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Figure 1: Example results of capturing four different surfaces under step-edge illumination. From left to right: painted bookend, metal
bookend, shiny black folder, and whiteboard. The upper row shows real photos, and the bottom row shows images synthesized from the
parameters acquired by our method.

Abstract

This paper introduces a rapid appearance capture method suited for
a variety of common indoor surfaces, in which a single photograph
of the reflection of a step edge is used to estimate both a BRDF and
a statistical model for visible surface geometry, or mesostructure. It
is applicable to surfaces with statistically stationary variation in sur-
face height, even when these variations are large enough to produce
visible texture in the image. Results are shown from a prototype
system using a separate camera and LCD, demonstrating good vi-
sual matches for a range of man-made indoor materials.

Keywords: appearance capture, reflectance, rendering

Links: DL PDF WEB DATA

1 Introduction

Acquiring the appearance of real-world surfaces is important when
real scenes need to be modeled faithfully by computer graphics.
However, even the near-homogeneous manufactured surfaces—
paints, metals, plastics—that are ubiquitous in man-made environ-
ments have evaded easy measurement. With the assumption of ho-
mogeneity, surfaces can be described by a single reflectance func-
tion that can be estimated from images [Yu et al. 1999] or rapidly
acquired by handheld devices [Dong et al. 2010; X-Rite 2011], but
the resulting surfaces always look too featureless, because surfaces
with no visible texture are rare. Good, detailed appearance can be
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achieved by measuring high-resolution parameter maps for particu-
lar samples [Gardner et al. 2003; Ghosh et al. 2009; Ghosh et al.
2010], but these methods are considerably less convenient—too
much work to add subtle texture to a basically homogeneous sur-
face.

In this paper we explore a middle path, suited for many common
indoor surfaces, in which a rapid single-image measurement results
in a statistical description of both visible and microscopic surface
roughness that is sufficient to yield renderings of a surface that qual-
itatively match its appearance. Figure 2 shows some examples of
surfaces that appear in a typical indoor scene. Note that these sur-
faces can be described not only in terms of reflectance—the diffuse-
ness of the wall, the gloss evident in the reflection off the cabinet—
but also by visible “bumps” with characteristic frequency content.
Both of these phenomena are important to the appearance of sur-
faces (particularly in high-resolution imagery), and our approach
explicitly handles both. However, our goal is not to measure ex-
act surface properties—full BRDFs, accurate normal maps—but in-
stead to capture enough information about the statistics of a surface
to achieve a qualitative appearance match. To this end, we propose
a dual-level model of surface appearance, with one level model-
ing microscopic surface geometry (described by the BRDF), and
another modeling visible surface bumps (the mesostructure often
represented in a normal or bump map). To estimate the parameters
of our model, we propose an appearance capture system that uses a
single image of the reflection of step-edge illumination from a pla-
nar sample of a surface to estimate both the BRDF and the statistics
of meso-scale geometry (Figure 1). While we present a prototype
capture system using a separate camera and LCD, our system could
potentially be implemented on a consumer device with a display
and a front-facing camera, such as an Apple iPad, and eventually
could use natural illumination (which often includes step edges).
Our appearance model and capture system are designed as a whole
with the goal of enabling very simple, robust acquisition, while still
handling many interesting real-world surfaces. We begin by briefly
describing these two components.

Dual-level appearance model. Our reflectance model includes
both diffuse and specular components; to represent specular reflec-
tion, we use a Cook-Torrance model (a microfacet-based model).
The BRDF is then modeled by the slope distribution of the micro-
facets with a single parameter, the slope variance. Similarly, we ob-
serve that the visible bumps (the meso-scale structure) can be seen
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Figure 2: Examples of typical surfaces in an indoor environment,
characterizing both by their BRDF (e.g., the gloss evident in the
shiny metal cabinet) and texture created by visible bumps. (Please
zoom into this figure to see the details.)

as visible “microfacets”; hence the roughness of the mesostructure
can also be represented by the variance of the slopes. On the other
hand, mesostructure also exhibits visible texture at different fre-
quency scales, and thus requires a more detailed description than
the invisible microfacets. Prior work has acquired complete normal
maps to provide this detail [Chen et al. 2006; Francken et al. 2008a;
Francken et al. 2008b; Ghosh et al. 2009; Ghosh et al. 2010], but
many real-world surfaces—including certain paints, metals, plas-
tics, and ceramics—have the following properties, which allow a
simple statistical description to suffice:

• Homogeneous: the surface consists of single material with
spatially invariant diffuse and specular albedoes.

• Stochastic and stationary: the mesostructure can be de-
scribed as a stationary stochastic process (i.e., it doesn’t have
structured patterns).

• Isotropic: the surface has isotropic appearance at both micro-
and meso-scale.

Given these assumptions, we can capture the texture of the meso-
structure by a 1D power spectrum over frequencies, the idea be-
ing that such surfaces can be approximated by a radially symmetric
spectrum with random phase [Galerne et al. 2011], as the percep-
tion of many textures is well-characterized by their power spec-
tra [Julesz 1962]; similar models are common in graphics [Perlin
1985]. In short, our surface model consists of two albedoes (one
each for diffuse and specular reflection), two surface roughness pa-
rameters (for micro- and meso-scales), and the 1D power spectrum
of the mesostructure.

Appearance capture. Given our appearance model, we propose
a simple acquisition method: the surface parameters are estimated
by analyzing an image of the surface under step-edge illumination
(a half-black, half-white pattern displayed by an LCD). The core
idea is that, roughly speaking, the reflection off of a surface can be
approximated by a Gaussian filtered incident light [Ramamoorthi
and Hanrahan 2001] (due to the BRDF), composed with a “scram-
bling” effect caused by the mesostructure (see Figure 4(c)), and
that we can reason about the reflection in terms of these operations.
With suitable approximation, this analysis can be done in the image
domain, and the step-edge illumination makes this analysis particu-
larly convenient. Our method requires only an off-the-shelf camera
and LCD, and no polarization filters are required to separate diffuse

and specular components.1

To summarize, our main contribution is an end-to-end system for
simple appearance capture based on (1) a simple dual-scale surface
model with a unified view of roughness in both scales, based on
statistics rather than exact capture, and (2) a simple, fast, and ro-
bust acquisition method utilizing off-the-shelf hardware and simple
image-based analysis. We apply our method to a variety of real
surfaces, and evaluate results by comparing photographs of real re-
flections to synthesized images using the acquired parameters.

The rest of the paper is organized as follows. In Section 2, we
briefly review related work in material and mesostructure acquisi-
tion. In Section 3, we describe our dual-scale appearance model.
In Section 4, we describe our image-based acquisition method. Re-
sults are presented in Section 5.

2 Related Work

Capturing the appearance of a surface is a fundamental problem
in computer graphics and vision, and many different approaches to
this problem have been developed. On one hand are techniques
that directly measure detailed BRDFs through specialized hard-
ware, such as gonioreflectometers [Ward 1992], camera and light
source setups [Marschner et al. 1999], and specially designed op-
tical equipment [Dong et al. 2010]. Such techniques often involve
expensive, complex hardware or time-consuming capture, and are
thus geared towards experts. At the other extreme are techniques
that estimate reflectance from images under natural conditions. Ra-
mamoorthi and Hanrahan develop a signal processing framework
that allows for the recovery of BRDFs from images of a known
shape in a range of scenarios, including when both the lighting
and BRDF are unknown [2001]. Zickler et al. estimate spatially
varying BRDFs (SVBRDFs) of known shapes from images, using
smoothness priors to reduce the number of images needed for ac-
quisition [2006]. Romeiro and Zickler estimate homogeneous re-
flectance from single images under natural illumination using pri-
ors on lighting environments [2010]. These techniques often in-
volve challenging inverse problems, and assume known geome-
try. Our work lies between these two extremes: we use off-the-
shelf hardware along with a simple parametric appearance model
to quickly estimate surface parameters (including meso-scale ge-
ometry), while avoiding difficult inverse problems.

Parametric models are often used in BRDF capture techniques
to simplify acquisition, or for fitting sampled BRDF measure-
ments [Ngan et al. 2005]. For instance, Gardner et al. [2003] use
a linear light source capture setup to find the parameters of a Ward
reflectance model [Ward 1992], while Georghiades uses a Torrance-
Sparrow model to fit the shape and BRDF of surfaces from a small
number of images [Georghiades 2003]. Ghosh et al. use second
order statistics of surface reflections to capture rough specular sur-
faces using spherical gradient illumination from a relatively small
number of images [Ghosh et al. 2009].

In addition to material properties, the geometry of a surface also
plays a critical role in its appearance. In this work, we are primar-
ily concerned with mesoscale surface geometry (often described
with a bump or normal map), rather than macro-scale object geom-
etry. Recovering detailed mesoscale geometry has been achieved
with a variety of techniques, many related to shape-from-shading
or photometric stereo [Woodham 1980]. While many such methods
assume Lambertian reflectance, recent work has extended photo-
metric stereo to specular surfaces; e.g., Wang and Dana recover

1The sample surface needs to be planar, which is usually true in practice
since we only need a small surface; also, we assume that the input illumina-
tion and mesostructure do not generate attached shadows.



detailed relief from specularities [2006], and Chen et al. [2006]
reconstruct normals based on finding peaks of specular highlights
in large numbers of images under varying illumination. In sub-
sequent work, the number of required images has been reduced
using coded illumination [Francken et al. 2008b] or linear gradi-
ent illumination [Francken et al. 2008a]. Another way to measure
surfaces with unknown BRDF is using a contact sensor [Johnson
and Adelson 2009]. However, these techniques all recover normal
maps but not material properties. Paterson et al. recover shape and
heterogeneous BRDF using flash photography, but require multiple
views [2005]; in contrast, our system is designed for homogeneous
textured surfaces and needs less input data. Bidirectional texture
functions (BTFs) have also been used to model appearance, but in-
volving a much heavier data-driven approach than ours [Dana et al.
1999].

Our work fits into what we believe is a “sweet spot” in the space
of appearance capture techniques: our method recovers both BRDF
and mesostructure (as in prior work [Gardner et al. 2003; Georghi-
ades 2003; Ghosh et al. 2009; Ghosh et al. 2010]), but adopts a
simplified frequency spectrum model for the latter and a simple
capture system using a single reflected image of a step-edge illu-
minant displayed on an LCD screen (along with a couple of images
to calibrate the setup beforehand). Without an exact measurement
of the mesostructure, we use a statistical approach to recover micro-
scale properties. This idea has connections to the work of Dror et
al. [2001]: the image statistics reveal surface properties when the
illumination is constrained (or known). While the method is simple,
our results show that for many man-made surfaces it is sufficient to
render surfaces with visually convincing appearance. Our step-edge
pattern allows us to separate the diffuse and specular components of
the reflection by data fitting (as shown in Section 4.2). Hence, un-
like other techniques [Francken et al. 2008b; Francken et al. 2008a;
Ghosh et al. 2009], we do not require polarized filters, further de-
creasing the complexity of our setup.

3 Surface Reflectance Model

One of our key goals is to develop a model of surfaces that is sim-
ple enough to reliably estimate in practical settings, but which also
describes a range of real-world surfaces. Our reflectance model
includes both diffuse (Lambertian) and specular components. We
assume the meso-scale bumps are small, so the bumpiness observed
in an image is mostly due to specular (and not diffuse) reflection;
however, diffuse reflectance must still be modeled, since our analy-
sis requires separating the two components in the input image.

We use a microfacet model for specular reflectance, but further cat-
egorize the facets into micro- and meso-scale based whether they
are visible in the image; micro-scale surface roughness corresponds
to bumps that are microscopic, while meso-scale roughness corre-
sponds to larger bumps that are resolvable in an image.2 In this
section we describe our models for each scale in detail, and show
how they mix to give an overall roughness of the surface in terms
of distribution of slopes on the surface. We relate this distribution
to the blur observed in a image.

3.1 Micro-scale

Micro-scale facets are so tiny (i.e., much smaller than a pixel) that
each pixel of the reflected image only captures the aggregate re-
flection from multiple facets. The reflectance therefore depends
on the fraction of the facets that reflect the incident light to the

2Of course, whether a bump can be resolved depends on the resolution
of the image; as the resolution decreases, the meso-scale structure starts to
mix with the micro-scale structure [Han et al. 2007], as described below.
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Figure 3: Geometry of reflection [Torrance and Sparrow 1967].
ωh is the half-vector of the viewing direction ωo and incident light
direction ωi.
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Figure 4: Synthesized reflection of environment map illumina-
tion off of (a) a perfect mirror; (b) a surface with only micro-
scale roughness; (c) a surface with both micro- and meso-scale
roughness. Notice that when viewed from a distance, the micro-
and meso-scales of (c) blend together to form a “mixed”(overall)
roughness.

observer, which can be characterized by the Cook-Torrance re-
flectance model [Cook and Torrance 1981] via the following re-
flection equation [Pharr and Humphreys 2010]:

dLo (ωo) =
Fr (ωo)G (ωo, ωi)Li (ωi)D (ωh) dωi

4 cos θo
(1)

(see figure 3) where dLo (ωo) is the differential radiance observed
from viewing direction ωo due to the incident radiance Li (ωi) over
the solid angle dωi. Fr (ωo) is the Fresnel reflectance, G (ωo, ωi)
is the geometrical attenuation factor due to self-shadowing, and
D (ωh) is the slope probability density at the half-vector direction
ωh. For example, for a perfect mirror, D (ωh) is a Dirac delta dis-
tribution that is non-zero only at the direction of the surface normal
(resulting in perfectly sharp reflections). In our model, we assume
that D (ωh) for the micro-scale roughness is a Gaussian distribu-
tion, as in [Torrance and Sparrow 1967], with roughness a function
of a single parameter, σD,µ, the standard deviation (where µ stands
for “micro”). This represents roughness at the micro-scale in terms
of the facet slope distribution.

3.2 Meso-scale

At the meso-scale, the facets are large enough to be seen in the
image, so the facet slope distribution alone is not enough to describe
the surface appearance; instead, 2D information about the surface
height or normal variation is needed, which can (for instance) be
encoded into a 2D bump map or normal map. However, for random,
isotropic mesostructure with random phase we can represent this



2D information in frequency space with a 1D power spectrum, since
the 2D spectrum will be radially symmetric.

In practice, we found the slope distribution of a random-phase
bump map to be Gaussian or very close to it, and thus we can also
characterize the meso-scale roughness in terms of the standard de-
viation, as in Section 3.1. We call this parameter σD,m (m stands
for “meso”).

3.3 Overall roughness

While the two different scales considered above each have very dif-
ferent effects on surface appearance, the roughness at each scale
can be characterized by its facet slope distribution, both modeled
as Gaussian distributions (with parameters σD,µ and σD,m respec-
tively). When a surface has both micro- and meso-scale roughness,
we can compute the overall slope distribution of the surface by com-
bining these two Gaussian distributions. Intuitively, if the surface is
viewed from a large enough distance (or captured with low enough
resolution) so that the meso-scale bumps are no longer resolved,
then the meso-scale roughness blends with the micro-scale rough-
ness to form a combined roughness, as illustrated in Figure 8. The
standard deviation of this “mixed” Gaussian distribution is simply:

σD,M =
√
σ2
D,µ + σ2

D,m (2)

This blending of roughness parameters can be considered a simpli-
fied case of the normal map filtering proposed by Han et al. [2007],
where both the normal map and the BRDF are characterized by
Gaussian slope distributions.

3.4 Surface roughness in the image domain

We consider an image formation model that describes the effects of
micro-scale and meso-scale roughness on a reflected image, both
of which can be seen as “scrambling” a perfect mirror reflection at
different scales. Imagine a surface lit with an environment map, as
in Figure 4. If we were to replace the surface with a mirror, then
an image of a reflection (assuming a pinhole camera with infinite
depth of field) would simply be a warped version of the environ-
ment map (Figure 4(a)). If the surface exhibited only micro-scale
roughness (i.e., had no visible bumps), then the effect on the re-
flected image is a “blur” operation (Figure 4(b)); the incoming il-
lumination is “scrambled” by the microfacets, but at such a small
scale that the result is a smoothly blurred version of the perfect re-
flection. This intuition is also used by work on pre-filtered environ-
ment maps [Kautz et al. 2000], and is used to estimate reflectance in
the angular domain by Ramamoorthi and Hanrahan [2001]. Finally,
the meso-scale acts to scramble the illumination once more, but at a
visible scale where the scrambling can actually be seen as a permu-
tation of pixels in the reflected image (Figure 4(c)). To summarize,
the action of the surface roughness is to take a perfect mirror re-
flection, blur it (via micro-scale roughness), and then scramble the
pixels (meso-scale roughness).

In this subsection, we want to derive the relationship between ob-
served image blurriness and underlying surface roughness. Since
the difference between micro- and meso-scale is just a matter of
scale (i.e., unresolvable v.s. resolvable bumps), we first consider
micro-scale roughness, where the blurred reflection is smooth. In
order to work in the image domain (rather than the angular domain,
as in [Ramamoorthi and Hanrahan 2001]), our setup uses a camera
with a narrow field of view (FOV), but places the camera and light
source close to the surface (so their arrangement must be consid-
ered); see the camera/light/surface setup shown in Figure 6.

For simplicity, suppose the image is the reflection of a point light
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Figure 5: A point light source setup to find the relationship between
σI (blurriness in image domain) and σD (slope distribution). The
figure at bottom is the intensity of a 1D slice of the reflection at
y = 0.

source; by using Equation 1 and the small angle approximation,
the resulting image turns out to be a Gaussian function, say with
standard deviation σI . Given a 1D slice of the captured image (say
y = 0), we can relate the observed σI to the slope distribution
parameters σD above (the details are presented in Appendix I):

I (x) ∝ exp

{
− (zL + zC)2 x2

8σ2
Dz

2
Lz

2
C

}
(3)

where zL, zC are the distances from the light and camera to the sur-
face in pixels (as measured on the object surface), respectively (Fig-
ure 5). This is simply a Gaussian with standard deviation 2σDzLzC

zL+zC
,

so we have:
σD =

zL + zC
2zLzC

σI

Note that zC (the distance from camera to surface in pixels) is ex-
actly the focal length fC (in pixels) of the camera. We can rewrite
this in terms of the distance ratio zC

zL
:

σD =
1 + zC

zL

2zC
σI =

1 + dC
dL

2fC
σI (4)

where dC and dL are the distances from the camera and light to
the surface, respectively (in any units, e.g., centimeters; note that
the distance ratio is independent of the units). Therefore, in order
to find σD given σI , we only need to know the focal length of the
camera fC (in pixels) and the distance ratio dC

dL
.

The same relationship also holds for step-edge lighting, since it can
be thought as an aggregation of point lights. In Section 4.2, we will
show that resolved roughness (i.e., meso-scale and overall) can also
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Figure 6: The setup of our acquisition system.

be analyzed in the same way by averaging, or finding a least-squares
fit; thus, Equation 4 applies to all scales of surface roughness, re-
solvable or not.

4 Reflectance and Bump Map Measurement

This section describes our method for acquiring the parameters of
the surface reflectance model proposed in the previous section. Our
setup, described in Section 4.1, uses an LCD as an area light source
to illuminate a subject surface with a step-edge pattern (a half-
black, half-white image with a vertical edge), and a camera to cap-
ture the reflected image, from which we estimate parameters.

Intuitively, given a surface with both micro- and meso-scale rough-
ness, the overall roughness can be found by observing the surface
from a distance (so the mesostructure merges into micro-scale),
then fitting a Gaussian filter that blurs the step-edge image to pro-
duce the observed image. Note that a Gaussian filtered step-edge
image I (x, y) can be written as a normalized Gauss error function:

I (x, y) =
1

2

[
1 + Erf

(
x√
2σI

)]
(5)

In practice, we cannot always observe a surface at arbitrarily long
range. However, the same result can be achieved by least-squares
fitting Equation 5 to the reflected image, effectively averaging over
a sufficiently large image area, thus estimating the overall rough-
ness. The details are described in Section 4.2.

The next step is to separate the micro- and meso-roughness from the
overall roughness. In Section 4.3, we estimate micro-scale rough-
ness by a method involving sorting pixels by intensity, which “un-
does” the scrambling caused by mesostructure; in Section 4.4, we
use this estimation to simulate a reflected image from a surface with
only micro-scale roughness, and compare it to the original image to
estimate meso-scale roughness. All three roughness estimates are
then adjusted to satisfy Equation 2.

Finally, we recover the texture of the mesostructure, represented
as a 1D frequency spectrum (as described in Section 3.2). In Sec-
tion 4.4 we show this spectrum can be derived from the step-edge
reflected image by using a first-order approximation to the scram-
bling behavior in the image domain.

4.1 Setup

Our current setup uses a regular LCD and a vision camera (Point
Grey Chameleon). We use a lens with narrow FOV (about 20 de-
grees horizontally) to conform with the small angle approximation
made in Appendix I; however, the viewing direction is not required

(a) (b)

(c)

Figure 7: Normalizing the step-edge reflection (a) by the gray re-
flection (b). (c) is the normalized result, where 0 corresponds to
black and white corresponds to 1. The calibration target is also
removed.

to be close to surface normal, as Figure 6 shows. A calibration tar-
get is put on the surface to find the pose of the surface with respect
to the camera. Given this setup, a total of three images are needed:
the reflection of the step-edge image, the reflection of a gray image
(used for brightness calibration, see Section 4.2), and a calibration
image for the LCD, which is taken by attaching an mirror to the sur-
face. In a practical realization of this system, the last two images
could be replaced by a one-time calibration of the relative position
of the LCD to the camera, and the brightness variation of the LCD.

4.2 Overall roughness estimation

In Section 3.4, we established the relationship (Equation 4) between
the slope-domain roughness parameter σD and the image-domain
roughness σI for unresolved roughness (e.g., when we observe the
surface from a distance). When the bumps are resolvable (i.e., for
meso-scale or overall roughness), then the relationship still holds
as long as we average over a large enough window in the image (so
that the bumps “average out”). In fact, for a step-edge-illuminated
image, averaging over the columns of the image achieves the same
effect (see Figure 8). Hence, if we use least squares to fit an error
function to the overall roughness, Equation 4 still holds.

In practice, before fitting Equation 5 to the reflected image, two
issues need to be considered: first, the reflected image is a combi-
nation of diffuse and specular components, while only the latter is
used to estimate surface roughness. To separate them, we observe
that in our setup (Figure 6) the diffuse component changes very
slowly compared to the specular component, and can be approxi-
mated by a linear gradient. The result is not as accurate compared to
other techniques (e.g., using polarized filters [Francken et al. 2008b;
Francken et al. 2008a; Ghosh et al. 2009]), but it requires no special
devices.

Second, the LCD is not a perfectly diffuse area light source (i.e., the
radiance is dependent on the viewing angle); this breaks our model
since the reflection intensities depend on the viewing angles to the
LCD, and the image can no longer be approximated by a Gauss er-
ror function. This intensity variation, however, can be calibrated
by capturing another surface reflection while displaying a constant
gray image on the LCD; the specular component of the gray reflec-
tion encodes the variation due to the changing viewing angle to the
LCD. Hence, we can normalize the specular component of the step-
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Figure 8: Two synthesized surfaces with roughness in different
scales but the same overall slope distribution: the pixel value at
X is the same as the average over the column A.

edge reflection by dividing it by the specular component of the gray
reflection, as shown in Figure 7. Despite being a rough calibration,
the variation due to viewing angle is often small enough for this
method to work well.

Given these issues, we use the following model for the captured
image:

I = c (IG −DG)E +D

where I is the captured step-edge reflected image we want to fit, IG
is the captured gray image, E is a Gauss error function, and c is a
real-value factor (close to 2 if middle gray is used for IG). D and
DG are the diffuse components of both reflections, respectively;
both are modeled as linear functions. In this step, intensity vari-
ations due to meso-scale roughness are essentially noisy measure-
ments that are averaged. We use MATLAB’s lsqnonlin func-
tion for non-linear fitting to estimate the parameters of this model.
We initialize D and DG to zero, and the standard deviation of E
to a sixth of the image width (so it increases smoothly across the
image). After the fitting converges, the overall surface roughness
σI,M is given by the standard deviation of E.

4.3 Micro-scale estimation

To estimate micro-scale roughness, we observe that the mesostruc-
ture randomly “scrambles” the image that would be reflected by a
surface with only micro-scale roughness, where pixels are mono-
tonically increasing from side to side when a step-edge lighting is
used. Thus, by sorting the pixels in column-major order (that is,
sorting all pixels by intensity and reshaping them back to the same
size as the input image in column-major order, so the pixels with
lowest intensities are in the first column, and those with largest in-
tensities are in the last), we can restore the scrambled reflection and
isolate the micro-scale roughness. This is shown by the first two
curves in Figure 9: they match each other almost perfectly despite
very different appearances before sorting. However, due to the im-
age noise and outliers such as the scratches or dust on the surface,
what we get from real photos is more similar to the third curve,
where the outliers, which usually have extreme pixel values, gather
to the left and right end of the image (A and B), and the noise is
sorted by its magnitude which yields the inclined lines. (Notice
that we may have negative or greater-than-one pixels since we nor-
malize the image) Therefore, a least-squares fitting method similar
to Section 4.2 can not be used here.

However, we observe that the slope at the middle of the curve
(which is the same as the gradient of the sorted image in the X
direction) seems unaltered by the noise. This can be explained by
considering the inverse function, i.e., position as a function of in-
tensity. Observe that the position can then be interpreted as cu-
mulative probability; thus the inverse function is exactly the cu-
mulative distribution function (CDF). For the CDF, the effect of
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Figure 9: The scrambling behavior can be “undone” by sorting the
pixels; this figure shows the average curves over the rows of three
sorted images (this can be seen as the inverse CDF of the image
intensities). The mesostructure has almost no effect on the curve,
and the effect of noise can be approximated by a Gaussian filter
along the Y-axis. Notice how the slopes at the middle of the curves
stay the same.

the image noise can be seen as a convolution of the CDF and the
noise distribution function: for example, the third curve in Figure
9 represents a reflected image with both scales of roughness plus
zero-mean Gaussian noise, whose CDF is the Gaussian filtered ver-
sion of the second curve, as shown by the rotated Gaussian kernel.
Therefore, we can see that the slope of the middle segment of these
curves is not changed by the existence of noise, as long as the noise
is small compared to the image contrast.

Given this property, we show that the micro-scale roughness can be
estimated by measuring this slope: the partial derivative in the X
direction of the Gauss error function image (Equation 5) is

Ix (x, y) =
∂

∂x
I (x, y) =

1√
2πσI

exp

{
− x2

2σ2
I

}
Hence the slope s at the middle is given by Ix (0, y) = 1√

2πσI
, and

the micro-scale surface roughness σI,µ in the image domain can be
computed by σI,µ = 1√

2πs
.

4.4 Meso-scale estimation

There are two steps in the meso-scale estimation: computing rough-
ness (slope distribution) and texture modeling.

Roughness computation. In theory, it is possible to compute
meso-scale roughness from micro-scale and overall roughness us-
ing Equation 2. However, when meso-scale roughness is small (so
micro-scale roughness is almost equal to overall roughness), even
a small error in the two estimates leads to a large relative error in
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Figure 10: Pixel perturbation caused by mesostructure: this figure
shows a close look at a slice of the transition region of a scram-
bled reflected image I (blue curve), from a surface with both micro
and meso-scale roughness, and its unscrambled version Iµ (green
dashed curve) from the same surface without mesostructure. I (x)
denotes the pixel intensity at position x, and its corresponding po-
sition in Iµ is computed by the inverse function I−1

µ (I (x)).

the computed meso-scale roughness. Therefore, we instead esti-
mate meso-scale roughness directly by using an image perturbation
model, and then adjust all three estimates to conform with Equation
2.

Consider a surface with only micro-scale roughness: by adding
mesostructure to the surface, the pixels are scrambled to their new
positions; however, since we already know the micro-scale rough-
ness σI,µ (estimated in Section 4.3), the position of a given pixel
intensity in the unscrambled image can be computed by applying
the inverse function of Equation 5, where σI = σI,µ. A one-
dimensional illustration is shown in Figure 10: the amount of shift
∆x = x− I−1

µ (I (x)) shows the perturbation in the image domain
caused by the mesostructure, and by the argument in Section 3.4
we know this perturbation follows a Gaussian distribution, whose
standard deviation is the meso-scale roughness σI,m. Therefore,
we can compute σI,m by estimating the variance of ∆x over all
pixels:

σI,m =
√

Var (∆x)

In practice, the inverse function is very sensitive in the dark and
bright regions (where its slope is close to infinity), so we only com-
pute ∆x in the transition region. We set the width of the region to
σI,µ, since we know it is proportional to micro-scale roughness.

After having all three scales of roughness, we need to adjust them
to satisfy Equation 2. We find the adjustments ∆M,∆m,∆µ for
each scale as the solution to the following constrained minimization
problem:

arg min
∆M,∆m,∆µ

(
∆M

σI,M

)2

+

(
∆m

σI,m

)2

+

(
∆µ

σI,µ

)2

s.t. (σI,M + ∆M)2 = (σI,m + ∆m)2 + (σI,µ + ∆µ)2

The solution to this problem represents the minimum adjustments
(relative to the magnitude of the initial estimates) which satisfy the
constraint.
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Figure 11: Acquiring mesostructure texture properties. (a) Step-
edge reflection. (b) Step-edge reflection of the same surface with
only micro-scale roughness. (c) Intensity change due to mesostruc-
ture (i.e., (a) minus (b)). (d) Fourier transform of (c). (e) Recon-
structed Fourier transform by dividing (d) with iω. (f) 1D power
spectrum computed by averaging over concentric rings of (e).

Texture modeling. We describe the meso-scale texture by a 1D
frequency spectrum computed by averaging over concentric rings
in the 2D spectrum of the mesostructure height map. This 1D spec-
trum records the frequency content without the orientation con-
tent; the idea is related to the ring filters used in texture analy-
sis [Tuceryan and Jain 1993; Randen and Husoy 1999].

As with the roughness computation, we consider the image re-
flected from a surface with only micro-scale roughness; the in-
tensity change, which is caused by adding the mesostructure, can
then be found by subtracting it from the original reflected image, as
shown in Figure 11(c). Now, rather than using the inverse function
to find the perturbation ∆x in the image domain, we use a first-
order Taylor approximation:

∆I (x, y) = I (x+ ∆x, y)− I (x, y)

≈ ∆x · ∂I
∂x

(x, y)

= ∆x ·GσI,µ (x)

where GσI,µ (x) is a Gaussian with standard deviation σI,µ (i.e.,
the derivative of the error function representing the micro-scale re-
flected image). Next, by the result in Appendix I, the horizontal
half-vector angle θh is approximately proportional to the image po-
sition x on the X-axis. Therefore, the perturbation of this half-
vector angle (due to mesostructure), ∆θh, is also proportional to the
perturbation in image position ∆x. In addition, by using the small
angle approximation again, ∆θh is equal to the partial derivative
of the height map h in the x-direction. Combining all of these, we
have

∆I (x, y) ∝ ∂h

∂x
(x, y) ·GσI,µ (x) (6)

Using the rule for the Fourier transform of the derivative of a func-
tion, the Fourier transform of the intensity change image (Figure
11(d)) is

∆̂I (ω, φ) ∝
[
(iω) ĥ ∗ ĜσI,µ

]
(ω, φ)

where ∆̂I , ĥ, and ĜσI,µ are the Fourier transforms of the corre-



Test case σI,M σI,µ σI,m

Metal bookend 109.83 91.31 61.02
Synthesized image 113.44 94.69 62.48

Beige bookend 170.88 158.93 62.78
Synthesized image 172.87 154.48 77.61

Black folder 21.35 15.97 14.17
Synthesized image 22.22 17.05 14.26

Table 1: Correctness test. For each surface, the first row shows
initial recovered parameters for that captured surface, and the sec-
ond row shows result of rerunning the estimation process on images
synthesized with recovered parameters.

sponding functions3, and ∗ denotes convolution.

This relationship shows that we can compute (up to a scale factor) a
Gaussian filtered Fourier transform of the mesostructure (the height
map) by dividing the Fourier transform of the intensity change im-
age by iω. The multiplication with the horizontal Gaussian function
in Equation 6 becomes a convolution in the Fourier domain, which
suggests the horizontal resolution of the power spectrum we can
compute is limited by the micro-scale roughness σI,µ; as the micro-
scale roughness decreases, the support of the Gaussian function be-
comes larger in the frequency domain. In our tests, however, this
is not a significant problem since we average over concentric rings
in the power spectrum, which utilizes both vertical and horizon-
tal frequencies. Our first-order approximation in Equation 6 also
breaks down when the micro-scale roughness is small. In practice,
this introduces high-frequency noise into our estimation of meso-
scale texture; however, important characteristics of the texture are
still captured, and we are still able to acquire visually reasonable
matches (see Figure 12). Figure 11 illustrates our meso-scale tex-
ture acquisition procedure.

5 Results

We now demonstrate the performance of our acquisition method,
through (1) a correctness test, and by (2) comparing our cap-
tured and synthesized results to real-world photographs of surfaces.
All renderings described in this section were created with PBRT
v2 [Pharr and Humphreys 2010]; the synthesized bump maps were
generated by using the 1D power spectrum to rebuild a radially
symmetric 2D Fourier transform and then randomizing its phase.
The system then adjusts the magnitude of the bump map accord-
ing to the estimated meso-scale roughness (i.e., the estimated slope
distribution).

Correctness test. We first evaluate the correctness of our method
by iteratively running our algorithm; we synthesize a surface using
estimated roughness parameters, render this surface in PBRT under
step-edge illumination, then run our estimation algorithm again on
the rendered image. We apply this test on the step-edge-illuminated
images of three real surfaces with various overall roughness. Table
1 shows the results, which demonstrate that our method can acquire
parameters from synthesized images with relatively high accuracy:
most of the estimates in all scales have less than 5% error. The large
error in the estimated meso-scale roughness of the beige bookend
is because of a less accurate estimate of the diffuse component due
to high overall roughness; such high roughness makes the appear-
ance of the specular component more similar to the diffuse com-
ponent. Nevertheless, the meso-scale roughness is relatively small

3Here we compute the 2D Fourier transform of the 1D Gaussian function
by defining GσI,µ (x, y) = GσI,µ (x).

compared to its overall and micro-scale roughness, and thus has less
effect on the surface appearance.

Comparison with real photos. In order to judge how well our
system can recover parameters that yield an appearance match to a
target surface, we have used it to capture a number of surfaces, and
rerendered synthesized versions under two different conditions; for
each condition, we qualitatively compare to a ground truth captured
photo. The first condition is the same viewpoint and illumination
used for acquisition (i.e., step-edge lighting, see columns 1 and 2
of Figure 12). The second is from a novel, more oblique viewpoint,
illuminated by the screen of an Apple iPhone placed perpendicular
to the surface (columns 3 and 4 of Figure 12). This novel view-
point observes the surface from a larger distance, and shows the
varying blurriness of the reflection across the image due to vary-
ing surface-to-light distance. In all tests, the position of the camera
(and the iPhone, when present) was calibrated using the Bouguet
toolkit [Bouguet 2010], so that the scene configuration could be re-
produced in our renderer. Note that our acquisition system currently
uses a grayscale camera, so no color information is estimated; for
visualization, we manually tuned the color of the renderings in the
novel view.4 In addition, we tune the absolute albedo of the surface
manually (this could be recovered by using a calibration target with
known albedo).

In general, the results show that our method often achieves a good
appearance match. The overall acquired roughness can be judged
by the widths of the dark-to-bright transition regions (under step-
edge illumination), and by the level of blurriness of the iPhone LCD
reflection (in the novel viewpoint) and is qualitatively similar in
the captured and rendered views in each case, from the mirror-like
whiteboard to the fairly rough beige bookend. The reconstructed
mesostructures (the “bumpiness”) qualitatively capture the appear-
ances of real surfaces for a range of bump size distributions (com-
pare the characteristic scrambling effect in the transition regions for
the step-edge images, and the ragged edges of the reflected iPhone
display). Some differences between the two sets of images are ap-
parent, however. In some cases (e.g., the two bookends), there is
more contrast evident in the meso-scale bumps in the rendered im-
ages, which could partly be attributed to the perfect optics of the
synthetic camera used for rendering, but also suggests that the en-
ergy in the meso-scale roughness is slightly overestimated. There
are two causes for the bias: first, in some cases the diffuse com-
ponent is over-estimated, which increases the contrast of the nor-
malized image (Figure 7(c)) and leads to higher roughness; second,
pixel-level noise from the sensor also tends to increase the esti-
mated roughness. Both causes, however, have a larger effect on the
meso-scale estimation than on the micro-scale and overall rough-
ness. This is because the estimations later two estimates are less
susceptible to the increased pixel variance due to their statistical
nature.

There are also differences in the diffuse reflections, which can be
observed in Figure 1, or the uncropped high-resolution images in
the supplementary material (available using the links at the start of
this paper). While these again suggest that the diffuse reflectance
may be slightly misestimated, this effect is exacerbated by the fact
that real LCDs are not perfectly diffuse area light sources (i.e., ra-
diance is dependent on viewing angle)5. Despite these differences,
our approach often achieves a good match, especially considering
the small amount of input data we require.

Figure 13 shows two test cases where our method failed (a metal

4In the renderings, we only tuned the diffuse color; the specular color is
assumed to be white. Estimating colored reflection would involve using a
color camera as well as some simple modifications to our system.

5In our renderings, we used a cosine model to approximate this behavior.
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Figure 12: Results. Each row shows a different acquired surface. The first column shows the captured image under step-edge lighting used
for parameter estimation. The second column shows a rendering of a patch of the surface synthesized using the acquired parameters. Column
three shows a photograph of the surface from a new viewpoint, illuminated by an iPhone LCD. Column four shows the synthesized surface
rendered under the same conditions. Please zoom into this figure to see the detail of the mesostructure, or see the supplemental material
(available using the links at the start of this paper) for high-resolution images.

Metal sheet
(photograph)

Metal sheet
(rendering)

Red folder
(photograph)

Red folder
(rendering)

Figure 13: Failure cases. Left columns: an extremely rough metal sheet (photograph and rendering). Right columns: a red folder with
anisotropic mesostructure (photograph and rendering).



sheet, and a red folder). For the metal sheet, the mesostructure is
extremely dense and strong, and the resulting large slope variation
breaks the small angle approximation in Equation 6 (and the po-
tential for attached shadows from the meso-scale bumps could also
be a problem). The strong meso-scale roughness yields the elon-
gated reflection towards the bottom of the image, not present in
our rendering. In the case of the red folder, the mesostructure is
anisotropic: many horizontal stripes are evident in the captured im-
age. Because this violates our assumption of isotropy, our surface
model cannot produce a good fit.

6 Conclusions and Future Work

We have presented a simple end-to-end capture system for achiev-
ing a qualitative appearance match with a range of glossy, bumpy
surfaces. Our main contributions are a dual-level statistical model
of surface appearance, and a lightweight capture system using step-
edge illumination that goes hand-in-hand with this model. We be-
lieve our work represents a promising advance towards lightweight
appearance capture; while we present a prototype system, we be-
lieve that it could also be implemented on a more portable setup,
such as an iPad with a front-facing camera, where the geometry
and LCD emission can be precalibrated.6 There are also a num-
ber of other avenues for future work. Currently, absolute albedoes
are not estimated; the estimation can be incorporated into surface
calibration (e.g., using a square marker with known albedo). Sepa-
rating diffuse and specular reflection can be difficult for very rough
objects, and so a more robust method would be desirable. To handle
materials that are anisotropic (at micro-scale, meso-scale, or both),
one could capture a second step edge perpendicular to the first (or
display both at once with a 2×2 checkerboard pattern). Finally, step
edges (or near step edges) at a variety of orientations are common
in natural illumination (e.g., due to occlusions or hard shadows),
and an interesting extension would be to estimate the appearance of
a planar patch from everyday lighting alone.
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Appendix I

By using Equation 1 we can write the reflected image I by

I (x, y) =

ˆ
H2(n)

Fr (ωo)G (ωo, ωi)Li (ωi, x, y)D (ωh)

4 cos θo
dωi

Notice that the incident illumination Li depends on the im-
age/surface position (x, y) since the light is not infinitely far away.
Next, because the camera we use has a small FOV, we can assume
the Fresnel reflectance Fr , geometrical attenuation term G, and the
cosine factor cos θo to be constant, hence

I (x, y) ∝
ˆ
H2(n)

Li (ωi, x, y)D (ωh) dωi

Now we look at the center row of the image, where y = 0. Let
I (x) = I (x, 0) and Li (ωi, x) = (ωi, x, 0). In this row, the inci-
dent light Li due to the point source is a delta function

Li (ωi, x) = δ

(
θi = tan−1 x

zL

)
= δ

(
θi ≈

x

zL

)
where zL is the distance from the light to the surface in pixels. The
last approximation comes from the fact that FOV is small, so we

can use the small angle approximation. Also, we know that the
slope distribution function D only depends on θh since the surface
is isotropic. To find θh, we need to know the viewing angle θo,
which can again be approximated by using the small angle approx-
imation:

θo = tan−1 x

zC
≈ x

zC

where zC is the distance from the camera to the surface in pixels.
Combining the equations above, we get

I (x) ∝ D (θh) ≈ D

(
x
zL

+ x
zC

2

)
Since D is assumed to be a Gaussian, we get Equation 3 in Section
3.4.


