
Infrastructure and Workflow for the Formal Evaluation of
Semantic Search Technologies

Stuart N. Wrigley
Dept. Computer Science

University of Sheffield, UK
s.wrigley@dcs.shef.ac.uk

Raúl García-Castro
Facultad de Informática

Universidad Politécnica de
Madrid, Spain

rgarcia@fi.upm.es

Cássia Trojahn
INRIA&LIG

Montbonnot Saint Martin,
France

cassia.trojahn@inrialpes.fr

ABSTRACT
This paper describes an infrastructure for the automated
evaluation of semantic technologies and, in particular, se­
mantic search technologies. For this purpose, we present an
evaluation framework which follows a service-oriented ap­
proach for evaluating semantic technologies and uses the
Business Process Execution Language (BPEL) to define eval­
uation workflows that can be executed by process engines.
This framework supports a variety of evaluations, from dif­
ferent semantic 3X63*3. including search, and is extendible to
new evaluations. We show how BPEL addresses this diver­
sity as well as how it is used to solve specific challenges such
as heterogeneity, error handling and reuse.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software/Program Verifica­
tion; D.2.8 [Software Engineering]: Metrics—complexity
measures, performance measures

General Terms
Experimentation, Measurement, Performance

Keywords
Semantic Technology Evaluation, Semantic Search, Evalua­
tion Infrastructure, Workflows, BPEL

1. INTRODUCTION
Semantic technologies play a critical role in the recent ad­

vances in both web services and corporate knowledge man­
agement. Such developments are revolutionising the way in­
formation and knowledge are processed. Semantic technolo­
gies provide ways to express knowledge and data so that they
can be properly exploited by computers in an automated
way for different purposes such as information retrieval or
data integration. The evaluation of such technologies is crit­
ical for their sustained improvement and adoption, allowing
users to assess the suitability of current technologies to their

needs. Some initiatives have already created a basis for se­
mantic technology evaluation, such as those in the 3Í63S of
ontology matching [3], ontology engineering [5, 6], ontol­
ogy reasoning [7, 11], semantic search [9] or semantic web
services [10, 13]. However, additional effort is required to
accommodate the growth of the field, since evaluation is
still costly, both in terms of reusing evaluation resources de­
fined by others and of actually executing evaluations and
analysing their results.

Manual evaluation of software does not scale when one
tool has to be evaluated several times, when multiple tools
have to be evaluated in exactly the same way, or when mul­
tiple tools have to be evaluated in more than one way. To
ensure repeatability and allow comparison of tool results,
such evaluations ought to be automated (and indeed use
identical compute resources). However, such automation is
a complex task that requires: a) the coordinated interac­
tion in an evaluation workflow of all the involved resources,
e.g., tools, test data and interpreters; b) the definition of
such evaluation workflows in some machine-processable for­
mat; and c) the ability to cope with the heterogeneity of
the different evaluation resources. The work conducted by
the Semantic Evaluation at Large Scale (SEALS) project1

has developed a comprehensive solution - the SEALS Plat­
form [4] - which encompasses all of these factors.

The SEALS Platform is an open infrastructure for the
evaluation of semantic technologies that offers independent
computational and data resources for the evaluation of those
technologies. To this end, the SEALS Platform provides a
common evaluation framework, based on the reusability of
evaluation resources, in which different types of semantic
technologies can be automatically evaluated. It is responsi­
ble for all aspects of the evaluation: test data management;
tool configuration and execution; result and interpretation
generation and storage, etc. In order to ensure reproducibil­
ity and allow direct performance comparison, the entire eval­
uation is conducted within the SEALS Platform. In other
words, all test data is stored locally 3S 3f6 the tools to be
evaluated. The tools themselves are executed within the
SEALS Platform (using virtual machine approaches to han­
dle operating system dependencies) and once one or more
tools have been evaluated, the generated results and any
subsequent analyses are also stored locally and are made
available for visualisation.

A major implication of this self-contained approach is that
the tool to be evaluated must be controllable programmat-
ically - all its operations must be accessible to the SEALS

www.seals-project.eu

mailto:s.wrigley@dcs.shef.ac.uk
mailto:rgarcia@fi.upm.es
mailto:cassia.trojahn@inrialpes.fr
http://www.seals-project.eu

Platform without human intervention. Therefore, in order
for any tool to be run, it must meet certain integration cri­
teria regarding the capabilities that have to be exposed to
the platform - it must implement a specific API. Such func­
tionality includes means of deploying and undeploying a tool
as well as functionalities specific to a particular type of tool
(for instance, 'match' for an ontology matching tool or 'ex-
ecuteQuery' for a search tool). The API is specified by the
evaluation organiser and all participating tools must imple­
ment this API (usually a 'wrapper' around an existing tool).

This design allows the SEALS framework to deal with a
variety of heterogeneous evaluations, from different semantic

and is extendible to encompass new evaluations. Nat­
urally, the steps necessary to evaluate an ontology matching
tool will be very different from those to evaluate a semantic
search tool. Therefore, we use the Business Process Exe­
cution Language (BPEL) [1] to provide an efficient means
of scripting the entire lifecycle of a particular evaluation (a
workflow). Again, the creation of this workflow is the re­
sponsibility of the evaluation organiser.

Indeed, the versatility of the platform was demonstrated
during the first worldwide SEALS evaluation campaign held
during mid-2010 in which tools from five different seman­
tic technology fields (ontology engineering, semantic search,
semantic web services, ontology matching, storage and rea­
soning) were formally evaluated using this infrastructure [12]
(see [15] for details of the search evaluation and its results).

State-of-the-art semantic search approaches are charac­
terised by their high level of diversity both in their features
as well as their capabilities. Such approaches employ differ­
ent styles for accepting the user query (e.g., forms, graphs,
keywords) [14] and apply a range of different strategies dur­
ing processing and execution of the queries. They also differ
in the format and content of the results presented to the
user. All of these factors influence the user's perception of
performance and usability.

Semantic search technologies can be evaluated on the ba­
sis of different criteria and metrics [16, 9]. At the core of any
search task is the retrieval of pertinent information; search
evaluations employ several questions which are applied to a
particular ontology and dataset. Since the answer set for
each question is finite and known a priori, the measures
of precision (true positive/retrieved) and recall (true posi­
tive/expected) are used. We are also interested in how tools
cope with increasingly large datasets (scalability) which, in
turn, affects tool efficiency with respect to CPU load and
memory usage. Since search is an inherently user-oriented
task, evaluation must also consider metrics such as how long
it takes for a query to be executed. In this paper, we focus
on a semantic search evaluation workflow (see Sec. 3).

Our approach deals with the inherent heterogeneity when
considering technologies from diverse as semantic
search, ontology engineering and semantic web service dis­
covery to name but three. We achieve this at two levels:
at a logical level, where we have specified a common frame­
work for the evaluation of semantic technologies that allows
defining common structures and behaviours for the differ­
ent evaluation entities; and at a technical level, where we
abstract out technology heterogeneity by defining a Service
Oriented Architecture that includes all the evaluation ser­
vices needed for particular semantic technology evaluations.

The goal of this paper is to present an evaluation frame­
work that follows a service-oriented approach for evaluating

Figure 1: The SEALS evaluation platform.

semantic search technologies and how BPEL is used to de­
fine evaluation workflows that can be processed by the plat­
form. The paper is organised as follows. Section 2 gives
an overview of the SEALS Platform and presents the pro­
cess that takes place when executing evaluations. Section 3
presents an abstract evaluation workflow and then shows
how this has been implemented for semantic search technol­
ogy evaluations. Finally, Section 4 draws conclusions from
the work presented in this paper and proposes future lines
of work.

2. EVALUATION EXECUTION PROCESS
The different entities that participate in an evaluation are

the following: in any evaluation a given set of tools are eval­
uated, following a given evaluation workflow and using pre­
determined test data and evaluation criteria. As an outcome
of this process, a set of evaluation results is produced. Eval­
uation results are classified2 according to their provenance,
differentiating raw results (those evaluation results directly
generated by tools) from interpreted results (those generated
from raw results when applying some evaluation criterion).

The SEALS Platform (Figure 1) has been developed around
these evaluation entities; the service-oriented architecture of
the platform comprises a number of components responsible
for: coordination and consistency management (SEALS Ser­
vice Manager), management of the platform entities (Test
Data, Tools, Results, and Evaluation Descriptions Reposi­
tories), and evaluation execution (Runtime Evaluation Ser­
vice).

Next, we describe the evaluation execution process that
takes place in the SEALS Platform when a user requests the
execution of an evaluation description (i.e., workflow) over
a certain tool and using some test data. A detailed descrip­
tion of this process and of the management of computing
resources and tools in the platform can be found in [2].

Figure 2 depicts the main interactions between the plat­
form software components during an evaluation execution3.

2The classification adopted in SEALS is in accordance with
the approach followed in the IEEE 1061 standard for a soft­
ware quality metrics methodology [8].
3We use BPMN, the standard notation for business pro­
cesses, for illustrating the platform processes.

These interactions occur during three sequential stages that
are described below.

2.1 Execution Request Analysis
The SEALS Portal is the entry point for users to launch

evaluation executions. An evaluation execution request spec­
ifies the tool to be evaluated, the evaluation description to
execute, and the test data to use as input. The SEALS Ser­
vice Manager (SSM) is responsible for orchestrating the exe­
cution request. To this end, the Runtime Evaluation Service
(RES) retrieves the evaluation description from the Evalua­
tion Descriptions Repository (EDR), analyses the execution
request in order to guarantee that it can be processed, and
prepares all the information that is required for executing
the rest of the evaluation process.

Among other things, the analysis includes checking the
evaluation description (i.e., validating the syntax of the eval­
uation description and checking that the workflow described
is well-defined) and checking if the execution request argu­
ments satisfy the evaluation description contract (i.e., verify­
ing the availability and type of the specified entities). If any
of these verifications fails (syntax, semantics, or resources),
the stage will fail and thus the processing of the execution
request will terminate.

2.2 Execution Environment Preparation
Once the RES has checked that the execution request may

be safely executed, the execution environment is prepared,
that is, to prepare: a) the set of computing resources where
the tools to be evaluated during the execution of the eval­
uation description are physically run and b) the evaluation
workflow and any custom services required by it.

Tools available for the evaluation are stored in the Tools
Repository (TR) and each tool may have its own computing
requirements (i.e., operating system or third party applica­
tions). Therefore, in order to enable the reuse of the limited
shared resources, the RES is in charge of preparing the com­
puting resources according to the requirements of the tools
under evaluation.

This preparation is carried out in two steps. First, the
RES requests from the SSM the computing resources that
are needed for executing the tools involved in the evaluation
description. Then, once the computing resources have been
acquired, the RES deploys the tools to be used during the
execution of the evaluation description, as well as any third
party application required by the tools.

More specifically, an evaluation description includes, be­
sides the evaluation workflow, those evaluation-specific ser­
vices required by the workflow; these services are differ­
ent from those generic services provided by the platform,
e.g., the repository services, and mainly deal with applying
evaluation-specific metrics to evaluation raw results in order
to obtain the corresponding interpretations.

The RES must deploy in the platform the evaluation work­
flow included in the evaluation description as well as those
services that are invoked from it.

2.3 Evaluation Description Execution
At this stage the RES enacts the workflow defined in the

evaluation description following the defined control flow and
executing the activities specified within the workflow. The
execution of these activities is composed of one or more

Request
evaluation

Report
status

execution

Process
evaluation

request .

Process
resources

l̂ request J

Figure 2: The evaluation execution process.

steps, depending on the specific activity and the current
state of execution:

1. The first step is to stage-in all the data from the Test
Data Repository (TDR) to be used in the activity; i.e.,
making the data involved available in the computing
resource where the activity will be executed.

2. Once the data is available, it is time to execute the
particular activity. The activity can imply invoking
a tool's functionality or the interpretation of raw re­
sults by means of specific software artefacts, i.e., the
interpreters.

3. Regardless of the specific activity executed, the next
step consists of storing the results obtained in the Re­
sults Repository (RR). These results will be raw results
if the activity executed was the invocation of a tool's
functionality, and interpreted results otherwise.

4. Finally, any data that is not going to be further used
in the computing resource should be deleted and thus
the storage space freed. This final step will occur even
if any previous step has failed to complete.

An important issue during the whole process is to handle
eventual execution errors, either those that do not affect the
normal flow of the process or those that are returned by
services in response to a request that cannot be processed.

3. EVALUATION WORKFLOWS
In this section, we focus on evaluation descriptions and in

particular their BPEL workflows. First we present a generic

Figure 3: Generic evaluation workflow.

evaluation workflow and then show how it can be imple­
mented for semantic search tool evaluations.

Figure 3 presents a generic evaluation workflow that cor­
responds to the Execute evaluation description process de­
picted in Figure 2. Any evaluation workflow requires in­
teraction with the services provided by the Test Data and
Results Repositories, as well as with those services that are
specific to the evaluation (i.e., for accessing the deployed
tool and interpreting raw results):

• The t e s t data repos i tory service provides access
to the Test Data repository, in order to iterate over a
test suite and retrieve its test items.

• The too l service provides access to a deployed tool.

• The r e s u l t s repos i tory service provides access to
the Results Repository, in order to add raw results and
interpretations.

• The r e s u l t s composer service is a utility service that
provides operations for bundling all the results gener­
ated during an evaluation execution (either raw results
or interpretations).

• The i n t e r p r e t e r service provides access to custom
metrics implementations.

As Figure 3 shows, a typical evaluation workflow starts
by receiving from the client process two input parameters:
the identifier of the tool to be evaluated and the identifier
of the test suite. Then, the execution environment is set up
by loading the test suite from the Test Data Repository and
by initialising the metadata that will describe the execution

and its results. As presented in Figure 2, before the work­
flow execution, the Runtime Evaluation Service has already
deployed the tool to be evaluated from the Tools Repository
to a concrete computing resource.

The evaluation workflow iterates over all the test cases
in the test suite and performs the following tasks in each
iteration:

1. The tool service is invoked passing as parameters cer­
tain data items that are contained in the test case def­
inition (which are particular to each evaluation).

2. The output of the tool invocation is the raw result that
is sent to the results composer service to be bundled.

3. The interpreter service (which implements some eval­
uation metrics) derives from the raw result the inter­
pretation of the test case execution and sends it to the
results composer service to be bundled.

When all the test cases have been executed, the results
composer service creates two bundles described with the
corresponding metadata, one with the raw results of every
test case and another with the interpretations, that are later
stored in the Results Repository. Since the workflow is asyn­
chronous, a callback notification message with a successful
response is sent to the client consuming the workflow, when
its execution finishes.

For semantic search evaluations, a test suite is composed
of a single ontology, a set of questions and a corresponding
set of groundtruths (answers). Within such a suite, a test
case is a combination of the ontology, a question and that
question's corresponding groundtruth.

The graphical representation of the semantic search BPEL
workflow implementation is shown in Figure 4. A BPEL
workflow allows interactions with one or more web services
to be scripted; little computation is possible within the BPEL
itself other than the execution flow control (conditional branch­
ing, repetition, etc). Individual web services that can be ac­
cessed via the BPEL are termed partner links. A request to
execute a particular method associated with a partner link
is termed an invocation. In most cases, an invocation has
some parameters associated with it; therefore, immediately
before any invocation in the BPEL workflow, there will be
an assign step, in which the appropriate data is associated
with the invocation's request parameter.

Since the RES only provides generic workflow execution,
it is necessary to make additional services available in order
to fulfil the semantic search tool evaluation requirements.
Such services include timers for measuring how long partic­
ular stages of the processing take and a service for analysing
the tool's query results in order to compute the precision, re­
call and f-measure metrics. Consequently, these services are
implemented as custom web services (identified in Figure 4
as timestamp: and ana lys i s :) , which can be deployed on
an ad hoc basis within the SEALS Platform at runtime.

On the SEALS Platform, a BPEL workflow is initiated
with four parameters: two specifying the evaluation-specific
configurations and two SEALS Platform-generated parame­
ters. The latter are necessary for the platform-internal pro­
cess tracking; the former specify the test data suite and its
associated version to be used within the evaluation. As part
of the platform-internal process tracking, the SEALS Plat­
form parameters must be associated with all partner link in­
vocation requests (this is achieved in the setHeadersForIn­
vocations step).

The Result Composer Service provides a service for col­
lating results when an evaluation is being executed. Such
results are collated into a bundle; one further part of the
bundle structure is the metadata for describing the result
contents. This data is associated with the results bundle in
the rc:addHetadata step.

The Test Data Repository service provides functionality
for iterating over a test data suite's test cases. However, in
order to do this, the Test Data Repository must first 'load'
the test suite (the td r s : loadTes tSu i te step). The t d r s :
hasNextTestCase step ensures that the parameter for the
while loop has been initiated.

Finally, before the core evaluation work starts (within
While more t e s t cases), the tool is instructed not to launch
its GUI (since, if present, it is unnecessary).

Once the While more t e s t cases loop has been entered,
the next test case from the suite is loaded (td r s : nextTest-
Case). Each test case has the same ontology associated with
it. Therefore, it is only necessary for the tool to load it
once. This is achieved by using a BPEL-local variable to
determine whether the tool has loaded the ontology yet. If
not, the URL of the ontology is retrieved from the Test Data
Repository (tdrs:getOntologyURL) and the tool is asked to
load it (tool:loadOntology). The amount of time taken to
load the ontology is recorded.

Following this, the test question associated with this test
case is retrieved (tdrs :getQuestionURL) and is passed on to
the tool for the query execution phase (tool : executeQuery).
It may take some time for the tool to complete the query,
hence the BPEL workflow includes a while loop repeating

O reteivelnpui

— Inlt lJ l lzeConstants

j setHtadersror l i ivocat S'is

| f „ c t o n . - n d l .

t¡?" re add Metadata

: setParamsTcLojdTeitSuii

i ;
tdrsloadTestSuile

'siliasNextTeslCase

E

I § 5efl jent

xy If oncology not loaded

If ontology n t t j a ; l ; c l

i

n 5T0 G etO mologyU EL

<*? tdrsigelOntologyUKL

5 et Pa ram sTc LoadOnto I o-gy

' i :T i r i - : iUr rpBeforeLoac

t£? tool: load Oncology

ffi times tamp: getTime stamp

setOnto logy Loaded

set Pa ram ¡To C etQ jestioii UR L

<¿? tc1r;:getQije5llonUR.L

{7«
§ store TI m est amp Befo re Query

L#!

i :lsResu tSelReady

& tool: is Res jl iSel Ready l ^

SctPüi'STiST-jijCtC'í .ncH'i-T" JP.L

<£ td rs: getGro u ri dtrut li URL

< ? anilysis:getPRF

S setParamsToftddResultToBundle

•s iha jNexfTestDis

rcigetMsUdat

{*»
j selParamsToStoreRawResiilts

'ystoreRawResuli

| g SElOutpLt

i

Figure 4: BPEL workflow for the evaluation of se­
mantic search technologies. The right hand column
is a continuation of the left hand column sequence.

until the results are ready (tool : isResultSetReady). Once
this method returns true, the URL of the results file is ob­
tained from the tool (tool :getResults) and associated with
the results bundle (rc:addResultToBundle). Again, the
time required for the query to be executed is recorded. In ad­
dition, these results are used to compute the precision, recall
and f-measure associated with this query (analysis :getPRF).
The final task of the while loop is to check once more whether
there are any more test cases remaining (t d r s : hasNext
TestCase).

Once the core evaluation work has been completed, there
are some preprocessing steps required in order to finalise the
result bundle before it's ready for being uploaded to the Re­
sults Repository. The metadata stored at the beginning of
the BPEL workflow is retrieved (rc:getHetadata) and used
to create the final result bundle ZIP file (re: createBundle).
This is then stored in the Results Repository (r r s : s t o r -
eRawResults step).

The workflow is asynchronous, i.e., the client does not
wait for the complete execution of the evaluation. For that
reason a notification must be sent when the process finishes
(c l i en t : cal lbackClient) .

Note that this workflow makes use of two types of ser-

vice: ones common across all evaluations (e.g., services to
access the repositories) and custom services which provide
functionality specific to the evaluation of semantic search
technologies (e.g., computation of precision, recall and f-
measure).

4. CONCLUSIONS AND FUTURE WORK
This paper has presented an evaluation framework for se­

mantic technologies (such as semantic search), implemented
by the SEALS Platform. With the main goals of automa­
tion and reusability, all the evaluation entities used in the
framework are described in machine-processable formats and
based on standards. This has allowed us to define an auto­
matic process for executing evaluation workflows in a service-
oriented environment. The SEALS Platform has already
been used to host a worldwide evaluation campaign target­
ing a range of semantic technologies [12] including semantic
search tools [15].

We have also presented a BPEL workflow case study. Us­
ing BPEL to describe evaluation workflows significantly fa­
cilitates workflow reusability. Indeed, with the exception of
the tool and interpreter services, the rest of the services are
reused across all the evaluations. Furthermore, the use of
a standardised approach such as BPEL facilitates the cre­
ation of new evaluation workflows by researchers who may
be unfamiliar with the rest of the platform infrastructure.

Future work will include implementing validation func­
tionalities that allow the correctness of the evaluation enti­
ties (evaluation workflows, tools, test data, and results) to be
ensured before evaluation workflow execution. This would
allow the detection of potential problems in advance, e.g.,
when test data are uploaded to the Test Data repository or
during the definition of an evaluation workflow.

5. ACKNOWLEDGMENTS
The authors would like to thank Jéróme Euzenat, Liliana

Cabral and Mikalai Yatskevich for their valuable comments
on a previous version of this paper. The authors would also
like to thank the other members of the SEALS consortium.
The authors are partially supported by the SEALS EU FP7
project (IST-2009-238975).

6. REFERENCES
[1] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera,

Y. Goland, N. Kartha, Sterling, D. Konig, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu.
Web services business process execution language
version 2.0. OASIS Standard Committee, April 2007.

[2] M. Esteban-Gutiérrez, R. García-Castro, and
A. Gómez-Pérez. Executing evaluations over semantic
technologies using the SEALS Platform. In
Proceedings of the International Workshop on
Evaluation of Semantic Technologies (IWEST 2010).

[3] J. Euzenat et al. Results of the ontology alignment
evaluation initiative 2010. In Proc. of the 5th
Workshop on Ontology Matching (OM-2010),
collocated with ISWC-2010, pages 85-117, Shanghai
(CN), 2010.

[4] R. García-Castro, M. Esteban-Gutiérrez, and
A. Gómez-Pérez. Towards an infrastructure for the
evaluation of semantic technologies. In Proceedings of
the eChallenges 2010 Conference, Warsaw, Poland,
October 27-29 2010.

[5] R. García-Castro and A. Gómez-Pérez. RDF(S)
interoperability results for semantic web technologies.
International Journal of Software Engineering and
Knowledge Engineering, 19(8):1083-1108, December
2009.

[6] R. García-Castro and A. Gómez-Pérez.
Interoperability results for Semantic Web technologies
using OWL as the interchange language. Web
Semantics: Science, Services and Agents on the World
Wide Web, 8:278-291, November 2010.

[7] I. Horrocks and P. F. Patel-Schneider. DL systems
comparison. In Proc. of the 1998 Description Logic
Workshop (DL'98), volume 11, pages 55-57, 1998.

[8] IEEE. IEEE 1061-1998. IEEE Standard for a Software
Quality Metrics Methodology. IEEE, December 1998.

[9] E. Kaufmann. Talking to the Semantic Web —
Natural Language Query Interfaces for Casual
End-Users. PhD thesis, Faculty of Economics,
Business Administration and Information Technology
of the University of Zurich, September 2007.

[10] M. Klusch, A. Leger, D. Martin, M. Paolucci,
A. Bernstein, and U. Kuester. Annual International
Contest S3 on Semantic Service Selection.
h t tp : / /www-ags .dfk i .un i - sb .de /~klusch/s3 / .

[11] F. Massacci and F. M. Donini. Design and results of
TANCS-2000 non-classical (modal) systems
comparison. In TABLEAUX '00: Proceedings of the
International Conference on Automated Reasoning
with Analytic Tableaux and Related Methods, pages
52-56, London, UK, 2000. Springer-Verlag.

[12] L. Nixon, R. García-Castro, S. N. Wrigley,
M. Yatskevich, C. T. D. Santos, and L. Cabral. The
state of semantic technology today - overview of the
first SEALS evaluation campaigns. In I-SEMANTICS
2011 - 7th International Conference on Semantic
Systems, 2011.

[13] C. Petrie, T. Margaría, H. Lausen, and M. Zaremba.
Semantic Web Services Challenge: Results from the
First Year. Springer, 2009.

[14] V. Uren, Y. Lei, V. Lopez, H. Liu, E. Motta, and
M. Giordanino. The usability of semantic search tools:
a review. The Knowledge Engineering Review,
22(4):361-377, 2007.

[15] S. N. Wrigley, K. Elbedweihy, D. Reinhard,
A. Bernstein, and F. Ciravegna. Evaluating semantic
search tools using the SEALS Platform. In Proceedings
of the International Workshop on Evaluation of
Semantic Technologies (IWEST 2010) Workshop,
collocated at ISWC 2010, 2010.

[16] S. N. Wrigley, D. Reinhard, K. Elbedweihy,
A. Bernstein, and F. Ciravegna. Methodology and
campaign design for the evaluation of semantic search
tools. In Proceedings of the International Workshop on
Semantic Search, collocated at WWW 2010, 2010.

http://www-ags.dfki.uni-sb.de/~klusch/s3/

