scenario derivation with MapForce since five

functions must be used (two functions substring-after, two functions substring-before,

and one function concat), which makes the mapping diagram complex to understand.

Additionally, a function employed twice (e.g., substring-after and substring-before)

in a mapping specification are not renamed by MapForce and cannot be renamed,

which also makes users confused. Meanwhile, all users fulfilled this scenario with

TranSheet by using automated suggestions; it was difficult to use formulas and

form-based operators to implement this scenario.

It is currently impossible to implement mapping scenario sorting using the map-

ping interface of MapForce so most users could not complete this scenario; only two

programmers could complete this scenario by writing XQuery code. In contrast, all

users could complete this mapping scenario using TranSheet.

With TranSheet, structural mapping scenarios (e.g., filtering, sorting, grouping

with aggregation) basically took more time than value mapping ones (e.g., copying,

merging, splitting) since users must perform target schema restructuring to resolve

mismatches between spreadsheets and visualization types, in addition to writing

formulas or using forms. While Excel experts preferred using formulas, Excel novices

frequently relied on form-based wizards.
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Feature Mean (μ) Median Standard Deviation (σ)
Formulas 4.5 4.5 0.527
Automated suggestions 4.9 5 0.316
Form-based operators 4.6 5 0.516
Instant feedback with side-
by-side comparison

4.8 5 0.422

Flowchart-like mapping in-
terface (including lines and
functions) of MapForce

2.1 2.5 0.944

Table 5.3: Users’ rating results

5.6.3 Post-study Questionnaire

In addition to completion time evidence, we asked users’ opinions on key features

that TranSheet and MapForce offer. Each user rated formulas, automated sugges-

tions, form-based operators, instant feedback along with side-by-side comparison,

and the flowchart-like mapping interface of MapForce from 1 (not useful) to 5 (most

useful).

The rating results are summarized in Table 5.3. As can be seen via mean and

median evidence, users rated the features of TranSheet considerably more useful

than the flowchart-like mapping interface of MapForce. By performing an ANOVA,

there was a significant difference among the ratings (F4,54 = 50.389, p-value <

0.001). Furthermore, the standard deviations of TranSheet’s features are all smaller

than the ones of MapForce, demonstrating the consistency of users’ opinions on the

superiority of TranSheet. These results show the merit of TranSheet’s novel features

over MapForce particularly and relationship-based mapping tools generally. We also

observe that users with a programming background rated the mapping interface of

MapForce higher than the other users.

5.7 Related Work

The database, human computer interaction, and machine learning communities have

contributed numerous techniques for simplifying data transformation. TranSheet

applies a number of these techniques in order to make spreadsheet-based transfor-
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mation available to a larger audience.

Form-based interface for querying and code generation

A form-based interface has been successfully used to shield users from the complex

syntax of query languages, such as SQL and XQuery [91, 68, 58]. The rationale is

that users are good at point-and-click, drag-and-drop, and filling in textboxes to a

lesser extent. Thus, this interface is easy-to-use and the learning curve is significantly

lower. In addition to that, form-based components are also provided by visual IDEs

(e.g., Microsoft Visual Studio [23]) allowing users to connect to database, interact

with file systems, and build complex UIs without having to write code from scratch.

In this chapter, we leverage the power of form-based interface to help users

graphically specify mappings, instead of writing complex mapping formulas.

Form Customization For Query Specification

The Jayapandian et al. propose an mechanism that enable users to modify an ex-

isting form to express the desired query in a flexible manner [92]. The technical

sophistication required to modify forms is not much greater than form filling. In-

spired by this, we provide a generic mechanism that enables users to customize an

existing operator to suit transformation needs.

Transformation Languages and Mapping Tools

Transformation languages, such as XQuery and XSLT, can be used to specify how

to transform XML from one format to another. Although such languages are quite

powerful (Turing-complete [98]), it can be very difficult, error-prone, and tedious to

express a transformation by hand in these languages. To handle this issue, mapping

tools (e.g., Clio [85], Clip [117], +Spicy [112], IBM Relational Data Architect [7],

Altova MapForce [1], Stylus Studio [9], MS BizTalk Mapper [3]) have been developed

to enable users to specify transformations using GUIs. The interface of these map-

ping tools mainly follows relationship-based metaphor [127]. However, this interface
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is typically cluttered and unintuitive for non-technical users.

In this chapter, we proposed some novel techniques built on the top of the

spreadsheet-like formula mapping language developed in Chapter 3 in order to

make spreadsheet-based data transformation available to non-technical users. We

redesigned the mapping interface using nested tables, developed form-based trans-

formation operators, and provided automated transformation suggestions.

Nested tables-based representation

Nested tables-based representation is an intuitive way to display nested relational

data. For example, it has been used to develop web applications [142] and mashup

programs [139] that are accessible by non-technical users. In this chapter, we use

nested tables to represent target data in order to make mapping specification more

intuitive.

String-based transformation. Numerous commercial tools and research pro-

totypes provide graphical interfaces allowing users to transform between different

string-based formats. Toped++ [130] is an interface for creating Topes [132]; each

Tope is a category of data with different formats. A Tope also provides functions for

automatically transforming between its formats. Many other transformation tools

apply direct manipulation and programming-by-demonstration to specify transfor-

mations. Potluck [89] offers simultaneous text editing to transform multiple text

fields at the same time. The authors in [134] infer text extractors and transforma-

tions for web data from examples of a table. CopyCat [18] applies programming-by-

demonstration to data integration via copy and paste actions. Potter’s Wheel [122]

provides a collection of form-based operators allowing users to specify transforma-

tions graphically. Wrangler [97] extends Potter’s Wheel to provide automated trans-

formation suggestions based on the current context of interaction.

TranSheet leverages some of these techniques to simplify spreadsheet-based trans-

formations. TranSheet uses functions of Topes [132] to automatically suggest trans-

formations. Like Potter’s Wheel [122], TranSheet provides form-based transforma-
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tion operators. In addition to that, TranSheet offers a form customization mecha-

nism and uses nested tables to represent target data.

5.8 Summary

In this chapter, we considered the problem of making spreadsheet-based transfor-

mation available to non-technical users. We proposed several techniques to simplify

mapping specification. We made use of nested tables to reorganize the mapping

interface. We integrated a matching module to help users find semantic correspon-

dences between source columns and target labels. We designed form-based trans-

formation operators allowing users to specify transformation graphically, instead

of writing complex formulas from scratch. We also provided a form customization

mechanism that enables users to customize an existing form to suit transformation

needs. Moreover, we relied on Topes to automatically suggest transformations from

source columns to atomic target labels.

Our user study indicated that Excel novices and experts can perform data trans-

formation tasks with TranSheet significantly faster than with state-of-the-art map-

ping tools. The post-study questionnaire also showed that users are more com-

fortable and satisfied with the novel features of TranSheet in comparison with the

mapping interface of mapping tools.



Chapter 6

Conclusion and Future Work

In this chapter, we summarize the main contributions of this dissertation (Sec-

tion 6.1) and discuss some open future research directions (Section 6.2) to improve

this work.

6.1 Concluding Remarks

Spreadsheets are very good at for entering, storing, manipulating, and analyzing

small amounts of data. Indeed, a spreadsheet application (e.g., Excel and Open

Office Calc) is an ideal database management system (DBMS) [59, 135]. It is a

less expensive alternative to larger and more complex DBMSs designed for storing a

large amount of data. Spreadsheets also provide a much lower learning curve for non-

technical users who wish to study advanced data storage and analysis techniques.

Moreover, spreadsheets offer numerous data analysis features which are unavailable

in current DBMSs.

Consequently, a significant of the world’s data is maintained in spreadsheets by

non-technical users. Given the ubiquity and utility of spreadsheets, it has been in-

dispensable for allowing spreadsheet data to interact with external applications and

Web services. From Office 2007, Microsoft uses Office Open XML (OpenXML) as the

default format for data storage instead of the binary file formats [125]. Recently,

OpenXML has been approved by International Organization for Standardization

159



6.1. Concluding Remarks 160

(ISO) as an international standard. Due to the ubiquity of Excel, this will further

facilitate the exchange of spreadsheet data with other applications and Web services.

In this dissertation, we focus on the problem of spreadsheet-based data trans-

formation, which transforms spreadsheet data to the structured formats required

by external applications and Web services. We provide a framework with utilities

allowing users to specify transformations effectively and easily. Based on investi-

gating the state-of-the-art approaches and conducting informal interviews with data

analysts, we have found some main bottlenecks of current solutions to this prob-

lem. First, it is challenging for spreadsheet users without programming background

to specify transformations and users’ spreadsheet programming experience is not

leveraged. Second, previously specified transformations are not effectively leveraged

to save time and avoid effort duplication. Third, it requires users to modify source

spreadsheets to perform transformations, which is tedious and laborious. This may

be worsened when a single source spreadsheet must be mapped to multiple target

schemas. In order to address these issues, we have proposed a framework, namely

TranSheet. This framework consists of necessary components to enable users to: (i)

specify transformations in an easy-to-use and convenient manner; (ii) reuse previ-

ously specified mappings effectively and efficiently; (iii) avoid cluttering the source

spreadsheet with transformations by embedding transformation logic into an expres-

sive language. We mainly build our framework on top of Excel, due to its ubiquity;

but the techniques and concepts presented in the dissertation are also applicable

to other spreadsheet applications, such as Open Office Calc [25] and Apple Num-

bers [20]. In the following, we summarize the most significant contributions of this

dissertation.

6.1.1 An expressive and familiar spreadsheet-like formula

mapping language

In order to enable users to transform spreadsheet data to structured formats, we

develop a familiar and expressive spreadsheet-like formula mapping language (Chap-

ter 3). In particular, we make the following contributions:
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• A spreadsheet-like formula mapping language has been designed for specifying

mappings between spreadsheet data and the target schema. In terms of expres-

siveness, we have demonstrated that popular transformation patterns that are

relevant to spreadsheet-based transformation are supported in the language

using spreadsheet formulas and functions. These patterns are the result of a

careful analysis of commonly needed mapping scenarios supported by trans-

formation languages, mapping tools, and spreadsheet corpuses. This enables

the language to avoid cluttering the source spreadsheet with transformations

and it turns out to be helpful when multiple target schemas are mapped (e.g.,

visualize a data set using multiple visualization types).

• Target schema restructuring has been proposed to allow users to resolve the

mismatches between the source spreadsheet and the target schema. It is a

common occurrence that the target schema, which is defined externally, does

not coincide with the spreadsheet organization. Our solution is to allow users

to organize a view of the target schema by a set of rearrangement operations.

By rearranging the schema view, users do not modify the underlying target

schema; they merely specify how mapping formulas should be interpreted.

• Mapping generalization constructs have been proposed to enable users to gen-

eralize a mapping from instance-level to template-level element. This allows

the mapping to be applied to multiple spreadsheet instances with similar struc-

ture. Frequently used formatting features of spreadsheet templates are ex-

ploited to generalize mappings. More specifically, the mapping generalization

mechanism allows specifying relative locations of spreadsheet data, expressing

dynamic length ranges, and mapping of non-adjacent collections of cells.

• Tuple generating dependencies (tgds), a widely used schema mapping formal-

ism, have been used to describe the semantics of the language. In comparison

with the state-of-the-art schema mapping and data exchange, we have intro-

duced a collection of new functions to tgd expressions. We then have extended

a previous query generation algorithm to generate executable script for these

new functions. Each generated target document of TranSheet corresponds to

a canonical universal solution of data exchange.
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• A prototype of the language has been implemented as an Excel plug-in. We

have evaluated the expressiveness and mapping generalization of TranSheet in

two real applications, namely end-user visualization and medical data trans-

fer. The experimental results show that our language is expressive and flexible

enough to support numerous practical spreadsheet-based transformation sce-

narios.

6.1.2 Previously specified mapping formulas reuse recom-

mendation

In order to enable users to reuse previously specified mapping formulas of the lan-

guage presented in Chapter 3, we have proposed a solution (Chapter 4), which

consists of the following contributions:

• We have formulated the problem of spreadsheet-based transformation reuse as

a variant of similarity join, which is a well-known similarity search problem

that find all pairs of objects whose similarity is above a given threshold. To

the best of our knowledge, this problem has not been characterized before in

the setting we consider here.

• We have defined spreadsheet templates that are used to characterize spread-

sheet structures. In many cases, spreadsheets evolve in a number of pre-

dictable ways and various spreadsheets tend to emerge from a common pattern.

We have also proposed novel techniques to infer a template from an existing

spreadsheet based on common spreadsheet presentation patterns. Then, we

have provided an algorithm to generate the string-based representation of an

inferred template.

• We have proposed an algorithm to recommend previously specified mappings

for a new spreadsheet instance that needs to be mapped to the target schema.

This relies on computing similarities between string-based representations of

templates of the new instance and previously specified instances.
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• A mapping repository has been designed to store schema, spreadsheet, tem-

plate, and mapping information. We have implemented a prototype for the

proposed techniques by extending the architecture described in Chapter 3. We

then have evaluated the performance of our solution using spreadsheets from

a real corpus. The experimental results show that our solution is efficient and

effective enough to support a few hundred thousand mappings stored in the

mapping repository.

6.1.3 End-user oriented spreadsheet-based transformation

techniques

In order to make spreadsheet-based data transformation available to non-technical

users, we have proposed a number of novel techniques (Chapter 5), which extend

the formula mapping language presented in Chapter 3. More specifically, we make

the following contributions:

• The interface has been redesigned based on nested tables to make it more

intuitive and convenient for users to specify and refine transformations. Nested

tables have been successfully used to help non-technical users develop web and

mashup applications. With this new interface, users can not only preview the

whole transformation result, but also make side-by-side comparison between

the source and target data. A matching module has been integrated to allow

users to semi-automatically find semantic correspondences between the source

spreadsheet columns and the target schema labels. As described in Chapter 2,

matching is a time-consuming and labour-intensive task.

• A set of form-based transformation operators have been designed allowing

users to specify transformations graphically, instead of writing complex map-

ping formulas from scratch. The benefits of these operators are two-fold: (i)

users with no deep spreadsheet programming background can specify trans-

formations without having to remember complex syntax of the language; (ii)

spreadsheet programming experts can boost their productivity. We have also
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provided a form customization mechanism allowing users to customize an ex-

isting transformation operator to suit transformation needs. This is needed

because when an operator is activated from a contextual menu, users often

require modifying this operator. Unlike relationship-based mapping interface,

users cannot see specified transformation operations in the mapping interface

of TranSheet. As a result, we have offered a history list allowing users to

modify these operations.

• Sometimes, specifying transformations using formulas and form-based oper-

ators (e.g., transforming format “firstname lastname” to format “lastname,

firstname”) may be difficult and complicated. Therefore, we have provided

a automated transformation suggestions mechanism by making use of Topes;

each Tope is a category of data with a number of formats and functions for

transforming among these formats.

• We have implemented a prototype for the above techniques and conducted an

extensive user study to evaluate the usability of TranSheet. The experimental

results show that TranSheet significantly reduces specification time and pro-

motes users’ satisfaction in transformation specification in comparison with

state-of-the-art mapping tools.

6.2 Future Directions

In this dissertation, we have studied the problem of spreadsheet-based data trans-

formation. As we have shown in the whole dissertation, this is an important and

real research problem. TranSheet can be extended and improved in numerous ways.

In this section, we discuss some possible future extensions to our work.

Extracting structured data from spreadsheets. In the whole dissertation,

we assume that the schemas of spreadsheets are available. Spreadsheet applications

offer users a high level of flexibility in terms of data formatting. This flexibility allows

users to organize data according to their own preferences, styles, and subjective

importance. However, the downside is that this freedom raises an ample challenge
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in identifying spreadsheet schemas since spreadsheets are typically unstructured.

However, the state-of-the-art provides a limited support to address this challenge.

This will be an important, but challenging research direction.

Applying machine learning techniques to simplify data transformation.

Given a set of input examples, machine learning techniques recognize complex pat-

terns and make intelligent decisions based on data. These techniques can be used

to simplify transformation specification in several ways.

First, instead of specifying transformations using formulas or form-based wizards,

users can create a new transformation rule by providing sample source data and

sample target data. A learning algorithm will infer a relevant transformation rule

from these samples. Users can then apply this inferred rule formulas to current

transformation tasks. For example, a user can provide two sample source values

“Bill Gates” and “Steve Jobs” and two sample target values “Bill” and “Steve”,

a program can generate a transformation rule with mapping formulas to perform

splitting.

Second, it may be hard for non-technical users to specify a generic mapping

formula (e.g., ProdName = A1:A〈next=bottom(Orders) + 2〉) using the mapping

generalization constructs as presented in Section 3.5. A possible solution is users

provide a collection of sample spreadsheets belonging to a same template and a pro-

gram automatically infers an appropriate generic formula by learning the structure

of the template via these sample templates.

A formal description of TranSheet’s expressiveness. It is known that

current tgd-based mapping systems (Clio, Clip, +Spicy, and TranSheet) are not

Turing-complete [143]. As a result, they are not as expressive as XSLT and XQuery,

which are Turing-complete languages. More importantly, a formal and exact de-

scription of mapping scenarios that can be handled by these tgd-based mapping

systems is still missing. This is an open problem for schema mapping systems in-

cluding TranSheet. For example, STBenchmark [37], a benchmark for mapping

systems, just proposes transformation scenarios based on a careful analysis of el-

ementary constructs needed applications such as data exchange, data warehouses,

XML publishing, schema evolution, and real-world mapping specifications.
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This will help theoretically answer the question whether transformations (a sin-

gle transformation or a combination of transformations) of TranSheet preserve the

semantics of the original data source. Currently, proposed transformations are based

on practicality rather than theoretical backgrounds.

A benchmark for spreadsheet-based data transformation. Based on our

investigation, we believe it is crucial to develop a set of standard mapping scenarios

that is relevant to spreadsheet-based data transformation. Such standard will serve

to standardize the specification of basic mapping scenarios for spreadsheet-based

data transformation. For example, STBenchmark [37] is the first effort towards

the development of a uniform testbed and repository for schema mapping and data

exchange tasks.

Supporting transforming spreadsheet to different formats. In addition

to XML, TranSheet can be extended to support transforming spreadsheet data to

different formats: (i) relational data stored by MS SQL Server, IBM DB2, Oracle,

and MySQL; (ii) Flat (text) files; (iii) Electronic Data Interchange (EDI) standards

(e.g., UN/EDIFACT, ANSI X12, Health Level 7, SAP IDoc, and IATA PADIS); (iv)

Extensible Business Reporting Language (XBRL); (v) JavaScript Object Notation

(JSON) [29].

Transforming external structured data to spreadsheet data. On the

reverse side of transforming spreadsheet data to external structured formats, Tran-

Sheet can be extended to transform external structured data (e.g., flat files, XML,

and relational data) to spreadsheet data. For example, Altova MapForce [1] supports

both sides of transformation (i.e., spreadsheet data can be used as either mapping

sources or mapping targets).
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Appendix A

Appendix

A.1 Template inference based on cp-similarity

Abraham et al [35] presents an inference technique by identifying similarity regions.

Two formulas are cp-similar if their R1C1-style presentations are the same [54]. In

other words, their formulas may have resulted from a copy/paste action from one

of the cells to the other. Recall that spreadsheets have two popular notations for

representing formulas, namely A1 and R1C1. Although the A1 notation is dominating,

the meaning of a formula representing by the R1C1 notation is independent of the

cell which stores it. In the R1C1 notation, both rows and columns are numbered by

integers from 1 onward. For arbitrary nonzero integers i and j and positive integers

m and n, the following expressions are valid: RmCn, R[i]Cn, RmC[j], R[i]C[j],

RCn, RC[j], RmC, R[i]C. While the number after ‘R’ refers to the row number, the

number after ‘C’ refers to the column number. If that number is absent, it means

same row (column) as the cell in which this expression is used. A number in the

square brackets is a relative reference and the cell to which this expression points

should be identified by adding that number to the row (column) of the present cell.

Number without brackets is an absolute reference to a cell whose row (column)

number is equal to that number [135]. For example, R[-1]C1 denotes a cell which is

in the row directly above the present one in column 1.

The cp-similar cells are then grouped on the basis of rows and columns to identify

168
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A B C D E F G
1 2005 2006
2 Name Quantity Cost Total Quantity Cost Total
3 Towel 3 4 12 2 1 2
4 Soap 2 5 10 3 2 6
5 Fish 1 6 6 3 6 18
6 . . .

(a)

Target

Products[0..*]

Year = B1:(next=right(Year)+3)1

Items[0..*]

Name = A3:A(value=empty)

Quantity = (right(Year))3:right(Year)(value=empty)

Cost = (right(Year)+1)3:(right(Year)+1)(value=empty)

Total = (right(Year)+2)3:(right(Year)+2)(value=empty)

(b)

Figure A.1: (a) Sales data; (b) Mapped target schema

Figure A.2: Automatically Inferred Template

hex groups and vex groups. Then, the system tries to overlay identified rows and

columns to generate the template. For each pair of rows/columns that is considered

for overlay, in addition to the formula cells, referenced data cells in two rows/columns

are checked to find out if they have the same type. While vex groups are inferred

by overlaying blocks of cells vertically, hex groups are inferred by overlaying blocks

of cells horizontally.

Let the predicate c test for cp-similarity and t test for type similarity. c(f, f ′)

means that f and f ′ are cp-similar; t(v, v′) implies that v and v′ have the same type.

A spreadsheet is given by a function S : A → F mapping cell addresses to values

and formulas. A cell of the spreadsheet is given by (a, f) ∈ S where S(a) provides

yields formulas/values at address a. Let dr be a function that dr(a1, a2) gives the

row difference between the cell addresses a1 and a2; let dc be a function such that

dc(a1, a2) yields the column differences between the cell addresses a1 and a2.

Template of spreadsheet in Figure A.1(a) can be inferred as follows. Hex groups

are identified based on: c(S(D3), S(G3)) ∧ c(S(D4), S(G4)) ∧ c(S(D5), S(G5));

dc(D3, G3) = dc(D4, G4) = dc(D5, G5) = 3; t(B3, E3)∧t(B4, E4)∧t(B5, E5); t(C3, F3)∧
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Figure A.3: Interface for mapping swine flu data to a pie chart

t(C4, F4) ∧ t(C5, F5). Remember that in terms of cp-similarity, we have: S(D3) =

S(D4) = S(D5) = S(G3) = S(G4) = S(G5) = RC[−2] ∗ RC[−1]. Once the overlay

for the hex group has been done, vex groups are identified based on:

c(S(D3), S(D4))∧ c(S(D3), S(D5)); t(B3, B4)∧ t(B3, B5); t(C3, C4)∧ t(C3, C5). The

inferred template for the instance in Figure A.1(a) is shown in Figure A.2. The

system shades vex groups green and hex groups light pink, respectively; template

cells that are part of vex and hex groups are shaded blue respectively.

A.2 TranSheet’s screenshots

In this section, we demonstrate step-by-step with screenshots the functionalities of

TranSheet via two mapping scenarios.

Mapping swine flu data to a pie chart

While spreadsheet data is on the left side, the target schema is located in the Excel

task pane on the right side (See Figure A.3). Spreadsheet data can be imported

using the built-in functionality of Excel.
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Figure A.4: Schema repository of TranSheet

Target schemas are imported using TranSheet functionality by clicking on button

Target Types as shown in Figure A.4. The user can select an existing schema from

the repository or add a new schema by clicking on button Add.

In this example, the target schema of visualization type pie chart is selected and

visualized as a tree in the task pane (See Figure A.5). The user can start specifying

a mapping by selecting a target label and entering a formula into the formula editor.

In this example, the user wants to use a pie chart to visualize confirmed cases for

193 countries. There are two ways of specifying formulas, using either a structural

mapping or two value mappings:

• Pies =B3:C195

• Name =B3:B195; Value =C3:C195

Instant feedback is displayed next to the corresponding labels of the target

schema as shown in Figure A.6. The user can validate and refine the specified

mapping based on this feedback.

After completing mapping, the user can preview the target document before ex-

portation by clicking on button Preview as shown in Figure A.7. Now the generated

XML document can be exported for use with other applications.
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Figure A.5: Interface for mapping swine flu data to a pie chart with the selected
target schema

Figure A.6: Interface for mapping swine flu data to a pie chart with instant feedback
for mappings
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Figure A.7: Transformation preview of TranSheet

Figure A.8: Interface for mapping swine flu data to a scatter plot
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Mapping swine flu data to a scatter plot

In this scenario, the user wants to use a scatter plot to find correlation between the

number of confirmed cases and the infection rate in each country (See Figure A.8).

The infection rate is visualized per one hundred thousand, instead of per million in

the data set. The following mappings are specified:

• X =C3:C195

• Y =E3:E195/10

• Label =B3:B195

• Size =G3:G195
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