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ABSTRACT
Principal Component Analysis (PCA) is a powerful method
in data analysis. In this paper, we employ the capabilities of
PCA combined with statistical fits to trace data to develop
tractable models that can be used to simulate the quality
of links in wireless mesh networks using the expected trans-
mission time (ETT) metric. We apply principal component
analysis to ETT traces from a wireless mesh network to de-
termine what features in the ETT traces are important and
to extract any meaningful relationships therein. We demon-
strate that PCA can be used to efficiently approximate large
volumes of ETT values. In particular, the ETT trace for
each link can be expressed as a combination of two basis
vectors – one fairly stable and the other containing the vari-
ations in time. We also show how the extracted features can
be employed to simulate ETT for a given network topology
with and without known ETT trace data.

Categories and Subject Descriptors
I.6.5 [SIMULATION AND MODELING]: Model De-
velopment—Modeling methodologies

General Terms
Algorithms, Design, Measurement

Keywords
Principal Component Analysis, Expected Transmission Time

1. INTRODUCTION
The Expected Transmission Time (ETT) for transmitting

a packet over a link has been used as a metric of wireless link
quality in mesh networks for the last several years [1]. ETT
is time varying and is derived from the Expected Transmis-
sion Count (ETX) [2] as follows: ETT = S

B
× ETX, where

S and B are packet size and link bandwidth respectively.
ETX, in turn, is calculated as ETX = 1/(1− p), where p is
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Abstract—Expected Transmission Time (ETT) is a useful
link quality metric in wireless networks. Principal Component
Analysis (PCA) is a powerful method in data analysis. In this
paper, we explored the capability of PCA when applying to ETT
trace from a wireless mesh network. We demonstrated that PCA
can be used to efficiently approximate large volume of ETT
values. In particular, ETT trace for each links can be expressed
as a combination of two basis vectors. We also showed how to
simulate ETT for a given network topology with and without
known ETT trace data.

I. INTRODUCTION

Expected Transmission Time (ETT) as a metric of wireless
link quality has been used for a long time [1]. It is derived
from Expected Transmission Count (ETX) [2] by multiplying
ETX with the time needed to transmit the whole packet on
the link ETT = S/B ∗ETX , where S and B are packet size
and link bandwidth respectively. ETX, in turn, is calculated as
ETX = 1/(1−p), where p is the probability of not successful
in transmission on a link. The value of p itself is determined as
p = 1− (1−pf )(1−pr), where pf and pr are the probability
of failure on the forward and reverse directions respectively.

In modeling wireless link quality, one can simulate the
value of ETT by assuming some error distribution on the link.
However, the value of ETT is more complex in its dynamic
nature, because the wireless link quality suffers path loss,
multi-path fading, static and mobile obstructions. In this paper
we aim to find a efficient way to extract the dynamic feature
from an ETT trace and use that to simulate the ETT value.
The structure of the paper is as follows. In section II we
describe the data and refer to the original source of the data.
In section III we present the method used to analyze the trace
data. Section IV is dedicated to present our findings while
we explored the data. The fourth section shows how can we
simulate ETT values. At last, we point out some limitations
of our work and suggest future works in section VI.

II. TRACE DATA

The datasets were collected by authors of [3] at the UCSB
mesh network. The authors used these ETT trace data to test a
design of a new routing protocol. However, we use the data in
a different way. We tried to extract information from the trace
data and use the extracted data to simulate the ETT value.

MeshNet is an indoor 802.11a/b network with 19 nodes,
93 (undirected) links. The original data consists of three ETT
datasets, which are collected at three different times. All the
results shown in this paper are only for the first dataset because
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Fig. 1. Logical network topology

TABLE I
NEIGHBORS LIST

Node Degree Neighbors

01 3 06 10 14
02 12 03 04 05 06 08 09 10 12 13 14 15 17
03 5 02 04 05 14 15
04 8 02 03 05 06 09 14 15 16
05 11 02 03 04 06 08 09 11 14 15 16 17
06 10 01 02 04 05 09 10 14 15 17 19
07 9 09 10 11 13 15 16 17 18 19
08 7 02 05 09 13 15 16 19
09 14 02 04 05 06 07 08 10 11 13 14 15 16 17 19
10 11 01 02 06 07 09 14 15 16 17 18 19
11 8 05 07 09 12 13 15 16 19
12 5 02 11 13 16 18
13 11 02 07 08 09 11 12 15 16 17 18 19
14 12 01 02 03 04 05 06 09 10 15 16 17 19
15 15 02 03 04 05 06 07 08 09 10 11 13 14 16 17 19
16 14 04 05 07 08 09 10 11 12 13 14 15 17 18 19
17 12 02 05 06 07 09 10 13 14 15 16 18 19
18 7 07 10 12 13 16 17 19
19 12 06 07 08 09 10 11 13 14 15 16 17 18

the other two datasets gives similar results. Figure 1 depicts
the topology of the network at the time the first dataset was
collected. Table I shows the list of neighbors for each node.
Trace files are generated each minute. One trace file contains
captured information in text lines. Each line starts with node
IP address and follows by pairs of IP address and measured
ETT value for each neighbor node.

Now we briefly summarize how ETT values were measured.

Figure 1: Logical network topology

the probability of unsuccessful transmission over a link. The
value of p itself is determined as p = 1 − (1 − pf )(1 − pr),
where pf and pr are the probabilities of failure on the for-
ward and reverse directions over the link respectively. The
values of pf and pr depend on the channel quality, distance
between nodes, interfering transmissions, collisions, traffic
distribution and flows. It is possible to simulate the value of
ETT by assuming some error distribution for bits or packets
on a given link. However, the value of ETT is more com-
plex due to the dynamic factors that impact it. While the
ETT value is often used to test the performance of routing
schemes and more recently for resilience analysis [3], we are
not aware of any reasonable models to simulate the ETT
values directly without a detailed link and network model
simulation. Here, we employ trace data for ETT values in
real networks to see whether they can be used to develop
models for simulating the ETT values.

We develop an efficient way to extract the dynamic fea-
tures from ETT traces by utilizing principal component anal-
ysis and use such features to develop a general model that
can be used to simulate the ETT value. The structure of
the paper is as follows. In section 2 we describe the data
and the original source of the data. Section 3 provides some
background and related work. In section 4 we present the
approach used to analyze the trace data and show numeri-
cal results. Section 5 shows how we can use the analysis to
simulate ETT values. Finally, we point out some limitations
of our work and suggest future work in section 6.

2. TRACE DATA AND USAGE
The ETT datasets were collected by the authors of [4] on

UCSB’s MeshNet and were used to test the design of a new
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Table 1: Neighbors list
Node Deg. Neighbors

01 3 06 10 14

02 12 03 04 05 06 08 09 10 12 13 14 15 17

03 5 02 04 05 14 15

04 8 02 03 05 06 09 14 15 16

05 11 02 03 04 06 08 09 11 14 15 16 17

06 10 01 02 04 05 09 10 14 15 17 19

07 9 09 10 11 13 15 16 17 18 19

08 7 02 05 09 13 15 16 19

09 14 02 04 05 06 07 08 10 11 13 14 15 16 17 19

10 11 01 02 06 07 09 14 15 16 17 18 19

11 8 05 07 09 12 13 15 16 19

12 5 02 11 13 16 18

13 11 02 07 08 09 11 12 15 16 17 18 19

14 12 01 02 03 04 05 06 09 10 15 16 17 19

15 15 02 03 04 05 06 07 08 09 10 11 13 14 16 17 19

16 14 04 05 07 08 09 10 11 12 13 14 15 17 18 19

17 12 02 05 06 07 09 10 13 14 15 16 18 19

18 7 07 10 12 13 16 17 19

19 12 06 07 08 09 10 11 13 14 15 16 17 18

routing protocol. MeshNet is an indoor 802.11a/b network
with 19 nodes and 93 (undirected) links. The original data
consists of three ETT datasets which were collected at three
different times. The trace files were generated each minute.
One trace file contains several lines of text with each line
starting with the node’s IP address and is followed by pairs
of IP addresses and measured ETT values for each neigh-
bor node. To compute the ETT values, two types of probes
were used. The first type – broadcast probe – is used to
estimate the delivery rate. Every second, each node sends a
524-byte broadcast packet. Neighbor nodes record the num-
ber of received packets within 10 seconds. The second type
– unicast probe – is used to estimate data bandwidth. Every
tenth second, each node sends a unicast pair of packets of
size 134 bytes and 1134 bytes to each neighbor. The differ-
ence in transmission time of the two packets is piggybacked
from neighbors to the node. Using the information gathered
by nodes with the above probes, a central server calculated
ETT = packetsize/(d1×d2× bandwidth), where d1 and d2
are the delivery ratios in the two directions on a link.

We took the ETT values directly from the trace data, pro-
cessed those ETT values and explored the extracted infor-
mation to develop a model that can be used to simulate the
ETT value. All the results shown in this paper are only for
the first dataset because analysis of the other two datasets
yielded similar results (but correspond to different topologies
as the connectivity appears to have changed). In addition,
in the original trace files, the ETT values were missing for
some short periods of time, so we use only the largest avail-
able continuous trace period (about 350 minutes). Figure
1 depicts the topology of the network at the time the first
dataset was collected. Table 1 shows a list of neighbors for
each node. We observe that each node has a large node de-
gree (for example, node 15 has 15 neighbors and node 4 has
8 neighbors) indicating the need to characterize several links
from each node.

3. BACKGROUND AND RELATED WORK
We were inspired by [5] in which the authors used eigen-

vector analysis to classify access points according to the
number of connected users. This method is also known as
Principal Component Analysis (PCA) [6]. In[7], PCA was
applied to the received signal strength (RSS) in sensor net-
works with the goal of reducing its variability with distance

and having better prediction of the RSS values. However, to
the best of our knowledge, this is the first attempt to model
ETT and the first use of PCA towards this. We use PCA
to reduce the dimensions of data to extract the most impor-
tant features from the ETT trace. PCA works as follows.
Assume we have an m × n matrix X. We can reduce the
dimensions of X with a small loss in information as follows:

1. Determine the zero-mean m × n matrix D = X − X̄,
where X̄ is an m× n matrix with m repeated rows (a
row vector of n values, which are the average of the
n columns in X, is repeated). Calculate the n × n
covariance matrix C of D.

2. Calculate the n × 1 vector of eigenvalues V and the
eigenvectors of C. Denote F as the matrix, the i-th
column of which is the eigenvector corresponding to
eigenvalue V[i]. Also assume that V is sorted in de-
scending order.

3. Choose k ≤ n – the number of eigenvalues used to
approximate X. Let the k × 1 vector U be the k se-
lected eigenvalues and and G be the n × k matrix of
eigenvectors respectively. In this paper we define two
indicators to estimate the amount of information lost
when k < n: coverage and loss. Coverage α is de-
fined as the cumulative sum of the selected normalized
eigenvalues and the loss β is the significance of the last
selected eigenvalue i.e.,

α =

k∑
u=1

V[u]/

n∑
u=1

V[u]; β = V[k]/V[1].

4. Compute the m × k matrix E = DG. Now, we can
approximate the matrix X as X′ = E.GT + X̄, where
[.]T denotes the matrix transpose operator.

If we can choose k to be significantly smaller than n (while
we still have large coverage α and small loss β), then we
can efficiently represent the matrix X. For instance, from
Step 4, we can express the i-th approximated row of X as:
X′

i = Ei.G
T + X̄i. In other words, we can look at the i-th

row of X′ as a linear combination of ONLY k row vectors
contained in GT (or k column vectors contained in G) with
corresponding coefficients contained in the ith row of E:

X′
i =

k∑
u=1

E[i, u]×GT
u + X̄i

This is our objective with the ETT traces as described next.
The k column vectors in G represent the basis vectors that
capture the information about all of X.

4. ANALYZING ETT WITH PCA
We note here that there are several ETT traces associ-

ated with a given node, for each link that originates at that
node. They are functions of time. The question is whether
we can represent each of these traces as a linear combination
of a small set of common basis traces (a) for each node and
(b) if possible for the entire network. Then we may be able
to characterize the basis traces and the coefficients statisti-
cally and use them to develop models for ETT values. For
example, let us suppose there are n = 14 links from a node
and we have a trace for each link. Suppose the 14 traces
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can be represented in terms of a single trace (k = 1) and 14
scalar coefficients multiplying the single trace to yield each
separate trace. Then we need to know only the properties
of the single trace and the set of 14 scalar coefficients to
characterize the ETT traces. As we describe next, it is not
possible to use a single basis trace, but we can use two k = 2
basis traces per node. Also, it is better to use a per-node
characterization than a characterization of the ETT traces
for the entire network.

4.1 Analyzing ETT traces at each node

4.1.1 Approach and primary observations
We converted the original trace data described in section

2 into matrices, one matrix for one node. Each row of a
matrix corresponds to the ETT value of a link as a function
of time (which is represented by the columns). Thus, the
number of rows of a matrix equals the node degree. We use
Node 4 as the example in what follows although all nodes
exhibit similar features. Figure 2(a) shows the ETT values
in the trace (time is in mins). We notice that there are
several sharp peaks in the traces that are short-lived. To
eliminate such spikes, we use the time average over a step
size of T = 10 minutes. Figure 2(b) shows the resulting
trace (time is in units of 10 mins). The effect of averaging
is that we eliminate the irregular high peaks – we return to
this issue in Section 6.

We next approximate the matrix X (with 8 rows and 35
columns for node 4) using k = 2 which results in α = 98%
and β = 2.5%, both very reasonable. This means, for a
given node v, we can express the i-th row of matrix Xv as

Xv
i = Ei,1 ×GT

1 + Ei,2 ×GT
2 + X̄i (1)

where X̄ is the average ETT across all links from node v at
a given time (we recall here that matrix X̄ contains identical
rows, so the index i does not play any role) . Note that each
link from node v can be expressed as a linear combination
of the basis vectors GT

1 and GT
2 . In effect, the i-th link

from node v is characterized simply by the tuple (Ei,1, Ei,2)
which we will call as the coefficients of the link. Further, we
use linear regression to express Xi

v entirely in terms of the
basis vectors by letting X̄i ≈ g1×GT

1 + g2×GT
2 . With this

approximation, we have

Xv
i = Fi,1 ×GT

1 + Fi,2 ×GT
2 (2)

where Fi,j = Ei,j + gj , j = 1, 2 are the final coefficients for
link i at node v. For node 4, the basis vectors and final
coefficients for all of the links are shown in Figure 3.

In Figures 2(b) and (c) we can respectively see the original
(averaged) ETT trace and approximated ETT trace for node
04 before applying the approximation for X̄. Figure 2(d)
plots the final approximated ETT traces. The difference
between the approximations and original data is clearer for
links with small peaks, such as 04–15, 04–03. For all links,
the Kolmogorov-Smirnov test confirms the hypothesis that
approximated ETT and original ETT belong to the same
distribution. For other nodes of the network, we have gotten
very similar results.

Interestingly, we notice that the first basis vector repre-
sents the stable component of the ETT traces, while the
second one represents the time-varying component. In the
coefficients plane links which have similar dynamics form a
cluster to the right (shown in red). They also have a small
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Figure 2: (a) Original ETT trace (b) After averag-
ing for 10 min (c) Approximated ETT values before
regression (d) Approximated ETT values after re-
gression
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Figure 3: (a) Basis vectors and (b) Final coefficients
for Node 4. Links with similar dynamics are high-
lighted with red color
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Figure 4: (a) First and (b) second basis vectors from
all nodes

or zero Fi,2 value. The more fluctuation a link has, the fa-
ther it is from the horizontal axis. As expected, the two
links with high fluctuation 04–06 and 04–16 have largest (in
absolute terms) values of the second coefficient.

4.1.2 Analyzing the set of basis vectors of each node
Basic Observations: We already know that each ETT
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Figure 5: Basis vectors from all nodes

trace of links at one node can be approximated using two ba-
sis vectors – one represents the stable component, the other
represents the fluctuations in time. So what can we say
about the relation among basis vectors of different nodes?
First, we plot the individual basis vectors from all nodes.
Figure 4(a) clearly indicates that all first basis vectors from
all nodes are very similar and very stable in time. The sec-
ond basis vectors, as shown in Figure 4(b), however, are dif-
ferent for each node and also have a larger variation in time.
Second, using the same PCA method, we analyzed the ma-
trix built from 19 pairs of basis vectors of all 19 nodes (i.e.,
a network wide model rather than node by node). To get
to a coverage level of α = 98%, we had to use k = 15. This
means, we need 15 vectors to approximate most of informa-
tion in 38 basis vectors. In Figure 5 we plotted the first
two (over totally 15) coefficients of each approximated pair
of basis vectors. As we can see, all the first basis vectors
are clustered in one place on the right side, while the second
basis vectors are scattered on the left side. This, together
with observations from Figure 4, shows that the first basis
vectors from all nodes are similar, while the second ones are
different.
Statistical Characterization: In Figure 6, we show the
mean and standard deviation (over time) of all the basis
vectors associated with the 19 nodes. We see that they are
the same across nodes in the network leading us to believe
that a statistical characterization of the basis vectors may
be sufficient to simulate ETT values for any network. We
also observe that the set of first basis vectors has a smaller
standard deviation (close to zero) showing stability. The
set of second basis vectors has near-zero mean but a higher
standard deviation. For this preliminary analysis, we as-
sume that (i) the first basis vector is the same for all nodes
and constant (ii) the samples of the second basis vectors in
time are independent (iii) the second basis vectors across
nodes are independent. A plot of the autocorrelation of all
and cross-correlation of some pairs of the second basis vector
(see Figure 7) indicates that this is reasonable (autocorrela-
tion sidelobes and cross-correlation values are small).

We plotted the two histograms (not shown here) of the
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Figure 6: Mean and standard deviation over time of
basis vectors of different nodes
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Figure 7: Autocorrelation and Cross–correlation be-
tween some of second basis vectors

first and second basis vectors of all nodes and visually, the
values forming the basis vectors have a normal distribution.
The individual cumulative distribution functions (CDFs) for
each of the first and second basis vectors are shown in Fig-
ure 8(a) and (b) respectively. When we employ the averages
of the means and standard deviations in Figure 6, as pa-
rameters for an expected normal distribution and compare
its CDF with the overall CDF built from all of the first and
second basis vectors as shown in Figure 8(c) and (d), there
is a very good match. Thus, it is possible to generate basis
vectors for all nodes simply using network wide values of
means and standard deviations for the two basis vectors.

4.1.3 Analyzing the coefficients of links of each node
Next, we try to characterize the coefficients used to mul-

tiply the basis vectors to get the ETT trace. We again con-
sider a per-node analysis of coefficients. Figure 9 shows an
overview of all coefficients for all links from all nodes. Most
of the coefficients are clustered on the right with −10 <
Fi,1 < 0 and −2 < Fi,2 < 2. We do not have any perceivable
trends in the nature of these coefficients. As a preliminary
step, we assume they are independent from each other and
from node to node and link to link and look at their statistics
as follows.

Figure 10 shows the normalized histograms for the two co-
efficients. We see that the second coefficients have a normal-
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Figure 8: (a) CDFs of first basis vectors from dif-
ferent nodes (b) CDFs of second basis vectors from
different nodes (c) Combined CDF of first basis vec-
tors & fit (d) Combined CDF of second basis vectors
& fit

like distribution, while the first coefficients have a skewed
distribution. Using maximum likelihood estimates, we found
that the absolute values of the first coefficients have an
inverse Gaussian distribution and the second coefficients
follow the normal distribution the best. The probability
density functions (PDFs) of the estimated distributions are
shown on the same plot as the histograms. We note here
that the inverse Gaussian distribution has a PDF defined
as:

pdf(x;µ, λ) =

√
λ

2πx3
exp{−λ(x− µ)2

2µ2x
} (3)

Its mean and variance are µ and µ3/λ respectively. Once
we know mean µ and standard deviation σ, we can calculate
the shape parameter λ = µ3/σ2. We use quantile-quantile
(Q-Q) plots to test how closely the coefficients fit the re-
spective distributions. We see that the first coefficients fit
the inverse Gaussian distribution fairly well. However, the
second coefficients do not fit the normal distribution except
in the center where most of the coefficients are clustered.
There are long tails in the histogram indicating that there
is a significant chance of encountering ETT traces with high
variability. We recall here that the second coefficient is re-
sponsible for the variability in the ETT traces over time.

Although we were able to estimate the distributions of
the two coefficients as if they are two independent random
variables, clearly, from Figure 9, this is not true. The scatter
plot of the two coefficients from all links showed us that they
are uncorrelated but dependent random variables. Using k-
mean clustering, we found out that coefficients pairs (across
all nodes) can be grouped into two clusters (see Figure 12):
The first group contains about 70% of the coefficient pairs.
While the number of links for some nodes is too small to
statistically characterize, based on visual observations (as in
Figure 3b, 5 of 8 coefficient pairs form a cluster) we assume
that this division can be done on a per node basis as well.
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Figure 9: Coefficients of all links
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Figure 10: Histogram of (a) all first coefficients (b)
all second coefficients
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Figure 11: Q–Q plot for (a) first coefficients (b) sec-
ond coefficients

Figure 13 displays the corresponding silhouette diagram1.
Comparing the same plot for different data sets, we also
observed that the first group occupies a triangular shape

1The silhouette diagram plots the silhouette value (rang-
ing from -1 to 1) for each point in each cluster. This
value for a point is a measure of how similar that point
is to points in its own cluster compared to points in other
clusters. The value for point i is calculated as S(i) =
[mink b(i, k)−a(i)]/max{a(i),mink b(i, k)} where a(i) is the
average distance from the i-th point to the other points in
its cluster, and b(i, k) is the average distance from the i-th
point to points in a different cluster k.
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area, as shown in Figure 12. We use this observation in
generating the simulation of ETT traces later.

4.1.4 Summary
In summary, we observed that:

• The first basis vectors are stable and considered con-
stant and if necessary be modeled as normally dis-
tributed with an almost zero standard deviation. The
second basis vectors can be modeled as being normally
distributed with zero mean.

• The coefficients that multiply the basis vectors can be
grouped into two clusters.

4.2 Analyzing ETT traces for the network
We tried to use the same PCA method to the entire set

of ETT traces for all links (instead of only those associated
with one node). However, with the same value of k = 2,
we get only α = 93% and β = 1.6%. This means there
are really significant differences in the dynamic behavior of

Table 2: k selection
k Eigenvalue Coverage level α Loss level β

1 0.9150 0.9150 1.0000

2 0.0148 0.9297 0.0161

3 0.0115 0.9413 0.0126

4 0.0083 0.9496 0.0091

5 0.0075 0.9571 0.0082

6 0.0059 0.9630 0.0065

7 0.0056 0.9686 0.0061

8 0.0048 0.9734 0.0053

9 0.0037 0.9771 0.0040

10 0.0031 0.9801 0.0033

11 0.0029 0.9830 0.0031

links at different nodes and it is not possible to capture all
of these features in a small set of basis vectors.

To reach the same level of coverage as we had in the case
of the ETT traces from a single node, we have to increase k
up to 10 (see Table 2). The resulting traces from an approx-
imation with k = 10 still do not pass the statistical tests of
fit. However, only when k ≥ 11 do all of the resulting traces
pass the Kolmogorov-Smirnov test.

In Figure 14 we plot the average (over time) error of all
links. The vertical lines separate links at different nodes.
The node IDs are shown between the vertical lines. Al-
though there are 93 links, in Figure 14 we group links ac-
cording to the originating nodes. For that reason each link
appears as two points in the plot, and we have 186 links (the
ETT traces for each link exhibit some differences depending
on the direction). We can see that when we increase k from
11 to 20, the average error reduces by almost a factor of
2.With k = 15 we have a coverage α = 99% and only 4 of
93 links have relative approximation errors above 10% (see
Figure 15). This means PCA is quite efficient in reducing
the amount of data that needs to be stored when applied to
link ETTs as a whole. However, the large number of basis
vectors and coefficients needed seem to indicate that it is
perhaps better to use the per-node analysis to arrive at a
general model for simulating ETT values.

5. SIMULATING ETT VALUES
Next we consider employing the previous analysis for sim-

ulating ETT data. Recall that we had expressed the esti-
mated ETT on link (v, i) in (2) as:

Xv
i = Fi,1 ×GT

1 + Fi,2 ×GT
2 (4)

Thus, given a network topology (i.e., the nodes and links
that exist) we need to generate a pair of basis vectors GT

1 ,G
T
2

for each node and the scalar coefficients Fi,1, Fi,2 for each
link-i from a node. Based on the observations made in Sec-
tion 4.1.2, we assume that the first basis vector GT

1 is a
constant C. Further, we assume that the second basis vec-
tor has samples in time that are independently drawn from
a normal distribution with mean 0 and standard deviation
σ. We can pick C and σ based on the observations made in
Section 4.1.2 (see fig 6), i.e., C = −0.17 and σ = 0.17.

Finding appropriate coefficients to use is more challenging.

94



20 40 60 80 100 120 140 160 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Average absolute error

Links

A
b

s
o

lu
te

 e
rr

o
r

 

 

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19

k=11

k=20

Figure 14: Average error of all links

20 40 60 80 100 120 140 160 180
0

5

10

15

20

Links

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

Relavtive approximation error of links

 

 

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19

k=11

k=15

Figure 15: Relative error when k = 15

For the sake of simplicity, we suggest the following approach
to determine the coefficients:

• Let ρ = 0.7 be the fraction of coefficients from the
first group in Figure 12; s = 0.2 be the slope of the
lines that form the triangular region; Lm = −30, Rm =
−12.5 be the boundary for the first coefficient; Um =
5, Dm = −5 be the boundary for the second coefficient.
Generate a uniformly distributed random number x in
[0,1] for each link. If x < ρ then we generate coeffi-
cients in the triangular region. Otherwise we generate
coefficients in the rectangular region as follows.

• Case 1 – triangular region: Generate f1 uniformly dis-
tributed in (Rm, 0). Calculate the range for f2 as the
segment of the vertical line at f1 truncated by two
lines. Let f2D = s ∗ f1, f2U = −s ∗ f1. Then generate
f2 that is uniformly distributed in (f2D, f2U ).
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Figure 16: Simple network for simulating ETT val-
ues
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Figure 17: Simulated ETT for a simple network

• Case 2 – rectangular region: Generate f1 that is uni-
formly distributed in (Lm, Rm) and f2 that is uni-
formly distributed in (Dm, Um).

We used the above approach to generated simulated ETT
traces for a contrived network with six nodes. We used num-
bers and parameters exactly as described above. The sim-
ulated ETT values for this small example network in Fig-
ure 16 using this approach are shown in Figure 17. At least
visually, they appear to be fairly reasonable.

It is also possible to extend trace data in time (where
available) using this approach. Alternatively, we can first
generate the coefficients with the available trace data and
use these coefficients. We also tried varying the coefficients
in the latter case on a rectangular grid around the generated
coefficient values and checking the generated traces to see if
they statistically match the original trace data with good
results.

6. CONCLUSION
In this section, we briefly discuss the limitations of this

work and conclusions.
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Figure 18: The (a) first and (b) second basis vectors
for all nodes if no time averaging of ETT traces is
used

6.1 Open Issues
There are some open issues with this work. First, there

are several assumptions we have made throughout the pa-
per (e.g., independence, etc.). While such assumptions were
used towards developing a simple approach for simulating
ETT values, they have not been rigorously tested.

Second, we used time averaged ETT traces to eliminate
the spikes as in Figure 2(a). An obvious question is how
good this is without the time averaging and whether the
spikes matter. We have not analyzed routing protocols or
other issues using the original traces and averaged traces.
However, we did look at performing PCA on the original
traces. We found that it may be possible to still employ
only two basis vectors to represent the traces. Figures 18
(a) and (b) show the first and second basis vectors derived
for all nodes using the original 350 minute spiky traces. Al-
though the errors between the approximated ETT traces
and original traces are higher than without time averaging,
it is perhaps possible to employ a similar approach as in this
paper. We are looking at this as part of ongoing work.

Third, our results are consistent among the three datasets
from the UCSB network that we used. However, we have not
tested our approach with trace data from different networks.
We are trying to see whether such trace data can be obtained
for further analysis.

Fourth, we have not compared our work with alternative
approaches for analyzing and modeling the ETT traces. As
mentioned in the paper, we were inspired by the work in
[5]. However there are other approaches that have been em-
ployed for analyzing time varying data. For example, in
wireless communications, the time varying nature of the en-
velope of the received signal (which exhibits Rayleigh fading)
has been modeled as a Markov process or a hidden Markov
process with two or more states (see for example [8]). The
assumption of the future state being dependent only on the
current state could be problematic or perhaps not significant
(similar to our assumptions of independence).

Fifth, we are also looking at the spatial correlation be-
tween ETT values and the possibility of using this approach
to predict average ETT values.

6.2 Conclusions
We demonstrated the use of PCA to analyze ETT traces

and derive some common features useful for simulation. We
have shown that:

• PCA is very useful to reduce the size of ETT trace;

• We can efficiently approximate ETT data of all links
at any node using only two basis vectors and two co-
efficients for each link;

• The first basis vector can be considered as a constant
and the second as one derived from a normal distribu-
tion with a zero mean;

• The marginal distributions of coefficients correspond-
ing to first basis vectors have an inverse Gaussian dis-
tribution, while those corresponding to second basis
vectors have a nearly Gaussian distribution;

• It is possible to generate the ETT traces for a given
network using our observations or with a combination
of existing ETT trace data from that network using
only a few parameters.
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