

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

CIKM '11: Proceedings of the 20th ACM international conference on Information

and knowledge management, ACM, 2011. 2257-2260

DOI: http://dx.doi.org/10.1145/2063576.2063940

Copyright: © 2011 ACM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1145/2063576.2063940

Structured Collaborative Filtering

Alejandro Bellogín
Universidad Autónoma de

Madrid
Madrid, 28049 Spain

alejandro.bellogin@uam.es

Jun Wang
University College London

Malet Place, London WC1E
6BT, UK

j.wang@cs.ucl.ac.uk

Pablo Castells
Universidad Autónoma de

Madrid
Madrid, 28049 Spain

pablo.castells@uam.es

ABSTRACT
In a general collaborative filtering (CF) setting, a user pro-
file contains a set of previously rated items and is used to
represent the user’s interest. Unfortunately, most CF ap-
proaches ignore the underlying structure of user profiles. In
this paper, we argue that a certain class of interest is best
represented jointly by several items, drawing an analogy to
“phrases” in text retrieval, which are not equivalent to the
separate meaning of their words. At an alternative stance,
we also consider the situation where, analogously to word
synonyms, two items might be substitutable when represent-
ing a class of interest. We propose an approach integrating
these two notions as opposing poles on a continuum spec-
trum. Upon this, we model the underlying structure in user
profiles, drawing an analogy with text retrieval. The ap-
proach gives rise to a novel structured Vector Space Model
for CF. We show that item-based CF approaches are a spe-
cial case of the proposed method.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

General Terms
Algorithm, Performance, Experimentation

Keywords
Recommender systems, Collaborative filtering, synonymy

1. INTRODUCTION
Most Collaborative Filtering (CF) algorithms disregard

the fact that the rating data shows some structure. For
example, in an item-based approach, the candidate item’s
preference is commonly predicted by independently evalu-
ating its similarity to each individual items in the profiles
and then averaging them together to obtain the final score.
However, the items in the system may have explicit relations
among them, such as sharing the director (for movies), or
belonging to the same genre (movies, music, books). Dealing
properly with this structure is a challenge for the commu-
nity. Most of the works assume some kind of clustering is
performed on the users or the items, and then, predictions
are performed using only these subsets of the collection [4,
1]. Obviously, this would increase the sparsity of the sys-
tem, which turns out to be a serious problem for real-world
systems. On the other hand, some works propose to use
clustering for avoiding the sparsity, although it is not clear
how the structure is kept in this situation [8].
Copyright is held by the author/owner(s).
CIKM’11 October 24–28, 2011, Glasgow, Scotland, UK.
ACM X-XXXXX-XX-X/XX/XX.

Recently, different papers have explicitly linked CF al-
gorithms with Information Retrieval (IR) techniques, and
apply them successfully for recommendation. In [7], the
authors find an analogy between implicit CF and IR, ap-
plying the Probability Ranking Principle from IR to CF.
More recently, [2] proposes a framework in which any IR
scoring function could be used with CF rating data. In [3],
the authors reformulate the recommendation problem and
use algorithms from IR, namely a model based on Discrete
Fourier Transform and the Vector Space Model (VSM).

In the proposed approach we adapt, upon the already
found analogies between IR and CF, the extended Boolean
retrieval model presented in [6]. In that work, the authors
introduce a generic model in which intermediate systems
between Boolean and VSM models appears naturally. In
particular, the authors acknowledge that the structure of the
query should be altered in order to distinguish between com-
pulsory terms (phrases) and alternative words (synonynms),
whereas the Boolean strategy requires a very strict interpre-
tation of such structure, the VSM model completely loses
this distinction and the terms are considered independent of
each other.

The proposed approach defines a method for providing
structure to user profiles in CF. The extended model is
applied to two particular tasks: a) user profile expansion,
which consists of propagating user ratings to other similar
(or synonym) items; and b) user profile decomposition into
area-specific subprofiles, as an enhanced structure enabling
recommendation performance improvements. We report em-
piric results confirming that structured user profiles in CF
outperform the standard item-based approach, which is a
particular case of our model with plain profiles and no syn-
onymy expansion.

2. STRUCTURED FILTERING MODEL
The main idea of this work is inspired by the Salton’s clas-

sic paper [6]. The novelty here lies in the use of the analogy
between IR and CF proposed in [2] to address the structure
problem in CF. In the next subsections, we propose how
structure could be added to CF, by adapting the methods
proposed in [2] so that more advanced models such as [6]
could be used.

2.1 A Vector-Space Representation
As already proposed in [2], we can obtain a new insight

into the current CF approaches by reformulating them using
a Vector Space Model [5]. Formally, a user profile can be
regarded as a query. Each of the rated items in the profile
is considered as a query term. Therefore, we could use a
vector to represent a user profile as follows:

Qu = (i1, r
u
i1 ; . . . ; ik, ru

ik
; . . . ; in, ru

in
) (1)

where Qu denotes a user profile u. ru
ik

represents the rating

Table 1: “AND” and “OR” representations of a user
interest

(a) using Boolean retrieval.

Query items user interest representation
a b a OR b a AND b

item 1 1 1 1 1
item 2 1 0 1 0
item 3 0 1 1 0
item 4 0 0 0 0

(b) using extended Boolean retrieval (p = 2).

Query items user interest representation
a b a OR b a AND b

item 1 1 1 1 1

item 2 1 0 1/
√

2 1− 1/
√

2

item 3 0 1 1/
√

2 1− 1/
√

2
item 4 0 0 0 0

of item k by this user, where k ∈ {1, n}. It is equal to 0
when item k is not rated by u. In practice, the ratings are
normalized with respect to the users’ mean or items’ mean.

By contrast, the item representation is different to the text
retrieval. In CF, we do not have a common feature space.
Thus, we should project each item into the same feature
space as queries by using its similar items. That is

Ij = (i1, s
j
i1

; . . . ; ik, sj
ik

; . . . ; in, sj
in

) (2)

where sik is the similarity between the candidate item j and
item k. In practice, it has proven useful to select top-n
similar items as opposed to use all the similar items.

Given the vector representations of Eq. (1) and Eq. (2), a
query-item similarity value may be obtained by comparing
the corresponding vectors, using for example the conven-
tional vector product:

Sim(u, i) = Sim(Qu, Ij) =

n∑
k=1

sj
ik
· ru

ik (3)

The system could provide a ranked recommendation output
in decreasing order of the computed similarities between Qu

and Ij . In practice, it is also needed to predict the user’s
rating of an unspecified item. The similarity score should
be normalized to produce a rating in the proper range.

r̂u
j =

∑n
k=1 sj

ik
· ru

ik∑
k sj

ik

=

n∑
k=1

s̄j
ik
· ru

ik
(4)

where s̄j
ik

=
s

j
ik∑

k s
j
ik

. It can be easily seen that Eq. (4) is

indeed an item-based CF approach, but rather in a vector
space formulation.

2.2 An Extended Vector-Space Representation
As we discussed previously, the user profile represented by

independently rated items is problematic. We shall illustrate
it by considering the following Boolean retrieval example.
Suppose we have a class of user interest, and it is represented
jointly by two items a and b. In a Boolean retrieval model,
we would use an “AND” rule, meaning that a candidate item
should be similar to both of them. By contrast, if a class
of user interest is represented by either of two items, An
“OR” rule may be applied. Table 1(a) illustrates the results
from the Boolean Retrieval model for the four different types
of items. Note that for simplicity, the binary similarity is
assumed.

From the table, we can see that the Boolean retrieval is
too rigid in terms of producing the ranking score, either too

loose or tight. And in practice, the interest representation
is between “AND” and “OR”. An extension of the Boolean
model was given in [6]. The idea was to apply a more dis-
criminative ranking formula by calculating the distance to-
wards the most desired point in the vector space. Let us
define how we represent the query and documents in the ex-
tended model by using a regular expression, where n is the
number of terms in the collection:

Q :=
and
or (p1)

[
and
or (p2)[Q]+, cw

]
Q := (qw1, . . . , qwn)

Di := (dwi,1, . . . , dwi,n)

In this definition, a clause query is a combination of simple
queries (as in VSM, where qwi is the weight given for that
query to the term ti) by means of connectives and clause
weights (cw). Besides, each connective has an associated p-
value, in this case, we denote p2 as the inner value and p1 as
the outer one. Documents are simply represented as in the
standard VSM, where dw(i, j) is the weight between doc-
ument Di and term tj . Using this notation, the similarity
between a query and a document can be computed recur-
sively until a simple query is found, by using cw to weight
the importance of the similarity between the subqueries and
the document (more details in [6]). Depending on the con-
nective, similarity between a document and a simple query
is calculated as follows:

sim(Qor(p),D
i) = [

(qw1 dwi,1)p+...+(qwn dwi,n)p

(qw1)p+...+(qwn)p]1/p

sim(Qand(p),D
i) = 1−

[
(qw1(1−dwi,1))p+...+(qwn(1−dwi,n))p

(qw1)p+...+(qwn)p

]1/p

where p ∈ [1, +∞) is the corresponding connective p-value.
Note that when p = 1 we have sim(Qor, Di) = sim(Qand, Di).

In this way, depending on the value of p we can generalize
different retrieval systems. For instance, when p = ∞ a
standard Boolean scoring is performed, for p = 1 a VSM is
obtained, and the rest of the values produce intermediate
extended retrieval models.

Furthermore, as stated in [6], each p-value has a semantic
interpretation in IR, depending on the connectives used. If
p =∞ and the connective is an“AND”, then a strict phrase
has to be matched, i.e., the document is not retrievable un-
less all phrase components are present. If, on the other hand,
the connective is an“OR”, then a strict thesaurus feature is
used, i.e., every term is substitutable one for another. When
the p-value is lower, these constraints are less strict, in the
sense that, for the “AND” connective, the presence of ev-
ery term is worth more than the presence of only some of
them, but they are not compulsory; similarly, for the “OR”
connective, the presence of several terms from a given class
is more important than the presence of only one term. Fi-
nally, when p = 1 both connectives are equivalent and the
distinction between phrase and thesaurus disappears, thus
only the presence or absence of the terms is considered, i.e.,
the terms are independent of each other.

Therefore, in this paper, by adapting the extended re-
trieval model to CF, we would be able to analyze how phrase
and thesaurus features perform in the user-item space. In
the next sections, we describe such adaptation and propose
different applications for it.

2.3 Modelling Structured User Profiles
We have seen in the previous section that documents need

no further modification. Thus, in the context of CF, this
means that only the user profile (query) has to be expressed
as a set of clause queries by using different connectives, and
the items (documents) may be represented as in Section 2.1.

Since the equivalence presented in that section corresponds
with a VSM in IR, the representation of the constituent
elements in the extended model is simply as follows, where
n now is the number of items in the system:

Qu = and(1) [and(1)((i1, r
u
i1), . . . , (in, ru

in
), 1)] (5)

Ij =
(
sj

i1
, . . . , sj

in

)
In this situation, the query is defined as an “AND” rule with
p = 1. As we have already noted, for this value of p, the
similarity formula of an “AND” rule is equivalent to that of
an “OR” rule, so we can define the queries with or(1) instead
of and(1). Besides, we have to note that Eq. (4) is not
completely equivalent with the formulation presented herein,
since standard item-based CF normalizes with respect to the
similarity values, which are encoded in the document vector,
while in IR the model is normalized using the query weights.
Both representations, nonetheless, could be equivalent with
a slight modification of the extended model.

2.4 Exploiting Structured Profiles
Once an extended user profile representation is available

for recommendation by adapting the extended retrieval model,
we envision two main applications. First, performing ex-
pansions over the user profiles, in a similar way as IR re-
searchers include synonyms and related words when expand-
ing queries. Second, providing structure to the profiles based
on implicit similarities found between the items in the sys-
tem. In the following, we explain how these two applications
may be performed in CF.

2.4.1 Profile expansion
In any recommendation system, there are some items which

tend to occur very frequently together, such as movie series
(e.g., Lord of the Ring, Star Wars, or Star Trek), or movies
by some particular director. These movies could be consid-
ered close synonyms, in the sense that people tend to like
them all or none of them. If this assumption holds, once
one item belonging to a particular group is rated in a pro-
file, the rating could be propagated to the rest of synonyms
in the system, by using an “OR”. In this way, the rating
sparsity would be reduced, since each user would contain in
her profile additional items, implicitly derived through the
synonym relation.

A very important parameter in this setting would be the
expansion size, that is, how many synonyms are incorpo-
rated into the user profile. As a first attempt, we can ex-
pand all the user profiles in the same way. However, as
in query expansion, it seems clear that some users could
benefit more from the expansion than others. Query per-
formance techniques, which have been frequently applied to
query expansion, can be very useful in order to determine
the strength of the expansion on a per user-basis. Another
important parameter is the p-value, which, for instance,
could be set based on the co-occurrence strength between
each pair of items, or any function which manipulates those
co-occurrences, such as normalization by the average, mini-
mum, or maximum value.

2.4.2 Inferring profile structure
It often makes sense to find subprofiles within user pro-

files. This is a very recurrent idea in recommender systems,
with different motivations, such as when two users A and
B have very similar movie tastes, but very different in mu-
sic. Their music dissimilarity should not obscure their movie
similarity, so that A and B can get area-specific recommen-
dations from each other based on their area-specific common
tastes. Preference clusters can be created automatically and
used in many ways (see [4, 8] among others).

In this view, user profile vectors could be decomposed
into a soft “OR” of cohesive subprofiles or phrases (music
tastes, movie tastes, sports, touristic routes, etc.), where
subprofiles are also soft “OR”s of item ratings, and the outer
“OR” should have a higher p than the inner “OR”. Different
options arise when defining this structure with respect to
how the clusters are defined and how to set the inner and
outer p values.

Clusters within a user profile can be created using prede-
fined clusters over the item space, and these clusters can be
found using classic clustering algorithms (such as K-means)
or any other alternative strategy. Pearson correlation can
be used as distance between items, and external features
such as genre or actor information apart from ratings may
be taken as input data.

Inner p-values can be set in many different ways: they can
be fixed or depend on the average (or minimum, maximum)
similarity in the cluster or its centroid, using an additional
step function discretizing those values, in such a way that
the higher the cohesion in the cluster, the higher the inner p-
value. The outer p-value can have a fixed, low value since we
want to retrieve documents matching any of the subprofiles,
however if we want to boost those documents matching more
than one subprofile, a higher p-value should be used instead.
Actually, the outer “OR” rule may be replaced by an “AND”
rule in order to check if documents matching every subprofile
are more likely to be relevant to the user or not.

3. EXPERIMENTS
The experiments have been carried out using the pub-

licly available dataset called Movielens 100K 1. This dataset
contains 943 users, 1682 items and 100000 ratings. We per-
formed a 5-fold cross validation using the splits contained in
the public package, these splits retain the 80% of the data
for training, and the rest for testing.

The evaluation was performed as explained in [2], that is,
for each user, a ranking is generated by predicting a score for
every item in the test set. We then measure the performance
of this ranking, using the trec eval program.

In the next sections, we present the results obtained in
the two tasks where the extended retrieval model has been
applied: expanding the user profiles and inferring profile
structure.

3.1 User profile expansion
In this experiment, we analyze the recommendation per-

formance variations that result from introducing different
amounts of profile expansion, compared to a plain item-
based recommender baseline without expansion (S = 0).
Besides, as noted in Section 2.4.1, we consider the expanded
items as synonyms, and thus, we include an infinity inner p-
value, in order to have the standard Boolean behaviour for
the “OR” connective. As shown in Table 2(a), we may ob-
serve a significative improvement when user profiles are ex-
panded with similar items, and the more synonyms are used
in the expansion, the better the performance. It is worth
noting that changing the order of the connectives (bottom
row) leads to poor results, showing that profiles built this
way make little sense.

The baseline in the table is the method presented in Sec-
tion 2.1, which corresponds to the standard item-based CF
approach. We can see that properly using the extended
model leads to outperforming the baseline formulation. In
contrast with [2], we have not yet experimented with differ-
ent normalization techniques, in order to keep the extended
model as close to the original as possible. The results sug-
gest, nonetheless, that a combination of both methods might
result in higher, more significant performance improvements,

1Available at http://www.grouplens.org/node/73

Table 2: Results. Outer and inner connectives in the user profile representation are presented in this order.
(a) Performance values for the profile expansion experiment. S is the expansion size.

Method P@1 P@3 P@5 P@10 NDCG@3 NDCG@5 NDCG@50 MRR
Baseline 0.002 0.004 0.005 0.007 0.002 0.003 0.009 0.027

S = 1, and(1), or(∞) 0.129 0.121 0.120 0.114 0.099 0.099 0.126 0.243
S = 2, and(1), or(∞) 0.149 0.138 0.130 0.119 0.113 0.110 0.128 0.260
S = 5, and(1), or(∞) 0.190 0.166 0.155 0.141 0.140 0.134 0.146 0.304
S = 10, and(1), or(∞) 0.197 0.171 0.161 0.147 0.146 0.140 0.151 0.313
S = 5, or(∞), and(1) 0.004 0.005 0.005 0.005 0.002 0.003 0.010 0.028

(b) Performance values for the dynamic user profile expansion.

Method P@1 P@3 P@5 P@10 NDCG@3 NDCG@5 NDCG@50 MRR
Threshold found by median 0.183 0.167 0.157 0.145 0.137 0.132 0.158 0.302
Threshold found by average 0.186 0.165 0.158 0.146 0.137 0.133 0.157 0.303

(c) Performance values for structured profiles.

Method P@1 P@3 P@5 P@10 NDCG@3 NDCG@5 NDCG@50 MRR
Baseline 0.002 0.004 0.005 0.007 0.002 0.003 0.009 0.027

K-means genre or(1), or(2) 0.013 0.016 0.017 0.018 0.010 0.011 0.032 0.061
K-means genre or(2), or(2) 0.005 0.006 0.006 0.006 0.003 0.004 0.011 0.030
K-means sim or(1), or(2) 0.008 0.011 0.014 0.016 0.007 0.009 0.023 0.047
K-means sim or(2), or(2) 0.006 0.006 0.006 0.008 0.004 0.004 0.012 0.031

since they may be used complementarily: while our method
expands the profiles, the method described in [2] explores
different techniques inspired by IR scoring functions.

In Table 2(b), we present further experiments with a dy-
namic profile expansion strategy. In this experiment, the
parameter S is not fixed for all the users in the system,
but depends on each user’s characteristics. In particular,
and as a first attempt, we assume that the size of the user
profile might be an indicator of the demand for more or less
items in the expanded model —in the same way as the query
length may be used in IR for deciding whether or not to ex-
pand the query. In this context, we only expand those users
which are below some threshold. In the table, we show the
results when the threshold is the average or the median of
the number of ratings in the system. These two methods
obtain very similar results, and compared with the previous
methods, they outperform static expansion when the cutoff
value is high, e.g., P@10 and NDCG@50.

3.2 Inferring user profile structure
In order to compare whether structured profiles improve

the performance, we compare against the baseline method
presented in Section 2.1, which simply uses plain profiles
(no structure). Furthermore, to provide structure to the
item profiles, two clustering algorithms were used: K-means
and X-means (as implemented by Weka library2). These al-
gorithms have been trained on different data related with
items, more specifically, on genre information and similar-
ity values among items. Different values for the number of
clusters with K-means were tried, and an optimal K = 50
was found and used in our experiments.

Table 2(c) shows the results of this experiment. We have
tried a uniform p for all the subprofiles, which corresponds
to the clusters found by the clustering algorithm. In the
future, a different p depending on the intracluster similarity
might be considered. Results with the X-means algorithm
are not reported here because it always performed worse
than K-means. As we can see in this table, structured pro-
files obtain better performance than plain profiles. Besides,
we have found no significative differences when changing the
inner p-value, since or(2) and or(5) gave the same result.
Furthermore, clustering genre information about items pro-
vides better results than clusters generated using similarity
between items. This may be due to the relatively higher

2Available at http://www.cs.waikato.ac.nz/˜ml/weka/

amount of noise when using item similarity, in comparison
with explicit external information such as item genres.

4. CONCLUSION AND FUTURE WORK
We have presented a method for incorporating structure

into the user profiles of CF algorithms. Upon the work de-
scribed in [2], we apply an extended retrieval model which
allows for incorporating such structure. We report two ap-
plications for this approach: user profile expansion and in-
ference of profile structure. Empiric results show that our
methods introduce significant performance improvements over
an item-based CF baseline, which can be simply represented
in our framework as a method in which the items are con-
sidered independent from each other. Therefore, taking into
account the structure of the user profiles seems to lead to
better performing CF algorithms, while it opens up new pos-
sibilities and applications.

As future work, we plan to investigate a formal way for
calculating automatically the p-values, instead of the fixed
values used so far. This would provide insights about the real
meaning in CF of the IR concepts of synonymy and phrase.
More generally, the proposed model may provide a flexible
ground for the exploration of further potential applications.
The extraction of user subprofiles, for instance, is a recurrent
problem in the recommender systems area, which may find
a wide range of uses.

5. REFERENCES
[1] L. Baltrunas and F. Ricci. Context-based splitting of item

ratings in collaborative filtering. In RecSys, pages 245–248.
ACM, 2009.

[2] A. Belloǵın, J. Wang, and P. Castells. Text retrieval methods for
item ranking in collaborative filtering. In ECIR, pages 301–306.
Springer, 2011.

[3] A. Costa and F. Roda. Recommender systems by means of
information retrieval. In WIMS, pages 57:1–57:5. ACM, 2011.

[4] M. O’Connor and J. Herlocker. Clustering items for
collaborative filtering. In ACM SIGIR Workshop on
Recommender Systems, 1999.

[5] G. Salton and C. Buckley. Term weighting approaches in
automatic text retrieval. Technical report, 1987.

[6] G. Salton, E. A. Fox, and H. Wu. Extended boolean information
retrieval. Commun. ACM, 26(11):1022–1036, 1983.

[7] J. Wang, S. Robertson, A. de Vries, and M. Reinders.
Probabilistic relevance ranking for collaborative filtering.
Information Retrieval, 11(6):477–497, 2008.

[8] G. R. Xue, C. Lin, Q. Yang, W. Xi, H. J. Zeng, Y. Yu, and
Z. Chen. Scalable collaborative filtering using cluster-based
smoothing. In SIGIR, pages 114–121. ACM, 2005.

