

LIFECYCLE AND GENERATIONAL APPLICATION
OF AUTOMATED UPDATES TO MDA EIS

APPLICATIONS

Jon E Davis
Curtin Business School

Curtin University
Bentley, 6102, Australia

+61 410 320 956
Jon.Davis@curtin.edu.au

Elizabeth Chang
Curtin Business School

Curtin University
Bentley, 6102, Australia

+61 423 022 745
Elizabeth.Chang@cbs.curtin.edu.au

ABSTRACT
EIS applications are complex and present significant costs and
issues during upgrades which can lead user organisations to
defer or abandon potential upgrades and cause them to miss out
on the business benefits of the upgrade.

Our ongoing development of temporal meta-data EIS
applications [1] seeks to avoid or minimise the majority of these
upgrade issues by standardising all update procedures to
become an updated set or stream of meta-data changes that will
be sequentially applied to implement each individual meta-data
change in order, for all changes between the previous and
current meta-data models.

This update process removes the need from vendors to produce
version specific update programs, and fully automates the end
user’s meta-data EIS application update processes. Collision
detection with third party customisations to meta-data EIS
application, known as Variant Logic, will be greatly simplified
as any potential conflict will be precisely identified in advance,
reducing any compatibility effort for the customisations and
ensuring timely availability for inclusion with the streamlined
meta-data update.

The effort for major EIS updates can be drastically reduced
from often months down to days or less with the meta-data
update process.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – Domain
engineering, Reusable libraries, Reuse models.

General Terms
Algorithms, Management, Documentation, Performance,
Design, Reliability, Standardization, Languages, Verification.

Keywords
meta-data, meta-model, variant, logic, EIS, automated update,
automated upgrade, version control, version management,
software configuration management.

1 INTRODUCTION
By their very nature EIS applications are complex, with wide
ranging scope and functionality. They can also present
significant costs and issues during upgrades which can lead
some user organisations to defer or abandon potential upgrades
and cause them to miss out on any of the included business
benefits of the upgrade.

There are many contributing factors to the difficulties and costs
involved in upgrading traditional EIS applications, such as:

• Customisation of aspects of the EIS application is a
common means for user organisations to achieve their
preferred functionality. Each customisation has to be
seperately reviewed for compatibility with the update
and potentially modified.

• Organisations often defer upgrades to reduce costs
and application downtime, potentially requiring larger
effort during the ultimate upgrade projects.

• Due • Due to the longevity of many EIS applications
they may also be internally composed of modules and
components using multiple, varied and legacy
technologies that have been integrated “under the
hood”, complicating ongoing integrations and
potentially requiring platform installation and
migration aspects for each end user.

• EIS applications necessarily cater for broad
functionality and will affect a large proportion of the
business operations and users requiring a significant
level of quality assurance and user education to be
successful, as every update is completely unique.

The overall lifecycle costs of maintaining an EIS application are
compounded when accounting for all major version upgrades,
updates, patches and field fixes that may be released by the
application vendor, particularly when the end user has
employed customisations that need to be reviewed and may
need re-engineering.

Our ongoing development of a temporal meta-data framework
for EIS applications seeks to avoid or minimise the majority of
these upgrade issues, as an example of the model driven
engineering paradigm. A meta-data EIS application is defined
and stored as a model, without the need for additional coding,
for direct execution by its runtime engine.

A major objective of the framework is to streamline deployment
of application updates, which instead of new code, new
database objects, and specific and unique migration programs
and procedures as typically required, is replaced by an updated
set or stream of meta-data that will sequentially execute and
implement each individual meta-data change in order, for all
changes between the previous and current meta-data model.

With this deployment capability the issue of how many versions
or updates need to be progressively applied to a meta-data EIS
application is reduced to the one extended update process as all
updates can be applied sequentially and as a single process
rather than as multiple separate upgrades.

An additional specific objective of the framework is to also
provide the capability for end users or third parties to define and
create their own application logic, to supplement or replace a
vendor’s pre-defined application logic, as what we term Variant

© ACM, 2011. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2nd International Symposium on Information and Communication Technology (SoICT 2011)
ISBN: 9781450308809 (2011). http://doi.acm.org/10.1145/ 2069216.2069255

ACM COPYRIGHT NOTICE. Copyright © 2011 by the Association for Computing Machinery, Inc
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org

Logic [2], to become a variation of the application logic,
analogous to customisations in traditionally developed
applications.

Variant Logic can be applied to any object defined in a meta-
data EIS application; visual objects of the user interface, logical
processing objects such as events, functions or workflow, or as
data structures.

All integration points between the core meta-data EIS
application logic and each Variant Logic instance can be
identified as to its independence of any core application
changes, and every potential area of logic conflict or collision
can be clearly and fully disclosed and documented to the logic
definers, to minimise the scope for further review and potential
rectification works.

This identification of all changes also extends to the core
application meta-data which can provide clear identification of
all changes to the end-users to aid in their education of the
update impact.

This dual ability to simplify the update process and to clearly
identify exactly where logic customisations may be in conflict
combine to provide meta-data EIS applications with
significantly reduced maintenance effort and costs over the
system lifecycle.

2 RELATED WORKS
The following related issues have guided this research to define
the deployment and update capabilities and processes of the
temporal meta-data framework for EIS applications.

2.1 Software Version Management
Version control is the goal of software configuration
management, to ensure the controlled change or development of
the software system.

Commencing as a manually managed process, software version
management applications have become commonplace to
software developers [3] to track the development of the
components and manage the baseline of software developments
[4] including throughout the various phases of a project [5].
Code changes can be managed to their level of structural
organisation within the application as in enterprise level source
code management systems such as Microsoft Visual SourceSafe
and Team Foundation Server, Surround Software Configuration
Management and Collabnet Teamforge as popular examples.

The atomic level required for a meta-data system is the
individual object definition within the meta-data EIS application
model which needs to be managed at a low level and is also
fundamentally tied to direct dynamic execution.

An associated technique for identifying changes between
versions of software [6] is a key approach when applied to
meta-data and is instrumental to an automated update approach.

2.2 OMG, MDA, MOF and CWM
The aim of the Object Management Group (OMG) is to
“provide an open, vendor-neutral approach to the challenge of
business and technology change”. The OMG represent one of
the largest initiatives for Model Driven Engineering (MDE).
Their Model Driven Architecture (MDA) initiative is to
“separate business and application logic from underlying
platform technology” [7].

Their approach is predicated on the design of platform
independent models defined primarily with Unified Modelling

Language (UML), which can be rendered into a platform
specific model with interface definitions to describe how the
base model will be implemented on the target platform.

The OMG’s Meta Object Facility “provides a metadata
management framework, and a set of metadata services to
enable the development and interoperability of model and
metadata driven systems”. Its intention is to promote cross
platform access to independent modelling systems and
definitions in a common format as an agent of sharing and
reuse.

The OMG’s Common Warehouse Metamodel is an associated
technology to support the common storage of UML and MOF
models to be accessed by modelling and coding toolsets.

The OMG supports industry developers of supporting toolsets,
as well as user developers of the technologies.

The goal of the OMG is interoperability, and the tools and
technologies are primarily aimed at highly technical analysts
and developers. Our objective for the meta-data EIS application
includes technical analysts for the vendors or logic definers but
is primarily targeted at business user and operational
optimisation.

2.3 Software Update and Deployment
Software updates for applications have traditionally been
released in a form of hard media that is distributed to the end
user although this has largely been superseded by electronic
distribution via the internet.

For smaller consumer and utility software systems the update
often consists of a specific update program and instructions, or
alternatively a replacement program that uninstalls the previous
version and installs the latest version. Both will operate largely
automatically with minimal user input required.

Larger EIS/ERP style systems tend to utilise either the version
update process or install the new version and attempt to migrate
the data and configuration from the previous version
installation.

The larger and more complex a system is the less likely that
automated updates will complete successfully as less effort and
quality assurance seems to be expended on producing each
specific update program than on the primary software product
[8], exacerbating existing common issues with system
development quality assurance [9].

Managers of EIS upgrades attest to the often extensive projects
required for particularly major version EIS upgrades which can
require months of effort and considerable expense.

The minimisation of effort for updating meta-data EIS
applications is a major objective of our research.

2.4 Application Customisation and Rework
In the best of situations some major EIS upgrades may be
performed relatively quickly although one of the pre-requisites
for this success must be a virtually out-of-the-box
implementation without any customisations.

It has become commonplace for end user organisations to
engage the vendor or authorised third parties to develop specific
customisations for their user requirements to become embedded
within a new localised version of the application.
Notwithstanding the initial expense, additional review and
potential re-engineering is required for each customisation when

the EIS is upgraded to ensure ongoing compatibility, which
adds often considerable time and expense to each upgrade. [10]

Customisation of EIS systems for the local environment has
become a fact of life for many end user organisations, and
reducing the impact of the use of customisations through the
maintenance lifecycle is another major objective of our
research.

2.5 Model Driven Engineering
Alternatives to the common process of hard coded application
logic are provided by ongoing Model Driven Engineering
(MDE) which is a generic term for software development that
involves the creation of an abstract model and how it is
transformed to a working implementation [11].

Utilising a meta-data model based interpretation of the
application specification allows applications to be executed
using any simultaneous combination of platforms that are
supported by the components of the runtime engine, providing a
progression towards complete platform independence.

A significant proportion of the works to date have involved
modelling which contributes more directly to streamlining code
generation, processes that are directly aimed for and dependent
on highly technical programmers. [12] base their works on the
UML 2 specification to seek to reduce coding and transform
models of business processes into executable forms.

The visual structure meta-data is used to construct the
appearance of the application as presented by the user interface
runtime components to the users. The program flow meta-data
is used to define the user interface and local platform actions
and procedures that are executed in response to user actions and
other data changes. The data dictionary meta-data is used to
define the requirements of the database schema and the data
changes required in response to user actions and other data
changes.

Such a model is the goal of our temporal meta-model
framework for EIS applications [13].

Every aspect of the EIS application functionality is a component
of the meta-data model, whether it is identified as core
application meta-data produced by the original vendor, or
whether it is a modification or extension produced by a user or
third party as Variant Logic. Meta-data version updates can
always be clearly identified by a comparison of the meta-data
between two time states and then re-producing the sequence of
meta-data changes to apply to the meta-data model to be
updated.

3 AUTOMATIC APPLICATION UPDATE
WITH USER CUSTOMISATIONS

Our ongoing development of a temporal meta-data framework
for EIS applications seeks to remove the need for hard coding
by technical developers and transform the responsibility of
defining application logic to business analysts, knowledge
engineers or even business end users.

Similarly, the application update process can be greatly
simplified as we remove the need for specific version upgrade
programs and procedures for every minor or major upgrade,
patch or field fix. Updates are always a series of identified
changed meta-data that is applied sequentially to the target
meta-data application until all changes have been applied.

In a similar way that the meta-data model is always executed by
users using the same runtime engine, every meta-data update is

processed by a simple update engine that updates the meta-data
model and facilitates any associated database operations where
data or data definitions may need to be modified. Any data
locking and data migration requirements are managed
automatically by the update engine which can also allow the
updates to be enacted on live systems if required.

With this deployment capability the issue of how many versions
or updates need to be progressively applied to a meta-data EIS
application is reduced to the one extended update process as all
updates can be applied sequentially and as a single process
rather than as multiple separate upgrades.

A unique feature of the application of temporal data
management techniques to the atomic meta-data elements of the
meta-data EIS application can also provide for a complete
temporal execution of meta-data EIS applications by
maintaining a perfect synchronisation of historical data with the
historical application states. The temporal meta-data framework
can allow meta-data EIS applications to execute across time,
regardless of the meta-data EIS application version changes that
have occurred. This feature also supplements any manual
testing of an updated meta-data EIS application as it provides
comparative easy access to the pre-updated version of the meta-
data EIS application.

User or third party customisation of the meta-data EIS
application is provided as Variant Logic, to become a variation
of the application logic, and can be applied to any object
defined in a meta-data EIS application whether; visual objects
of the user interface, logical processing objects such as events,
functions or workflow, or as data structures.

As the Variant Logic itself consists of meta-data as part of the
extended model, then all integration points between the core
meta-data EIS application logic and each Variant Logic instance
can be fully determined and identified as to whether the Variant
Logic remains independent of any core application changes, or
may have some associated logic areas required for review, or
where the application has been updated to cause a conflict for
an existing customisation.

Where the Variant Logic is not fully identified as compatible
with the updated application meta-data logic, a key benefit is
that every potential area of logic conflict or collision can be
clearly and fully disclosed and documented to the logic definers,
to minimise the scope for further review and potential
rectification.

This identification of all changes also extends to the core
application meta-data which can provide clear identification of
all changes to the end-users.

3.1 Meta-Data Version Control Framework
In our meta-data EIS application model, version control needs
to be applied to only two of the aspects of the model; the overall
Application Model object, and to any Logic Variant object.

The temporal meta-data management aspects of the model
internally tracks all changes that are made to any of the model’s
meta-data whether as core application changes, user or third
party customisations or Variant Logic to identify the constituent
meta-data for each defined version.

Figure 1: Applicability of Version Control in meta-data EIS
application model.

Version Control (see Figure 1) uses the following classes to
model the definition of the change access:

• Inheritance For Version Control Schema: is
inherited to objects requiring specific version
control attributes.

• Application Model: is the high level identifier of
the application as modelled in the meta-data EIS
application. This identifies and groups all of the
application’s meta-data objects.

• Logic Variant: is a designated identifier to group
all of the logic changes together into a practical set
as an instance of Variant Logic. The best use of a
Logic Variant would be to group the associated
changes of a set of new functionality for a specific
purpose.

The Version Control classes facilitate the identification and
classification of the meta-data into the logical groupings that we
humans understand as specific versions. Internally, it is the
ongoing temporal management of the meta-data that maintains
the true atomic history of the application evolution by tracking
each individual logic change in the meta-data model.

The Application Model object, representing the overall
grouping object for the model meta-data, can be divided into
any hierarchy of sub-Applications to classify and organise the
core application meta-data into modules and sub-modules as
required (see figure 2).

The sub-Application grouping is to facilitate the logical
grouping of functionality by vendors or logic definers of the
meta-data EIS application models. Sub-Applications provide a
suitable breakdown for the deployment and tracking of
individual modules and as an additional selection criteria for
assigning security access but have no other logical limitations
within the meta-data model.

Figure 2: Core Application meta-Data composed of Sub-
Application meta-data.

Whilst the core application as delivered by the vendor or logic
definer may initially represent the totality of the meta-data
defining all logical functionality, the meta-data EIS application
framework also permits additional meta-data to be defined for
new local functionality.

Although any additionally defined meta-data can be defined by
any other authorised user or third party, all additional meta-data
must also be associated with the Application Model object and
be subject to local authorisation and access of the core
application environment.

The logic definer authorisation processes are governed by the
following principles:

• All original meta-data is owned by the identified
core logic definer, usually at the highest
authorisation level.

• Additional logic definers can be defined with lower
level authorisations.

• Meta-data objects owned by one logic definer
cannot be modified by a different logic definer, to
ensure application semantic integrity.

• Any logic definer can define new meta-data,
reference and invoke meta-data owned by other
logic definers, and modify undefined meta-data
attributes of meta-data owned by other logic
definers where this functionality has not been
restricted.

• Meta-data defined by a higher level logic definer
always over-rides any other identical meta-data
definition created by a lower-level logic definer –
this aspect will be further discussed during update
collision detection.

There is no limitation on what logical functionality can be
defined by users or third parties other than any authorisation
limitations that may be imposed on access to existing objects.
Minor additions or entire add-on modules or applications can be
defined to supplement a meta-data EIS application.

The final aspect of user or third party customisation is provided
as Variant Logic, which is a modified copy of an aspect of the
core application logic that becomes an alternative variation of

G01_Application_Model

...

I03_Inheritance_For_Version_
Control_Schema

...

E25_Logic_Variant

...

the application logic. It too can be applied to any object defined
in a meta-data EIS application.

There can be multiple and different Variant Logic sets involving
the same meta-data as different users may choose and be
authorised, in both the security and semantic domains, to prefer
separate alternate optimised logic for their specific usage under
their local conditions.

The scope of Variant Logic is also unlimited, subject to ongoing
access authorisations, other than any logic that is restricted by
the original meta-data logic definer. Restrictions are typically
imposed to maintain information processing standards for key
meta-data definitions.

While Variant Logic is defined to alter existing application
functionality, it is also defined on existing application meta-data
objects in order to define access to user and third party
customisations e.g. adding navigation menu items, or adding
buttons to user interface screens, to invoke new functionality.

Figure 3 illustrates the extended meta-data model that includes
the core application meta-data, user and third party
customisations meta-data, and the Variant Logic meta-data
extensions.

Figure 3: Additional custom user meta-data and Variant Logic.

In summary, Version Control for meta-data EIS applications
operates under the following principles:

• Core application meta-data is provided as an
Application Model and managed as sub-
Applications, tracking the version of each sub-
Application and its defined meta-data.

• Additional new application logic can be defined as
meta-data by users and third parties and managed
as sub-Applications.

• Any updates to application logic meta-data are
tracked as belonging to an updated sub-Application
with its associated version information.

• Meta-data changes are managed as sequential
builds and may include changes from any
combination of sub-Applications.

• Alternate parallel versions of existing application
meta-data can be defined by users and third parties
to provide modified functionality and to reference
new application meta-data.

In traditional application development the updates are provided
as replacement executable files, database migrations and
upgrade programs which provide the outcomes of the changes
but rarely identify all changes to the users except through
perhaps a prepared text summary. Even the application vendor’s
internal programming staff may not fully identify all of the
programming changes unless they utilise comprehensive
internal version control management that integrates across all of
the implemented technologies.

The meta-data EIS application can clearly identify all changes,
the order that they were made, and the impact and object
relationship of the changes. In the following sections, we will
see how updating the meta-data EIS application is performed
using greatly simplified and standard processes that remove the
need for complex individual upgrade procedures required for
traditional developments.

3.2 Defining the Meta-Data Update
There are two aspects of defining the scope of the meta-data
changes that are to be applied as part of the update process:

• Continuity: ensure that meta-data changes apply to
the end user organisation’s current version,

• Content: select all meta-data changes that are
appropriate for the selected meta-data update.

Without appropriate validity applied to these aspects the meta-
data update may fail and leave the meta-data EIS application
environment with an unstable model, although the update
validation procedures would detect and either reject or rollback
from incomplete or erroneous meta-data update sequences (see
section 3.3).

Continuity is ensured by the meta-data definer sequentially
identifying the build release of all versions of its application
meta-data independent of the scope of the meta-data changes of
that release. As meta-data updates, which may include changes
to both the application logic and to the underlying data
structures of the modelled application, must be applied
continuously this build identification against each change in the
meta-data update sequence guarantees continuity is maintained.

The build identification also allows for greater flexibility in the
availability and application of the meta-data updates by
releasing multi-version meta-data updates that can be applied by
the end user in different ways (see Figure 4);

• Update Start: for an end user currently at build N of
a meta-data EIS application, a multi-version release
can include any previous build meta-data which will
be ignored by the meta-data updater which would
only commence the update with the meta-data update
items from build N+1 in the multi-version update
stream,

• Update End: an end user can choose to cease or hold
the meta-data update at any available build level
greater than their current build level. This may be
desirable depending on internal update and test
policies, or potentially due to available downtime
windows if some builds involved extensive functional
changes or intensive data changes.

Figure 4: Optional range of selected meta-data update.

The content of the changed meta-data for each new build level
is based on the meta-data changes as defined in a vendor’s or
other logic definer’s defined internal development systems.

Similarly to traditional development, a meta-data application
logic definer must also maintain its application development,
aka meta-data definition processes, according to efficient
internal version control procedures for software engineering.
This may involve any distributed or centralised combination of
logic definer and test servers where the scope of the meta-data
logic changes have been segmented, distributed, combined and
otherwise managed to its final approved state.

Each approved meta-data change to an existing meta-data model
will become part of an identified build set of meta-data changes.

The scope of any meta-data build set may include meta-data
from multiple sub-Applications or be specific to a single
functional area – this is at the discretion of the logic definer.

Also for commercial reasons, a vendor may wish to place
additional restrictions on the included scope of any build set
release that is provided as an update to its customers. E.g. to
include only the meta-data for particular sub-Applications that
are licensed to some customers. The only caveat is that where a
logic definer chooses to limit the scope of the build release that
they ensure the logical consistency of the released build set to
ensure compatibility with the stated release target users (see
Figure 5).

Figure 5: Optional scope restricted build for a meta-data update.

A consequence may be that a particular released build set may
be a null set and include no specific updates, as a valid release.
This build set must still be included as part of the overall
sequential lifecycle updates to ensure overall continuity is
maintained.

3.3 Automated Meta-Data Update and User
Customisation Detection

Traditional applications require the source code to be compiled
and packaged into the set of executable application files, which
then need to be made available to the users for testing and
operational access. The required combination of application
testing, distribution, organisation testing, customisation re-
engineering and deployment all contribute to delays in the
effective release of the application software. These delays will
always be exacerbated for the larger and more complex EIS
software due to the organisational criticality of the EIS and its
need for extensive testing, hence the current reality of real
world EIS implementations that typically require several
months to implement new or upgraded major versions.

Additional complication occurs when a user organisation has
also implemented their own customisations to the EIS, a
common occurrence which can often require major rework of
the customisations to ensure operation of or compatibility with
the updated EIS. It is rarely an inexpensive task which often
results in organisations deliberately skipping on many minor
and even some major releases in order to reduce costs – at the
additional business cost of missing out on any of the positive
benefits that may be provided by the update.

As discussed in the previous section, the source update to the
meta-data EIS application is an ordered sequence of meta-data
changes classified by the logic definer’s build release. The
meta-data EIS application can drastically reduce these delays
due to the wholesale change in the development methodology
lifecycle and the unique meta-data update deployment model,
which can reduce the overall deployment delays down to at
most days or even virtually instantaneous distribution and
update.

It also becomes possible to execute updates on a live system, at
the risk of some performance degradation and periodic
functional locking, although prudence would always suggest
first deploying the updates to a test meta-data EIS application
environment first. While this is always a practical environment
to maintain, the meta-data EIS application lifecycle and update
processes provide great optimisations and significant savings in
time and resources.

An authorised meta-data update may also over-ride other
identical meta-data functionality defined by other lower-level
logic definers. The meta-data update process can identify these
occurrences during the update and prepare a report of potential
changes to lower-level meta-data so that their meta-data
definers can review and modify their meta-data to ensure
continued semantic integrity. Note that this update report
becomes a very specific report on how any higher-level meta-
data update has impacted on other third party pre-defined lower-
level meta-data, and can clearly avoid the major re-engineering
works on customisations that occur in the traditional EIS
environment.

Similarly, as the updated meta-data is clearly identified, auto
generated descriptions of the affected areas of the meta-data
application, as represented by the changed meta-data, can be
readily provided. Additionally, auto-generated online and
offline help files and user documentation can be created to assist
users with the exact nature of the transition.

As an aid to forensic analysis of an organisation’s EIS data and
contributing transactions, the meta-data EIS application in
conjunction with the features of temporal meta-data
management can also provide an unlimited facility in replaying

Available
Range of
Meta-Data
Updates

Selected Range of Meta-Data Updates
for an Organisation commencing from

current Build level

V(earliest_available)

V(user_current) V(user_to_stop)

V(latest_available)

and reviewing the nature and effects of any transactions that
have occurred in the meta-data EIS application.

All transaction executions are recorded as part of the audit
tracking provided by temporal data management and the
subsequent results of changes to the data base are recorded by
the temporal data management features, plus any changes to the
meta-data EIS application are tracked by the similar temporal
meta-data management features. At any time, the authorised
forensic analyst can effectively review and replay the previous
transaction, called a Temporal Rollback, or review and replay
the next transaction, called a Temporal Rollforward.

Each request for a Temporal Rollback or Temporal Rollforward
effectively selects and changes the current view in the temporal
application window for that user to the requested temporal view
as had been executed as a result of the requested transaction,
either before or after the transaction.

The ability to execute such Temporal Rollback or Temporal
Rollforward operations throughout the entire temporal
application window of the meta-data EIS is a unique feature of
the temporal meta-data framework. These operations are
seamlessly provided without any of the temporal limitations that
are typically imposed by non-temporal applications, which
further exacerbate the practical access limitations due to
disparate or non-existent previous historical version
implementations of traditional EIS applications.

In order to perform the meta-data update, the update engine
processes the meta-data update stream with the following
process:

• The end user managing the update specifies the end
build reference for this update process if the meta-data
update is a multi-version update, and specifies if live
user sessions are to be permitted during the update
process. Any update can initially be run in simulation
mode which simply identifies all proposed changes
but implements none – these changes can be used as
the basis of planning the update, preparing users for
functionality changes, and allowing logic definers to
preview potential conflicts with any Logic Variants
they have created.

• If the starting build reference of the meta-data update
stream is greater than the current meta-data EIS
applications build reference + 1 then the update is
abandoned, as the update cannot provide continuity,
otherwise

• Progress through the meta-data update stream in
sequence until the first meta-data change where the
build reference is equal to the current meta-data EIS
applications build reference + 1,

• While the update build reference is less than or equal
to the selected end build reference for this update
process each sequential meta-data change.

• If errors such as data stream checksums, or build
references are skipped in the update, or references to
non-existent objects occurs, then the update needs to
be aborted and rolled back to either the initial state or
the last completed build reference as the end user
selects.

• Prior to each individual build reference update, a map
of all affected meta-data objects is pre-scanned and
created so that appropriate locking can be sought from
existing user sessions and invoked for future user
sessions if live access is permitted during the update.

• The following update process occurs for each meta-
data change:

o If the update is of a visual or logical object
type, the change is applied directly to the
meta-data object definitions.

o Otherwise if the update is of a data
definition object type then the change is
applied and any associated flow through
effects on the underlying data structures. It
is possible that some data definition
changes may cause a temporary error status
to exist due to then unresolved
compatibility links between usage instances
of the change meta-data object. It is
expected that subsequent meta-data updates
within the same build would resolve all of
these interim errors as each compatibility
issue was then resolved, exactly as the
meta-data editor would have informed the
logic definer whilst making the original
meta-data changes.

o Each update checks if the scope of the
change conflicts with any existing Logic
Variant that has been defined by any other
logic definers. A conflict does not prevent
the update but the conflict is noted for
communication to the logic definer for
review of the effect on their Logic Variant.

• Upon completion of all updates for a build, any
unresolved compatibility links between meta-data
objects will be notified if they have occurred and the
end user can choose to rollback the changes for that
build.

• Upon completion of all updates the meta-data EIS
application can be made available for immediate use,
or typically for a series of end user testing and
allowing logic definers to provide any required meta-
data changes to Logic Variants that may have been
affected by the update.

The meta-data EIS application provides a drastic simplification
of the update process for both the vendors and end user
organisations. Many meta-data changes will have minimal
effect on a live system, although the changed functional areas
will be locked automatically while the build update occurs.

The simplification of managing user customisations by
identifying only the potentially affected logical components will
also reduce any effort required to ensure compatibility. The
ability to identify these conflicts before any update is performed
can ensure that any rectifying meta-data changes to the Logic
Variants are prepared in advance to be applied immediately
following the automated update process.

4 CONCLUSIONS
The temporal meta-data framework for EIS applications offers
many unique benefits that can significantly reduce the effort for
both vendors and end users of meta-data EIS applications in
providing and applying version updates.

While our separate analyses have shown that meta-data EIS
applications can have proportionally significantly lower
lifecycle costs compared to traditionally developed EIS
applications (circa 15%), we believe that the automated update
capability alone can provide substantial additional tangible
efficiency savings, particularly in a highly customised
environment, due to:

• The internal mapping between meta-data objects in a
meta-data EIS application identifies all relationships
and uses of the meta-data objects which aids in
identifying impact analysis and tracking syntactic
compatibility during logic definition, reducing the
instance of basic logical errors being deployed.

• Vendors no longer need to produce dedicated version
specific update programs and procedures as the meta-
data changes are automatically applied, reducing their
cost of meta-data application development, and
minimising the scope of induced migration errors – a
common update engine is always used.

• End user organisations have more direct knowledge of
the changed functionality due to the update simulation
which identifies every change. This allows more
informed planning of end user resources for clearly
focussed testing and training.

• End user organisations can choose how many builds
to update and merge updates to reduce overall update
overhead.

• Logic definers can be provided with the precise
definition of any conflicts between their Logic
Variants and the updated meta-data EIS application,
reducing the effort in updating the customisations and
given advance notice to ensure the timely availability
of updated Logic Variants to complete the overall EIS
update.

• End user organisations can optionally choose to allow
live access to the meta-data EIS application during the
updates, reducing overall inavailability and functional
group downtime losses.

• Substantial reductions in the overall upgrade project
efforts.

The meta-data EIS application has significant potential in
greatly reduced lifecycle definition costs and functional
advantage due to features such as Variant Logic providing
simplified local customisation. Further significant lifecycle
efficiencies and cost reductions are available for both vendors
and end user organisations with the automated meta-data update
processes, minimising update effort, time and costs and
maximising end user uptime and the availability of new
business functionality.

5 REFERENCES
[1] Davis, J., Chang, E., 2011. Temporal meta-data

management for model driven applications, In Proceedings
of 13th International Conference on Enterprise Information
Systems, Beijing, China, June 2011.

[2] Davis, J., Chang, E., 2011. Variant logic meta-data
management for model driven applications, In Proceedings
of 13th International Conference on Enterprise Information
Systems, Beijing, China, June 2011.

[3] De Alwis, B., Sillito, J., 2009. Why are software projects
moving from centralized to decentralized version control
systems ? In CHASE ’09 Proceedings of the 2009 ICSE
Workshop on Cooperative and Human Aspects on Software
Engineering. 2009.

[4] Ren, Y., Xing, T., Quan, Q., Zhao, Y., 2010. Software
Configuration Management of Version Control Study Based
on Baseline. In Proceedings of 3rd International Conference
on Information Management, Innovation Management and
Industrial Engineering. Nov 2010. Vol 4. Pp118-.

[5] Kaur, P., Singh, H., 2009. Version Management and
Composition of Software Components in Different Phases
of the Software Development Life Cycle. In ACM Sigsoft

Software Engineering Notes, Jul 2009. Vol 34. Iss 4. Pp493-
.

[6] Steinholtz, B., Walden, K., 1987. Automatic Identification
of Software System Differences. In IEEE Transactions on
Software Engineering, Apr 1987. Vol SE-13. Iss 4. Pp493-.

[7] OMG, 2010. OMG Model Driven Architecture. In
http://www.omg.org/mda/, 2010.

[8] Jansen, S., Brinkkemper, S., Helms, R., 2008.
Benchmarking the Customer Configuration Updating
Practices of Product Software Vendors. In Proceedings of
the 7th International Conference on Compostion Based
Software Systems, Feb 2008. Pp82.

[9] Brown, A., 2004. Oops! Coping With Human Error in IT. In
Queue – System Failures, Nov 2004. Vol 2. Iss 8.

[10] Dittrich, Y., Vaucouleur, S., Giff, S., 2009. ERP
Customisation as Software Engineering: Knowledge
Sharing and Cooperation. In IEEE Software, Nov/Dec 2009,
Vol 26, Iss 6, pp41-.

[11] Schmidt, D., 2006. Introduction Model-Driven
Engineering. In IEEE Computer Science, Feb 2006, Vol 39,
No.2, pp25-31.

[12] Fabra, J., Pena, J., Ruiz-Cortez, A., Ezpeleta, J., 2008.
Enabling the Evolution of Service-Oriented Solutions Using
an UML2 Profile and a Reference Petri Nets Execution
Platform. In Proceedings of the 3rd International
Conference on Internet and Web Applications and Services,
June 2008, pp198-.

[13] Davis, J., Tierney, A., Chang, E., 2004. Meta-data
framework for EIS specification, In 6th International
Conference on Enterprise Information Systems, Porto,
Portugal, April 2004.

http://www.omg.org/mda/�

	1 INTRODUCTION
	2 Related Works
	2.1 Software Version Management
	2.2 OMG, MDA, MOF and CWM
	2.3 Software Update and Deployment
	2.4 Application Customisation and Rework
	2.5 Model Driven Engineering
	3 AUTOMATIC APPLICATION UPDATE WITH USER CUSTOMISATIONs
	3.1 Meta-Data Version Control Framework
	3.2 Defining the Meta-Data Update
	3.3 Automated Meta-Data Update and User Customisation Detection
	4 Conclusions
	5 REFERENCES

