
HAL Id: hal-00642731
https://inria.hal.science/hal-00642731

Submitted on 18 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Course of value distinguishes the intentionality of
programming languages

Guillaume Bonfante

To cite this version:
Guillaume Bonfante. Course of value distinguishes the intentionality of programming languages. 2nd
International Symposium on Information and Communication Technology - SoICT 2011, Oct 2011,
Hanoi, Vietnam. �hal-00642731�

https://inria.hal.science/hal-00642731
https://hal.archives-ouvertes.fr

Course of value distinguishes the intentionality of
programming languages

Guillaume Bonfante
∗

Université de Lorraine
Nancy, France

bonfante@loria.fr

ABSTRACT
In this contribution, we propose to study the transformation
of first order programs by course of value recursion. Our mo-
tivation is to show that this transformation provides a sep-
aration criterion for the intentionality of sets of programs.
As an illustration, we consider two variants of the multiset
path ordering, for the first, terms in recursive calls are com-
pared with respect to the subterm property, for the second
with respect to embedding. Under a quasi-interpretation,
both characterize Ptime, the latter characterization being a
new result. Once applied the transformation, we get respec-
tively Ptime and Pspace thus proving that the latter set of
programs contains more algorithms.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory of computing, theory of complexity and recursion

Keywords
Implicit computational complexity, Space and time resource
evaluation, program interpretation

1. INTRODUCTION
This paper follows a line opened in [3] where we have

shown that transformations of languages could be used to
compare sets of programs. Let us come back to the key
idea. In the field of implicit computational complexity, when
characterizing a set of programs, the intentionality measures
the ’quantity’ of programs, not the ’quantity’ of functions.
Indeed, one function may be computed by many programs,

∗Work partially supported by project ANR-08-BLANC-
0211-03 (COMPLICE) and by EA Cristal.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoICT 2011, Hanoi, Vietnam
Copyright 2011 ACM 978-1-4503-0880-9/11/10 ...$10.00.

possibly efficient. Thus, a set of programs may correspond
to a small number of functions but with a large choice of
programs. The larger choice, the easier to pick up one pro-
gram. To show the strength of some theory (which defines a
set of programs) one usually exhibit some remarkable exam-
ple. However, the argument is usually rather weak since one
has to compare programs, not functions. We point out the
work of Asperti [2] who considers such complexity cliques,
showing their intrinsic undecidability. See also [4] where we
proved that characterizing programs computable in Ptime
is Σ2-complete.

To avoid such direct comparison of programs, we propose
to compare sets of programs via some apparel. Let us sup-
pose for the discussion that a program is a rewriting system,
in other words, our study focuses on recursion. Let us sup-
pose that we are given two sets S and S′ of programs, and
that these programs compute the same set U of functions.
Suppose that under some transformation (of rewriting sys-
tems) T , the two sets T (S) and T (S′) of programs yield
different function sets V1 6= V2, then, T (S) 6= T (S′) and
consequently S and S′ cannot be equivalent from an implicit
computational complexity point of view: indeed, would they
be the same, then T (S) = T (S′)! The transformation works
as a kind of lens, separating thus indistinguishable programs
at the first level.

In [3], we have considered the effect of adding non-determi-
nism to programs. We have shown that this transformation
does not add some computational strength to constructor-
free programs (see Jones [12]) which characterize functions
in Ptime. On contrary, applying it on programs with a
multi-set path ordering termination proof admitting a quasi-
interpretation, one obtains a characterization of Pspace.
Then, if Pspace is different from Ptime, we have shown
the separation between the two sets of programs. We pro-
pose in this paper to consider a (kind of) course-of-value
recursion transformation.

Referring to the study of recursive schema [15, 16], it is
well known that course-of-values recursion, that is functions
defined by equations of the shape:

f(0, y) = g(y)

f(x+ 1, y) = h(x, y, f(j1(x), y), . . . , f(jk(x), y)

where g, h, j1, . . . , jk are primitive recursive and ji(x) ≤ x
for i ∈ {1, . . . , k} , are themselves primitive recursive. A
similar remark holds for recursion with parameter substitu-

tions as observed by Leivant and Marion in [14]:

f(0, y) = g(y)

f(x+ 1, y) = h(x, y, f(x, j1(y)), . . . , f(x, jk(y)))

Leivant and Marion have proved that restricted to safe
recursion, primitive recursion with parameter substitution
corresponds to the functions computable within Pspace.
We will rediscover a similar characterization with course-
of-value recursion in Section 4, Theorem 3(2).

As observed by Leivant, notice that the transformation
of such recursive schemas into primitive recursion involves
an encoding function which, in other terms, means that one
uses the exponential function. For the study of classes of
low complexity such as Ptime, it is then reasonable to treat
both schema apart.

Actually, in the context of rewriting systems, we define
a notion that subsumes both schemas. A program has a
course-of-value recursive schema if a recursive call contains
an argument which is computed by an other function sym-
bol. In other words, there is a rule of the form f(x1, . . . , xn) =
C[f(j1(x1), . . . , jn(xn))] for some context functions f, j1, . . . ,
jn. A typical example of course-of-value is given by the
quick-sort recursion:

qs(`) = insert(qs(first-half(`)), qs(second-half(`)))

for a non empty list `. The functions first-half and
second-half respectively compute the first half and the sec-
ond half of the list ` (with respect to some pivot). These two
functions appear as arguments of qs, the quick-sort function.

To prove the termination of recursive programs, one shows
that arguments decrease according to some well-founded or-
der. A very large number of such orders have been con-
sidered so far. We consider two of them, one based on the
subterm relation and one on embedding. We recall that
for the subterm relation, one erases some of the leading
symbols, while for embedding, the erasing can be done at
any point. For instance t1 = a(a(b(ε))) is a subterm of
t2 = c(c(a(a(b(ε))))) but not a subterm of t3 = a(a(c(b(ε)))).
But t1 is both embedded in t2 and t3. The subterm rela-
tion and the embedding relation are well-founded. Thus, if
one or more arguments of a recursive call decrease while the
others stay unchanged, the program ends.

Is there a main difference between these two orderings?
Let us restrict our attention to programs computing func-
tions of polynomial growth (this will be ensured later by the
interpretation). In both cases, for programs terminating by
means of the subterm relation or the embedding relation,
functions computed are the functions of Ptime. We want to
stress the fact that the characterization for the path order-
ing based on the subterm relation already appeared in [4],
but the one based on embedding is a new result.

But, if one applies course-of-value, the situation is differ-
ent. In the first case (based on the subterm relation), either
with or without course-of-value recursion we stick to func-
tions in Ptime. In the second case, we reach Pspace. To
conclude, we have established the non-equivalence of these
two sets of programs.

As a matter of fact, as a by-product of our result, we show
that adding course-of-value recursion to product-path order-
ing based on embedding together with a quasi-interpretation
shifts the computed functions from Ptime to Pspace, a
characterization closed to the one of Leivant and Marion

mentioned above.
Section 2 defines the syntax of programs. The reader fa-

miliar with rewriting, interpretation and path ordering may
directly jump to Section 3 which provides the new character-
ization of Ptime, namely given by programs with an additive
quasi-interpretation and a proof by product-path-ordering
based on embedding. Section 4 deals with the course-of-
value extension of programs.

2. PROGRAMMING LANGUAGES
As said above, we consider rewriting systems as a model

of functional programs. Apart from Definition 2, all the ma-
terial is standard. We briefly recall the main definitions, es-
sentially to fix some notations. Dershowitz and Jouannaud’s
survey [10] of rewriting is a good entry point for beginners.

Let X denotes a (countable) set of variables. A signature
is a set of symbols, that is a pair of a name and a natural
number, each symbol is referred to by its name. The number
is called the symbol’s arity. Given a signature Σ, the set of
terms over Σ and X is denoted by T (Σ,X) and the set of
ground terms, that is terms without variables, by T (Σ). The
size |t| of a term t is defined as the number of symbols in
t. For instance, |f(a, f(a, b))| = 5. The height of a term,
written ||t||, is the longest path from the root to a leaf.
||f(a, f(a, b))|| = 2. A position is a word in N∗. Given a
term t, a position q denotes a sub-term t|q by the equations:

t|ε = t for the empty wordε

t|q = ti|q′ if t = f(t1, . . . , tn) and q = i · q′

Finally, as a general notation, we use ~u as a shorthand to
denote sequences of terms u1, . . . , un.

Definition 1 (subterm and embedding relations).
The subterm relation is the smallest binary relation, denoted

�, on terms such that
t� t

and
t� ui

t� f(u1, . . . , un)

for all terms t, u1, . . . , un and f an n-ary symbol. The em-
bedding relation, denoted J, is the smallest relation verify-
ing:

t J t

t J ui

t J f(u1, . . . , un)

(ti J ui)i=1,...,n

f(t1, . . . , tn) J f(u1, . . . , un)

for all terms t, t1, . . . , tn, u1, . . . , un and f an n-ary symbol.

From the definition, it is clear that � ⊆J, that is for all
terms t, v, t � v ⇒ t J v. The inclusion is strict as shown
by the example:

Example 1. Let us suppose that 1, 2, 3, 4, 5, 6 are unary
constructors. Then,

1(3(5(•))) J 1(2(3(4(5(6(•))))))
1(3(5(•))) 6� 1(2(3(4(5(6(•))))))
4(5(6(•))) � 1(2(3(4(5(6(•))))))
4(5(6(•))) J 1(2(3(4(5(6(•))))))

A context is a term t whose variables occur only once.
t[u1, . . . , un] is a shorthand for t[x1 ← u1, . . . , xn ← un]
where x1, . . . , xn are the variables of t given in some a priori
order. Actually, from the context, no confusion should arise
from the variables.

We say that two contexts t1 and t2 are compatible (t1 |com
t2) if either t1 or t2 is a variable or t1 = f(u1, · · · , un),
t2 = f(v1, · · · , vn) and for all i ≤ n, ui |com vi.

The extension of two compatible contexts t1 and t2, de-
noted t1 + t2, is defined by:

x+ t = t

t+ x = t

f(u1, · · · , un) + f(v1, · · · , vn) = f(u1 + v1, . . . , un + vn)

where x denotes a variable and f is a symbol. In the defi-
nition above, we suppose without loss of generality that t1
and t2 do not share variables.

Example 2. For instance, cons(cons(x, y), z) is compat-
ible with cons(u, cons(v, t)). And cons(cons(x, y), z) +
cons(u, cons(v, t)) = cons(cons(x, y), cons(v, t)).

Definition 2 (Compatible extension). Given some
terms t′1, t1, t2 such that t′1 J t1 and t1 |com t2, the compat-
ible extension of t′1 w.r.t. t2 is defined as the largest term
t such that t J t1 + t2 and t |com t′1. It is defined by the
following equations.

• ext(t′1, t1, x) = t′1 and ext(t′1, x, t2) = t2 whenever x a
variable.

• Otherwise, t1 = f(v1, . . . , vn), t2 = f(w1, . . . , wn) and
either

– t′1 = t1, then ext(t1, t1, t2) = t1,

– or t′1 J vi for some i ≤ n, then ext(t′1, t1, t2) =
ext(t′1, vi, t2),

– or vi J wi for all i ≤ n, then ext(t′1, t1, t2) =
f(ext(u1, v1, w1), . . . , ext(un, vn, wn)).

Example 3. Consider for instance the terms cons(x, z) J
cons(cons(x, y), z) and cons(u, cons(v, t)). We have:
ext(cons(x, z), cons(cons(x, y), z), cons(u, cons(v, t)) =
cons(x, cons(v, t)).

Proposition 1. Given a term t and two contexts t1[x1, . . . , xn],
t2[y1, . . . , ym] such that t = t1[u1, . . . , un] = t2[v1, . . . , vm],
then t1 and t2 are compatible.

Proof. By induction on the definition.

Proposition 2. Let us suppose given two compatible con-
texts t1[x1, . . . , xn], t2[y1, . . . , ym]. Given a term t′1 J t1, let
xi1 , . . . , xik be the subset of variables in t′1 occuring in t1.
There are positions p1, . . . , ph and indices j1, . . . , jh ≤ m
such that for all terms u1, . . . , un, v1, . . . , vm, if t1[u1, . . . , un] =
t2[v1, . . . , vm], then

t′ = t′1[ui1 , . . . , uik] = ext(t′1, t1, t2)[vj1 |p1 , . . . , vjh |ph].

Proof. By induction on the definitions.

2.1 Syntax of programs
In this subsection, we briefly present rewriting systems, a

simple model of functional programming.
In the sequel of the section, we suppose that we are given

an algebra of terms given by a (finite) signature C on which
computations are done. These terms are called constructor
terms, and accordingly, symbols in the signature are called
constructor symbols.

Next, we suppose given a set F of function symbols. A
rule is a pair (`, r), next written `→ r, where:

• ` = f(p1, · · · , pn) where f ∈ F and pi ∈ T (C,X) for
all i = 1, . . . , n,

• and r ∈ T (C ∪ F ,X) is a term such that any variable
occuring in r also occurs in `.

Definition 3. A program is a quadruplet f = 〈C,F , f, E〉
such that E is a finite set of rules. We distinguish among F
a main function symbol whose name is given by the program
name f.

The set of rules induces a rewriting relation written →.

The relation
∗→ is the reflexive and transitive closure of →

and t
!→ u denotes the fact that t

∗→ u and u is a normal
form. All along, when it is not explicitly mentioned, we sup-
pose programs to be confluent, that is, the rewriting relation
is confluent.

The domain of the computed functions is the construc-
tor term algebra T (C). The program f = 〈C,F , f, E〉 com-
putes a partial function JfK : T (C)n → T (C) defined as fol-
lows. For every u1, · · · , un ∈ T (C), JfK(u1, · · · , un) = v iff

f(u1, · · · , un)
!→ v and v is a constructor term. The notation

is extended to terms by composition.

Example 4. Equality on binary words in {0, 1}∗, boolean
operations, membership in a list (built on cons,nil) are com-
puted as follows.

ε = ε → tt

i(x) = i(y) → x = y with i ∈ {0, 1}
i(x) = j(y) → ff with i 6= j ∈ {0, 1}

i(x) = ε → ff with i ∈ {0, 1}
ε = i(y) → ff with i ∈ {0, 1}
not(tt) → ff

not(ff) → tt

or(tt, y) → tt

or(ff, y) → y

and(tt, y) → y

and(ff, y) → ff

if tt then y else z → y

if ff then y else z → z

The definitions of a program induce a partial order on
symbols, defined as the smallest transitive relation contain-
ing g � f for all f, g, such that there is a rule f(p1, · · · , pn)→
r and g occurs in r. Let ≺ denotes the strict part of � and
' the equivalence relation induced by �. The rank is then
the equivalence class of a symbol w.r.t. '. We define con-
structors to be symbols of a rank smaller than any other
ranks.

Given a program 〈C,F , f, E〉, we define E<f to be the sub-
set of E restricted to rules g(p1, · · · , pn) → r such that
g ≺ f . The rewriting relation →<f denotes the corre-
sponding restriction to E<f . Given a symbol f , we define
f(t1, . . . , tn)→f u iff

f(t1, . . . , tn)→!
<f f(u1, . . . , un)→ r →!

<f u.

This notion is known as relative rewriting relation.

Definition 4 (Call-tree). Suppose we are given a pro-
gram 〈C,F , f,R〉. Let be the relation

(f, t1, . . . , tn) (g, u1, . . . , um)
⇔
f(t1, . . . , tn)→ C[g(w1, . . . , wm)] ∧ ∀i : wi

!→ ui

with f and g some defined symbols, and t1, . . . , tn, u1, . . . , um

some constructor terms. Given a term f(t1, . . . , tn), the re-
lation defines a tree whose root is (f, t1, . . . , tn) and η′

is a daughter of η iff η η′. The size of a call-tree is the
number of nodes it contains.

Example 5. The call tree of 0(1(ε)) = 0(0(ε)) is

(=, 1(0(1(ε))), 1(0(0(ε))))

(=, 0(1(ε)), 0(0(ε)))

(=, 1(ε), 0(ε))

2.2 Interpretations of programs
The result presented in the following sections are correct

whenever all computed functions have polynomial growth
rate. However, to ensure that property (see corollary 1) in
an effective way, we propose to use interpretations. Other
methods could be used.

Given a signature Σ, a Σ-algebra on R is a mapping L− M
which associates to every n-ary symbol f ∈ Σ an n-ary func-
tion Lf M : Rn → R.

Definition 5. Given a program 〈C,F , f, E〉, let us con-
sider a (C ∪ F)-algebra L− M on R. It is said to:

1. be weakly monotonic if for any symbol f , the function
Lf M is a weakly monotonic function, that is if xi ≥ x′i,
then

Lf M(x1, . . . , xn) ≥ Lf M(x1, . . . , x′i, . . . , xn),

2. have the weak sub-term property if for any symbol f ,
the function Lf M verifies Lf M(x1, . . . , xn) ≥ xi with
i ∈ 1, . . . , n,

3. to be weakly compatible if for all rules `→ r, L` M ≥ Lr M,

An algebra verifying both three hypotheses is a called a quasi-
interpretation.

Finally, we restrict the interpretations over the real num-
bers to be Max-Poly functions, that is functions obtained
by finite compositions of the constant functions, maximum,
addition and multiplication. In [5], we have proved that it is
decidable to compute (if it exists!) an interpretation given
a program.

The generalized geography game suppose that we are given
a direct acyclic graph g, a node r ∈ g. Alternatively, player
and opponent play a successor of the current node (player
begins with r). The first who can’t play (there is no more
successors) looses. The question is: ”does player has a win-
ning strategy1? Even if the graph is binary, that is each
node has at most two successors, the problem is known to
be Pspace-complete. The problem is solved by the following
program.

1That is, he cannot loose if playing properly.

Example 6.

player(g) → if snd(g) = ε then

if fst(g) = ε then ff

else not(opp(rem1(g)))

else not(and(opp(rem1(g)), opp(rem2(g))))

opp(g) → if snd(g) = ε then

if fst(g) = ε then ff

else not(opp(rem1(g)))

else not(and(player(rem1(g)), player(rem2(g))))

fst(cons(T (x), `)) → fst(`)

fst(cons(V (x, y, z), `) → y

fst(cons(i(x), `)) → fst(`)

fst(nil) → ε

snd(cons(T (x), `)) → snd(`)

snd(cons(V (x, y, z), `) → z

snd(cons(i(x), `)) → snd(`)

snd(nil) → ε

rem1(g) → goto(rem(g), fst(g))

rem2(g) → goto(rem(g), snd(g))

rem(cons(T (x), `)) → cons(T (x), rem(`))

rem(cons(V (x, y, z), `)) → cons(x, `)

rem(cons(i(x), `)) → cons(i(x), rem(`))

rem(nil) → ε

goto(cons(T (V (x, y, z)), `,m)) → if m = x

then cons(V (x, y, z), `)

else

cons(T (V (x, y, z)), goto(`,m))

goto(cons(V (x, y, z), `),m) → ε

goto(cons(i(x), `),m) → cons(i(x), goto(`,m))

goto(nil,m) → ε

Such a program admits a quasi-interpretation. Set

Lnil M = Lε M = Lff M = Ltt M = = 1

LT M(x) = Li M(x) = = x+ 1

Lcons M(x, y) = x+ y + 1

LV M(x, y, z) = x+ y + z + 1

with i ∈ {0, 1}. All other n-ary symbols f are mapped to
Lf M(x1, . . . , xn) = max(x1, . . . , xn).

At the beginning of the computation, the graph is given by
an adjacent list of the form cons(e, `) where ` denotes the
rest of the list and e = T (V (x, y, z)) denotes the (not yet
visited) node x with two successors y and z.2 In the compu-
tation process, the current node is denoted by e = V (x, y, z)
and a visited node by e = x. Finally, at the beginning of
the computation, the root node is supposed to be denoted by
V (r, y, z) with y and z its successors.

Few notes on the program. fst(g) (respectively snd) com-
putes the first (resp. second) successor of the current node.
goto(g,m) puts m as the current node of g, rem1(g) removes
the current node and puts its first successor as the current

2If x has one successor, z is supposed to be ε, if it has zero
successor, then y = z = ε.

node. rem2(g) is analogous. rem(g) marks the current node
as a visited node.

Definition 6. The interpretation of a symbol f is said
to be additive if it has the shape

∑
i xi + c for some constant

c ≥ 1. A program with an interpretation is said to be additive
when its constructors are additive.

For instance, the program given in Example 6 is additive.
We recall a proposition and a corollary taken from [4]:

Proposition 3. Let 〈C,F , f, E〉 be a program with an ad-
ditive quasi-interpretation. Then, there is a constant K > 0
such that Lt M ≤ K × |t| for all constructor terms t ∈ T (C).

Given a program with an additive quasi-interpretation,

suppose that u1, . . . , un ∈ T (C). Whenever t[u1, . . . , un]
∗→

v with v ∈ T (C), then |v| ≤ Lt(u1, . . . , un) M. So, the size of
the outputs of programs is directly linked to the value of the
initial interpretation. For additive programs, Proposition 3
leads to |v| ≤ Lt M(K|u1|, . . . ,K|un|). Consequently,

Corollary 1. The output of additive program has a poly-
nomial size w.r.t. to its corresponding input.

2.3 Termination proofs
Proving the termination of a program is a very common

issue of software engineering. Many methods have been con-
sidered so far, and we are considering one of the most sim-
ple, namely path orderings which are decidable simplifica-
tion orderings. The proof of the well-foundedness of ≺mpo

is due to Dershowitz [9] and Kamin and Levy [13] and re-
lies on Kruskal theorem. An formalized proof of the well-
foundedness of the multiset path ordering by Coupet-Grimal
and Delobel can be found in [8].

A precedence�F (strict precedence≺F) is a quasi-ordering
(strict partial ordering) on a given set F of function sym-
bols. We define the equivalence relation ≈F as f ≈F g iff
f �F g and g �F f. This precedence �F on function sym-
bols extends canonically to C∪F with the following relations
∀f ∈ F , ∀c ∈ C, c ≺F f.

Definition 7. Given an ordering ≺ on terms, its product
extension ≺ over sequences (of equal length) is defined by:
(m1, · · · ,mk) ≺ (n1, · · · , nk) if and only if (i) ∀i ≤ k,mi �
ni and (ii) ∃j ≤ k such that mj ≺ nj.

It is clear that if the ordering ≺ on terms is well-founded,
then its extension to sequences is also well-founded. This is
the core point of the following ordering.

Definition 8. Given a program 〈C,F , f, E〉 and a prece-
dence �F , we define the subterm product path ordering ≺�

mpo

by the rules of Figure 1. A program is ordered by ≺�
mpo iff

there is a precedence �F such that for each rule l → r, the
inequality r ≺�

mpo l holds.

Remark 1. The product path ordering is closed under
substitutions and context.

Example 7. The program of Example 4 can be ordered
by product path ordering. Set ≺ to be or ≺ and ≺ not ≺=≺
it-the-else ≺ in.

However, Example 6 cannot be ordered by the ordering.
As we will see later, this is due to the rule

player(g) → if snd(g) = ε then

if fst(g) = ε then ff

else not(opp(rem1(g)))

else not(and(opp(rem1(g)), opp(rem2(g)))).

Definition 9. The embedding product path ordering ≺J
mpo

is defined in exactly the same manner, but with constructors
compared as in Figure 2.

Since the subterm relation is included in the embedding
relation, it is clear that programs ordered by PPO� are
ordered by PPOJ.

The main difference between PPO� and PPOJ is that

t ≺�
mpo u iff t� u for all constructor terms t, u. For PPOJ,

we get a larger set t ≺J
mpo u iff t J u. As a consequence, a

rule such as:

f(1(0(x)))→ f(1(x))

is not compatible with ≺�
mpo but it is compatible with ≺J

mpo.

3. CHARACTERIZATIONS OF PROGRAMS
In this section, we address the following problem. Is there

a fundamental difference between the two product path or-
derings? We answer to the question by a characterization of
the functions computed by means of the two orderings. Let
us begin recalling the following theorem,

Theorem 1. [Bonfante, Marion and Moyen [4]]
Functions computed by programs with an additive quasi-inter-
pretation and a termination proof by PPO� are exactly Ptime
functions.

Actually, it is safe to replace PPO� by PPOJ as shown
by the Theorem:

Theorem 2. Functions computed by programs with an
additive quasi-interpretation and a termination proof by PPOJ

are exactly Ptime functions.

Since programs ordered by PPO� are ordered by PPOJ,
it is immediate that Ptime functions can be computed by
programs ordered by PPOJ with an additive quasi-inter-
pretation. So, the issue is to prove that the converse holds.

The main issue with the embedding relation is that the set
of terms Ut = {u | u ≺J

mpo t} does not have a polynomial
size w.r.t. the size of the constructor term t. This property is
a key feature used in the proof of [4] to apply memoisation.
For the embedding relation, one may observe that all the
sequences of booleans of size n verify: {0, 1}n ⊂ U01 · · · 01︸ ︷︷ ︸

n times

.

Thus, |U01 · · · 01︸ ︷︷ ︸
n times

| ≥ 2n leads to an exponential lower bound.

This is bad news.
The remaining of the Section is devoted to the proof of

Theorem 2. The core point of the proof is to show that
actually, when evaluating f(t1, . . . , tn) for some constructor
terms t1, . . . , tn, not all the terms f(u1, . . . , un) with u1 J
t1, . . . , un J tn will be evaluated, only a polynomial number
of them. This is Proposition 6. After this crucial step, the
proof follows the line of the proof of Theorem 1 in [4].

s J t

s ≺�
mpo t

s, t ∈ T (C)
s ��

mpo ti

s ≺�
mpo f(. . . , ti, . . .)

f ∈ F
⋃
C

∀i ≤ n : si ≺�
mpo f(t1, · · · , tn) g ≺F f

g(s1, · · · , sm) ≺�
mpo f(t1, · · · , tn)

g ∈ F
⋃
C, f ∈ F

(s1, · · · , sn) ≺�
mpo (t1, · · · , tn) f ≈F g

g(s1, · · · , sn) ≺�
mpo f(t1, · · · , tn)

g, f ∈ F

Figure 1: The subterm product path ordering

s J t

s ≺J
mpo t

s, t ∈ T (C)
s �J

mpo ti

s ≺J
mpo f(. . . , ti, . . .)

f ∈ F
⋃
C

∀i ≤ n : si ≺J
mpo f(t1, · · · , tn) g ≺F f

g(s1, · · · , sm) ≺J
mpo f(t1, · · · , tn)

g ∈ F
⋃
C, f ∈ F

(s1, · · · , sn) ≺J
mpo (t1, · · · , tn) f ≈F g

g(s1, · · · , sn) ≺J
mpo f(t1, · · · , tn)

g, f ∈ F

Figure 2: The embedded product path ordering

In the rest of the Section, we suppose given a program
〈C,F , f, E〉 which has a termination proof by PPOJ and a
quasi-interpretation.

Proposition 4.

1. For each constructor terms t and s, s ≺J
mpo t iff s J t.

2. If t is a constructor term and u contains a function
symbol, then u 6≺J

mpo t.

Proof. The proof is by induction on the definition of the
path ordering.

Proposition 5. For all rules f(p1, · · · , pn)→ r, there is
a context C such that

• r = C[f1(~u1), . . . , fk(~uk)],

• C does not contain any symbol of rank of f ,

• f1, . . . , fk have the rank of f ,

• the ~ui’s are constructor terms.

Proof. We define C to be the largest context such that
r = C[t1, . . . , tn] and

• C does not contain any symbol of rank of f

• for all i, ti = fi(~ui) with fi of rank of f .

The key point is to verify that the ~ui’s are actually se-
quences of constructor terms. Let us remind that the pat-
terns p1, . . . , pn are themselves constructor terms. Notice
also that for all i ≤ n, since ti = fi(~ui) �J

mpo r ≺J
mpo

f(p1, · · · , pn), it is necessarily the case that (~ui) ≺J
mpo (~p).

Then, by definition ui J pi for all i ≤ n and consequently, by
Proposition 4 (2), the ui’s contain no function symbols.

Proposition 6. There is a finite set of terms Θ such
that:

• for all symbol f ∈ F ,

• for all constructor terms t1, . . . , tn,

• for all constructor terms u1, . . . , uk,

• for all function symbol g of rank of f such that

f(t1, . . . , tn)
∗→ C[g(u1, . . . , uk)],

• for all i ≤ k,

there is an element e ∈ Θ, some positions q1, . . . , qh and
some indices i1, . . . , ih such that ui = e[ti1 |q1 , . . . , tih |qh].

Proof. Let Θ be the following set.

• x ∈ Θ,

• for all f(p1, · · · , pn)→ r, for all i ≤ n, pi ∈ Θ,

• for all q, r ∈ Θ, for all p J q, ext(p, q, r) ∈ Θ.

This set is finite. Indeed, the height ||ext(p, q, r)|| ≤
max(||p||, ||r||), so that Θ ⊆ {v | ||v|| ≤ d} with d =
max{||pi|| | f(p1, · · · , pn)→ r ∈ R}.

Now, we proceed by induction on the length of the deriva-
tion.

For the base case, f(t1, · · · , tn)
∗→ f(t1, · · · , tn), the result

is trivial (take e = x, q = ε).
Otherwise,

f(t1, · · · , tn)
∗→ C[g(u1, · · · , un)]→ C[C′[h(v1, · · · , vn)]] af-

ter application of the rule g(p1, · · · , pn)→ C′[h(s1, · · · , sn)]
with the substitution σ. That is, ui = piσ and vi = siσ
with i ≤ n. By Proposition 4, si J pj for some j and vi =
si[σ(xj1), . . . , σ(xj`)] for the set xj1 , . . . , xj` of the variables
of si, that is a subset of the variable of pi. By induction, we
can state that ui = pi[σ(x1), . . . , σ(x`)] = e[ti1 |q1 , . . . , tih |qh]

for some e ∈ Θ and some positions q1, . . . , qh and indices
i1, . . . , ih. Notice that pi ∈ Θ, and since si J pi, ext(si, pi, e) ∈
Θ. According to Proposition 2, there are positions r1, . . . , rh′

and indices j1, . . . , jh′ such that:

vi = ext(si, pi, e)[tj1 |qj1 .r1
, . . . , tjh′ |qj

h′ .rh′
]

Since ext(si, pi, e) ∈ Θ), we have the desired property.

Corollary 2. Given a program 〈C,F , f, E〉 ordered by
PPOJ, f ∈ F and constructor terms t1, . . . , tn, we denote

by T(f,t1,...,tn) the call tree rooted by (f, t1, . . . , tn) and by
R(f,t1,...,tn) the subset of nodes (g, u1, . . . , um) ∈ T(f,t1,...,tn)

such that g ' f . There is a polynomial P such that:
|R(f,t1,...,tn)| ≤ P (max(|t1|, . . . , |tn|)).

Proof. As seen above, if (g, u1, . . . , um) ∈ R(f,t1,...,tn),
then for all i ≤ m, ui = e[ti1 |q1 , . . . , tih |qh] for some e ∈ Θ

as defined above. One may observe that the number of posi-
tions for each qi is bounded by

∑
i |ti|. Let d be the maximal

arity of the contexts e ∈ Θ. Without loss of generality, we
suppose d to be greater than the arity of any symbols in F .
We conclude, taking P (x) = |F| × |Θ| × (d× x)2d.

Lemma 1. Let f be a functional program with an additive
quasi-interpretation. Then, there is a polynomial Qf such
that for any equation `→ r and all e J r, |JeK(t1, . . . , tn)| ≤
Q(max(|t1|, . . . , |tn|)) with t1, . . . , tn constructor terms.

Proof. It is proved by induction on the structure of e,
using Corollary 1.

Proof Theorem 2. A naive implementation would lead
to an exponential number of function calls. This issue is
easily skipped if we switch from a call-by-value semantics
to a call-by-value semantics with cache, see Figure 3. In
the definition, we set S to be the set of substitutions whose
range is a subset of constructor terms.

This technique is very common in algorithmic studies, it is
known as dynamic programming, a technique inspired from
Andersen and Jones’ rereading (cf. [1]) of a simulation tech-
nique over 2 way push-down automata by Cook (see [7]) also
known as memoization.

Our general purpose is to show that the size of the cache
remains polynomial w.r.t. the size of the input, that is

• there is a polynomial number of entries and

• each entry has polynomial size, in other words:

– the size of the arguments of calls are polynomial

– the size of output terms is polynomial

Since each step of the call-by-value semantics with cache
can be performed in polynomial (actually linear) time w.r.t.
the size of the cache, the items above are sufficient to ensure
that the computation can be done in polynomial time.

Actually, one must also note that functions computed by
additive program have output of polynomial size w.r.t. their
inputs (Corollary 1). Consequently, to ensure that the cache
has polynomial size, one only need to verify that arguments
of function calls in the cache have polynomial size.

We will proceed by induction on the rank of symbols, and
consequently, we provide a polynomial Pf to bound the size
of the cache of the function f , depending only on the rank of
f . Without loss of generality, we can suppose that Pf ≥ Pg

if g ≺ f .
First, let us define D to be the maximal arity of functions,

A to be the number of function symbols and R to be the
maximal size of the right-hand side of a rule. Finally, let us
suppose we want to compute f(t1, . . . , tn). Elements in the

cache will be terms g(u1, . . . , um) such that f(t1, . . . , tn)
∗→

C[g(u1, . . . , um)]. Consequently, g has rank smaller or equal
to the rank of f .

Base case.
Consider the evaluation of functions with minimal rank.

Let us consider such a function f . Suppose that we are
given a term f(t1, . . . , tn). Consider a term g(u1, . . . , um) in
the cache, since g has rank equivalent to the one of f , by
Corollary 2, there are at most PD(max(|t1|, . . . , |tn|)) such
nodes. Due to Proposition 4(1), each of these argument has
size bounded by max(|t1|, . . . , |tn|). We set accordingly the
polynomial Pf (x) = x× PD(x).

Induction step.
Now, suppose f being of a higher rank. Suppose we want

to compute f(t1, . . . , tn). Consider its call-tree Tf(t1,...,tn).
There is actually a bijection between the set S(f,t1,...,tn) =
{(g, v1, . . . , vn) | (g, v1, . . . , vn) ∈ T(f,t1,...,tn)} and the set
of entries in the cache Cachef(t1,...,tn). Each element of
the cache (g, v1, . . . , vk, v) ∈ Cache(f,t1,...,tn) corresponds to
some node (g, v1, . . . , vk) ∈ T(f,t1,...,tn). To sum up, it is
sufficient to count the number of elements in S(f,t1,...,tn)

verifying that their arguments have polynomial size.

Suppose that f(t1, . . . , tn)
∗→ C[g(u1, . . . , um)] with g of

equal rank to the one of f . Again, by Proposition 2, there
are only P (max(|t1|, . . . , |tn|)) entries in the cache for some
polynomial P . Each of these arguments having size smaller
than max(|t1|, . . . , |tn|) by embedding.

So, the main issue is to evaluate the number of entries in
the cache involving functions of smaller rank. Let ;f be the
following binary relation. (g, v1, . . . , vk) ;f (h,w1, . . . , wm)
holds iff g has the rank of f and there exists some function
symbol h′ ≺ f and some terms w′1, . . . , w

′
k such that

(g, v1, . . . , vk) ; (h′, w′1, . . . , w
′
k) ;∗ (h,w1, . . . , w`).

One may observe that (g, ~u) ;f (h,~v) implies that h ≺ f .
Let D(g,u1,...,uk) =
{(h,w1, . . . , w`) | (g, v1, . . . , vk) ;f (h,w1, . . . , w`)}. The
elements in S(f,t1,...,tn) splits as follows:

S(f,t1,...,tn) = R(f,t1,...,tn) ∪
⋃

(g,~u)∈R(f,t1,...,tn)

D(g,~u). (1)

Let us compute the size of D(g,u1,...,um) for some node
(g, u1, . . . , um) ∈ R(f,t1,...,tn). The relation ;f can be re-
formulated as (g, u1, . . . , um) ;f (h,w1, . . . , wk) iff one of
the two statement holds:

(g, ~u) ; (h, ~w) ∧ h ≺ f (2)

(g, ~u) ; (h′, ~u′) ;f (h, ~w) with h′ ≺ f (3)

Let G(g,u1,...,um) denotes the set of nodes verifying Equa-
tion (2). Let us consider a node (h,w1, . . . , wk) ∈ G(g,u1,...,um).
Let us make the hypothesis (which we prove a little bit fur-
ther) that there is a polynomial Q such that for all i ≤ k, we
have |wi| ≤ Q(max(|t1|, . . . , |tn|)). Then, by induction, the
cache corresponding to the computation of h(w1, . . . , wk) is
bounded by Ph(Q(max(|t1|, . . . , |tn|))). Consequently, the
size of D(g,u1,...,um) is bounded by∑

(h,w1,...,wk)∈G(g,u1,...,um)

Ph(Q(max(|t1|, . . . , |tn|))).

Recall that |G(g,u1,...,um)| ≤ R. Consequently, taking PH a
polynomial bounding Ph for all such h, we get the bound
|D(g,u1,...,um)| ≤ R× PH(Q(max(|t1|, . . . , |tn|))).

(Constructor)
c ∈ C 〈Ci−1, ti〉 ⇓c 〈Ci, vi〉

〈C0, c(t1, · · · , tn)〉 ⇓c 〈Cn, c(v1, · · · , vn)〉

(Read)
〈Ci−1, ti〉 ⇓c 〈Ci, vi〉 (f, v1, · · · , vn, v) ∈ Cn

〈C0, f(t1, · · · , tn)〉 ⇓c 〈Cn, v〉

(Update)
〈Ci−1, ti〉 ⇓c 〈Ci, vi〉 f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = vi 〈Cn, rσ〉 ⇓c 〈C, v〉

〈C0, f(t1, · · · , tn)〉 ⇓c 〈C ∪ (f, v1, · · · , vn, v), v〉

Figure 3: Call-by-value interpreter with Cache of 〈C,F , f, E〉.

Recalling Equation (1), we can state that the cache of
f(t1, . . . , tn) is bounded by

P (max(|t1|, . . . , |tn|))× (1 +R×PH(Q(max(|t1|, . . . , |tn|))))

which is a polynomial in max(|t1|, . . . , |tn|), thus completing
the induction.

So, it remains to prove the existence of Q as defined
above. Recalling the definition of ;, for all (h,w1, . . . , wk) ∈
G(g,u1,...,um), we have g(u1, . . . , um)→ rσ = C[h(e1, . . . , ek)]σ

for some context C and some terms ei with eiσ
!→ wi. Ob-

serve that terms in the range of σ have size bounded by
max(|u1| . . . , |um|), themselves bounded by max(|t1|, . . . , |tn|).
So, employing Lemma 1, we can state that eiσ has size poly-
nomially bounded by Qei(max(|t1|, . . . , |tn|)). Since there
are only finitely many (there are finitely many rules) such
ei, the proof is done.

4. COURSE OF VALUE EXTENSION
In this section, we suppose that we have a well-founded

partial ordering < on terms which is closed by substitution
and context, think of < has ≺�

mpo or ≺J
mpo.3 Let us suppose

that a theory T is defined as the set of program such that
for all rules ` → r, ` > r. The ordering being closed by
context and substitution, u→ v implies u > v thus leading
to termination.

Definition 10. The course-of-value (cov) extension of T
induced by a relation > is the set of programs such that for all
terms u1, . . . , un, f(u1, . . . , un)→f r implies f(u1, . . . , un) >
r.

By induction on the rank of symbols, it is easy to prove
that such a property provides termination (one may observe
that the property is actually a weak form of termination
proof by dependency pairs. A good complexity analysis in
the context of depedency pairs has been done by Hirokawa
and Moser [11]).

We can presently state our second main theorem:

Theorem 3.

1. Functions computed by cov-programs with an additive
quasi-interpretation and a termination proof by PPO�

are exactly Ptime functions.

3A reminder for the reader: Remark 1.

2. Functions computed by cov-programs with an additive
quasi-interpretation and a termination proof by PPOJ

are exactly Pspace functions.

The theorem can be interpreted as follows. Even if PPO�

and PPOJ characterize the same class of functions (namely
Ptime), they contain different algorithms. In other words,
we gave an indirect proof of an essential difference between
the two program sets.

One may observe first that the program of the generalized
geography given in Example 6 cannot be proven terminating
within PPO�. The issue comes from the rule4

player(g) → if snd(g) = ε then

if fst(g) = ε then ff

else not(opp(rem1(g)))

else not(and(opp(rem1(g)), opp(rem2(g)))).

It cannot be ordered by PPO� even with course-of-value
extension. Indeed, player(g) cannot be compared to opp(rem1(g)).
But even Jrem1K(g) cannot be compared to the term g what-
ever the constructor term g. Consider for instance the term
rem1(cons(T (V (1(ε), ε, ε)), cons(V (0(ε), 1(ε), ε),nil))). We
have

Jrem1K(cons(T (V (1(ε), ε, ε)), cons(V (0(ε), 1(ε), ε),nil))) =

cons(V (1(ε), 0(ε), ε), cons(0(ε),nil))

but

cons(V (1(ε), 0(ε), ε), cons(0(ε),nil)) 6�
cons(T (V (1(ε), ε, ε)), cons(V (0(ε), 1(ε), ε),nil)).

However, it is clear that

cons(V (1(ε), 0(ε), ε), cons(0(ε),nil)) J

cons(T (V (1(ε), ε, ε)), cons(V (0(ε), 1(ε), ε),nil))

and more generally speaking, it is obvious that Jrem1K(g) is
embedded in g! Thus, the relation →player can be ordered
by PPOJ. More generally, we will see that the program can
be ordered by cov-PPOJ.

4.1 Proof of Theorem 3
4Which is typically a course-of-value/parameter substitu-
tions recursion schema.

The end of the section is devoted to the proof of the The-
orem.

Since program with an additive quasi-interpretation and a
termination proof by PPO� are part of cov-programs with
an additive quasi-interpretation and a termination proof by
PPO�, it is clear that these latter program contain at least
all Ptime functions. Thus, the first item of the Theorem is
a direct corollary of the following proposition:

Proposition 7. Functions computed by cov-programs with
an additive quasi-interpretation and a termination proof by
PPO� can be computed in polynomial time.

Proof. The proof goes by induction on the rank of sym-
bols. It is actually an adaptation of the Lemma 44 in [4].
The main issue is to prove that the number of entries in
the cache remain polynomial. Consider a rule application
f(p1, · · · , pn)σ → rσ with a constructor substitution σ. Let
us consider g of rank of f such that r = C[g(q1, . . . , qn)]. Ac-

cording to the ordering, qiσ
!→ v implies that v ≺�

mpo piσ.
Thus, recursive calls corresponding to symbols of rank of f
are done on terms which are subterms of the input terms.

At that point, we essentially recovered the properties we
had for programs with a standard proof of termination by
PPO�. We recall that there are at most

∑
i=1,...,n |ti| con-

structor terms that are subterms of t1, . . . , tn. Thus, there
are at most (

∑
i=1,...,n |ti|)

d entries in the cache where d is

the maximal arity of symbols. We define S(x) = (d × x)d.
One may observe that there are at most S(max(|t1|, . . . , |tn|))
entries in R(f,t1,...,tn) with the notation R as in the section
above.

Function calls corresponding to symbols of lower ranks can
be treated as in [4]. Due to the subterm property, we can

state that f(t1, . . . , tn)
∗→ C[g(u1, . . . , um)] for some con-

structor terms t1, . . . , tn, u1, . . . , um implies the inequality
Lg(u1, . . . , um) M ≤ Lf(t1, . . . , tn) M. Then, |g(u1, . . . , um)| ≤
Lf M(t1, . . . , tn) ≤ Pf (max(|t1|, . . . , |tn|)) where the latter in-
equality comes from Proposition 3. Thus, inputs of subcalls
have polynomial size with respect to the size of the inputs,
say Q(x).

To end the induction, suppose that the function calls of
symbols of lower rank needs a cache of size P (x) where x
is the size of the input. Then, each of the calls fired by
symbols of rank of f can be performed in P (Q(x)) which is
a polynomial. To sum up, the tree has size S(x)× P (Q(x))
where x denotes the size of the input.

For the second statement of the Theorem 3, we define T
to the be set of programs with a termination proof by PPOJ

having a quasi-interpretation. The easiest part is to prove
the completeness with respect to Pspace. To justify this,
let us observe that the program of the generalized geography
given in Example 6 is actually a cov-program with an addi-
tive quasi-interpretation and a termination proof by PPOJ.
Indeed, it has a quasi-interpretation. And clearly, the fact
that Jrem1K(g) J g shows that the program is catched by
PPOJ. Set the precedence to be the rank relation on sym-
bols.

From this completeness result, the fact that Ptime func-
tions can be computed in T , that T is closed by composition,
it is tedious, but not difficult to prove that all Pspace pred-
icates can be computed by cov-program with an additive

quasi-interpretation and a termination proof by PPOJ.
In the other direction, the proof is done by induction on

the rank of symbols. The principle is to show that the height
of the call tree is bounded by a polynomial. Thus, the eval-
uation can be performed by a Parallel Random Access Ma-
chine (PRAM) running in polynomial time. Then, following
Chandra, Kozen and Stockmeyer [6], we can state the the
computation can be done in polynomial space.

Consider, within some computation, a rule application
f(p1, · · · , pn)σ → C[g(u1, . . . , um)]σ with g of rank of f and
σ a constructor substitution. Consider the normal forms
uiσ

!→ vi. By definition of the ordering, for all i ≤ n,
vi J piσ and for one of them vj J piσ. Consequently, the
size of one of the inputs is decreased by at least one, the other
being not bigger. Consequently, the depth of the function
calls of rank of f is bounded linearly by the size of the input.

We can actually go back to the proof of Theorem 2 and do
exactly the same induction on symbol’s rank, but replacing
the size of the call tree by its depth. For symbols of lower
rank, we use the trick above: these calls are polynomial and
involve arguments of polynomial size. It is then routine to
verify that globally the call tree has polynomial depth.

5. CONCLUSION
At first sight, we could have concluded that termination

proofs by sub-term or embedding correspond to the same
set of algorithms. This can be justified by Theorems 1 and
2. But, as Theorem 3 shows it, this is only a partial view
on sets of programs. One knows that there are several ways
to compute functions, by a lot of programs. The skill of
programmers is to find the right one. Thus, it is important
that tools performing resource analysis are as wide as pos-
sible. We have shown that a tool based on embedding is
more powerful than a tool based on the subterm relation. It
would be nice to draw a general map of termination tools
with such methods. To discriminate two sets of programs,
we shifted the problem from a direct comparison of two pro-
grams to an indirect one. It seems that the latter is much
easier in practice.

6. REFERENCES
[1] Nils Andersen and Neil D. Jones. Generalizing cook’s

transformation to imperative stack programs. In
Proceedings of the Colloquium in Honor of Arto
Salomaa on Results and Trends in Theoretical
Computer Science, pages 1–18, London, UK, 1994.
Springer-Verlag.

[2] Andrea Asperti. The intensional content of rice’s
theorem. In George C. Necula and Philip Wadler,
editors, POPL, pages 113–119. ACM, january 2008.

[3] Guillaume Bonfante. Observation of implicit
complexity by non confluence. In DICE, 2010.

[4] Guillaume Bonfante, Jean-Yves Marion, and
Jean-Yves Moyen. Quasi-interpretation: a way to
control ressources. Theoretical Computer Science,
412(25):2776–2796, 2011. accepted for publication.

[5] Guillaume Bonfante, Jean-Yves Marion, and Romain
Péchoux. Synthesis of quasi-interpretations. In Logic
and Complexity in Computer Science, 2005.

[6] A. K. Chandra, D. J. Kožen, and L. J. Stockmeyer.
Alternation. Journal ACM, 28:114–133, 1981.

[7] Stephen Cook. Characterizations of pushdown
machines in terms of time-bounded computers.
Journal of the ACM, 18(1):4–18, January 1971.

[8] S. Coupet-Grimal and W. Delobel. An effective proof
of the well-foundedness of the multiset path ordering.
Rapport de recherche, LIF, 2005.

[9] Nachum Dershowitz. Orderings for term-rewriting
systems. Theoretical Computer Science, 17(3):279–301,
1982.

[10] Nachum Dershowitz and Jean-Pierre Jouannaud.
Handbook of Theoretical Computer Science vol.B,
chapter Rewrite systems, pages 243–320. 1990.

[11] Nao Hirokawa and Georg Moser. Automated
complexity analysis based on the dependency pair
method. In Alessandro Armando, Peter Baumgartner,
and Gilles Dowek, editors, IJCAR, volume 5195 of
Lecture Notes in Computer Science, pages 364–379.
Springer, 2008.

[12] Neil Jones. Logspace and ptime characterized by
programming languages. Theroretical Computer
Science, 228:151–174, 1999.

[13] Samuel Kamin and Jean-Jacques Lévy. Attempts for
generalising the recursive path orderings. Technical
report, Univerity of Illinois, Urbana, 1980.
Unpublished note. Accessible on http://perso.ens-
lyon.fr/pierre.lescanne/not accessible.html.

[14] Daniel Leivant and Jean-Yves Marion. Ramified
recurrence and computational complexity II:
substitution and poly-space. In L. Pacholski and
J. Tiuryn, editors, Computer Science Logic, 8th
Workshop, CSL ’94, volume 933 of Lecture Notes in
Computer Science, pages 486–500, Kazimierz,Poland,
1995. Springer.

[15] Rósza Péter. Rekursive Funktionen. Akadémiai Kiadó,
Budapest, 1966. English translation: Recursive
Functions, Academic Press, New York, 1967.

[16] H.E. Rose. Subrecursion. Oxford university press,
1984.

