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ABSTRACT
In this paper we address the automatic identification of in-
door locations using a combination of WLAN and image
sensing. Our motivation is the increasing prevalence of wear-
able cameras, some of which can also capture WLAN data.
We propose to use image-based and WLAN-based localisa-
tion individually and then fuse the results to obtain better
performance overall. We demonstrate the effectiveness of
our fusion algorithm for localisation to within a 8.9m2 room
on very challenging data both for WLAN and image-based
algorithms. We envisage the potential usefulness of our ap-
proach in a range of ambient assisted living applications.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless com-
munication; H.4.3 [Information Systems Applications]:
Communications Applications

General Terms
Algorithms, Measurement, Experimentation

Keywords
indoor localisation, WLAN, SURF vocabulary tree, fusion

1. INTRODUCTION
Wearable camera technology has evolved to the point whereby

small unobtrusive cameras are now readily available, e.g.
the Vicon Revue1. This has allowed research effort to fo-
cus on analysis and interpretation of the data that such de-
vices provide [1]. Even in the absence of bespoke platforms
such as the Vicon Revue, any smart phone can be turned
into a wearable camera. The Campaignr2 configurable mi-
cropublishing platform has shown the capability of mobile
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platforms to act as WLAN (and more general sensor) data
gathering hubs. Our group is developing a device using an
Android-based smart phone worn on a lanyard around the
neck that in addition to image capture also senses a variety
of other modalities e.g. motion, GPS, Bluetooth, WLAN.
The idea is to use this platform in a variety of ambient as-
sisted living applications as well as assistive technology for
the memory and visually impaired. Whilst outdoor local-
isation is taken care of on this platform via GPS, indoor
localisation is still an unsolved issue.

Although GPS has become synonymous with user locali-
sation, indoors its signals are weak or non-existent. Using
WLAN as a solution has given promising results, but its
performance is subject to change due to multipath propa-
gation and changes in the environment, such as number of
persons present in a given location (see fig.1(a) which il-
lustrates the effect of the presence of humans on WLAN
received signal strength (RSS) data), variable orientation,
temporary changes to building layout, etc) [2]. Performance
also depends on the material the building is made from, size
of spaces where measurements take place, antenna orienta-
tion, directionality, etc. [2]. Whilst image-based localisation
techniques have provided some promising results, as in [3,
4], the limitations continue to be due to occlusion, changes
in lighting, noise and blur [5]. In this paper, we propose an
approach that combines image and WLAN data to leverage
the best of both of these complementary modalities. We
present the results for locating a user to within a specific
office in a building or to a location within that office.

Most existing localisation methods are based on a single
modality. In fact, to our best knowledge, even in other ap-
plication domains there are only a few techniques based on
fusion of RF and image sensing methods. In [6] the authors
consider an active tracking system, consisting of a camera
mounted on pan-tilt unit and a 360◦ RFID detection system
to efficiently track humans in crowds. First they applied
a particle filtering method to fuse heterogeneous data and
then controlled the system motion to follow the person of
interest. Other work describes an object tracking scheme
using a different particle filtering model [7]. It consists of
a camera observation method based on color features of the
target and a WLAN-based localisation system.

In our previous work [8], we showed a proof of concept of
how RSSs and image matching data could be fused to do
coarse localisation for a small number of locations. Here we
introduce a more precise WLAN-based algorithm, vocabu-
lary tree concept for image-based localisation and a novel
more complex and effective function in the fusion process.



(a) Effect of users’ presence on WLAN RSSI his-
togram in an office space: no users present (left),
users present and moving (right)

(b) Sample images collected of office spaces

Figure 1: Examples of WLAN-based and visual sens-
ing.

The approach is verified on a much larger and more chal-
lenging dataset. Our paper is structured as follows: Sec-
tion 2 describes the experimental setup including data cap-
ture while section 3 discusses WLAN and image-based al-
gorithms respectively. Section 4 introduces a novel fusion
function while section 5 presents results for each modality
individually and demonstrates that fusion outperforms any
one modality leading to very accurate results overall.

2. EXPERIMENTAL SETUP
For our experimental test bed we use 20 offices on the

second floor of a building (see fig. 2), where the average
size of an office is 8.9m2. Within each office we use 5 cali-
brations points (CP), A,B,C,D & E. Each orientation of
a CP (North, South, West and East) is represented with
8 (640 × 480 pixels) images taken with a camera (see fig.
1(b) for examples), and 300 RSSI (received signal strength
indication) observations taken with a laptop. Every CP is
represented using data from all four orientations together.
In total we had 5, 000 images, of which 3, 200 were used for
training and 1, 800 for testing, and 125, 000 signal strengths
observations of which 120, 000 were used for training and
5, 000 for testing. One observation consists of received sig-
nal strengths from all active access points (in the best case
the total number of access points: 14 in our case). Offices
are chosen to be next to each other and moreover, look very
similar inside, thus resulting in very challenging data for
both WLAN and image-based localisation methods.

In a test we used one image and one signal strength ob-
servation per CP and tested how precisely we could localise
to a given CP. Clearly, if we can localise to a CP, we can lo-
calise to within the office that contains that CP. We present
results for localizing to a given office whereby the office se-
lected is based on the 1st ranked results corresponding to
one of the CPs for that office, even if the top ranked CP
is incorrect. However, we wanted to understand how many

(a) (b)

Figure 2: (a) Map of office locations – red crosses
indicate offices used; (b) Calibration points ABCDE
within an office

(and which) CPs are necessary as this has an impact on the
manual data collection effort required to perform accurate
localisation. We examined localisation precision for 5 dif-
ferent combinations of 1, 2 and 3 CPs per office (giving 5
different sets of 20, 40 and 60 locations respectively in to-
tal). Precision (P) and average precision (AVP) were used
as performance measures.

3. LOCALISATION METHODS

3.1 WLAN-based localisation
Probabilistic WLAN-based localisation techniques presume

a priori knowledge of the probability distribution of the
user’s location [9, 2]. We decided to employ a Naive Bayes
method [9] which takes into account the access points’ (APs)
signal strength values (RSSI) and also the frequency of the
appearance of these APs. A signature for each CP is defined
as a set of W distributions of signal strengths of W APs and
a distribution representing the number of appearances of W
APs received at this CP. We denote by C ∈ {1, 2, ...,K}
the CP random variable where K is the number of CPs,
Xm ∈ {1, 2, ...,W} represents the mth AP random variable,
Ym ∈ {1, ..., V } is the signal strength that corresponds to
mth AP where W is number of APs, M is number of APs
of an observation and V is number of discrete values of sig-
nal strength. From a set of N training observations D =

{o1,o2, ...,on} where on = (c(n), x
(n)
1 , y

(n)
1 , ..., x

(n)
M , y

(n)
M ) ,

n = 1, .., N we can then estimate the signature parameters.
The joint distribution P (C,X1, Y1, ..., XM , YM ) is given

by

P (C)

M∏
m=1

P (Xm|C)P (Ym|C,Xm) (1)

where the distribution P (C = c) could be assigned as uni-
form (without any loss of confidence).

If the identity function is I(a, b) = 1 if a = b else = 0, the
sufficient statistics are:

nc =

N∑
n=1

M∑
m=1

I(c(n), c) (2)

n(x)
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m , x) (3)



n(y)
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The parameters of P (Xm|C) are estimated as

π̂(x)
c =

n
(x)
c + 1

nc +W
(5)

and the parameters of P (Ym|C,Xm) as

γ̂(y)
c,x =

n
(y)
c,x + 1

n
(x)
c + V

(6)

Eventually at the prediction step we have:

li = P (c)

M∏
m=1

P (xm|c)P (ym|c, xm) (7)

The algorithm chooses the location which maximises li as
being the user location. We rescaled these probabilities to
sum to one and denoted their new values as the CP confi-
dences, pi.

3.2 Image-based localisation
Some efficient image retrieval and image-based localisa-

tion methods have been proposed so far [3]. Here we used
a variation of the method shown in [10] to efficiently match
query images that belong to a specific CP to the image train-
ing dataset of all CPs. Instead of SIFT, 64-dimensional
SURF descriptors are used [4]. In our approach we make
use of the sign of Laplacian (the trace of the Hessian matrix)
which was already computed during the detection stage. Us-
ing the sign of the Laplacian we only compare those features
that have the same type of contrast (dark on light back-
ground or light on dark background). All SURF features
were extracted from all 3, 200 images in the database, giv-
ing 794, 146 feature descriptors. Each feature was associ-
ated with the image and the CP to which it belonged. To
compare them we used the Euclidean distance. The features
were split into two groups based on the sign of the Laplacian
which halves our search time. For each group, we created
a hierarchical tree clustering the descriptors using the K-
means algorithm repeatedly. In the case of a query image, a
match for each of its descriptor was found using the +1 or
−1 hierarchical tree. Since each was labelled with the image
and CP from which it was extracted, it therefore casts one
vote for that CP. After each descriptor had voted for a CP,
we then had a ranked list of CPs, from the most to the least
likely. Similarly, we assigned a confidence for each CP (qi)
as the ratio of the number of votes associated with that CP
and the total number of votes.

4. DATA FUSION
To perform fusion, we take confidences pi and qi from both

sensing modalities P and Q into account, where in our case
P and Q were WLAN and image sensing methods respec-
tively. Here, i refers to a given CP. If we sort these confi-
dences we can denote the first ranked, the second ranked,
the third ranked, etc. (sorted) confidence by pmax1, pmax2,
pmax3, etc. respectively (or by qmax1,qmax2, etc. for the Q
modality). We decided to use a large training dataset of

confidences of different CPs. This would help in building a
robust fusion function which would be reliably used on (un-
known) testing data. First, let us define Pij = pmaxi−pmaxj

and similarly Qij = qmaxi − qmaxj . Observing P12 and Q12

in many training confidence pairs we concluded that for val-
ues P12 and/or Q12 beyond some reliably large threshold,
we were sure that the correct CP (location) was the 1st

ranked one, based either on P or Q (or both). We estab-
lished the thresholds T1 and T2 for P and Q and moreover
we deduced that introducing multiplication and/or addition
functions under some conditions can improve precision even
more (or at least average precision). It is important to note
that even if the 1st ranked confidence belongs to the cor-
rect location the algorithm would discard it if P12 (or Q12

or both) is below this(these) threshold(s). Also we found
that the ranking of the correct location did not fall below
some positions in both sets of rankings. In general, these are
the mth position for P and the nth position for Q modality.
The fusion function is thus as follows (eq. 8), where fi rep-
resents fusion confidence and ki confidence of the method to
which min(n,m) corresponds. The location output by the
algorithm is the one with the maximum value of the fusion
confidence:

fi =



pi, P12 ≥ Q12 ∧ P12 ≥ T1 ∧Q12 ≥ T2

qi, Q12 ≥ P12 ∧ P12 ≥ T1 ∧Q12 ≥ T2

pi, P12 ≥ T1 ∧Q12 < T2

qi, Q12 ≥ T2 ∧ P12 < T1

piqi, T3 ≤ P12 ≤ T4 ∧ T5 ≤ Q24 ≤ T6

pi + qi, T7 ≤ P12 ≤ T8 ∧ T9 ≤ Q24 ≤ T10

ki, else

(8)

5. RESULTS
An example of the benefits of fusion, when 2 CPs are ob-

served as individual locations (BE), is shown in figure 3.
It shows the behaviour of precision considering the top N
ranked results, thus illustrating how often each modality re-
turned the correct location as the top ranked result, 2nd

ranked results, and so on (bars in the graph) and also how
precision increases if the top N ranked results are consid-
ered (lines in the graph). In the top N , for N = 1 . . . 5,
the fusion approach outperforms both WLAN and image-
based methods reaching precision of 91.82%. Also it can
be seen that correct location rank doesn’t drop below 8th

for WLAN, and 12th for the image-based method. In this
example we have AV PW = 75.18%, AV PI = 68.14% and
AV PF = 80.94% for the WLAN, image-based and the fu-
sion approach respectively.

The left hand side of table 1 shows results when using 1,
2 and 3 CPs per office (every CP represents a different loca-
tion), using WLAN data only (PW ), image data only (PI)
and the fusion of both modalities (PF ). For 2 and 3 CPs we
show a selection of results, corresponding to the best per-
forming ones, rather than all possible combinations. The
right hand side of the table shows results when we take into
account the 1st ranked result that is not the correct one but
that belongs to a CP within that particular office. This gives
the precision to a particular office, denoted by PWO, PIO and
PFO obtained using WLAN-based, image-based and the fu-
sion method respectively. From the table it is clear that
fusion of WLAN and images significantly improves the per-
formance of using either approach on its own. Moreover, on
average, PW , PI and PF decrease while PWO, PIO and PFO



Figure 3: Number of correct locations (in %) found
on the N th rank (bars); Number of correct locations
(in %) found in the top N ranks (lines)

CP PW PI PF PWO PIO PFO

A 65.22 50.00 69.57 65.22 50.00 69.57
E 69.57 60.87 73.91 69.57 60.87 73.91
C 69.57 56.52 78.26 69.57 56.52 78.26
B 73.91 58.70 82.61 73.91 58.70 82.61
D 71.74 63.04 76.09 71.74 63.04 76.09

AB 61.96 47.83 69.57 65.22 60.87 71.74
BE 63.04 56.52 72.83 71.74 70.65 76.09
ED 66.30 54.35 73.91 73.91 60.87 78.26
AC 64.13 46.74 71.74 75.00 53.26 78.26
BC 68.48 53.26 73.91 77.17 58.70 80.43

ABE 55.07 46.38 63.77 69.57 62.32 75.36
AEC 58.70 45.65 66.67 72.46 65.22 79.71
EBD 58.70 49.28 70.29 76.81 63.77 84.06
ABD 61.59 47.83 69.57 79.71 69.57 83.33
ACD 63.04 44.20 71.74 81.16 65.94 84.78

Table 1: Localisation results: PW , PI , PF are preci-
sion results for considering each CP as a separate
location; PWO, PIO, PFO are precision results for lo-
calising to a specific office

increase when the number of CPs per office increases. This
is expected since the data within an office are very similar,
thus making the algorithms choose the nearby CP instead
of the correct one. For images we have even more complex
situation as locations that are not physically close by look
similar as well. When we consider localisation to an office
many incorrect 1st guesses become correct especially when
the number of CPs in an office increases. Thus, in the case
of 3 CPs, one can notice a large increase in precision, where
on average it increased by 15.52%, 18.72% and 13.04% for
WLAN-based, image-based and the fusion method respec-
tively.

The performance variation for the localisation to within
an office obtained by using a variable number of CPs also
gives an interesting conclusion. Whilst the best results are
naturally always obtained by using all 5 CPs for each of-
fice, we can see that using only one CP produces reasonably
good performance: 82.61% precision for the best result (cal-
ibr. point B), 76.09% on average. This is important as it

means that the manual data collection stage for model cre-
ation outlined in section 2 is viable as it only needs to be
performed once (i.e. at one CP) per office in order to obtain
reasonably accurate performance.

6. CONCLUSION
In this work, we presented results combining two com-

plementary data sources for indoor localisation. By fusing
WLAN signal strengths and image data, we achieve better
performance than any individual modality. Future work will
investigate the possibility of seamlessly tracking a user in-
doors, using dynamic and adaptive confidence-based weight-
ing between these modalities, and more sophisticated clas-
sifiers such as neural networks.
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