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ABSTRACT
Behavioral targeting (BT) is a widely used technique for on-
line advertising. It leverages information collected on an in-
dividual’s web-browsing behavior, such as page views, search
queries and ad clicks, to select the ads most relevant to user
to display. With the proliferation of social networks, it is
possible to relate the behavior of individuals and their so-
cial connections. Although the similarity among connected
individuals are well established (i.e., homophily), it is still
not clear whether and how we can leverage the activities of
one’s friends for behavioral targeting; whether forecasts de-
rived from such social information are more accurate than
standard behavioral targeting models. In this paper, we
strive to answer these questions by evaluating the predictive
power of social data across 60 consumer domains on a large
online network of over 180 million users in a period of two
and a half months. To our best knowledge, this is the most
comprehensive study of social data in the context of behav-
ioral targeting on such an unprecedented scale. Our analysis
offers interesting insights into the value of social data for de-
veloping the next generation of targeting services.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database ap-
plications—Data mining ; J.4 [SOCIAL AND BEHAV-
IORAL SCIENCES]: Economics

General Terms
Algorithms, Experimentation

Keywords
advertising, social targeting, behavioral targeting, social-
network analysis, large-scale data mining

1. INTRODUCTION
Behavioral targeting (BT) [4, 5, 25] is an online marketing

service that infers the specific interests of consumers based
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on their online activities. By understanding factors such as
the frequency of content consumed, the recency of user en-
gagement, and interactions on the site, BT can aggregate
large, yet granular audience to whom advertisers can de-
liver the most relevant messages. Industry research shows
that behaviorally targeted ad spending will reach $4.4 bil-
lion by the end of 2012, nearly 25% of US display ad spend-
ing [10]. Almost all major online publishers such as Yahoo!,
Microsoft and Google have enthusiastically embraced this
business model.

Today, the advertising inventory of BT often comes in
the form of some kind of demand-driven taxonomy, e.g., Fi-
nance/Loans and Life Stages/Parenting and Children. For
each category of interest, BT system builds a model that
can derive a response score for each individual from his past
online activities (e.g., page views, search queries). The score
indicates the likelihood that this user will respond to an ad
in that category. The response can be ad clicks or conver-
sions (e.g., product purchases and account sign-ups).

Should the user appear online during a targeting time win-
dow, the ad-serving system will qualify this user (to show
ads in that category to the user) if her score is above a cer-
tain threshold. The threshold is predetermined by domain
experts in such a way that both a desired level of response
(measured by the cumulative click-through-rate) and reach
(measured by the volume of targeted ad impressions served
or the number of qualified users) can be achieved. The rev-
enue generated by BT is a function of both response and
reach.

With the proliferation of social media and social-networking
sites, it is now possible to relate the behavior of individuals
and their social contacts. In fact, a few startup companies
have begun to target consumers based on who they are con-
nected to – generating a lot of buzz around a new advertis-
ing model called social targeting. If information from social
networks can drive more accurate and effective advertising,
it is desirable to devote more effort to developing new tar-
geting technologies that combine both behavioral data and
social signals. However, before we jump on this bandwagon
of social targeting, it is important to answer the following
fundamental questions:

• Whether and how can we leverage one’s friend activi-
ties for behavioral targeting?

• Whether forecasts derived from such social information
are more accurate than standard behavioral targeting
models?

In this paper, we strive to answer the above questions by



evaluating the predictive power of social data on a large on-
line network of over 180 million users in a period of two and a
half months. We develop a wide array of supervised and un-
supervised machine-learning approaches to incorporate so-
cial signals to standard BT models. We conduct extensive
experiments to assess the effectiveness of these methods on
users with different levels of online activities, and across over
60 consumer domains including Technology, Retail, Enter-
tainment, Finance, Travel, Life Stages, Automotive, etc.

As the behavioral and social data are intrinsically in large
scale (e.g., tens of terabytes of data and hundreds of billions
events in two months), we parallel all the machine-learning
algorithms using Hadoop MapReduce framework. Specifi-
cally, we have designed and implemented a highly scalable
end-to-end solution to conduct large-scale data analysis us-
ing Hadoop. Our solution handles the generation of behav-
ioral and social features, model training, scoring, network
propagation, and model evaluation in a very efficient and
scalable fashion.

To the best of our knowledge, this is the most comprehen-
sive large-scale social-network data analysis in the context
of BT. Our study based on real-world applications offers in-
teresting insights into the value of social data for developing
the next generation of targeting products. Our findings of-
fer a solid and quantitative guideline for both publishers and
advertisers in decision making about social targeting versus
behavioral targeting. Our algorithm implementations also
serve as the building blocks for future researches in this do-
main.

Organization of the material: Section 2 reviews re-
lated work. Section 3 describes our behavioral and social
data. Section 4 introduces BT baseline model and evalua-
tion metrics. In Section 5 we develop a wide array of super-
vised and unsupervised approaches to evaluate the value of
social data for BT. In Section 6 we briefly discuss how these
different approaches are implemented on Hadoop using a
unified framework. We conclude the paper in Section 7.

2. RELATED WORK
Friends are similar along a variety of dimensions is a long-

observed empirical regularity, which sociologists called the
homophily [16]. The study of this pattern is a recurring
theme with increasing interests owing to the boom of online
social networking services. Researchers from Microsoft [20]
found that people who chat with each other using instant
messaging are more likely to share similar personal charac-
teristics (e.g., age, location) and interests (e.g., search top-
ics). Engineers from Facebook [12] developed techniques to
infer users’ undeclared profiles (e.g., age, gender, profession)
from their friends so that advertisers can precisely target
more consumers. Scientists from academia also developed
models to evaluate the quality of algorithms that derive one’s
interests from their social contacts [17, 24]. However, most
existing work is limited to the inference of “static” profiles
such as age, gender, education. Understanding the role of
homophily with respect to one’s online behavior, and partic-
ularly in the context of behavioral targeting has been largely
ignored.

The most relevant work to ours is by Bagherjeiran and
Parekh [1]. The authors observed that online friends tend
to see and click on similar display ads. They developed an
ensemble classifier to combine both behavioral and social
features to boost the probability that a user will click on an

ad. We also evaluated this approach in our experiment (to
be described later). We observed that the computational
cost of this approach is prohibitively high, which makes it
not very much practical in large-scale production systems.
Further, our work differs from [1] in that we systematically
studied a wide array of supervised and unsupervised data
mining strategies to incorporate social data into traditional
behavioral targeting. To our best knowledge, our work is
the most comprehensive study of the value of social data in
the context of behavioral targeting at an unparalleled scale.

Another seemingly relevant work is by Provost et al. [18].
The authors proposed to construct a quasi-social network
that connects people who visit the same user-generated micro-
content sites. Given a set of valued seed customers from ad-
vertisers, Provost et al. identified more users on the quasi-
network who are in close proximity to the seed users for
brand advertising. The “proximity” between two users is
based on the similarity of the contents they have viewed.
The idea, though called “social targeting”, is closely related
to traditional behavioral targeting because the network is
derived from users’ browsing activity (i.e., page views).

There is another large body of work in the literature on
network influence modeling, which is one of the fundamen-
tals to viral marketing [13]. Although Watts [23] challenged
the existing influence hypothesis and claimed that the so-
called influencers in social networks were just accidental,
viral marketing recently received increasing attention. Hill
et al. [11] found that consumers who were linked to prior
adopters adopt a telecommunication service at a rate 3-5
times higher than the control group. Bhatt et al. [3] also in-
vestigated how we might use network information to predict
product adoptions. They observed strong signals of peer
pressure, but very little evidences of influence from highly
connected users. Furthermore, they found that the prop-
agation of the adoption remains mostly local to the initial
adopters and their close friends, echoing the discovery made
by Bakshy et al. [2] that most information cascade in social
networks are very shallow. We note that influence analysis
is primarily interested in how information spreads over the
network, whereas our focus is to understand the value of so-
cial data, and how we can leverage social data for behavioral
targeting.

3. BEHAVIORAL AND SOCIAL DATA
The analysis and experiments in this paper are conducted

on vast amounts of behavioral and social-network data from
a large IT company in a period of two and a half month. In
this section, we describe the data and its properties.

3.1 Data
Behavioral data: Behavioral data serves as the back-

bone of our study. It contains individuals’ web-browsing
behavior such as the pages they have visited or the searches
they have made, all aggregated at the BT category level,
e.g., 10 page views in category “Retail” at time t. For eval-
uation, we split the data into training and test sets. Fig-
ure 3 illustrates the generation of both training and test
data. The training data is collected from a 10-week period
of time (2010/08/23–2010/10/31), where the last 4 weeks
(2010/10/4–2010/10/31) are used to generate the targets
(i.e., clicking on an ad or not). For each user u on each
day tn+1 in the 4-week target window, we set the target
to 1 if u clicked on an ad in the BT category being mod-
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Figure 1: Likelihood of being qualified for a BT category as a function of having social contacts who are also qualified

for the same category.
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Figure 2: Likelihood of clicking on display advertisements in a BT category as a function of having social contacts

who have done the same before.

eled, or 0 if u saw the ad but did not click on it. Next,
we create the corresponding behavioral features from this
user’s activities in the preceding 6 weeks (details in Sec-
tion 4.1). The test data is generated from a 7-week period
of time (09/20/2010–2010/11/07), where the last 1 week
(2010/11/01–2010/11/07) is used to form the targets. This
process produces 13 billion training and test examples and
approximately 7 terabyte data.

Social data: Our social graph is constructed from users
in an Instant Messaging (IM) network operated by a large
IT company. We remove singleton users and establish an
edge between all pairs of users who mutually authenticate
each other as buddies. The resulting network has over 390
million nodes and 5 billion edges. Intersecting the be-
havioral data (training and test, respectively) with this com-
munication network results in approximately 180 million
users, for whom we have a record of both their own behaviors
as well any behaviors of their friends.

Remarks: We conduct our research in a privacy-friendly
fashion. Specifically, we do not use any demographic or ge-
ographic information. The behavioral data is aggregated at
category level, e.g., 10 page views in category “Travel/Cruise”
at time t. We do not use any granular user activities.
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Figure 3: Generating training and test behavioral data.

3.2 Homophily
It is a long-observed empirical regularity that friends are

similar on a variety of aspects – a pattern sociologists called
homophily. As McPherson et al. write in their seminal re-
view [16], “homophily limits people’s social worlds in a way
that has powerful implications for the information they re-



ceive, the attitude they form, and the interactions they ex-
perience.” In other words, where there is homophily, one can
in principle predict an individual’s behavior based on the
information from his or her social contacts. Thus, to assess
the value of social data for behavioral targeting, we first at-
tempt to answer the following question: Can we observe the
presence of homophily in our social data, and in particular,
along certain dimensions related to behavioral targeting? We
answer this question by studying BT qualifications and ad
clicks.

BT qualifications: Recall that a user is qualified for a
BT category if her BT score derived from the corresponding
model is above the serving threshold. The plot in Figure 1
shows that it is possible to infer one’s BT qualifications from
that of her friends. For almost all the 60 major BT categories
we studied, users with more friends who are qualified for a
certain category are more likely to be qualified for the same
category. For example, among all consumers with 5 friends
qualified for Retail, 21% are also qualified for Retail, 6 times
higher than consumers with no friends qualified for Retail.

Ad clicks: Since a majority of online publishers adopt the
pay-per-click model for their BT products, i.e., advertisers
pay publishers when their ads are clicked, we also study the
homophily of ad clicks using our data. Specifically, we com-
pute the likelihood that a user will click on the display ads
in a BT category as a function of having friends who have
done the same within the last few days. The results are il-
lustrated in Figure 2. Similar to the trend we observed for
BT qualifications, social data are in general informative for
predicting ad clicks as well, though the effect varies consid-
erably across different categories. For 42 of the 60 categories
shown in the plot, users whose friends clicked on the ads be-
fore have markedly higher rates of clicking themselves, with
increases ranging from 0.3% to over 977.0%.

Remarks: Goel and Goldstein [9] also investigated so-
cial homophily using data from off-line sales, sign-ups for
an online service, and clicks on ten online banner ads. Our
findings echo the observations made by them.

4. BEHAVIORAL TARGETING (BT)
In this section, we briefly introduce BT baseline model

and evaluation metrics.

4.1 BT Baseline Model
The baseline model [5] takes users’ browsing habits as in-

put, and builds a classifier to predict the likelihood that a
user is going to click on an ad in a certain BT category. The
actual data-mining algorithm to learn the classifier is often
not crucial. In fact, it is generally intractable to use algo-
rithms of time complexity higher than linear in solving large-
scale machine learning problems of industrial relevance [4].
Our previous experience shows that linear classifiers such
as logistic regression, linear regression and support vector
machines do not differ significantly in terms of prediction
performance. In this paper, we use a customized version of
LIBLINEAR [7] to train all models on Hadoop MapReduce
platform.

On the other hand, how to construct features for train-
ing and scoring has a huge impact on large-scale production
systems. As online users constantly change their behaviors
by browsing different web pages and searching different sub-
jects, it is generally impractical to continuously create new

features and score hundreds of millions of users from scratch
– after all, online systems often need to make ad serving de-
cisions in near real time (in the order of millisecond). Next
we introduce a simple linear-time method that can incremen-
tally update behavioral features, allowing linear classifiers to
incrementally update scores as well.

For each type of user activities a ∈ { page view, search
query, ad click, ...} in the BT category being modeled, the
baseline model computes two types of input features:

• intensity Ia,tn : the cumulative count of activity a
that the user has performed in the feature time window
[t0, tn].

Ia,tn =

tn∑
t=t0

αtn−tAa,t,

where Aa,t denotes number of times the user has ac-
tivity a at time t, and α ∈ [0, 1] is a decay factor used
to diminish the importance of old events.

• recency Ra,tn : the time elapsed since the user has
performed activity a most recently.

Ra,tn =

{
tn − t0, if @Aa,t > 0, t0 ≤ t ≤ tn;
tn −max {t|Aa,t > 0, t0 ≤ t ≤ tn} , otherwise.

As the feature window moves from [t0, tn] to [t0, tn+δ], it
is easy to update features without having to re-process all
the prior events:

Ia,tn+δ = αtn+δ−tnIa,tn +

tn+δ∑
t=tn+1

αtn+δ−tAa,t;

Ra,tn+δ =

{
tn+δ − t, if ∃Aa,t > 0, tn+1 ≤ t ≤ tn+δ;
tn+δ − tn +Ra,tn , otherwise.

The target of the model is a binary variable indicating
a click on an ad in the category being modeled (y = 1),
or not (y = 0). Although it is possible to use conversions
such as product purchases as the target, in this paper we
mainly focus on pay-per-click model, where advertisers pay
the hosting service when the ad is clicked.

4.2 Evaluation Metrics
We build a BT model for each category c and measure its

performance by two metrics: 1) the cumulative CTR of a
collection of targeted users whose scores are above a certain
serving threshold (or at a certain reach level); and 2) the
area under the ROC curve [8].

The cumulative CTR at a certain serving threshold is de-
noted by CTRreach

c and illustrated in Figure 4. It is calcu-
lated as the total ad clicks received from users whose scores
are above the threshold, divided by total ad impressions
served to these users. To eliminate the potential variance
across different models, we normalize CTRreach

c by the cor-
responding population CTR where the threshold is set to
the minimum (rightmost value on x-axis). We denote this
normalized metric by CTR Liftreachc :

CTR Liftreachc =
CTRreach

c

CTRpopulation
c

− 1. (1)

CTR lift provides a sneak peek of the model performance
at certain reach levels. To have a global picture, we use the
area under the ROC curve, denoted by AUCc, to examine a
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model’s discrimination power over the entire score distribu-
tion. The higher the AUC value, the better the model.

Since we build models for 60 major BT categories in one
batch, and ads in different categories receive distinctive serv-
ing demands, we report average AUCc and CTR Liftreachc ,
weighted by ad impressions served in each category.

CTR Lift
reach

=

∑
c CTR Liftreachc · vc∑

c vc
, (2)

AUC =

∑
c AUCc · vc∑

c vc
, (3)

where vc is the ad impressions in category c. Weighting by
ad impressions allows us to pay more attention to revenue-
bearing categories which usually have a large amount of con-
tracted impressions to deliver.

5. LEVERAGING SOCIAL DATA FOR BT
In this section, we develop various supervised and unsu-

pervised methods to incorporate social signals into tradi-
tional BT. We evaluate the efficacy of these methods through
extensive experiments on large-scale real-production data
across 60 major consumer domains. Our results offer very
interesting insights into the value of social data, allowing us
to answer the questions raised before: How can we leverage
one’s friends activities for behavioral targeting? Are fore-
casts derived from such social features more accurate than
standard behavioral targeting models?

5.1 Supervised Approach

5.1.1 BT with Social Features
Our preliminary study in Section 3.2 shows that connected

users share similar behavioral patterns such as BT qualifi-
cations and ad clicks. Motivated by this finding, we propose
to train BT models with additional social features extracted
from the network. Specifically, we develop two types of so-
cial features: neighborhood features and community features.

Neighborhood features: These features provide simple
statistics of one’s social circle. The first set of neighborhood
features includes: 1) the number of friends; 2) the number
and percentage of active friends, where active means that
the user has certain online activities (e.g. browsing pages,
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Node 1 and 5 are ad clickers, each forming a separate

community C1 and C5.

clicking ads) in the feature time window; and 3) the number
and percentage of ad clickers in one’s neighborhood (recall
that a user is likely to click the ad if her friends also clicked
on the ad). We denote these features by Neighbors1.

Note that ad clicks are extremely rare events – the pop-
ulation CTRs on Automotive and Travel display ads are
only about 0.15% and 0.08%, respectively according to a
DoubleClick report in 2009 [6]. Thus, the volume of users
that can benefit from friends’ ad-clicking behavior are quite
small. On the other hand, views of web pages and ads
represent the most dominant patterns of online activities.
Hence, we construct the second set of neighborhood fea-
tures on top of Neighbors1 by introducing the number and
percentage of friends with page views and ad views in the
same category being modeled. We denote these features by
Neighbors2 and Neighbors1 ⊆ Neighbors2. The abso-
lute values of these features may vary drastically in practice
(approximately follow a power-law distribution), we apply a
logarithmic transformation to scale all quantities to a rea-
sonable range.

Community features: The second approach is to ex-
tract latent traits based on network structure. One typical
example is the online community where members inside the
group have more inter-connections than with others outside.
Recently, Tang and Liu [21, 22] utilized community mem-
bership as features to solve a network-based classification
problem. The algorithm first identifies communities from
the network, and then treats community memberships as la-
tent features for classical supervised learning. They showed
that this approach outperforms other collective-classification
methods [19], especially in noisy social-media networks.

However, finding communities in a large-scale social net-
work with 390 million nodes and 5 billion edges is not a
trivial task. It is necessary to first understand the over-



Method ∆AUC
∆

CTR Lift
reach

5% reach 10% reach 20% reach 30% reach 40% reach 50% reach

1 BT baseline 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2 Random targeting −24.25% −100.00% −100.00% −100.00% −100.00% −100.00% −100.00%

3 Neighbors1 −16.58% −89.19% −85.65% −80.28% −75.69% −70.78% −64.51%
4 Neighbors2 −13.34% −87.19% −82.27% −72.90% −63.85% −54.18% −44.81%
5 Community −15.84% −86.13% −84.87% −81.19% −75.38% −67.30% −56.42%

6 BT + Neighbors1 +0.97% −0.14% +0.22% +0.84% +1.20% +1.73% +3.63%
7 BT + Neighbors2 +0.86% +0.13% +0.22% +0.79% +1.21% +1.38% +2.53%
8 BT + Community +0.08% −0.08% −0.08% +0.07% +0.43% +0.62% +0.63%

9 Ensemble +0.00% −1.02% −1.56% −3.51% −5.48% −3.55% −0.77%

Table 1: Performance improvement over BT baseline model, measured by the lift of view-weighted average AUC and

CTR Lift across all 60 BT categories on all users.

all network structure before delving into any specific algo-
rithms. Figure 5 illustrates the distribution of the connected
components in our network. There are more than 9 million
connected components, among which the largest component
alone covers 94.21% of nodes – a very typical power-law dis-
tribution. Standard community-detection algorithms such
as matrix factorization and statistical inference, if not well
tuned, are very likely to end up finding these connected com-
ponents instead of real “latent features”.

To tackle this challenge, we develop a simple notion of
community as a user and her 1-hop neighborhood. Recall
again that users with clickers in the neighborhood are more
likely to click on ads, we only keep communities that are
centered at an ad clicker. We treat each such community
as a feature; if a user belongs to that community, the cor-
responding feature value is 1, and 0 otherwise. We further
normalize each user’s membership features so that they sum
up to 1. We denote this type of feature by Community.
Figure 6 illustrates an example of creating such features.

5.1.2 Ensemble BT with a Social Model
Another way of combining social and behavioral data is

to build an ensemble classifier, which merges the outputs
of behavioral model with social model to improve predic-
tions. Mathematically, the output of an ensemble model Se
is calculated as

Sensemble = α · Sbehavioral + (1− α) · Ssocial, (4)

where α ∈ [0, 1] is a weighting parameter.
A constant weight, say α = 0.5, often leads to a poor per-

formance based on our experience. In practice, α is learned
through a third classifier that takes both Sbehavioral and
Ssocial as inputs and the original targets as outputs. Bagher-
jeiran and Parekh [1] discussed this approach for online ad-
vertising in ICDM 2008 workshop. However, we would like
point out that the computational cost of this approach is
prohibitively high because it needs to train three models:
behavioral model, social model, and the ensemble classifier,
and score each user multiple times. Thus, this method does
not scale very well to large production systems.

5.1.3 Experiments – All Users
We build a bunch of new BT models using the aforemen-

tioned social features and ensemble approach. We evaluate
these models with respect to the baseline in terms of both

AUC and CTR Lift
reach

(see Section 4.2 for definitions). For

illustration purpose, we report the relative improvement of
these metrics as follows:

∆AUC =

(
AUCnew

AUCbaseline

− 1

)
× 100%; (5)

∆
CTR Lift

reach =

(
CTR Lift

reach
new

CTR Lift
reach
baseline

− 1

)
× 100%. (6)

The reach takes a value of 5%, 10%, . . . , 50%, meaning that
ad serving thresholds are chosen for each model that top
5%, 10%, . . . users are qualified for ad serving.

Results I: The experimental results are summarized in
Table 1. A positive value in the cell means that the new
model is performing better than the baseline, whereas a neg-
ative value indicates that the new model is worse. Line 1
is the baseline model compared with itself, therefore all en-
tries are 0s. Line 2 is a random targeting model that ran-
domly assigns scores to users, so its AUCrandom = 0.5 and

CTR Lift
reach
random = 0% at all reach levels. Line 3–5 are mod-

els built from social features alone. From Line 1–5 we have
two interesting observations:

• Social features do carry certain informative signals be-
cause the models built from social features alone are
still better than random targeting.

• BT baseline model substantially outperforms all other
models trained from social features alone in terms of
both AUC and CTR. In other words, individuals’ own
behavioral information is much more useful than their
friends’ in the context of BT.

Line 6–8 are models built from hybrid features that combine
both behavioral and social data. We can observe that these
models have higher AUC and CTR than baseline, though the
improvement seems only marginal (we will elaborate more
on this shortly). It is also worth noting that ensemble clas-
sifier surprisingly underperforms the BT baseline, possibly
due to overfiting in the training phase. Considering its com-
putational cost as well, we exclude it from the subsequent
analysis.

5.1.4 Experiments – Type-0, Type-1, Type-2 Users
The experimental results in Table 1 show that models

built from the combination of social and individual behav-
ioral features outperform the baseline. But the actual gains
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Figure 7: Category-level performance improvement, measured by the relative lift of AUC, i.e.,

(AUCc/AUCbaseline − 1) × 100%. Categories are sorted in descending order of ad impressions served in that category.

The method is BT + Neighbors1.

on Line 6–9 seem rather marginal (less than 1% of ∆AUC

and ∆
CTR Lift

20% reach). Since the reported metrics are aver-
aged over 60 BT categories, we conducted further analysis
to examine the performance improvement of each individual
category. In particular, we chose BT+Neighbors1 method
to study as it is one of the best performing methods. The
category-level results are shown in Figure 7. We can see
that the improvement is highly skewed, some category has
as large as 11% boost and some others only less than 1%.
So our next questions are: why could this happen? When
does social features help most?

To answer these questions, we further partition our users
into the following three groups:

• Type-0 users: for these users we do not have their
behavioral information in the feature time window. It
is possible that they are newly registered users; or they
do not visit us recently; or they have online activities,
but those activities are in a different category not being
considered by the model.

• Type-1 users: for these users we only know what ads
they have seen in the feature time window. Usually
these are mail or messenger only users who do not
browse other pages on our site, and their mail pages
cannot be captured due to privacy policies. Note that
what ads a user can see is often determined by a vari-
ety of targeting services including demographic and ge-
ographic targeting, search re-targeting, and other be-
havioral targeting products. Therefore, ad views are
still indicative of users’ characteristics and interests to
certain extent.

• Type-2 users: these are the active users who have lots
of online activities which can be utilized for modeling
and scoring.

It is clear that the magnitude of behavioral signals vary sig-
nificantly among these three types of users: Type-0 is the
weakest, followed by Type-1, and Type-2 is the strongest.

In the following experiments, we choose the best perform-
ing models BT + Neighbors1, BT + Neighbors2 and
BT + Community, and evaluate their performance against

each type of users, in an attempt to answer the questions we
raised in this section.

Results II: The experimental results are illustrated in
Figure 8. We can observe that

• Type-0 users benefit most from social features. New
models improve by +4% with respect to this type of
users, much higher than the improvement obtained
from all users which is less than 1%. Similarly, for
Type-1 users, we also observe a 2% lift. This result
implies that social data is most useful for users with-
out much behavioral information.

• On the other hand, the performance of new models
decays when evaluated on Type-2 users. It indicates
that when users have sufficient behavioral data to char-
acterize themselves, social data can introduce redun-
dancy, if not noise, to the model.

So how does these findings help us answer the questions
raised at the beginning of this section? We further inves-
tigated categories with large performance improvement and
found that they often have more Type-0 and Type-1 users.
This is the case when social features are playing important
roles. In addition, the findings also help us understand the
pattern we observed in Line 6-8 of Table 1, that is, the
performance improvement increases as the reach level in-
creases. We found that when the reach is small, only those
users with high BT scores are qualified, and most of them
are among Type-2 users. Hence, we do not see much gain of
performance. As the reach increases, more and more Type-0
and Type-1 users are qualified and targeted with ads, con-
sequently, the value of social features starts to manifest.

5.2 Unsupervised Approach
In this section, we employ network-propagation methods [15,

26, 14, 27] to infer users’ BT scores directly from their
friends’. The motivation behind this approach is again the
homophily property we observed in Section 3.2 – users in
close proximity share similar behavioral patterns. One ad-
vantage of this approach is that we may only need to score
a small set of active users and use them as the seeds of the
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Figure 8: Performance improvement with respect to
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weighted average AUC across all BT 60 categories.

propagation, thus reducing the storage and computational
cost of creating a large set of BT features for classification
models. We test this idea using three network-propagation
schemes as follows.

5.2.1 Methods
Scheme 1. Let s(t)(u) denote the score of user u after the

t-th iteration, N(u) be the set of users who are friends with
u, d(v) be the out-degree of user v (the number of friends of
v), |G| be the total number of users in the social network,
and 0 < α < 1 a dumping factor. The first propagation is
defined recursively as follows:

s(t)(u) = (1− α)
∑

v∈N(u)

s(t−1)(v)

d(v)
+ α

1

|G| . (7)

Scheme 1 is essentially the PageRank algorithm [15]. PageR-
ank is used to measure the quality of a web page based on the
structure of the hyperlink graph. A page that receives “en-
dorsements” from many other good quality pages in the form
of hyperlinks tends to be of good quality too. The station-
ary state of this propagation depends on graph structure,
but not on initial scores.

Scheme 2. Let s(0)(u) denote the initial BT score of user
u according to the standard BT models, and 0 < α < 1
a weighting parameter. The second propagation is defined
recursively as follows:

s(t)(u) = (1− α)
∑

v∈N(u)

s(t−1)(v)

d(v)
+ αs(0)(u). (8)

Scheme 2 has its roots in semi-supervised learning [27]. The
basic assumption there is consistency : data points close to
each other, or on the same cluster or manifold are likely to
have the same class labels. The propagation allows every
data point to iteratively spread its label information (BT
scores in our scenario) to its neighbors until a global state
is achieved. During each iteration, each point receives the
information from its neighbors, and also retains its initial in-
formation. The stationary state of this propagation depends
on graph structure as well as the initial scores.

Scheme 3. The third propagation is defined recursively
as follows:

s(t)(u) = (1− α)
∑

v∈N(u)

s(t−1)(v)

d(v)
+ α

1

|G| + s(t−1)(u). (9)

Scheme 3 is a variation of PageRank with the exception that
a user’s score computed in the previous iteration is carried
over to the next iteration in computing her new score – a
sort of self-reinforcement. This propagation is used in [26]
to search experts on an author-citation network.

5.2.2 Experiments
Our study of supervised models in Section 5.1 have shown

that 1) social features appreciably improve the prediction ac-
curacy for users without much behavioral information (Type-0
and Type-1 users); indicating that these types of users ben-
efit most from their active neighbors; and 2) social features
are not quite informative for users with lots of activities
(Type-2 user); meaning that for this type of users, baseline
model is sufficiently trustworthy. Hence, to evaluate the ef-
fectiveness of network-propagation approaches, we hide BT
scores (computed from BT baseline model) of Type-0 and
Type-1 users (their scores are set to zeros), and initiate prop-
agation from Type-2 users. After each round of propagation,
we compute ∆AUC on Type-0 and Type-1 users respectively
to evaluate the performance.

Results III: The experimental results are summarized in
Figure 9. Unfortunately, we find that propagation in general
does NOT increase prediction accuracy of baseline models
on either Type-0 or Type-1 users. Since ad click is rare, it
often requires vast amounts of data to train a classification
model in order to optimize CTRs. Consequently, unsuper-
vised approaches such as network propagation may not be
able to capture this weak signal.

Nevertheless, we still have some interesting observations
to point out. First, Type-0 users benefit from the first round
of propagation with ∆AUC of 0.55% while Type-1 users do
not; indicating again that when users do not have any be-
havior data, social information can provide valuable signals.
Second, ∆AUC decays as propagation continues (hold true
when the number of iterations � 3); showing that infor-
mation from remote friends are noisy and not much useful.
Third, the decay of ∆AUC from propagation Scheme 3 is
slower than other two approaches; implying that the self-
reinforcement strategy adopted by Scheme 3 may protect
users’ scores from being significantly skewed by their neigh-
bors.
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Figure 9: Performance of three network-propagation

schemes, measured by the lift of view-weighted average

AUC across all 60 BT categories with respect to Type-0

users (Left) and Type-1 users (Right), respectively.

Remarks: It is also possible to initiate propagation from
past clickers who often have high BT scores. However, since
CTRs are low and the degrees of most nodes are small, rel-
atively few users are connected to any clickers at all. Thus,
even though neighbors of clickers have relatively high CTRs,
including them in an even moderately-sized set of individu-
als results in negligible improvement.



6. IMPLEMENTATIONS ON HADOOP
Another contribution we have made is that we designed

and implemented a highly scalable end-to-end solution to
conduct large-scale data analysis using Hadoop MapReduce
framework. Our solution handles the generation of behav-
ioral and social features, model training, scoring, network
propagation, and model evaluation in a very efficient fash-
ion. Due to space constraints, we only present a sketch of
two major components: social-feature generation and net-
work propagation. Although they serve different purposes
with different specs, we can implement them on Hadoop us-
ing a unified framework as follows:

• Preparation: join each individual’s personal informa-
tion with her friend list. The output will be user id, the
list of her friends’ ids, and her personal information.
This step is done only once at the very beginning.

• Map Task: for each user, emit her personal informa-
tion to each of her friends. The personal information
could be behavioral data (for neighborhood features),
clicker data (for community features), or BT scores
(for network propagation).

• Reduce Task: for each user, aggregate the informa-
tion received from all her friends to produce social fea-
tures or prediction scores.

The pseudo-code for social-feature generation and network
propagation are presented in Algorithms 1 and 2.

Algorithm 1: Social-feature Generation

1 Mapper(key:uid, value:< adj, fb >)
/* adj : graph adjacency list associated with node uid;

fb : behavioral features associated with node uid; */
2 begin
3 emit(uid, fb) /* pass along its own BT info for itself */
4 foreach neighbor ∈ adj do /* pass info to neighbors */
5 if (FeatureType == Neighborhood) then
6 emit(neighbor, fb)

7 else if (FeatureType == Community) then
8 if isAdClicker(uid) then /* pass clicker info only */
9 emit(neighbor, fb)

10 Reducer(key:uid, value:[v1, v2, . . . ])
11 begin
12 Qf ← φ /* a queue to store friends BT info */
13 foreach v ∈ [v1, v2, . . . ] do
14 if fromNeighbor(v) then enqueue v into Qf ;
15 else if fromSelf(v) then fb ← v

16 if (FeatureType == Neighborhood) then
17 fs ← CreateNeighborhoodFeature(Qf , v)

18 else if (FeatureType == Community) then
19 fs ← CreateCommunityFeature(Qf , v)

/* the outputs serve as inputs to model training and scoring */
20 emit(uid, <fb, fs>)

In Algorithm 1, a user passes her behavioral informa-
tion to other users she is connected to (Line 4–9). Note
that if we want to create Community features, only ad
clickers will pass information to neighbors (Line 7–9). In
the reducer, each user aggregates all information received
from friends (Line 12–15) and invokes CreateNeighborhood-
Feature and CreateCommunityFeature functions to construct
Neighborhood and Community features, respectively (Line
16–19). The outputs of the reducer serve as inputs to the
model training and the scoring components.

Algorithm 2: Network Propagation

1 Mapper(key:uid, value:< adj, s0, st >)
/* adj : graph adjacency list associated with node uid;

s0 : initial BT score;
st : current BT score */

2 begin
3 emit(uid, < adj, s0, st >) /* pass along graph structure */
4 s← (1− α) · st/|adj| /* α is the dumping factor */
5 foreach neighbor ∈ adj do
6 emit(neighbor, s) /* pass score to neighbors */

7 Reducer(key:uid, value:[v1, v2, . . . ])
8 begin
9 foreach v ∈ [v1, v2, . . . ] do

10 if isGraph(v) then /* input value contains graph info? */
11 adj ← v.adj; s0 ← v.s0; st ← v.st /* get graph */
12 else
13 s← s+ v /* sum incoming scores */

14 if (Propagation == scheme 1) then st+1 ← s
15 else if (Propagation == scheme 2) then st+1 ← s+α · s0
16 else if (Propagation == scheme 3) then st+1 ← s+ st

/* the outputs serve as input to the next MapReduce iteration */
17 emit(uid, < adj, s0, st+1 >)

In Algorithm 2, the mapper computes for each user the
scores need to be distributed to her neighbors (Line 4–6).
In the reducer, each user sums up all score contributions
from her neighbors and computes updated BT score (Line
12–16). Since it is impossible to maintain a global graph
structure in memory, we need to pass along the graph from
one iteration to the next. This is accomplished by emitting
the adjacency list of each user keyed by the user id (Line 3),
and this structure is written back out to disk in the reducer
(Line 17). The outputs of the reducer have the same data
structure as the inputs to the mapper, which can be used
for the next round of MapReduce iteration.

7. CONCLUSIONS
In this paper, We developed a wide-array of supervised

and unsupervised methods to leverage social data for BT.
We conducted extensive experiments to assess the effective-
ness of these methods on a large network of 180 million users,
and across 60 consumer domains. To our best knowledge,
this is the most comprehensive study of the value of social
data for advertising. To conclude, we summarize our major
findings here.

1) Social data alone do carry informative signals that can
be utilized to compliment standard BT models. However,
its value for targeting must be stated carefully as it is not
always a silver bullet. In our study, categories with a strong
homophily effect are more likely to benefit from social data,
but the degree of improvement depends on the amount of be-
havioral information the targeted users have, and how strong
the baseline is.

2) Among all the methods we have investigated, append-
ing social features directly to standard BT features seems to
be the most effective and scalable way to go.

Finally, we want to point out that this study explores
only one aspect of utilizing social-network data for advertis-
ing. We mainly treat it as an additional information source,
and try to understand its value in the context of BT. How-
ever, social networks can be employed in other forms such as
improving user engagement with products, and identifying
influencers to promote word-of-mouth marketing. All these
problems merit further systematic and quantitative study.



8. REFERENCES
[1] A. Bagherjeiran and R. Parekh. Combining behavioral

and social network data for online advertising. In
Proceedings of IEEE International Workshop on Data
Mining for Design and Marketing (DMDM’08), pages
837–846, 2008.

[2] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J.
Watts. Everyone’s an influencer: quantifying influence
on twitter. In Proceedings of the fourth ACM
International Conference on Web Search and Data
Mining (WSDM’11), pages 65–74, 2011.

[3] R. Bhatt, V. Chaoji, and R. Parekh. Predicting
product adoption in large-scale social networks. In
Proceedings of the 19th ACM International Conference
on Information and Knowledge Management
(CIKM’10), pages 1039–1048, 2010.

[4] Y. Chen, D. Pavlov, and J. F. Canny. Large-scale
behavioral targeting. In Proceedings of the 15th ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD’09), pages 209–218, 2009.

[5] C. Y. Chung, J. M. Koran, L.-J. Lin, and H. Yin.
Model for generating user profiles in a behavioral
targeting system. U.S. Patent 7809740, Issue date:
October 5, 2010.

[6] DoubleClick. 2009 year-in-review benchmarks: A
doubleclick report.
http://www.google.com/doubleclick/pdfs/DoubleClick-
07-2010-DoubleClick-Benchmarks-Report-2009-Year-
in-Review-US.pdf,
2009.

[7] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874, 2008.

[8] T. Fawcett. An introduction to ROC analysis. Pattern
recognition letters, 27(8):861–874, 2006.

[9] S. Goel and D. G. Goldstein. Birds of a feather shop
together.
http://messymatters.com/2010/09/01/birdshop/,
September 2010.

[10] D. Hallerman. Behavioral targeting: Marketing trends.
http://www.emarketer.com/Reports/All/

Emarketer_2000487.aspx, June 2008.

[11] S. Hill, F. Provost, and C. Volinsky. Network-based
marketing: Identifying likely adopters via consumer
networks. Statistical Science, 21(2):256–276, 2006.

[12] T. Kendall and D. Zhou. Leveraging information in a
social network for inferential targeting of
advertisements, April 2009. US Patent App.
12/419,958.

[13] J. Leskovec, L. Adamic, and B. Huberman. The
dynamics of viral marketing. ACM Transactions on
the Web, 1(1):5, 2007.

[14] S. A. Macskassy and F. Provost. Classification in
networked data: A toolkit and a univariate case study.
Journal of Machine Learning Research, 8:935–983,
2007.

[15] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval, chapter 21,
page 464. Cambridge University Press, 2008.

[16] M. McPherson, L. Smith-Lovin, and J. M. Cook.
Birds of a feather: Homophily in social networks.
Annual Review of Sociology, 27:415–444, 2001.

[17] A. Mislove, B. Viswanath, K. P. Gummadi, and
P. Druschel. You are who you know: inferring user
profiles in online social networks. In Proceedings of the
3rd ACM International Conference on Web Search
and Data Mining (WSDM’10), pages 251–260, 2010.

[18] F. Provost, B. Dalessandro, R. Hook, X. Zhang, and
A. Murray. Audience selection for on-line brand
advertising: privacy-friendly social network targeting.
In Proceedings of the 15th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD’09),
pages 707–716, 2009.

[19] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher,
and T. Eliassi-Rad. Collective classification in network
data. AI Magazine, 29(3):93, 2008.

[20] P. Singla and M. Richardson. Yes, there is a
correlation – from social networks to personal
behavior on the web. In Proceeding of the 17th
International Conference on World Wide Web
(WWW’08), pages 655–664, 2008.

[21] L. Tang and H. Liu. Relational learning via latent
social dimensions. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’09), pages 817–826,
2009.

[22] L. Tang and H. Liu. Leveraging social media networks
for classification. Data Mining and Knowledge
Discovery, 23(3):447–478, 2011.

[23] D. Watts. Challenging the influentials hypothesis.
WOMMA Measuring Word of Mouth, 3:201–211, 2007.

[24] Z. Wen and C.-Y. Lin. On the quality of inferring
interests from social neighbors. In Proceedings of the
16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’10),
pages 373–382, 2010.

[25] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and
Z. Chen. How much can behavioral targeting help
online advertising? In Proceedings of the 18th
International Conference on World Wide Web
(WWW’09), pages 261–270, 2009.

[26] J. Zhang, J. Tang, and J. Li. Expert finding in a social
network. In Advances in Databases: Concepts,
Systems and Applications, volume 4443 of Lecture
Notes in Computer Science, pages 1066–1069. Springer
Berlin / Heidelberg, 2007.

[27] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf. Learning with local and global
consistency. In Advances in Neural Information
Processing Systems, volume 16, pages 321–328. MIT
Press, 2004.


