
Efficient Association Discovery with Keyword-based
Constraints on Large Graph Data

Mo Zhou
Indiana University, USA

mozhou@cs.indiana.edu

Yifan Pan
Indiana University, USA

panyif@cs.indiana.edu

Yuqing Wu
Indiana University, USA

yuqwu@cs.indiana.edu

ABSTRACT
In many domains, such as social networks, cheminformatics, bioin-
formatics, and health informatics, data can be represented naturally
in graph model, with nodes being data entries and edges the re-
lationships between them. The graph nature of these data brings
opportunities and challenges to data storage and retrieval. In par-
ticular, it opens the doors to search problems such as semantic asso-
ciation discovery [13, 14, 15] and semantic search [2, 10, 11]. We
study the application requirements in these domains and find that
discovering Constraint Acyclic Paths is highly in demand. In this
paper, we define the CAP problem and propose a set of quantitative
metrics for describing keyword-based constraints. We introduce
cSPARQL to integrate CAP queries into SPARQL. We propose a
series of algorithms to efficiently evaluate core CAP, a critical frag-
ment of CAP queries, on large scale graph data. Extensive experi-
ments illustrate that our algorithms are efficient in answering CAP
queries. Applying our technologies to scientific domains has draw
interests from domain experts.

1. INTRODUCTION
RDF (Resource Description Framework) [13] is a W3C recom-

mended language for describing linked data of the Semantic Web
in the form of triples. Both RDF data and RDF schema can be
represented by node and edge labeled graphs. The simplicity and
flexibility of the graph-based data representation model facilitate
the wide adoption of Semantic Web technologies in domains such
as bioinformatics, cheminformatics, health informatics and social
networks. Such applications in these domains pose challenges and
opportunities for managing and searching Semantic Web data, as
witnessed by new technologies proposed in semantic association
discovery [13] and keyword search [10, 11].

1.1 Motivating Examples
The semantic association discovery problem aims at finding an-

swers to the questions like "what are possible relationships between
two entities"; the results of which are usually paths connecting the
two nodes corresponding to the two entities in the graph [13]. The
keyword search problem is to answer questions like "how do the
data entities that match the given keywords relate to each other";

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the results of which are usually trees/sub-graphs with the labels of
their nodes and edges covering all of the keywords [10, 11].

Via the investigation of applications in various domains includ-
ing cheminformatics and social networks, we confirmed that the
discovery of relationships of two given entities under constraints is
in great need. In particular we found that the problem of discov-
ering acyclic paths between data entities under constraints such as
appearance of nodes, edges and patterns, and the length of paths, is
at the core of many applications.

A BFC D

H

foaf coauthor foaf workfor

w
or

kf
or

co
work

er

advisedby

workfor

A: Azriel
B: Ben
C: Chris
D: Dan
F: Frank
H: Helen
I: Ida

I
workfor

foaf

...

Figure 1: Graph Representation of a Sample RDF Data

EXAMPLE 1.1. Figure 1 shows the graph representation of a
sample RDF data representing the relationships among people in
the social networks. Let’s consider the following search requests:
case1. Find how Azriel connects to Ben;
case2. Find the close ties (within 3 steps) between Azriel and Ben;
case3. Find how Azriel connects to Ben through Chris or Dan;
case4. Find how Azriel connects to Ben through at least two people
from Chris, Dan and Ida within four steps.
case5. Find Azriel’s close (within 4 steps) professional connections
(e.g. relationships such as workfor, coworker, coauthor) to Ben;
case6. Find Azriel’s close (within 4 steps) semi-professional con-
nections to Ben (i.e. half of the relationships in any tie should be
professional);
case7. Find Azriel’s close (within 4 steps) semi-professional con-
nections to Ben that involves the advisor of Frank.

Query languages have been proposed to query data on the Se-
mantic Web. SPARQL [5], the de facto standard query language for
RDF, relies on graph patterns to identify data entities and relation-
ships of interest. However, it lacks the ability to express arbitrary
paths between data entities, such as those shown in Ex. 1.1. The
notion of label-constraint reachability (LCR) [12] was proposed to
describe the problem of finding the connectivity between two given
nodes in a labeled graph under the constraint that all the edge la-
bels along the path are in a given set. The semantic keyword search
problem was defined to find trees in a labeled directed graph where
the tree nodes cover all the keywords [8]. Combining these no-
tions, several SPARQL extensions, with the introduction of path
variables, were proposed [14, 16]. Such extensions are capable
of expressing the search queries in cases 1-2 in Ex. 1.1, but not the
other cases. There were also proposals for extending SPARQL with
regular expressions [6, 7] to express complex patterns that satisfy
strictly defined constraints such as cases 1,2,3,5. However, such

1

SPARQL extensions still cannot express more relaxed constraints
such as those in cases 4,6,7.

In this paper, we abstract the association discovery problem as
the problem of finding constrained acyclic paths (CAP) in directed
labeled graphs. We further specify the constraints in terms of the
length of the resultant paths, the coverage of the keyword set by the
resultant paths, and the relevance of the resultant paths with respect
to the keyword set.

Expressing CAP search queries in a high-level query language
greatly improves its usability in generic and domain-specific appli-
cations. We propose cSPARQL to incorporate CAP search into the
framework of SPARQL, by introducing path variables and func-
tions for defining the keyword-based constraints quantitatively.

1.2 CAP Discovery
Once the CAP search query is identified and formally defined,

the imminent question is how to answer such search queries effi-
ciently on graph data of large scale.

Significant amount of research has been done in RDF data stor-
age, indexing and query evaluation for answering SPARQL queries
efficiently [4, 9, 17, 20].

Many graph searching algorithms were proposed for answering
keyword searches in graph data. In BANKS [8], BANKS2 [19] and
BLINKS [11] backward search algorithms were proposed and im-
proved. Other inventions in this area include a caching and buffer-
ing algorithm for searching large data graph residing on external
storage [2] and using adjacency matrix to index sub-graphs and lo-
cate those satisfying search conditions [10].

Traversal-based approaches such as DFS, BFS, and bidirectional
search were proposed for finding paths satisfying given regular ex-
pressions between two end nodes [6, 7]. A schema-based approach
was later proposed to first search the RDF schema graph and use
the findings to generate many SPARQL queries against the RDF
data, and then execute these queries to find the desired paths [13].
However RDF schema is not always available, and the efficiency of
this approach is not superb since the number of SPARQL queries
generated may be very large, many have overlapping sub-queries,
and indeed very few of these queries yield meaningful results. As
a remedy, data graph was preprocessed and paths were encoded
and indexed, then, such indices are used to find paths between two
nodes [14, 15]. However preprocessing the whole graph and index-
ing all paths greatly affect the scalability of the algorithm.

In this paper, we propose to take advantage of the constraints
on path length and keywords and push the result validation deep
into the path discovery process, to prune unpromising intermediate
results as early as possible. In particular, we propose two fam-
ilies of algorithms. ConstraintDFS (cDFS) and Enhanced Con-
straintDFS (ecDFS) take advantage of projected value ranges on the
constraint metrics to prune search branches efficiently. Search-and-
Join (S&J) algorithm issues mini-searches to find exclusive path
fragments (i.e. paths that do not pass through any keyword nodes)
between pairs of nodes that contain keywords, then use constrained
sequence join to concatenate the fragments to produce the final re-
sults. Careful bookkeeping allows us to use the partial results in one
mini-search to limit the search space of many other mini-searches,
and effectively reduces the overall search cost. Our experimental
results indicate that our proposed algorithms can take advantage of
constraints to efficiently answer CAP queries while the S&J algo-
rithm outperforms the cDFS/ecDFS algorithms.

1.3 Contributions
Our contributions can be summarized as follows:

• We formally define the constrained acyclic path (CAP) dis-
covery problem (Sec. 2).

• We propose cSPARQL, an extension to SPARQL [5] with
the introduction of path variables and quantitative metrics
for measuring keyword-based constraints, to express CAP
search queries (Sec. 3).
• We propose two families of search algorithms to efficiently

discover CAPs in large-scale graph data (Sec. 4- 5).
• We conduct extensive empirical study to understand the strength

and limits of our algorithms (Sec. 6).

2. CONSTRAINT ACYCLIC PATH DISCOV-
ERY PROBLEM

In this section, we formally define the Constraint Acyclic Path
Discovery problem whose applications have been illustrated in Sec. 1.

2.1 Preliminary
Let L be an infinite set of literals and U be an infinite set of

URIs disjoint with L. We represent RDF data as a node and edge
labeled directed graph G = (V, E, λ) where V is a set of nodes,
E ⊂ V ×V is a set of edges, and λ is a labeling function that maps
items in V ∪ E into a finite set of labels and literals.

We call a sequence of interleaving nodes and edges of graph G a
path fragment (or fragment), represented by f , if
• for every adjacent (n, e, n′) in f , it is the case that n, n′ ∈

V ∧ e = (n, n′) ∈ E;
• if (e, n) is a prefix of f , then there must exist n′ ∈ V , such

that e = (n′, n) ∈ E; and
• if (n, e) is a suffix of f , then there must exist n′ ∈ V , such

that e = (n, n′) ∈ E.
Given a fragment f , we use f.head and f.tail to represent the

first item and last item in f . We use nodes(f)/edges(f) to repre-
sent the set of nodes/edges in f , and Length(f) (or |f |) the length
of f , defined as |edges(f)|. We overload the mapping function λ
to map a set of nodes/edges to their corresponding labels.

We are particularly interested in two special types of path frag-
ment: e-fragment (denoted by fe), in which f.head, f.tail ∈ E 1,
and en-fragment (denoted by fen), in which f.head ∈ E and
f.tail ∈ V .

Given two nodes ns, nd ∈ V as the source and destination
nodes, the paths that link ns to nd in G are fragments in the form
f = (ns, e1, n1 . . . , nk−1, ek, nd). In search queries that look for
the paths between two nodes, frequently only acyclic paths are of
interest to users. In the rest of the paper, we will focus only on such
fragments. We use Fe(ns, nd) to represent all acyclic e-fragments
between ns and nd and Fen(ns, nd) to represent all acyclic en-
fragments from ns to nd (including nd).

2.2 Set-based Constraints
As shown in Ex. 1.1, when users search for paths between a pair

of nodes, they are frequently interested in using certain constraints
to refine the results to be retrieved. Such constraints are usually
given in the form of a keyword set (denoted by S), where a keyword
(denoted by l) is a label in U . Certain constraints, such as presence
constraints [14] on nodes and tight constraints on edges [12] are
discussed in the existing works, but they are quite limited in terms
of what can be in the keyword set and how the results are regulated
by it, hence not sufficient to express some search queries, such as
cases 3-7 in Ex. 1.1.

We generalize the keyword set to include keywords that can be
mapped to labels of both nodes and edges and extend how the re-
sults are confined by a keyword set.
1Please note that it is possible that f.head = f.tail, in such case,
the e-fragment contains only one edge.

2

DEFINITION 2.1. Given a finite keyword set S ⊆ U and an e-
fragment fe ∈ Fe(ns, nd),

1. if S ⊆ (λ(nodes(fe)) ∪ λ(edges(fe))), we say fe satisfies
presence constraint w.r.t. S;

2. if S ⊇ (λ(nodes(fe)) ∪ λ(edges(fe))), we say fe satisfies
context constraint w.r.t. S;

3. if S ∩ (λ(nodes(fe)) ∪ λ(edges(fe))) 6= ∅, we say fe sat-
isfies intersection constraint w.r.t. S .

Based on the definition above, we can express the search request
in Ex. 1.1 case3 as "find e-fragments from Azriel to Ben that satisfy
the intersection constraint w.r.t. keyword set {Chris, Dan}".

2.3 Quantitative Metrics
Among a possible large number of resultant e-fragments of a

search request, shorter e-fragments tend to express stronger and
more meaningful relationship between the two end nodes than the
longer ones do [11, 13]. The length constraint which restricts the
length of the resultant e-fragments has been studied in [6, 7, 14],
and can be used to express the search request in Ex. 1.1 case 2.

However, empowered by the constraints defined in Def. 2.1 and
length constraint, we still cannot express the search problem in
Ex. 1.1 cases 4-7 because they require a more subtle description
of the relationship between an e-fragment and a keyword set than
the all-or-nothing set-based constraints described in Def. 2.1. For
this purpose, we introduce quantitative metrics coverage and rele-
vance.

Intuitively, the coverage describes the fraction of the keyword
set that appears in the label set of an e-fragment, while the rele-
vance describes the fraction of the labels of an e-fragment that are
in the keyword set. In an RDF graph, each node has its unique
label, while more than one edge may have the same label. There-
fore, we refine coverage and relevance further into node-coverage
and node-relevance for keyword sets to be applied only on nodes,
edge-coverage and edge-relevance for edges, and use coverage and
relevance for the constraints in which keywords can be mapped to
both nodes and edges. We use cntE(l, fe) to represent the number
of appearance of a keyword l among the edges in an e-fragment fe.
Formally, the quantitative metrics can be defined as follows.

DEFINITION 2.2. Given a graph G, two nodes ns, nd ∈ V and
a finite keyword set S ⊆ U , for an e-fragment fe ∈ Fe(ns, nd),

NodeCoverage(fe,S) =
|S ∩ λ(nodes(fe))|

|S| (1)

NodeRelevance(fe,S) =

(|S∩λ(nodes(fe))|
|nodes(fe)| , |fe| > 1

0, |fe| = 1
(2)

EdgeCoverage(fe,S) =
|S ∩ λ(edges(fe))|

|S| (3)

EdgeRelevance(fe,S) =
Σl∈ScntE(l, fe)

|edges(fe)|
(4)

Coverage(fe,S) =
|S ∩ (λ(nodes(fe)) ∪ λ(edges(fe)))|

|S| (5)

Relevance(fe,S) =
|S ∩ λ(nodes(fe))|+ Σl∈ScntE(l, fe)

|nodes(fe)|+ |edges(fe)|
(6)

Taking advantage of the quantitative metrics, the search requests
in Ex. 1.1 case4-6 can be expressed more precisely: case 4, "find all
e-fragments, e.g. fe, from Azriel to Ben such that NodeCoverage(fe,
{Chris, Dan, Ida})≥ 0.6 and |fe| ≤ 4"; case 5, "find all e-fragments,
e.g. fe, from Azriel to Ben such that EdgeRelevance(fe, {coworker,
workfor, coauthor}) = 1 and |fe| ≤ 3"; case 6, "find all e-fragments,
e.g. fe, from Azriel to Ben such that EdgeRelevance(fe, {coworker,
workfor, coauthor}) ≥ 0.5 and |fe| ≤ 4".

All the constraints we defined in Def. 2.1 can be expressed using
the quantitative metrics defined in Def. 2.2. Here, we introduce a
set of boolean functions to express such constraints.

Presence(fe,S) ⇐⇒ Coverage(fe,S) == 1 (7)
Context(fe,S) ⇐⇒ Relevance(fe,S) == 1 (8)

Intersection(fe,S) ⇐⇒ Relevance(fe,S) > 0 (9)

Similarly, we can define the node/edge version of these functions.
2.4 Problem Definition

We define the Constraint Acyclic Path (CAP) search query:
A CAP search query CAP (ns, nd, τ) takes as input
an RDF graph G, two end nodes ns, nd ∈ V , and
constraint τ expressed using zero to many quantitative
metrics functions that involve zero or many keyword
sets, and returns the e-fragment(s) from ns to nd that
satisfy τ .

In this paper, we will tackle two problems related to CAP search
query: how to express CAP search queries in a structured query
language, and how to evaluate CAP search queries efficiently on
massive graph data.

3. cSPARQL
We propose cSPARQL to integrate the CAP search into the struc-

tured search of SPARQL [5] by introducing (1) path variables for
expressing arbitrary e-fragments in a graph pattern; and (2) a set
of quantitative metrics functions as defined in Sec. 2 for specifying
the length and keyword-based constraints.
3.1 Syntax and Semantics

The basic construct of a SPARQL query is simple access pat-
tern in the form of a triple (x, y, z) with x, y ∈ U ∪ Vn and
z ∈ U ∪L∪Vn, where Vn is a set of variables disjoint with U ∪L
(variables are prefixed by either “?” or “$”) . A basic graph pat-
tern consists of a set of simple access patterns. Given an RDF graph
G = (V, E, λ), the core of the evaluation of a SPARQL query is to
find mapping functions that map the basic graph pattern pt of the
query to subgraphs of G. Formally, consider all mapping functions

M =

(
m(x) ∈ V ∪ E x ∈ Vn ∪ U
m(x) ∈ V x ∈ L

the semantic of pt(G) is to find all mappings in M such that for
each simple access pattern (x, y, z) ∈ pt:
• m(x) ∈ V ;
• m(z) ∈ V ;
• (m(x), m(z)) ∈ E; and
• λ((m(x), m(z))) = λ(m(y)).

Besides the structural constraints specified using the graph pat-
tern, the FILTER phrase can be used to further express value con-
straints on the variables.

In cSPARQL, we introduce a special type of variables Vp, called
path variables, prefixed by “??” as introduced in SPARQL2L [14].
Vp is disjoint with Vn ∪ U ∪ L. We extend the basic construct
of cSPARQL to include path access pattern in the form of a triple
(x, p, z) with x ∈ U ∪Vn, p ∈ Vp and z ∈ U ∪L∪Vn. We define
an extended graph pattern to be a set of simple access patterns and
path access patterns. We extend the mapping functions to include
the mapping of path variables to e-fragments in G,

M =

8
><
>:

m(x) ∈ V ∪ E x ∈ Vn ∪ U
m(x) ∈ V x ∈ L
m(x) ∈ Fe x ∈ Vp

and extend the semantics of applying an extended graph pattern pt
in cSPARQL on an RDF graph G to include mappings of each path
access pattern (x, p, z) ∈ pt such that

3

• m(x) ∈ V ;
• m(z) ∈ V ; and
• m(p) ∈ Fe(m(x), m(z));

We introduce a set of the numeric functions (formula 1-6 in Sec.
2) and boolean functions (formula 7-9 in Sec. 2) to be used in
the FILTER phrase to express the length and keyword-based con-
straints on the path variables. For the convenience of the users, we
introduce keyword CONSTRAINTSET in the form of

CONSTRAINTSET constraint-set-name {l1, . . . , ls}
for users to create alias of a keyword set, which can be referred
later in the functions.

EXAMPLE 3.1. We illustrate the CAP query of Ex. 1.1 case7 in
cSPARQL and more examples can be found in the appendix.
SELECT ??p WHERE
{Azriel ??p Ben . Frank advisedby ?adv .
CONSTRAINTSET ProfR {coworker, workfor, coauthor}.
FILTER(Length(??p)<=4) .
FILTER(EdgeRelevance(??p, ProfR)>=0.5) .
FILTER(NodePresence(??p, ?adv)) }

Result:
foaf−−−→ C

coauthor−−−−−−→ F
foaf−−−→ D

workfor−−−−−→

4. CAP DISCOVERY
The cSPARQL proposed in Sec. 3 empowers users to express

CAP search queries in the framework of SPARQL. As significant
amount of research has been done on answering SPARQL queries
efficiently [4, 9, 17, 20], here, we focus on the new components
introduced in cSPARQL, that is to find all acyclic e-fragments be-
tween two given nodes under constraints, i.e., to answer the
CAP (ns, nd, τ) query. We will first focus on the evaluation of a
critical subset of CAP queries, core CAP queries, in which τ con-
tains conjunctive predicates featuring only one keyword set. We
use S to represent the single keyword set in τ , and use τl, τc,
τr , τnc, τec, τnr and τer to represent the length, coverage, rel-
evance, node/edge coverage, node/edge relevance constraints re-
spectively, each of which is defined as an interval, for example,
τl = (τlmin , τlmax).

In this section, we will present an enhanced DFS algorithm for
answering core CAP queries. Then, we will present a Search-and-
Join (S&J) algorithm in Sec. 5 to further improve the performance.
Finally, we will discuss how to extend the algorithms we propose
to answer CAP queries in general.

4.1 Basic Ideas
Certainly one solution, which we call Search-Filter approach, is

to first find all acyclic e-fragments in Fe(ns, nd) (in fact, to find
CAP (ns, nd, ∅)(G)), then eliminate those that do not satisfy the
constraints specified in τ . However this approach is not practically
efficient because generatingFe(ns, nd) is very time and space con-
suming, rendering the search phase costly, while it is frequently the
case that |CAP (ns, nd, τ)(G)| ¿ |CAP (ns, nd, ∅)(G)|, render-
ing the high cost of the search phase mostly wasted.

Depth-First-Search (DFS) is a commonly adopted approach for
generating paths between two nodes. In DFS, to generate an e-
fragment fe ∈ Fe(ns, nd), en-fragments of length ranging from 1
to |fe|-1 are generated one step at a time, e.g. a set of en-fragments
of length k+1 are generated by extending an en-fragment of length
k in the k+1’th step of the DFS process. For any such en-fragment
fn generated as an intermediate result, if it is the prefix of a re-
sultant e-fragment fe ∈ Fe(ns, nd), we say that fn is a prefix of
fe and fe is an extension of fn, denoted by fn ≺ fe. We call
the e-fragment fe-fn the complement of fn w.r.t fe, denoted fn

fe ,

or fn when there is no ambiguity about the specific fe in question.
Please note that more than one e-fragment inFe(ns, nd) may share
the same prefix en-fragment fn, the whole set of which is denoted
by Ext(fn), i.e. Ext(fn) = {fe|fe ∈ Fe(ns, nd) ∧ fn ≺ fe}.

To minimize the DFS search space in computing core CAP query
CAP (ns, nd, τ), we want to minimize the total number of en-
fragments generated in the process. To be more specific, given an
en-fragment fn generated as an intermediate result, we want to
stop the extension of fn if we are certain CAP (ns, nd, τ)(G) ∩
Ext(fn) = ∅, and we propose to do so by deriving tighter con-
straints using partial results generated in the DFS process.

4.2 Constraint Tightening
To better understand how the information about an en-fragment

fn can stop or limit its own extensions, we first take a look at the
projected value ranges of the quantitative metrics of fn’s exten-
sions, w.r.t. the keyword set.

LEMMA 4.1. Given an en-fragment fn generated in the DFS
of CAP (ns, nd, ∅) and a keyword set S , for any e-fragment fe ∈
Ext(fn) with |fe| > 1,

|S ∩ (λ(nodes(fn))|
|S| ≤ NodeCoverage(fe)

≤
(|S∩(λ(nodes(fn))|+|fe|−|fn|−1

|S| ∗
1 Otherwise

(1)

|S ∩ (λ(nodes(fn))|
|fe| − 1

≤ NodeRelevance(fe)

≤
(|S∩(λ(nodes(fn))|+|fe|−|fn|−1

|fe|−1
∗

|S|
|fe|−1

Otherwise
(2)

∗ |fe| ≤ |S|+ (|fn| − |S ∩ (λ(nodes(fn))|) + 1

To prove this lemma, we consider the best and worst scenarios in
the expansion from fn to fe. Taking the node coverage constraint
as an example. The best case is that the nodes in fn

fe covers all
keywords that were not yet covered by fn, while the worst case is
that it covers no keyword. Using these cases as the upper/lower
bounds, the formula can be derived. We can apply the same ap-
proach to all the other constraints. The proof of Lemma 4.1 and
other similar lemma (Lemma 4.2) are provided in the appendix.

Indeed, given an en-fragment fn generated by DFS, the length of
any e-fragment fe ∈ Ext(fn) is also bounded. Its minimum value
is |fn|+1. Its maximum value (denoted by lmax) equals to the min-
imum value among the following: (1) τlmax ; (2) MAX(|S|

τnrmin
+

1, |S| × τncmin + 1, |S| × τecmin), with τnrmin > 0, and (3)
the diameter of the graph G. Hence, with the help of the projected
bound on the length of the e-fragments in Ext(fn), we can ob-
tain a tighter projected bound on the quantitative metrics of those
e-fragments than the ones proposed in Lemma 4.1 and 4.2, and
further identify if fn is promissing or not to be expanded.

4.3 DFS-based Algorithms
We propose two DFS-based algorithms: constraintDFS (cDFS)

prunes unpromising en-fragments at each DFS step; enhanced-
cDFS (ecDFS) further saves unnecessary computation and verifi-
cations, while maintaining the same pruning power as cDFS.

constraintDFS cDFS is based on the non-recursive DFS. In cDFS,
we start a DFS from the source node ns. At each step in the DFS
process, we can safely stop the expansion of an intermediate en-
fragment fn whenever the projected value ranges do not overlap
with the value ranges specified in τ on any of the quantitative met-
rics. The pesudo-code of cDFS is shown in Alg. 1. We use a stack

4

Stk to keep track of all edges whose starting nodes have been ex-
panded but ending nodes haven’t. It is initialized with the nodes
reachable from ns via a single edge (L6-7). In each DFS step (L8-
L28), fragments with loops are detected and eliminated (L14); re-
sults are identified (when the destination node nd is reached and
constraint τ is verified) and stored (L16-18); and unpromising en-
fragment are identified and pruned (L27).

Algorithm 1 cDFS
Data: data graph G, sourse/destination node ns, nd, constraint τ .
Result: All acyclic e-fragments from ns to nd satisfying τ .
begin

1 Array results← {}
2 HashTable V isitedNodes← {}
3 V isitedNodes.Add(ns)
4 Array <Edge> fn ← ()
5 Stack Stk ← {}
6 for e in ns’s outgoing edges do
7 Stk.Push(e)

8 while !Stk.isEmpty() do
9 Edge e← Stk.Pop()

10 if e.startNode==null & e.endNode==null then
11 Edge tailEdge← fn.RemoveTailEdge()
12 V isitedNodes.Remove(tailEdge.endNode)
13 Continue

14 if !V isitedNode.Contains(e.endNode) then
15 fn.Concatenate(e)
16 if e.endNode == B then
17 if fn satisfies constraints then
18 results.add(fn.clone())

19 else
20 Array projRanges = computeProjRange(fn, τ)
21 if Overlapped(projRanges, τ) then
22 V isitedNodes.Add(e.endNode)
23 Stk.Push((null, null))
24 for e′ in e.endNode’s outgoing edges do
25 Stk.Push(e′)

26 Continue;

27 fn.RemoveTailEdge()

28 Return results

Enhanced-cDFS In cDFS, the projected value ranges for the quan-
titative metrics are computed and compared with τ for every en-
fragment generated. This is indeed unnecessary. Given an en-
fragment fn that is deemed promising in a DFS step, we are inter-
ested in predicting how many more steps forward, any extension of
fn is guaranteed to be promising and no more checking is needed.

LEMMA 4.3. While applying cDFS algorithm to answer a core
CAP query CAP (ns, nd, τ), if an en-fragment fnm is deemed
promising at the m’th step, then in the next k steps, the en-fragment
fnm+k with fnm ≺ fnm+k is guaranteed to be promising if

0 ≤ k ≤ MAX(0, SkippedStep(fnm)) with

SkippedStep(fnm)

= MIN(lmax − |fnm |,
lmax + |S ∩ (λ(nodes(fnm))| − |S| × τncmin − |fnm | − 1,

lmax + |S ∩ (λ(edges(fnm))| − τecmin × |S| − |fnm |,
(1− τnrmin)× lmax + |S ∩ (λ(nodes(fnm))| − |fnm | − (1− τnr),

lmax × (1− τermin) + Σl∈ScntE(l, fnm)− |fnm |)

We provide a proof sketch for the component related to the node
coverage in Lemma 4.3 by examining the worst case scenario of
fnm+k in the appendix. With the help of Lemma 4.3 we can predict
the maximum number of steps we can extend safely after deciding
to keep an en-fragment, without any additional bound computation
and verification.

We propose an enhancement to the cDFS algorithm (ecDFS) to
avoid unnecessary computation and verification of quality of the
en-fragments. In ecDFS, whenever an en-fragment fn is kept,
we predict k=SkippedStep(fn) using the formula in Lemma 4.3.
Then, verification can be skipped in the next k steps.

EXAMPLE 4.1. Let’s consider case 4 of Ex. 1.1, CAP (A, B,
{NodeCoverage(??p, {C, D, I}) > 0.6&Length(??p) ≤ 4}).
Instead of generating all paths from A to B, cDFS will prune the

en-fragments
foaf−−−→ C

coauthor−−−−−−→ H
workfor−−−−−→ F and

workfor−−−−−→
F

workfor−−−−−→ H because the projected node coverage value ranges
of both are [0,0.3], which does not overlap with (0.6,1] given by τ .

ecDFS will further save the validation on the en-fragment
foaf−−−→

C
coauther−−−−−−→ F .

5. LOCALIZED SEARCH AND JOIN
In both cDFS and ecDFS the search starts from the source node

and the nodes matching the keywords do not contribute to the es-
timation of projected value ranges until they are reached. Whether
to prune an intermediate en-fragment solely depends on the best/-
worst cases foreseeable from the en-fragment itself. In this section,
we propose to use the local information around nodes matching the
keywords to produce more accurate projected ranges of the quanti-
tative metrics for more efficient pruning.

5.1 Constrained Sequence Join
We call the nodes whose labels are in S the constraint nodes,

denoted by Sn. We consider constraint nodes, together with source
and destination nodes, the query nodes: Q = Sn ∪ {ns, nd}, and
we call Sn∪{ns} the starting query nodesQs, while Sn∪{nd} the
ending query nodes Qd. We call a node sequence (q0, q1, . . . , qu,
qu+1) with 0 ≤ u ≤ |Sn| a query node sequence (QNS) of a given
Q if q0 = ns, qu+1 = nd and qi ∈ Sn for 0 < i < u + 1, and no
two nodes in the sequence are identical. Given a QNS qns, we use
|qns| to denote the number of constraint nodes in qns.

An e-fragment between two query nodes is exclusive (or xe-
fragment, denoted by fxe) if it does not pass through any query
node, i.e. nodes(fxe) ∩ Q = ∅. Following the same naming tra-
dition used in this paper, we use Fxe(n1, n2) to represent all xe-
fragments between n1 and n2 with respect to a set of query nodes
Q. We use MFxe to denote the matrix of all Fxe(qi, qj) with
qi ∈ Qs and qj ∈ Qd.

To efficiently evaluate a core CAP query, certainly computing the
full Fxe(qi, qj) between a node pair (qi, qj) and the fullMFxe is
not desirable. In fact, our goal is to compute as small a subset of
them as possible in query answering. In the rest of the section, we
use gFxe(qi, qj) to represent a subset of Fxe(qi, qj), and we use
MgFxe

to represent a matrix of such gFxe’s.
Given two xe-fragments f1 ∈ Fxe(qi, qj) and f2 ∈ Fxe(qv, qw)

w.r.t. Q, we say that f1 and f2 can be concatenated to form one
acyclic e-fragment by concatenating f1 and the node qj (qv) and f2,
if (1) qj = qv , and (2) nodes(f1) ∩ (nodes(f2) ∪ {qv, qw}) = ∅
and vice versa. We define the concatenation operation "./" be-
tween two sets of xe-fragments gFxe(qi, qj) and gFxe(qv, qw) to
compute the concatenation of every pair of xe-fragments from the
Cartesian product of gFxe(qi, qj) and gFxe(qv, qw). The result of

5

gFxe(qi, qj) ./ gFxe(qv, qw) is a subset of Fe(qi, qw) with all e-
fragments in it passing through qj (qv).

DEFINITION 5.1. Given constraint τ of a core CAP query, as-
suming that qns is a QNS of query nodesQ defined by the keyword
set of τ andMgFxe

is an xe-fragment set matrix based on Q,

./τ (qns,MgFxe
) = στ (Π

|qns|
i=0

gFxe(qi, qi+1))

We call this operation constrained sequence join.
The result of a constrained sequence join operation is a set of

e-fragments from ns to nd that satisfy τ . Obviously the answer to
a core CAP query is the union of the results from computing the
constrained sequence join for all possible QNS on MFxe that is
the full matrix of xe-fragments based on Q.

Selection-push-down is one of the most important query opti-
mization technique for reducing the cardinality of participants of
complex operations in order to improve the overall query evalua-
tion efficiency. We propose a similar CAP query evaluation tech-
nique that reduces the cardinality of the participants of constrained
sequence join operation in two aspects: (1) identify and eliminate
QNSs whose constrained sequence join result is empty; and (2) for
each QNS that may generate non-empty constraint sequence join
result, identify and eliminate the xe-fragments that have no chance
to contribute to the results.

We call a QNS qns invalid if ./τ (qns,MFxe) = ∅. We can
predict whether a QNS qns is invalid by computing the projected
value ranges of the quantitative metrics and comparing those to the
value ranges given by τ . The more precise the projected value
ranges are, the better we can identify and eliminate invalid QNSs.

We use MinLen(qns) to represent the accumulative length of
the shortest xe-fragments between every pair of adjacent nodes in

qns, i.e. MinLen(qns) =
|qns|P
i=0

minL(qi, qi+1), where

minL(qi, qi+1) = (minf∈Fxe(qi,qi+1)|f |).
LEMMA 5.1. Given a core CAP query with constraint τ , Q is

the query node set, then, QNS qns is guaranteed to be invalid if
any of the following condition is NOT satisfied

1. Fxe(qi, qj) 6= ∅ for all pairs of adjacent nodes in qns; or
2. MinLen(qns) ≤ τlmax ; or
3. τncmin ≤ |qns|

|S| ≤ τncmax ; or

4. τnrmin ≤ |qns|
MinLen(qns)−1

≤ τnrmax when MinLen(qns) >
1 .

Before we can positively identify a QNS as invalid, we call it a
candidate QNS.

In a candidate qns, not all the xe-fragments between all pairs of
adjacent query nodes in qns contribute to the join results.

LEMMA 5.2. Given a QNS qns, qi and qi+1 are adjacent nodes
in qns, an xe-fragment fxe ∈ Fxe(qi, qi+1) can contribute to the
join result of ./τ (qns,MFxe) only if

|fxe| ≤ τlmax −MinLen(qns) + minL(qi, qi+1)

If an xe-fragment fxe satisfies the condition in Lemma 5.2, we call
it a candidate xe-fragment for the given qns.

Given a core CAP query CAP (ns, nd, τ), we use cQNS to rep-
resent the set of all candidate QNSs based on Q. We use cMFxe

to represent a special MgFxe
in which each xe-fragment set is a

special gFxe, such that each xe-fragment in them is a candidate xe-
fragment for at least one QNS in cQNS.

THEOREM 5.1. Given a core CAP query CAP (ns, nd, τ),
CAP (ns, nd, τ)(G) =

[
qns∈cQNS

./τ (qns, cMFxe)

5.2 Search & Join Algorithm
The Search & Join (S&J) algorithm has two phases: the search

phase takes as input the data graph G and the query CAP (ns, nd, τ)
and compute cQNS and cMFxe ; the join phase then produces the
query result using the formula presented in Theorem 5.1. As the
join phase can be accomplished easily and efficiently with the help
of any relational engine, here we focus our discussion on generat-
ing minimum cQNS and cMFxe in the search phase.

The intermediate result of the search phase is an m×m matrix.
The two dimensions are nodes in Qs and Qd and the value on each
coordinate is gFxe(qi, qj), which is initialized to be ∅ and is always
a subset of the target cFxe(qi, qj). We use M to represent this
working matrix, andM(qi, qj) the corresponding gFxe(qi, qj).

The focus in the design of the search phase is to generate mini-
mum cQNS and cMFxe and minimize the number of intermediate
search steps to produce such results. Rather than issuing one search
in the graph to generate each cFxe, we issue one BFS from each
node q ∈ Qs to compute all cFxe(q, ∗), i.e. a row in M. The
BFSs proceed in parallel, so that the intermediate search results
of one BFS can be used to limit the search ranges of other BFS
searches as well as prune the invalid QNSs, as discussed in Lemma
5.1 and 5.2. Careful bookkeeping is needed to accomplish this.

Given a pair of query nodes (qi, qj), we use minl(qi, qj) to rep-
resent the length of the shortest xe-fragment between qi and qj to
the best of our knowledge. It is precise and equals to minL(qi, qj)
ifM(qi, qj) is non-empty. Otherwise, the value of minl(qi, qj) is
estimated by the current BFS search step plus one.

Given a pair of query nodes (qi, qj), if there exists a QNS qns,
such that the current search step of the BFS starting from qi is
greater than or equal to τlmax - MinLen(qns)+minL(qi, qj),
based on Lemma 5.2, it is safe to conclude that all candidate xe-
fragments between qi and qj for qns have been generated. Thus
we say thatM(qi, qj) generated so far is complete w.r.t. qns. We
say that M(qi, qj) is complete if (1) (qi, qj) is not contained by
any QNS; or (2)M(qi, qj) generated is complete w.r.t. all QNSs
containing (qi, qj) such thatM(qi, qj) is the desired cFxe(qi, qj).
If allM(qi, ∗) are complete, it is safe to stop the BFS starting from
qi and we say qi is complete.

Conditional Incomplete

Complete

Pruned Input to Join

Invalid

Figure 3: QNS Sta-
tus Transition

We classify QNSs into four cate-
gories: conditional, incomplete, com-
plete, and invalid. Given a QNS qns,
if qns can be identified as invalid based
on Lemma 5.1, we prune it. Otherwise
if M(qi, qj) is complete w.r.t. qns for
every adjacent node pair (qi, qj) in qns,
we say that qns is complete. A complete
qns is ready to be joined. Otherwise, if

M(qi, qj) is non-empty for every adjacent node pair in qns, we
say that qns is incomplete. An incomplete QNS is guaranteed to
be a candidate QNS but is not yet ready for join. All other QNSs
are conditional. In a conditional QNS qns, there is at least one
pair of adjacent query nodes (qi, qj) in qns such thatM(qi, qj) is
empty. Thus the candidacy of qns depends on the precise value of
minl(qi, qj). We say that an incomplete or conditional QNS qns
depends on a node pair (qi, qj) if M(qi, qj) is incomplete w.r.t.
qns. The status transformation is illustrated in Fig. 3.

An outline of S&J algorithm is shown in Alg. 2. The search
phase starts with M being empty, all bookkeeping variables ini-
tialized. Besides the data structures required by the traditional BFS,
every starting query node qi also maintains a checklist that is a set
of query nodes qj with M(qi, qj) being incomplete. The search
phase ends when all QNSs are either invalid and pruned or com-

6

C D I BACDI
����C D I BACDI

���� {CD}C D I BACDI
���� {CD} {DB}
C D I BACDI

���� {CD} ����
C D I BACDI

���� {CD,CFD} {DB}
C D I BACDI

������	�� {CD,CFD} {DB}
C D I BACDI{ACIDB, ACDIB, AICB, ACIB, ACDB, ADCB, AIDB, ADIB} {ACDIB, ACIB, ACDB, AIDB, ADIB} {ACIB, AIDB}{ACDB} {ACDB} {ACDB} {ACDB}

Step 0: Initialization Step 1: Step 2: Step 3: Step 6: Step 5: Step 4:
{AICDB, AIDCB, ACDIB, ACIDB, ADICB, ADCIB, AICB, ACIB, ACDB, ADCB, AIDB, ADIB}Candidate QNSIncomplete QNSComplete QNS

Figure 2: Example of the S&J algorithm

plete and ready for join, as well asM = cMFxe . Then the join
phase takes the results of the search phase, performs constraint se-
quence join, and outputs answers to the CAP query. The search
phase has three critical operations: Pick, Expand and Adjust.

Algorithm 2 S&J (sketch)
Data: data graph G, source/destination nodes ns, nd, and con-

straint τ .
Result: All acyclic e-fragments from ns to nd satisfying τ .
begin

// search phase
1 initializeQs,Qd, condQNS, incmpQNS, cmpQNS,M
2 for n ∈ Qs do
3 start BFS from n
4 initialize status, sRange, frontier, checklist

5 while (condQns 6= ∅ & incmpQns 6= ∅) do
6 Pick q
7 Expand(q)
8 Adjust

9 return csJoin(cmpQNS,M) // join phase

Pick: Each time, we pick a query node such that the BFS starting
from this node has the potential to prune the maximum number
of invalid QNSs and restrict the search ranges of the BFSs most
sharply. Our strategy is to pick the query node that is depended by
most conditional QNSs. To break a tie, we pick the node that is
depended by most incomplete QNSs. If there is still a tie, we pick
the most unexpanded node.
Expand: Given the picked node q, the operation expands the BFS
search frontier by one step, followed by bookkeeping: if expanding
to node n in q’s checklist, add the xe-fragment toM(q, n); other-
wise if n is in Q, the branch is pruned; otherwise, insert n into q’s
next search froniter.

Adjust: After an Expand step on q, we use the information newly
obtained to adjust the status of QNSs, the cells inM and the search
ranges of BFSs and other status we maintained for each BFS.

Details of the algorithm are provided in the appendix.

EXAMPLE 5.1. Let’s consider the running example: CAP (A, B,
{NodeCoverage(??p, {C, D, I}) > 0.6&Length(??p) ≤ 4}).
Fig. 2 shows the execution of the search phase of S&J algorithm to
answer this query. The nodes in circles are picked to be expanded
in each step, and a shaded cell inM indicates that it is complete.

Let’s take step 3 as an example. D is picked with the check-
list {B, I}. BFS from D reaches node B. As B is in D’s check-
list, path DB is added to M(D, B). D’s next search frontier be-
comes empty, so D becomes complete and will not be picked later.
Among the current conditional QNSs, ADIB can be pruned because
MinLen(ADIB) =minl(A, D)+minl(D, I)+minl(I, B)=
2+2+1=5> τlmax . Similarly we prune the ACDIB. AsM(A, C),

M(C, D) and M(D, B) are all non-empty, ACDB is upgraded
from conditional to incomplete. A’s search range is also tightened.

In this example, the search ranges of A and C are 2 while the
search ranges of D and I are both 1. Thus the total number of
visited edges and the total number of intermediate results generated
by S&J are both much smaller than those in cDFS and ecDFS.

5.3 Discussion
Due to the page limitation, we are only able to discuss the de-

tails of cDFS, ecDFS and S&J algorithms for answering core CAP
queries. In fact, they can be extended easily to answer all CAP
queries in general. For example, the S&J algorithm can be ex-
tended to support constraints on both nodes and edges as follows:
In the search phase, formula similar to those in Lemma 5.1 and 5.2
can be introduced to calcuate projected value ranges of edge cov-
erage/relevance; In the join phase, by maintaining the total number
of keyword edges and number of distinct keyword edges in the xe-
fragments, constrained sequence join can also be extended to verify
edge coverage/relevance.

6. EXPERIMENTAL EVALUATION
We conducted extensive experiments to study the performance

of our algorithms, constraintDFS (cDFS), enhanced-constraintDFS
(ecDFS), and Search-and-Join(S&J), as well as existing Search-
Filter algorithms based on DFS (S&F-DFS) and bidirectional search
(S&F-BIS [19]). We implemented the push-down of the length
constraint in both the S&F algorithms. The experiments were car-
ried out on a desktop PC running Red Hat 4.1.2 with dual Intel(R)
Core(TM)2 2.40GHz CPU and 4GB memory.

Datasets and Queries Our experiments were conducted on two RDF
datasets that have been widely used in the literature: DBpedia[1]
and chem2bio2RDF[3]. The chem2bio2RDF graph contains 139K
nodes and 1.8M edges, while the DBpedia graph contains 1504K
nodes and 5.4M edges. As experiments on both datasets showed
similar trends, here we report only the experimental results on the
chem2bio2RDF dataset.

We test the algorithms on many randomly generated CAP queries,
varying source and destination nodes, keyword sets and value con-
straints on length and other quantitative metrics. As the selection
of source/destination nodes does not have significant impact to the
performance beyond reasonable impact of data distribution, we re-
port our results on a group of CAP queries of the same source/des-
tination nodes. Based on the constraint τ , we group the queries into
the following categories to facilitate comparison:
• Ql queries have a fixed S and τncmin = 0.2 and vary on τl;
• Qnc queries have fixed τlmax (=7) and S and vary on τncmin ;
• Qnr queries have fixed τlmax (=7) and S and vary on τnrmin ;
•Qks queries have fixed τlmax (=7) and fixed τncmin (=0.4), and

vary on keyword set S, in terms of both |S| and the contents in S.

Query Evaluation We compared the hot run of the algorithms.
Please note that as our algorithms improve the performance over

7

Figure 4: Performance Comparison

the S&F algorithms several orders of magnitude, to better illustrate
the difference, we plot the results in logarithmic scale.

As shown in Fig. 4(a), even for queries with simplest keyword
constraints, as those in the Ql family, our algorithms are much
more efficient than the Search-Filter algorithms. In addition, ecDFS
is more efficient than cDFS because of the saving on validations.
The S&J algorithm outperforms cDFS and ecDFS when τlmax is
larger than 3 but is slightly more time-consuming than cDFS and
ecDFS when τlmax is small due to the overhead of generating and
maintaining query node sequences.

As shown in Fig. 4(b), keyword-based constraints have no im-
pact on the performance of the Search-Filter algorithms but our
algorithms, which take advantage of such constraints, significantly
outperform them, especially when τncmin is close to 1, as more
intermediate results are pruned in such cases in our algorithms. It
also worths noticing that our DFS-based algorithms and S&J al-
gorithm behave differently when τncmin changes. When the node
coverage constraint becomes tight e.g. τncmin is closer to 1, cDFS
and ecDFS are very efficient, due to their strong pruning power and
small overhead. But when the node coverage constraint is relatively
relax, e.g. τncmin < 0.5, the S&J algorithm is able to take advan-
tage of local information around the query nodes to limit the search
ranges and thus is much more efficient (two orders of magnitude)
than cDFS and ecDFS.

As shown in Fig. 4(c), again, all our algorithms take advantage
of node relevance constraint to prune the search branches or limit
the search ranges. The larger the τnrmin , the larger the number
of search branches can be pruned by our algorithms. Even when
τnrmin is small, the performance of the S&J algorithm is signif-
icantly better than others, as it has much smaller search ranges
thanks to the local information it takes into account.

As shown in Fig. 4(d), while other constraints are the same,
cDFS and ecDFS algorithms benefit from larger number of key-
words as constraints, e.g. pruning criteria. For the S&J algorithm,
it is all about the tradeoff between the amount of location infor-
mation that can be used to enhance pruning, and overhead. Many
queries we tested indicate that S&J algorithm is at its best with
three keywords, it still outperforms the DFS-based algorithms with
1-7 keywords, which in fact, is the size of keyword set of a typical
CAP query, based on our study of the application domains.

7. SUMMARY AND FUTURE WORK
In this paper we propose the Constraint Acyclic Path(CAP) dis-

covery problem for discovering acyclic paths between two given
nodes in a directed graph under constraints. Specifically we pro-
pose to specify constraints in terms of path length, and coverage
and relevance of resultant paths w.r.t. to a set of keywords. We
introduce cSPARQL, an extension of SPARQL, to integrate CAP
queries and the structured search on graph data.

We propose a family of algorithms for answering CAP queries:
cDFS and ecDFS algorithms enhance DFS by efficiently pruning
the search branches based on the projected value ranges of con-

straint metrics; S&J algorithm further improves the effectiveness
of the pruning using local information of the constraint nodes. Our
empirical evaluation proved that our algorithms outperform exist-
ing Search-Filter algorithms using both DFS and bidirectional search
and improve the performance by several orders of magnitude.

We are looking forward to expand the research presented in this
paper in the following directions: (1) extend algorithms to support
CAP queries with multiple keyword sets and disjunctive/negative
predicates; (2) further improve the scalability of our algorithms in
terms of graph size, number of keywords and maximum length con-
straint; and (3) design the query optimization algorithm that opti-
mizes SPARQL graph pattern matching and CAP query answering
together to evaluate a cSPARQL query efficiently.

8. REFERENCES
[1] http://wiki.dbpedia.org
[2] B. Dalvi, et al. Keyword Search on External Memory Data Graphs).

VLDB Endowment, 2008.
[3] C. Bin, et al. Chem2Bio2RDF: a Semantic Framework for Linking

and Data Mining Chemogenomic and Systems Chemical Biology
Data BMC Bioinformatics, 2010.

[4] D. Abadi, et al. SW-Store: a Vertically Partitioned DBMS for
Semantic Web Data Management. The VLDB Journal, 2009.

[5] E. Prud’hommeaux, et al. SPARQL Query Language for RDF. W3C
Recommendation, 2008.

[6] F. Alkhateeb, et al. Constrained Regular Expressions in SPARQL. In
SWWS, 2008.

[7] F. Alkhateeb, et al. Extending SPARQL with Regular Expression
Patterns (for Querying RDF). Web Semant., 2009.

[8] G. Bhalotia, et al. Keyword Searching and Browsing in Databases
using BANKS. In ICDE, 2002.

[9] G. Fletcher, et al. Scalable indexing of RDF graphs for Efficient Join
Processing. In CIKM, 2009

[10] G. Li, et al. EASE: An Effective 3-in-1 Keyword Search Method for
Unstructured, Semi-structured and Structured Data. In SIGMOD,
2008.

[11] H. He, et al. BLINKS: Ranked Keyword Searches on Graphs).
SIGMOD, 2007.

[12] J. ruoming, et al. Computing Label Constraint Reachability in Graph
Databases. In SIGMOD, 2010.

[13] K. Anyanwu, et al. ρ-Queries: Enabling Querying for Semantic
Associations on the Semantic Web. In WWW, 2003.

[14] K. Anyanwu, et al. SPARQ2L: Towards Support for Subgraph
Extraction Queries in RDF Databases. In WWW,2007.

[15] K. Anyanwu, et al. Structure Discovery Queries in Disk-Based
Semantic Web Databases. In DOI, 2008.

[16] K. Kochut, et al. SPARQLeR: Extended Sparql for Semantic
Association Discovery. In ESWC, 2007.

[17] L. Sidirourgos, et al. Column-store Support for RDF Data
Management: not all swans are white. In VLDB Endowment, 2008.

[18] T. Jie, et al. Efficient Association Search in Social Network. In
WWW, 2007.

[19] V. Kacholia, et al. Bidirectional Expansion For Keyword Search on
Graph Databases. In VLDB, 2005.

[20] W. Kevin, et al. Efficient RDF Storage and Retrieval in Jena2. In
SWDB, 2003.

8

Appendix
cSPARQL by Example
We now show how the search requests in Ex. 1.1 case1-6 can be expressed
using cSPARQL.

Query 1. (CAP query without constraints)
Ex. 1.1 Case1: Find how Azriel connects to Ben;
SELECT ??p WHERE
{Azriel ??p Ben}

Results: The results are all the e-fragments connecting Azriel to Ben which
are omitted due to space limitation.

Query 2. (CAP query with length constraint)
Ex. 1.1 Case2: Find the close ties (within 3 steps) between Azriel and Ben;

SELECT ??p WHERE
{Azriel ??p Ben .
FILTER(Length(??p)<=3)) }

Results: omitted.

Query 3. (CAP query with node intersection constraint)
Ex. 1.1 Case3: Find how Azriel connects to Ben through Chris or Dan;

SELECT ??p WHERE
{Azriel ??p Ben .
FILTER(NodeIntersection(??p, {Dan, Chris})) }

Result:
foaf−−−→ C

foaf−−−→ D
workfor−−−−−−→

foaf−−−→ C
coauthor−−−−−−→ F

foaf−−−→ D
workfor−−−−−−→

foaf−−−→ C
coauthor−−−−−−→ F

workfor−−−−−−→ H
workfor−−−−−−→ D

workfor−−−−−−→
workfor−−−−−−→ F

foaf−−−→ D
workfor−−−−−−→

workfor−−−−−−→ F
workfor−−−−−−→ H

workfor−−−−−−→ D
workfor−−−−−−→

workfor−−−−−−→ F
advisedby−−−−−−−→ C

foaf−−−→ D
workfor−−−−−−→

Query 4. (CAP query with node coverage constraint)
Ex. 1.1 Case4: Find how Azriel connects to Ben through at least two people
from Chris, Dan and Ida within four steps.

SELECT ??p WHERE
{Azriel ??p Ben
CONSTRAINTSET People

{Chris, Dan, Ida} .
FILTER(Length(??p)<=4) .
FILTER(NodeCoverage(??p, People))>0.6 }

Results:
foaf−−−→ C

foaf−−−→ D
workfor−−−−−−→

foaf−−−→ C
coauthor−−−−−−→ F

foaf−−−→ D
workfor−−−−−−→

foaf−−−→ C
coauthor−−−−−−→ F

foaf−−−→ D
workfor−−−−−−→

workfor−−−−−−→ F
advisedby−−−−−−−→ C

foaf−−−→ D
workfor−−−−−−→

Query 5. (CAP query with edge context constraint)
Ex. 1.1 Case5: Find Azriel’s close (within 4 steps) professional connections
(e.g. relationships such as workfor, coworker, coauthor to Ben;

SELECT ??p WHERE
{Azriel ??p Ben
CONSTRAINTSET ProfSet

{coworker, workfor, coauthor} .
FILTER(Length(??p)<=4) .
FILTER(EdgeContext(??p, ProfSet)) }

Results:
workfor−−−−−−→ F

workfor−−−−−−→ H
workfor−−−−−−→ D

workfor−−−−−−→
Query 6. (CAP query with edge relevance constraint)
Ex. 1.1 Case6: Find Azriel’s close (within 4 steps) semi-professional con-
nections to Ben (e.g. half of the relationships in any tie should be profes-
sional);

SELECT ??p WHERE
{Azriel ??p Ben .
CONSTRAINTSET ProfSet

{coworker, workfor, coauthor} .
FILTER(Length(??p)<=4) .
FILTER(EdgeRelevance(??p, ProfSet)>=0.5) }

Results:
foaf−−−→ C

coauthor−−−−−−→ F
foaf−−−→ D

workfor−−−−−−→
foaf−−−→ C

coauthor−−−−−−→ F
foaf−−−→ D

workfor−−−−−−→
workfor−−−−−−→ F

foaf−−−→ D
workfor−−−−−−→

workfor−−−−−−→ F
advisedby−−−−−−−→ C

foaf−−−→ D
workfor−−−−−−→

workfor−−−−−−→ F
workfor−−−−−−→ H

workfor−−−−−−→ D
workfor−−−−−−→

Lemma and Proof
LEMMA 4.1. Given an en-fragment fn generated in the DFS of CAP (ns,

nd, φ) and a keyword set S, for any e-fragment fe ∈ Ext(fn) with
|fe| > 1,

|S ∩ (λ(nodes(fn))|
|S| ≤ NodeCoverage(fe)

≤
(|S∩(λ(nodes(fn))|+|fe|−|fn|−1

|S| ∗
1 Otherwise

(1)

|S ∩ (λ(nodes(fn))|
|fe| − 1

≤ NodeRelevance(fe)

≤
(|S∩(λ(nodes(fn))|+|fe|−|fn|−1

|fe|−1
∗

|S|
|fe|−1

Otherwise
(2)

∗ |fe| ≤ |S|+ (|fn| − |S ∩ (λ(nodes(fn))|) + 1

PROOF. As fe ∈ Ext(fn), we have fn ≺ fe. The total number of
keywords in S that is covered by fe is

|S ∩ λ(nodes(fe))| = |S ∩ (λ(nodes(fn)) ∪ λ(nodes(fn))|
= |S ∩ (λ(nodes(fn))|+ |S ∩ λ(nodes(fn))|

Here, we took advantage of the fact that fe is an acyclic path, hence
λ(nodes(fn)) ∩ λ(nodes(fn)) = φ.

The two extreme cases of fn are
1. fn contains no keyword, e.g. S ∩ λ(nodes(fn)) = φ; and
2. fn contains maximum number of keywords it can possibly

have. In the case that the length of fn is less than the number
of keywords in S not yet covered by fn, e.g. |nodes(fn)| ≤
|S − λ(nodes(fn))| (the same as specified in *), the labels
of all nodes in fn are keywords, e.g. S ∩ λ(nodes(fn)) =
λ(nodes(fn)). Otherwise, fn will cover all keywords not
covered by fn, rendering |S ∩ λ(nodes(fe))| = |S|.

Applying the formula in Def 2.2 to these cases, (1) and (2) are
proved.

Similarly, we can project the upper and lower bounds of edge
coverage and relevance of any extension of a given en-fragment.

LEMMA 4.2. Given an en-fragment fn generated in the DFS
of CAP (ns, nd, ∅) and a keyword set S , for any e-fragment fe ∈
Ext(fn),

|S ∩ (λ(edges(fn))|
|S| ≤ EdgeCoverage(fe)

≤
(|S∩(λ(edges(fn))|+|fe|−|fn|

|S| ∗∗
1 Otherwise

(1)

∗∗ |fe| ≤ |S|+ (|fn| − |S ∩ (λ(edges(fn))|)
Σl∈ScntE(l, fn)

|fe|
≤ EdgeRelevance(fe)

≤ Σl∈ScntE(l, fn) + |fe| − |fn|
|fe|

(2)

LEMMA 4.3. While applying cDFS algorithm to answer a core
CAP query CAP (ns, nd, τ), if an en-fragment fnm is deemed

9

promising at the m’th step, then in the next k steps, the en-fragment
fnm+k with fnm ≺ fnm+k is guaranteed to be promising if

0 ≤ k ≤ MAX(0, SkippedStep(fnm)) with

SkippedStep(fnm)

= MIN(lmax − |fnm |,
lmax + |S ∩ (λ(nodes(fnm))| − |S| × τncmin − |fnm | − 1,

lmax + |S ∩ (λ(edges(fnm))| − τecmin × |S| − |fnm |,
(1− τnrmin)× lmax + |S ∩ (λ(nodes(fnm))| − |fnm | − (1− τnr),

lmax × (1− τermin) + Σl∈ScntE(l, fnm)− |fnm |)
PROOF. Let’s consider, as an example, the evaluation of a core

CAP query in which only τncmin and τlmax are explicitly given.
Assume that an en-fragment fnm is not pruned in the m’th step in
DFS; this indicates that we estimate that all NodeCoverage(fe) ≥
τncmin for all fe ∈ Ext(fnm). Applying Lemma 4.1, we have

|S ∩ (λ(nodes(fnm))|+ τlmax − |fnm | − 1

|S| ≥ τncmin

e.g. |fnm | ≤ |S ∩ (λ(nodes(fnm))|+ τlmax − τncmin × |S| − 1. k
steps later, fnm+k Â fnm is generated by including k more nodes.
The worse case is that none of the k nodes matches a keyword,
thus |S ∩ (λ(nodes(fnm+k))| = |S ∩ (λ(nodes(fnm))|. For this
worst-case fnm+k to be deemed promising, it is required that

|fnm |+ k ≤ |S ∩ (λ(nodes(fnm))|+ τlmax − τncmin × |S| − 1

The fact that the worst-case fnm+k is deemed promising in-
dicates that all other en-fragments in Ext(fnm) of length m+k
should be promising. Hence, at the m’th step, when fnm is deemed
promising, if the formula above also holds, we can predict that
within the next k steps, where k ≤ |S ∩ (λ(nodes(fn))| − |fn|+
τlmax − τncmin × |S| − 1 , no extension of fnm will be pruned.

Similarly criteria can be established for constraints on other quan-
titative metrics, e.g. other components in the formula.

LEMMA 5.1. Given a core CAP query with constraint τ , Q is
the query node set, then, QNS qns is guaranteed to be invalid if
any of the following condition is NOT satisfied.

1. Fxe(qi, qj) 6= ∅ for all pairs of adjacent nodes in qns;

2. MinLen(qns) ≤ τlmax ; or

3. τncmin ≤ |qns|
|S| ≤ τncmax ; or

4. τnrmin ≤ |qns|
MinLen(qns)−1

≤ τnrmax .

PROOF. Condition (1) is straightforward.
We use MinLen(qns) to represent the accumulative length of

the shortest path among the xe-fragments between every pairs of

adjacent nodes in qns, e.g. MinLen(qns) =
|qns|−1P

i=0

minL(qi, qj),

where minL(qi, qj) = (minf∈Fxe(qi,qi+1)|f |). Therefore, qns is
guaranteed to be invalid if MinLen(qns) > τlmax .

Projected values ranges on other quantitative metrics can be con-
sidered and condition (3)(4) be proved in similar manner.

LEMMA 5.2. Given a QNS qns, an xe-fragment fxe ∈ Fxe(qi, qi+1)
(i<|qns|) can contribute to the join result of ./τ (qns,MFxe) only
if

|fxe| ≤ τlmax −MinLen(qns) + minL(qi, qi+1)

Algorithm 3 ecDFS
Data: data graph G, course node ns, destination node nd, con-

straint τ .
Result: All acyclic e-fragments from ns to nd satisfying τ .
begin

1 Array results← {}
2 HashTable V isitedNodes← {}
3 V isitedNodes.Add(ns)
4 Array<Edge> fn ← ()
5 Stack Stk ← {}
6 Stack Stkskipped ← {}
7 cur_steps← 1
8 num_skipped_step← 0
9 for e in ns’s outgoing edges do

10 Stk.Push(e)

11 while !Stk.isEmpty() do
12 Edge e← Stk.Pop()
13 if e==(null,null) then
14 Edge tailEdge← fn.RemoveTailEdge()
15 V isitedNodes.Remove(tailEdge.endNode)
16 cur_steps−−
17 if cur_steps ≤ 0 then
18 num_skipped_step = Stkskipped.Pop()
19 cur_steps = num_skipped_step

20 Continue

21 if !V isitedNode.Contains(e.endNode) then
22 fn.Concatenate(e)
23 booleanflag ← true
24 if e.endNode == B then
25 if fn satisfies constraints then
26 results.add(fn.clone())

27 else
28 if cur_step > num_skipped_step then
29 Array projRanges = computeProjRange(fn,

τ)
30 if Overlapped(projRanges, τ) then
31 Stkskipped.Push(num_skipped_step)
32 num_skipped_step ←

SkippedStep(fn)
33 cur_steps = 0

34 else
35 flag ← false

36 if flag==true then
37 V isitedNodes.Add(e.endNode)
38 Stk.Push((null, null))
39 for e’ in e.endNode’s outgoing edges do
40 Stk.Push(e’)

41 cur_steps + +
42 Continue;

43 fn.RemoveTailEdge()

44 Return results;

10

Figure 5: Additional Performance Comparison

PROOF. Given an xe-fragment fxe ∈ Fxe(qi, qi+1) where qi

and qi+1 are two adjacent query nodes in qns, assume fe ∈./τ

(qns,MFxe) and fxe is a subsequence of fe. Based on the con-

catenation operation in Def. 5.1, |fe| > |fxe|+
i−1P
i=0

minL(qi, qi+1)+

|qns|−1P
i=i+1

minL(qi, qi+1). Based on the selection operation in Def. 5.1,

|fe| < τlmax . Therefore, |fxe| ≤ τlmax − MinLen(qns) +
minL(qi, qi+1).

Algorithm ecDFS
ecDFS Algorithm The ecDFS algorithm, as shown in Alg. 3, is
based on the cDFS algorithm 1, with additional bookkeeping to en-
able the skip of computation and verification of some en-fragments.
S&J Algorithm

Here, we provide more details about the search phase of the S&J
algorithm.

Associated with each BFS starting from a node q, besides the
information to be kept for a classic BFS, such as current search
step, the search frontier, and the intermediate results (in M), we
keep track of the following information with the sole purpose be-
ing minimizing final results (cQNS and cMFxe) and minimizing
intermediate steps in generating such results: (1) the status which is
initialized to be incomplete, will become complete if all gFxe(q, ∗)’s
are complete or its search frontier is empty; (3) search range which
is initialized as τlmax , will become more restricted as the BFS pro-
ceeds; and (3) checklist (CLq) which includes all query node qj

such thatM(qi, qj) is incomplete.
An outline of the search phase of the S&J algorithm is shown

in Alg. 2. It starts withM being empty, all bookkeeping variables
initialized as discussed above. It ends when all QNSs are either
invalid and pruned or complete. We now discuss the details of the
three critical operations: Pick, Expand and Adjust.

Pick: Each time, we pick a query node such that advancing the
BFS starting from this node has the potential to prune the maximum
number of invalid QNSs and restrict the search ranges of the BFSs
of itself and other query nodes most sharply. Our strategy is to pick
the query node that is depended by most conditional QNSs. To
break a tie, we pick the node that is depended by most incomplete
QNSs. If there is still a tie, we pick the most unexpanded node.

Expand: Given the picked node q, invoking the expand operation
results in advancing one step further from every node in q’s frontier
in a BFS manner, followed by bookkeeping: if expanding to node n
leads to the discovery of a new xe-fragment, e.g. n in q’s checklist,
add the xe-fragment toM(q, n); otherwise if n is inQ, the branch
is pruned; otherwise, insert n into q’s next search froniter.

Adjust: After a Expand step on q, we use the information newly

obtained to adjust the following status:
1. The status of QNSs: With an addition toM, we may be able

to upgrade a QNS from conditional to complete or from in-
complete to complete. Any failure to add new e-fragment to
M when a BFS reaches a certain depth may render a QNS
invalid and pruned. We check all QNSs that depends on node
pairs whose corresponding cell inM or whose minl has been
changed by the Expand process, and adjust the status of these
QNSs and their dependency to node pairs accordingly.

2. the status of a cell inM and the BFSs: As the dependency of
QNSs on node pairs changes, the cells inM that correspond
to these node pairs may change from incomplete to complete.
And in a cascade effect, mark a node to be complete and BFS
to be complete and terminated.

3. The search range and check list of BFS: For any BFSs that
are not yet to be terminated, we adjust search range and check
list to tighten constraints on further expansion. For any new
frontier n introduced in the Expand process, we check every
QNS qns depending on (q, n) and update the search range
of the BFS starting from all other nodes in qns. Please note
that the search range of a BFS may be impacted by both node
pair (q, n) and (q, n′), with both n and n′ the newly added
frontiers. In this case, we pick the tightest bound to be the
new search range for the BFS. Checklist is updated to reflect
the newly established/eliminated dependency between QNSs
and node pairs.

Additional Experimental Results
Besides the results presented in the paper, we also conduct experi-
ments on the following sets of queries to better understand the per-
formance of the algorithms we propose.
• Qec queries queries have fixed τlmax (=7) and S , and vary on

τecmin ;
• Qer queries have fixed τlmax (=7) and S, and vary on τermin ;

• Qkp queries have fixed length constraint (τlmax = 7), fixed
node coverage constraint (τncmin = 0.4) and fixed S with
|S| = 10, but vary on the keywords and include some that do
not appear on any path from ns to nd.

The Fig. 5(a) and Fig. 5(b) show that our proposed approaches,
cDFS and ecDFS, can take advantage of edge coverage and rele-
vance constraint to efficiently evaluation CAP queries.

As shown in Fig. 5(c), the number of unrelated keywords in-
creases, the performance of cDFS and ecDFS keeps the same, while
the performance of S&J algorithm decreases because searching the
neighborhood of unrelated constraint nodes adds to the cost but not
contributing to the results.

11

