skip to main content
10.1145/2076354.2076357acmconferencesArticle/Chapter ViewAbstractPublication PagesissConference Proceedingsconference-collections
research-article

Pointable: an in-air pointing technique to manipulate out-of-reach targets on tabletops

Authors Info & Claims
Published:13 November 2011Publication History

ABSTRACT

Selecting and moving digital content on interactive tabletops often involves accessing the workspace beyond arm's reach. We present Pointable, an in-air, bimanual perspective-based interaction technique that augments touch input on a tabletop for distant content. With Pointable, the dominant hand selects remote targets, while the non-dominant hand can scale and rotate targets with a dynamic C/D gain. We conducted 3 experiments; the first showed that pointing at a distance using Pointable has a Fitts' law throughput comparable to that of a mouse. In the second experiment, we found that Pointable had the same performance as multi-touch input in a resize, rotate and drag task. In a third study, we observed that when given the choice, over 75% of participants preferred to use Pointable over multi-touch for target manipulation. In general, Pointable allows users to manipulate out-of-reach targets, without loss of performance, while minimizing the need to lean, stand up, or involve collocated collaborators.

Skip Supplemental Material Section

Supplemental Material

p11-banerjee.m4v

m4v

21.1 MB

References

  1. Abednego, M., Lee, J., Moon, W., and Park, J. I-Grabber: Expanding Physical Reach in a Large-Display Tabletop Environment Through the Use of a Virtual Grabber. Proc. ITS, (2009), 61--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baudisch, P., Cutrell, E., Robbins, D., et al. Drag-and-pop and drag-and-pick: Techniques for accessing remote screen content on touch-and pen-operated systems. Proc. INTERACT, (2003), 57--64.Google ScholarGoogle Scholar
  3. Bezerianos, A. and Balakrishnan, R. The vacuum: facilitating the manipulation of distant objects. Proc. CHI, (2005), 2--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dietz, P. and Leigh, D. DiamondTouch: a multi-user touch technology. Proc. UIST, (2001), 219--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Fitts, P. M. The information capacity of the human motor system in controlling amplitude of movement. Journal of Experimental Psychology 47, (1954), 381--391.Google ScholarGoogle ScholarCross RefCross Ref
  6. Forlines, C., Wigdor, D., Shen, C., and Balakrishnan, R. Direct-touch vs. mouse input for tabletop displays. Proc. CHI, (2007), 647--656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Grossman, T., Wigdor, D., and Balakrishnan, R. Multi-finger gestural interaction with 3d volumetric displays. Proc. UIST, (2004), 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Guiard, Y. Asymmetric division of labor in human skilled bimanual action: The kinematic chain as a model. Journal of Motor Behavior. (1987), 486--517.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hill, A. and Johnson, A. Withindows: A Framework for Transitional Desktop and Immersive User Interfaces. IEEE SI3D, (2008), 3--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hilliges, O., Izadi, S., Wilson, A., Hodges, S., Garcia-Mendoza, A., and Butz, A. Interactions in the Air: Adding Further Depth to Interactive Tabletops. Proc. UIST, (2009), 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hinckley, K., Yatani, K., Pahud, M., et al. Pen + Touch = New Tools. Proc. UIST, (2010), 27--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Holz, C. and Baudisch, P. The generalized perceived input point model and how to double touch accuracy by extracting fingerprints. Proc. CHI, (2010), 581--590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jota, R., Nacenta, M. A., Jorge, J. A., Carpendale, S., and Greenberg, S. A comparison of ray pointing techniques for very large displays. Proc. GI, (2010), 269--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kendon, A. Gesture: visible action as utterance. Cambridge University Press, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  15. Khan, A., Fitzmaurice, G., Almeida, D., Burtnyk, N., and Kurtenbach, G. A remote control interface for large displays. Proc. UIST, (2004), 127--136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Microsoft Kinect. http://www.xbox.com/en-US/kinect.Google ScholarGoogle Scholar
  17. Latulipe, C., Kaplan, C. S., and Clarke, C. L. A. Bimanual and unimanual image alignment: an evaluation of mouse-based techniques. Proc. UIST, (2005), 123--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. MacKenzie, S. and Isokoski, P. Fitts' throughput and the speed-accuracy tradeoff. Proc. CHI, (2008), 1633--1636. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Microsoft Surface, http://www.microsoft.com/surface/.Google ScholarGoogle Scholar
  20. Myers, B., Bhatnagar, R., Nichols, J., et al. Interacting at a distance: measuring the performance of laser pointers and other devices. Proc. CHI, (2002), 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Myers, B. A. and Buxton, W. A Study in Two-Handed Input. Proc. CHI, (1986), 321--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nacenta, M., Pinelle, D., Stuckel, D., and Gutwin, C. The effects of interaction technique on coordination in tabletop groupware. Proc. GI, (2007), 191--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nancel, M., Wagner, J., Pietriga, E., Chapuis, O., and Mackay, W. Mid-air pan-and-zoom on wall-sized displays. Proc. CHI, (2011), 177--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Oblong Industries, http://www.oblong.com/.Google ScholarGoogle Scholar
  25. Parker, J. K., Mandryk, R. L., Nunes, M. N., and Inkpen, K. M. TractorBeam selection aids: Improving target acquisition for pointing input on tabletop displays. Proc. INTERACT, (2005), 80--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Parker, J. K., Mandryk, R. L., and Inkpen, K. M. TractorBeam: seamless integration of local and remote pointing for tabletop displays. Proc. GI, (2005), 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik, R. C., and Mine, M. R. Image plane interaction techniques in 3D immersive environments. Proc. I3DG, (1997), 39--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pierce, J. and Pausch, R. Comparing voodoo dolls and HOMER: exploring the importance of feedback in virtual environments. Proc. SIGCHI, (2002), 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pinelle, D., Barjawi, M., Nacenta, M., and Mandryk, R. An evaluation of coordination techniques for protecting objects and territories in tabletop groupware. Proc. CHI, (2009), 2129--2138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Reetz, A., Gutwin, C., Stach, T., Nacenta, M., and Subramanian, S. Superflick: a natural and efficient technique for long-distance object placement on digital tables. Proc. GI, (2006), 163--170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Rekimoto, J. SmartSkin: an infrastructure for freehand manipulation on interactive surfaces. Proc. CHI, (2002), 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Ringel, M., Berg, H., Jin, Y., and Winograd, T. Barehands: implement-free interaction with a wall-mounted display. Proc. CHI EA, (2001), 368--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Scott, S. D., Carpendale, S., and Inkpen, K. M. Territoriality in collaborative tabletop workspaces. Proc. CSCW, (2004), 294--393. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Shoemaker, G., Tang, A., and Booth, K. S. Shadow Reaching: A New Perspective on Interaction for Large Wall Displays. Proc. UIST, (2007), 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. SMART Technologies, http://www.smarttech.com/.Google ScholarGoogle Scholar
  36. Toney, A. and Thomas, B. H. Applying reach in direct manipulation user interfaces. Proc. OZCHI, (2006), 393--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Vogel, D. and Balakrishnan, R. Distant freehand pointing and clicking on very large, high resolution displays. Proc. UIST, (2005), 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Welford, A. T. Fundamentals of Skill. Methuen, London, 1968.Google ScholarGoogle Scholar
  39. Wigdor, D., Benko, H., Pella, J., Lombardo, J., and Williams, S. Rock & rails: extending multi-touch interactions with shape gestures to enable precise spatial manipulations. Proc. CHI, (2011), 1581--1590. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wilson, A. D. and Benko, H. Combining multiple depth cameras and projectors for interactions on, above and between surfaces. Proc. UIST, (2010), 273--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wilson, A. D. TouchLight: an imaging touch screen and display for gesture-based interaction. Proc. Multimodal Interfaces, (2004), 69--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wu, M. and Balakrishnan, R. Multi-finger and whole hand gestural interaction techniques for multi-user tabletop displays. Proc. UIST, (2003), 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Pointable: an in-air pointing technique to manipulate out-of-reach targets on tabletops

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        ITS '11: Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces
        November 2011
        295 pages
        ISBN:9781450308717
        DOI:10.1145/2076354

        Copyright © 2011 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 13 November 2011

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate119of418submissions,28%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader