Building a Generic Debugger for Information Extraction
Pipelines

Anish Das Sarma
Yahoo, CA, USA

ABSTRACT

Complex information extraction (IE) pipelines are becom-
ing an integral component of most text processing frame-
works. We introduce a first system to help IE users ana-
lyze extraction pipeline semantics and operator transforma-
tions interactively while debugging. This allows the effort
to be proportional to the need, and to focus on the portions
of the pipeline under the greatest suspicion. We present
a generic debugger for running post-execution analysis of
any IE pipeline consisting of arbitrary types of operators.
For this, we propose an effective provenance model for IE
pipelines which captures a variety of operator types, ranging
from those for which full to no specifications are available.
We have evaluated our proposed algorithms and provenance
model on large-scale real-world extraction pipelines.

Categories and Subject Descriptors: H.4.0 Information
Systems Applications: General

General Terms: Algorithms

Keywords: Information extraction, provenance

1. INTRODUCTION

Information extraction (IE) systems identify structured
information and, not surprisingly, IE systems are becom-
ing a critical first-class operator in a large number of text-
processing frameworks. As a concrete example, search en-
gines are moving beyond a “keyword in, document out”
paradigm to providing structured information relevant to
users’ queries (e.g., providing contact information for busi-
nesses when user queries involve business names). For this,
search engines typically rely on having available large repos-
itories of structured information generated from web pages
or query logs using IE systems. With the increasing com-
plexity of IE pipelines, a critical exercise for IE developers
and even users is to debug, i.e., perform a thorough post-
mortem analysis of the output generated by running an en-
tire or partial extraction pipeline. Despite the popularity of
IE pipelines, very little attention has been given to building

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’11, October 24-28, 2011, Glasgow, Scotland, UK.

Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

Alpa Jain
) . Yahoo, CA, USA
anish.dassarma@gmail.com alpa@yahoo-inc.com

2229

Philip Bohannon
Yahoo, CA, USA
plb@yahoo-inc.com

effective ways to trace the control or data flow through an
extraction pipeline.

Prior work [14] recognizes the need for interactive debug-
gers and proposes methods that use complete knowledge
of how each operator functions. However, prior informa-
tion regarding the specifications of the operators may not
be available (e.g., off-the-shelf black-box operators). In the
absence of full function specifications of an operator, the
only (straightforward) approach to debugging is exploring
all data in the pipeline. However, such an approach is clearly
infeasible due to the sheer volume of data. For instance, de-
bugging a simple pipeline involving 10 operators with 10,000
input records per operator would require 100K records to be
manually examined; typical data sizes are even larger.

This paper presents PROBER (for Provenance-Based De-
bugger), the first generic framework for debugging infor-
mation extraction pipelines composed of arbitrary (“black-
box”) operators. A critical task towards building debuggers
is that of tracing and linking output records from each op-
erator and understanding their transformations across dif-
ferent operators in the pipeline. To trace the lineage of any
arbitrary record in the output, we propose a novel prove-
nance model for IE pipelines. With debugging in mind, our
provenance model tries to minimize the amount of user effort
necessary in resolving the fate of the records in the output.
For example, provenance for (incorrect) output records only
refer to input tuples that impacted this output record.

2. PROBLEM FORMULATION

While IE pipelines may vary in their implementation
logic [1, 11, 12, 13] several underlying common components
can be abstracted from the implementation details. We
characterize information extraction pipelines for the task of
performing post-mortem analysis.

DEeFINITION 2.1. [Record] A record r is a basic unit of
data (e.g., a tuple), consisting of a globally unique identifier
I(r), and value V(r). We use R to denote the set of all
records. O

DEFINITION 2.2. [Operator] An operator is defined by
a function O : (I, Iz, -+ ,In) — R, where each I; C R is a
set of records. In practice, the function O may be unknown
to us. O

Intuitively, an operator takes as input an N-tuple of sets of
records and outputs one set of records. Specifications on how
an operator generates an output record may be available in

Gather
candidate web
pages

web pages +
@ Parse and
Gl > segment | (sg)
& web pages
—_—— Extract
_ i
Address > »| business (ad)
database patterns addresses
Extract

business (pn)
phone numbers

¥

Extract
business
names

)

Join extracted
information

]

Eliminate
duplicates

1]

Score output
records

]

hJ

Extraction
patterns
e -

_

Training
samples

(3n)

(dp)

(sc)

Figure 1: Example of an IE pipeline to generate
business names and their contact information.

varying forms. Specifically, we consider the following four
scenarios involving operator specifications.

An operator is said to be a black-boz if we have no informa-
tion about it. In this case, naturally, the only way to gain
information about a black-box operator is by executing it
on input sets of records. In contrast, we have ezact informa-
tion about an operator O if we know precisely which input
records contributed to each output record, and how. We
have Input-Output (1I0) specifications when for each output
record, we know which input records were used to construct
it, however exactly how a record is generated is unknown
to us. Finally, we may have integrity constraints, e.g., key-
foreign key relationships, satisfied by the input and output
records. For instance, an operator may support a ‘debug’
mode where each output record is assigned an id associated
with the input records that generated it. Effectively, using
key-foreign keys we have the same information as that in
IO specifications, but this information is (indirectly) avail-
able using dependencies on the values of fields in input and
output records.

Next, we define various (standard) properties of an op-
erator, that help design specialized algorithms for building
provenance and debugging effectively. As we will see later,
these properties may be learned by sampling or the operator
specifications (when available) described above.

DEFINITION 2.3. [Properties]

e monotonic: Operator O is monotonic iff VIi,Io C R :

(I C I2) = (O(I) C O(I2)).
one-to-one: Operator O is one-to-one iff: (a) VI C
R:0(I) =U,¢; O{r}); (b) Vre R: |O({r})| < 1.
one-to-many: Operator O is one-to-many iff VI C R :
O() =U,¢, O{r})-

many-to-one: Operator O is many-to-one iff VI C R,
3 a partition Pr = {I1,...,I,} of I' such that: (a)
O(I) =, 0(:); and (b) Vi : |O(L;)] < 1.

O

Ya)y I=Ul, L (b)Vi#j: (LinI)=0.

2230

DEFINITION 2.4. [Extraction Pipeline] An extraction
pipeline P is defined by a DAG G(V, E) consisting of a set
V' of nodes and a set E of edges where each node v € V
corresponds to an operator O in the pipeline. An edge a — b
between nodes a and b indicates that the output from the op-
erator represented by a is input to operator represented by b.
We have a single special node s € V' with no incoming edges
representing the operator that takes input to the pipeline, and
one special node t € V with no outgoing edges representing
the operator that outputs the final set of records. O

3. MOTIVATING EXAMPLE

Figure 1 shows a real-world extraction pipeline, Business,
for building a large collection of businesses by extracting
records of the form (n, a,p), where business n is located at
address a with contact number p. The first step is to build
a set of web pages likely to contain information regarding
businesses which is done using a variety of document re-
trieval strategies. Specifically, we issue manually generated
domain-dependent queries (e.g., “Toyota car dealership loca-
tions”) as well as use form filling methods where entries such
as model, make, and zipcode may be filled in order to fetch
a list of car dealerships. This operator, denoted by wb is an
example of a black-box operator with arbitrary properties.

Given a collection of web pages, operator sg parses the
html page and identifies appropriate segments of text in this
page, where ideally, each segment contains a complete tar-
get record (see Figure 2 for a real-world example). These
segments are then processed by operators, ad and pn, which
respectively identify an occurrence of an address and a phone
number. The annotation from one operator is used by the
subsequent operator to identify regions of text that should
not be processed. ad and pn are implemented using hand-
crafted patterns based on a dictionary of address formats.
The nm operator on the other hand needs to identify names
of business which may be arbitrary strings and for this, we
follow a wrapper-induction approach. In particular, using
some training examples we learn a wrapper rule to identify
candidate business names; these rules are based on the docu-
ment structure of the html content. Of course, several other
implementations for each of these operators are possible and
the implementation details are orthogonal to our discussion
since our goal is to build debuggers for pipelines with black-
box operators where no implementation information may be
available. The jn operator joins outupt from ad, pn, and nm
to build candidate output records which are, in turn, pro-
cessed by dp to eliminate duplicates. The final operator,
assignes a confidence score sc to each output record.

We note that all our implementations of the above op-
erators are monotonic. (Obviously, there may be non-
monotonic implementations in other pipelines, but we pri-
marily consider monotonic operators in this paper.) Al-
though monotonic, the operators from the pipeline span a
variety of properties, e.g., segmentation is a one-to-many
operation, and by design one address is extracted from each
segment, so address extraction is one-to-one, while de-
duplication is many-to-one. Candidate webpage generation
and wrapper training, on the other hand are arbitrary, i.e.
“many-to-many”.

Given unexpected output records, an IE developer may
want to answer some natural questions about the out-
put [14]. (Figure 2 shows an example where sg generates
an incorrect segment that leads to missing one address and

Location Finder > Circuit Cty> Boston, WA
Circuit City Locations in Boston, MA

Lacation Finder > Circuit Gty > Boston, W
Circuit City Locations in Boston, MA

Location Finder > Gircut Gty > Boston, WA
Circuit City Locations in Boston, MA

RRAARRK

S2

®® ©®

Input web page

Segments identified on the page

OO©

Addresses identified on the page

Figure 2: Sample input output for three steps, namely, sg, ad, and pn, in our extraction pipeline.

extracting one incorrect address.) Specifically, a developer
may be interested in tracing all or part of the input records
that contributed to a particular output record. For instance,
given an incorrectly extracted record, we would like to know
only the relevant subset of webpages and training data that
impacted it, i.e., the minimal amount of input data neces-
sary to identify the error. Motivated by the above observa-
tions, we focus on the following problem in the PROBER
system.

PrROBLEM 3.1. Given a pipeline P, input I, and partial
information about operators in P, we would like to (1) build
provenance for the set of (intermediate and final) records in
the pipeline; (2) expose provenance to developers through a
query language and guide them in debugging the pipeline.

4. PROVENANCE FOR IE PIPELINES

The notion of provenance is relatively well-understood for
traditional relational databases (refer [6, 16]). A commonly
advocated model [2] is to use a boolean-formula provenance,
e.g., S1 A (S2 V —S3). For the purpose of debugging extrac-
tion pipelines, such provenance models are not appropriate
for two main reasons. First, unlike relational queries where
the exact specifications of each operator are known, we may
have black-box operators in our extraction pipeline. Second,
for debugging, ideally we would like to limit the number of
records (and simplify their interdependencies typically rep-
resented as boolean formulas for relational operators) a hu-
man has to assess in order to understand the issue at hand.
With these in mind, we define a provenance model based
on minimal subsets of operator inputs that capture neces-
sary information (Section 4.1) and extend this basic model
to operators where multiple minimal subsets may exist (Sec-
tion 4.2) .

4.1 MISet: Basic Unit of Provenance

To define the provenance of an IE pipeline P, we begin
by defining the provenance for each operator in P; we omit
details on how to construct the provenance for each opera-
tor in P due to space constraints. We confine ourselves to
extraction pipelines consisting of only monotonic operators
(see Definition 2.3), which are a common case in practice (as
in our motivating example from Section 2). We define the
provenance of a monotonic extraction operator O based on
the provenance for each output record » € R for O as in the
definition below:

Ideally, we would like the provenance of r to represent
precisely the set of records that contributed to r, however,
as we will see, in practice it may not be possible to always
determine the precise set of contributing records (e.g., in the

2231

absence of exact information about O), and even if possible
it may be computationally intractable. For our goal of build-
ing a debugger, we observe that one of the main operations
we expect users to perform is look at an (erroneous) output
record r, and explore its provenance to determine the cause
of this error. Therefore, a suitable provenance model is one
that enables users to examine the fewest records required to
decide the fate of an output record r. Formally, we define a
basic unit of provenance, called MISet as follows:

DEFINITION 4.1. [MISet] Given an operator O, its in-
put I and output R, we say that Is C I is a Minimal Subset
(MISet) of r € R if and only if: (1) r € O(Is); and (2)
vI' c I, : v & OI"). We use My (O,I,7 € R) to de-
note the set of all MISets of O for input I and output record
reR. O

Intuitively, an MISet gives the fewest input records required
for a particular output record r to be present. Therefore,
an MISet provides users with one possible reason for the oc-
currence of r. This, in turn, reduces the burden of manual
annotation on the users; in the absence of MISets, a user
may have to explore the entire input to understand what
caused an error in the output. The notion of MISets pri-
marily focuses on debugging the presence of records in the
output.

We note that the notion of MISets has been proposed in
the past [4] in the context of relational operations (called
minimal witnesses). In practice, we may have more than
one MISet possible for an output record as shown by the fol-
lowing example. Therefore, in the context of debugging ex-
traction operators, we study the handling of non-uniqueness
of MISets, and propose provenance definitions and construc-
tion algorithms based on combinations of MISets to facilitate
debugging.

In practice, we may have more than one MISet possible
for an output record as shown by the following example.

EXAMPLE 4.1. Consider a (simple) record validation op-
erator (e.g., sc in Figure 1) that computes the “support” of
each record and outputs only records with sufficient support.
Suppose sc outputs a record r if there are atleast 50 input
records supporting it. Given an input of 100 records that
could support r, the MISet for r is any subset of the input
records of exactly 50 records. O

When multiple MISets are available, several ways of building
provenance are possible, each differing in the extent to which
they impact information and execution speed.

4.2 Handling Multiple MISets

Several formalisms for provenance model are possible
when multiple MISets are available. We rigorously exam-
ine compositions of MISets, while capturing the spectrum of
complete (and potentially intractable) provenance, to more
tractable (but approximate) provenance.

Consider an operator O which consumes input I and gen-
erates output R; for a record r € R, we denote the prove-
nance of r as P(O,I,r). We use subscripts Psx to capture
various types of provenance and when clear from the con-
text, we simply use Pi(r) to denote P.(O, I,r).

All- and Any-provenance: Ideally for any output record,
we would like to provide all possible information using MIS-
ets, i.e., capture all possible “causes” of an output record.

DEFINITION 4.2. [All-provenance] Given an operator
O, input I, output R, and r € R, we define all-provenance
as Pui(r) = Mau(O,1,7 € R). O

In many cases P,;; may be intractable to compute or store,
and we may need to resort to “approximations” of it, pre-
sented shortly. Alternatively, we may want to find any one
(or k) MISets.

DEFINITION 4.3. [Any-provenance] Given integer k >
0, operator O, input I, output R, and r € R, we de-
fine any-provenance as any Pany(r) C Puu(r) of size
min(k, |Pau(r)]). O

Impact-provenance: Given restricted amount of editorial
resources, we may want to explore the most impactful, i.e.,
top-l input records sorted by their impact instead of any-
k MISets. Our next definition of provenance ranks tuples
based on their expected impact on the output record, mea-
sured by the number of MISets in which a tuple is present.

DEFINITION 4.4. [Impact-provenance| Given an op-
erator O, input I, output R, and r € R, we define impact-
provenance as Pimp(r) = {(i,¢)|3M € Puy,i € M,¢; =
leePa”,iel\/I 1}. 0

Union- and Intersection-provenance: Our next goal is
to summarize P,y using two approximations: (1) We obtain
an “upper bound” provenance that captures the set of all
inputs possible for r, instead of exact combinations of in-
puts. Therefore, we define the union-provenance of r to be
the union of all its MISets. (2) We obtain a “lower bound”
provenance that captures the set of all possible inputs nec-
essary for r; we define the intersection-provenance of r to be
the common input records among all MISets.

DEFINITION 4.5. [Union-Provenance] Given an oper-
ator O, input I, output R, and r € R, we define union-
provenance as Pyuni(0) = UlnguMO’LTGR) I,. O

DEFINITION 4.6. [Intersection-Provenance] Given
an operator O, input I, output R, and r € R, we define
intersection-provenance as Pj,:(0) = ﬂlseMa”(O,I,reR) Is.
|

It can be seen easily that for operators with unique MISets,
Pun:i and P;,: coincide.

2232

S. RELATED WORK

Recent work [7, 8, 9, 10, 15] has looked at providing ezplo-
ration phases to determine if a text database is appropriate
for an IE task, but little or no insight is provided into why
unexpected results are produced, and how to debug them.
There is a large body of work on provenance for relational
data (refer [6, 16]), and more recently [3] on understanding
provenance information, which not address the problem of
building provenance for black-box operators to facilitate IE
debugging with minimal editorial effort, the primary goal of
our work. Our recent work [14] considered debugging for
iterative IE, and [5] looked at provenance for non-answers
in results of extracted data. However, these papers assumed
complete knowledge of each operator in some form. Also,
in [14], we considered a specific type of extraction, namely
iterative information extraction and studied how a simple
‘provenance structure’ helped debugging. In this paper, we
provide a system for constructing provenance for ad-hoc de-
bugging tasks for any extraction pipeline with black-box op-
erators.

6. REFERENCES

[1] E. Agichtein and L. Gravano. Snowball: Extracting relations
from large plain-text collections. In DL, 2000.

[2] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.

ULDBs: Databases with uncertainty and lineage. In VLDB,

2006.

A. Chapman and H. V. Jagadish. Understanding provenance

black boxes. Distributed and Parallel Databases, 27(2), Apr.

2010.

J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in

databases: Why, how, and where. Foundations and Trends in

databases, 1, 2009.

J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the

provenance of non-answers to queries over extracted data.

PVLDB, 1(1), 2008.

R. Ikeda and J. Widom. Data lineage: A survey. Technical

report, Stanford University, 2009.

A. Jain, A. Doan, and L. Gravano. Optimizing SQL queries

over text databases. In ICDE, 2008.

A. Jain and P. G. Ipeirotis. A quality-aware optimizer for

information extraction. ACM Transactions on Database

Systems, 2009.

A. Jain, P. G. Ipeirotis, A. Doan, and L. Gravano. Join

optimization of information extraction output: Quality matters!

Technical Report CeDER-08-04, New York University, 2008.

A. Jain and D. Srivastava. Exploring a few good tuples from

text databases. In ICDE, 2009.

G. Kasneci, S. Elbassuoni, and G. Weikum. Ming: mining

informative entity relationship subgraphs. In CIKM, 2009.

M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain.

Organizing and searching the world wide web of facts - step

one: The one-million fact extraction challenge. In Proceedings

of AAAI-06, 2006.

P. Pantel and M. Pennacchiotti. Espresso: leveraging generic

patterns for automatically harvesting semantic relations. In

Proc. of ACL, 2006.

A. D. Sarma, A. Jain, and D. Srivastava. I4E: Interactive

investigation of iterative information extraction. In SIGMOD,

2010.

W. Shen, A. Doan, J. Naughton, and R. Ramakrishnan.

Towards best-effort information extraction. In SIGMOD, 2008.

W.-C. Tan. Provenance in Databases: Past, Current, and

Future. IEEE Data Engineering Bulletin, 2008.

(3]

[4]

5]

6]
[7]
8]

19l

(10]

(11]

(12]

(13]

[14]

(15]

(16]

