2008 49th Annual IEEE Symposium on Foundations of Computer Science

On the Value of Multiple Read/Write Streams for Approximating Frequency
Moments

Paul Beame*
Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350
beame @cs.washington.edu

Abstract

We consider the read/write streams model, an extension
of the standard data stream model in which an algorithm
can create and manipulate multiple read/write streams in
addition to its input data stream. We show that any ran-
domized read/write stream algorithm with a fixed number
of streams and a sublogarithmic number of passes that
produces a constant factor approximation of the k-th fre-
quency moment Fy of an input sequence of length of at
most N from {1,..., N} requires space Q(N*~*/%=9) for
any 6 > 0. For comparison, it is known that with a sin-
gle read-only data stream there is a randomized constant-
factor approximation for Fy using O(N 1-2/ k) space and
that there is a deterministic algorithm computing F}, ex-
actly using 3 read/write streams, O(log N) passes, and
O(log N) space. Therefore, although the ability to manipu-
late multiple read/write streams can add substantial power
to the data stream model, with a sub-logarithmic number of
passes this does not significantly improve the ability to ap-
proximate higher frequency moments efficiently. Our lower
bounds also apply to (1 + €)-approximations of Fy, for
e>1/N.

1. Introduction

The development of efficient on-line algorithms for com-
puting various statistics on streams of data has been a re-
markable success for both theory and practice. The main
model has been the data stream model in which algorithms
with limited storage access the input data in one pass as it
streams by. This model is natural for representing many
problems in monitoring web and transactional traffic.
However, as Grohe and Schweikardt [9] observed, in
many natural situations for which the data stream model
has been studied, the computation also has access to aux-

*Research supported by NSF grants CCF-0514870 and CCF-0830626
TResearch supported by a Vietnam Education Foundation Fellowship

0272-5428/08 $25.00 © 2008 IEEE
DOI 10.1109/FOCS.2008.52

499

Dang-Trinh Huynh-Ngoc'
Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350
trinh @cs.washington.edu

iliary external memory for storing intermediate results. In
this situation, the lower bounds for the data stream model
no longer apply. This motivated Grohe and Schweikardt to
introduce a model, termed the read/write streams model in
[5], to capture this additional capability. In the read/write
streams model, in addition to the input data stream, the
computation can manipulate multiple sequentially-accessed
read/write streams.

As noted in [9], the read/write streams model is substan-
tially more powerful than the ordinary data stream model
since read/write stream algorithms can sort lists of size NV
with O(log N) passes and space using 3 streams. Unfor-
tunately, given the large values of N involved, ©(log N)
passes through the data is a very large cost. For sorting,
lower bounds given in [9, 8] show that such small space
read/write stream algorithms are not possible using fewer
passes; moreover, [8, 5] show lower bounds for the related
problems of determining whether two sets are equal and of
determining whether or not the input stream consists of dis-
tinct elements.

While these lower bounds give us significant understand-
ing of the read/write streams model they apply to exact com-
putation and do not say much about the potential of the addi-
tional read/write streams model for more efficient solutions
of approximation problems, which are the major successes
of the standard data stream model (see surveys [12, 2]).
Among the most notable successes are the surprising one-
pass small space randomized algorithms for approximating
the frequency moments of data streams first shown by Alon,
Matias, and Szegedy [1]. The k-th frequency moment, Fy,
is the sum of the k-th powers of the frequencies with which
elements occur in a data stream. F} is simply the length of
the data stream; Fj is the number of distinct elements in the
stream; if the stream represents keys of a database relation
then F5 represents the size of the self-join on that key. The
methods in [1] also yield efficient randomized algorithms
for approximating F, the largest frequency of any element

IEEE
computer
psouety

in the stream. The current best one-pass algorithms for fre-
quency moments approximate F}, within a (1 + €) factor on
streams of length N using O(N'~2/%) space [11, 6].

Alon, Matias, and Szegedy also showed that their algo-
rithms were not far from optimal in the data stream model;
in particular, by extending bounds [13] for the randomized
2-party communication complexity for a promise version of
the set disjointness problem from 2 to p players, where each
player has access to its own private portion of the input (a
model known as the p-party number-in-hand communica-
tion game) they showed that F}, requires Q(N'~%/%) space
to approximate by randomized algorithms. A series of pa-
pers [14, 3, 7] has improved the space lower bound to an es-
sentially optimal Q(N'~2/%) by improving the lower bound
for the communication game; thus Fj, for k > 2 requires
polynomial space in the data stream model !.

This leads to the natural questions: Can one prove good
lower bounds for approximation problems in the read/write
streams model? Can read/write stream algorithms approx-
imate larger frequency moments more efficiently than one-
pass algorithms can?

We show that the ability to augment the data stream
model with multiple read/write streams does not produce
significant additional efficiency in approximating frequency
moments. In particular, any randomized read/write stream
algorithm with a fixed number of streams and o(log V)
passes that approximates the k-th frequency moment Fj, of
an input sequence of length of at most N from {1,..., N}
within a constant factor requires space Q(N1~4/#-9) for
any constant 6 > 0. This lower bound is very similar to the
upper bound even for standard single pass read-only data
streams (and is larger than the original lower bound in [1]
for ordinary data streams).

The major difficulty in developing lower bounds for the
read/write streams model, in contrast to the data streams
model, is that an easy reduction from number-in-hand mul-
tiparty communication complexity breaks down. This fails
for read/write stream algorithms because different parts of
the computations can communicate with each other by writ-
ing to the streams. In fact, the p-party disjointness problem,
which is the basis for the lower bounds for approximating
frequency moments in the data streams model, can be easily
solved by read/write stream algorithms using only 3 passes,
2 streams and O(log N) space.

The amount of data written on the streams also prevents
the use of traditional time-space tradeoff lower bound meth-
ods, which are the other obvious tools to consider. As a
result, previous work on lower bounds in the read/write
streams model has been based on special-purpose combi-

IThe Q(1/€2) dependence of the space on the error in the approxima-
tion has also been shown to be optimal for one-pass algorithms [10, 16],
though by considering a different two-party communication problem — ap-
proximate Hamming distance.

500

natorial methods developed especially for the model.

Grohe, Hernich, and Schweikardt [9, 8] identified certain
structural properties of the executions of read/write stream
algorithms, their skeletons, and applied cut-and-paste argu-
ments along with these skeletons to show the existence of
certain combinatorial rectangles on which the algorithms’
answers must be constant. They showed that the existence
of these rectangles implies that no space-efficient read/write
stream algorithm can sort in o(log V) passes or determine,
with one-sided error bounded below 1/2, whether or not
two input sets are equal. Then, by reduction, they derived
lower bounds for one-sided error randomized algorithms for
several other problems.

Beame, Jayram, and Rudra [5] used the structure of the
rectangles produced in [9, 8] together with additional com-
binatorial reasoning to show how standard properties that
lower bound randomized two-party communication com-
plexity — discrepancy and corruption over rectangles — can
be used to derive lower bounds for randomized read/write
streams with two-sided error. Using this approach they
gave general methods for obtaining lower bounds for two-
sided error randomized read/write stream algorithms. In
particular they showed that with o(log N/ log log N) passes
and O(N'7°) space, randomized read/write stream al-
gorithms with two-sided error cannot determine whether
or not two input sets are disjoint. This yielded several
other lower bounds, including an Q(N'~?) lower bound
on the space for computing a 2-approximation of F with
o(log N/loglog N) passes and a similar lower bound for
exact computation of Fj.

However, the methods of [9, 8, 5] do not yield lower
bounds on the approximate computation of frequency mo-
ments Fj, for any £k < oo. In particular it is consistent
with all previous work that read/write stream algorithms can
compute constant factor approximations to any such Fj, us-
ing o(log N) passes, O(log N) space, and only 2 streams.
We show that this is not possible.

We take a different approach to lower bounds in the
read/write streams model from those in [9, 8, 5]. Despite
the failure of the standard reduction, we are able to charac-
terize read/write stream algorithms via a direct simulation
of read/write stream algorithms by p-party communication
protocols. Though quite different in the overall structure of
the argument, this reduction does make use of a simplified
variant of the skeletons defined in [9, 8]. Our method may
have many other applications.

For the specific case of approximating frequency mo-
ments we derive our lower bounds by applying our sim-
ulation to a blocked and permuted version of the promise
p-party disjointness problem (with p depending on N and
k). The problem is a generalization of one considered in [5]
extended to the case of p sets. This allows us to obtain the
Q(N1=4/k=9) space lower bounds for computing F}, using

a sublogarithmic number of passes and a constant number
of streams.

Although this nearly matches the best lower bounds for
the data stream model, there is a gap between our read/write
streams lower bounds and the data stream upper bounds;
our lower bounds are limited by the relationship between
the number of blocks and the number of sets in the per-
muted disjointness problem that we consider. We also show
that modifying this relationship cannot improve the lower
bound for constant factor approximations for £ < 3.5. In
particular, there is a deterministic read/write stream algo-
rithm with three passes, two streams and O(log N) space
that can compute the value of the blocked and permuted p-
party disjointness problem for any numbers of blocks and
sets that would have produced such lower bounds. To de-
rive this algorithm we show a novel property on the lengths
of common subsequences in sets of permutations.

2. Preliminaries

In the read/write streams model, the streams are represented
as t read/write Turing machine tapes. The input stream
is given as the contents of the first such tape; the other
streams/tapes are used for working storage. Passes through
the data in a stream correspond to reversals on the corre-
sponding Turing machine tape; the number of passes is one
more than the number of reversals. The internal memory of
read/write streams allows random access.

The three resource parameters that are important to a
read/write stream algorithm A are (1) the number of exter-
nal read/write tapes ¢ that A uses, (2) the maximum space
s that A uses, and (3) the maximum number of reversals r
made by A on all the external tapes.

Since we will primarily focus on lower bounds, we de-
fine a nonuniform version of the read/write stream model
since lower bounds for this model are more general than
those that only apply to the uniform case. Fix an input al-
phabet ¥ and tape alphabet I'. An (r, s, t)-read/write stream
algorithm A on 2 is an automaton with 2° states with one
read/write head on each of ¢ tapes. It begins with its input
v € XN on the first tape and the remaining tapes blank. In
each step, based on the current state and currently scanned
symbols, one of its heads writes a new symbol from I in its
currently scanned tape cell and moves one cell left or right.
On any input v € X% it reverses the direction of movement
of its heads at most r times before it halts.

For functions r,s : N — N and ¢ € N, a (nonuni-
form) (r(-), s(+), t)-read/write stream algorithm on ¥* is a
family of algorithms {Ay } yen where for each N, Ay is
an (r(N), s(N), t)-read/write stream algorithm and all Ay
have the same input and tape alphabets. Randomized and
nondeterministic algorithms are defined analogously.

For integer m > 1 denote {1, ..., m} by [m] and for any
permutation ¢ of [m], define the sorfedness of ¢, denoted

501

by sortedness(¢), to be the length of the longest monotone
subsequence of (¢(1),...,¢(m)). For any m,p > 1 and
a sequence & = (¢1,d2,...,¢,) of permutations of [m],
define the relative sortedness of @, denoted by relsorted(®),
to be max;, e[y (sortedness(d)igzﬁjl)).

Lemma 2.1. If ¢ is a random permutation of [m] then
Pr[sortedness(¢) > 2ey/m] < 2~ 4evVm+1,

Proof. Pr[sortedness(¢) > t] < 2(77) /t! < 2(me?/t?)!.00

Corollary 2.2. If p m¢ for some constant ¢ >
0 and m is sufficiently large there exists a sequence
O = (¢1,02,...,¢p) of permutations of [m| such that
relsorted(®) < 2e+/m.

For a given p polynomial in m, we let ®* be a sequence
that is guaranteed to exist by Corollary 2.2.

The k-th frequency moment F}, of a sequence
ar, ... an € [m]is 3o cp,y fF where f; = #{i | a; = j}.
We will typically consider the problem when m = n. Also
write F, for max;cp, fj-

For 2 < p < n, define the promise problem PDISJ,, ;, :
{0,1}"” — {0,1} as follows: For z1,...,2, € {0,1}",
interpret each x; as the characteristic function of a sub-
set of [n]. If these subsets are pair-wise disjoint then
PDISI(z1,...,2,) = O0; if there is a unique element
a € [n] such that z; Nz; = a for all 4,5 € [p] then
PDISI(21, ..., 2p) = 1; otherwise, PDISJ is undefined.

We use the usual definition of p-party number-in-hand
communication complexity. A series of communication
complexity lower bounds [1, 14, 3, 7] for PDISJ,, ;, in this
number-in-hand model has resulted in essentially optimal
lower bounds for computing frequency moments in the data
stream model, even allowing multiple passes on the input
stream. The strongest of these bounds [7] shows that any
p-party public-coin randomized number-in-hand communi-
cation protocol for PDISJ,, ,, must have complexity at least
Q(57655)- (The bound is an even stronger £2(n/p) for one-
way communication.)

However, as noted in the introduction, for any n and p,
there is a simple (2, log, n + O(1), 2) read/write stream al-
gorithm for computing PD1SJ,, ,: Copy z; to the second
tape and compare the contents of 1 and x5 bit-by-bit using
the two tape heads. We therefore will need a modified func-
tion in order to obtain our lower bounds for approximating
frequency moments.

Let N > p>2andletIl = (m,...,m,) be a sequence
of permutations on [[N]. We define the promise problem
PDISIY , : {0, 1}M7 — {0,1} by PDISIN ,(y1,...,¥p) =
PDISIN p(21,...,2,) where the j-th bit of x; is the
7; (4)-th bit of y;. The relationship between x; and y; is
equivalent to requiring that y;; = x;r,(;)-

We first observe that the same reduction idea given by
[1] yields lower bounds for F} given lower bounds for
PDISJg’p for suitable choices of p.

Lemma2.3. Let N > land1/2 > § > 0.

(a) Letk > 1,1 > e > 4V =V /N and p > (4eN)'/*.
If there is a randomized (r,s,t)-read/write stream
algorithm that outputs an approximation of F}, within
a (1+e¢)-factor on a sequence of at most N elements in
the range [N with probability at least 1 — § then there
is a randomized (r + 2,s + O(log N), max(t, 2))-
read/write stream algorithm with error at most § that
solves PDISJ%’p for any 11.

Letk < 1,1/2 > € > 0, and let p — p* > 2¢N.
If there is a randomized (r, s, t)-read/write stream al-
gorithm that outputs an approximation of Fy, within a
(1 + €)-factor on a sequence of at most N elements
in the range [N| with probability at least 1 — § then
there is a randomized (r+2, s+0O(log N), max(t, 2))-
read/write stream algorithm with error at most § that
solves PDISJ%!pfor any 1L

(b)

Proof. We only prove part (a); the proof for part (b) is
similar. Given an input v to PDISJ%VP, the read/write
stream algorithm reads its bits from left to right to convert
it on the second tape to the appropriate input v’ for the F
problem in the obvious way: Read v from left to right,
for every bit that is as 1 in position ¢ € [N] in the input,
write 7 to v/. While doing this also use the state to record
the number N’ < N of 1’s in the input. If N’ > N then
output 1 and halt. Otherwise copy tape 2 to tape 1, erasing
tape 2. By the promise, when PDISJ%)p = 0, we have
Fr(v') = N' < N; when PDISJ%VP =1, we have
Eo(v')=N'—p+p" > N' +4eN — (4eN)V*
> (14€)°’N' +eN — (4eN)/* > (14 €)°N’

where the second inequality follows because € < 1 and the
third follows because ¢ > 4*/(*=1) /N The algorithm for
pDisJ %,p will output 1 if the value returned for Fj, is greater
than (1 + ¢) N’ and output 0 otherwise. O

For our lower bound argument we will need the sequence
of permutations II to be of a special form. Let p > 2 and
N = mn where m and n are integers. A sequence II =
(m1,...,mp) of permutations on [N] has (monotone) block-
size m if and only if there is a sequence & = (¢1,...,0p)
of permutations on [m] such that 7;(j) = (¢:(j') —1)n+75"
where j = (j'—1)n+j" with j” € [n]. That is each permu-
tation m; permutes blocks of length n in [V] but leaves each
block intact. In this case, we write PDISJZL,’p<I> for PDISJ%J).

Note that PD1SJ ﬁf can be viewed as the logical V of m
independent copies of PDISJ,, ,, in which the input blocks
for the different functions have been permuted by ®.

3. Information flow for read/write streams

We first prove several results about the “information flow”
in a read/write stream algorithm’s execution. These results

502

capture the information flow among the tapes in various
stages of the computation. In this section, we only consider
deterministic (r, s, t)-read/write stream algorithms.

Information flow in a read/write stream algorithm’s exe-
cution is captured via a dependency graph which shows the
dependence of portions of the tapes on a given input string
at various stages of a computation. This notion of depen-
dency graphs is adapted from and simpler than the concept
of skeletons that is used in [9, 8, 5]; although much simpler,
it suffices for our purposes.

Recall that the input is a string v € {0,1}* written on
the first tape and that at any step only one of the ¢ heads
moves. The read/write stream algorithm A makes at most
r reversals on input v; we can assume precisely r reversals
without loss of generality. The dependency graph corre-
sponding to v, denoted by o(v), has r + 2 levels — level 0
corresponds to the beginning of the computation and level
r + 1 corresponds the end of the computation. Level k for
1 < k < r encodes the dependency on the input of each of
the ¢ tapes immediately before the k-th reversal in the fol-
lowing manner: For 0 < k < r+1 there is one node at level
k of o(v) for each tape cell that either contained a symbol
of input v or was visited at some time during the computa-
tion on input v before the k-th reversal, or before the end
of the computation for £ = r + 1. The nodes at level k are
ordered according to their positions on their corresponding
cells on the tapes. Because of this we can view nodes of the
dependency graph, interchangeably, as tape cells. There are
pointers to each node at level k£ from each of the nodes in
level k — 1 that it depends on.

The crucial observation made in [9] about read/write
stream algorithms is the following: When a symbol is writ-
ten in a particular cell by the read/write stream algorithm
between its k—1-st and k-th reversal (i.e, at level k of o (v)),
what is being written in that cell can only depend on the cur-
rent state and the ¢ symbols currently being scanned by the
read/write heads. However, the values of these ¢ symbols
were determined before the k — 1-st reversal. This implies
that any cell at level k£ depends either on ¢ cells in level
k — 1 (when it is overwritten in level k) or only on itself in
level £ — 1 (when it is intact in level k). The dependency
graph thus consists of a layered directed graph of tape cells
of in-degree either ¢ or 1 representing the cell dependencies,
where all the edges connect consecutive layers.

For some b > 1, suppose that v is partitioned into b
blocks of consecutive bits: v = (v, ..., vy). For every cell
¢ in o(v), we write the input dependency of ¢ as Zy(c) C
{1,...,b} to denote the set of input blocks that it depends
on (i.e, the set of ¢, for 1 < ¢ < b, such that there is a
path from a cell in v; at level O to ¢). We note that the
set Z(c) depends on how we partition v, which explains
the subscript ‘b’ in the notation. Since in this paper we are
only interested in those partitions into equal-length blocks,

this notation suffices; moreover, we will sometimes drop the
subscript ‘b’ if it is clear from the context. It is immediate
from the definition that for every cell ¢ in level k for 0 <
kE<r+1,|Z(c)| <t~

For any cell ¢ on a tape, we write (c) and £(c) for the
cells immediately to its right and to its left, respectively.

Proposition 3.1. Suppose that an input v is partitioned into
b blocks: v = (vi,...,vy) for some b > 1. Let C be
the set of cells on any one tape at any level k in o(v), for
0<k<r+1 Fixinganyl <i<bletS={ceC|ie
I(c)andi ¢ I(r(c))}and ' ={ce C|ie€I(c)andi ¢
Z(¢(c))}. Then |S| = |S'| and |S| < t*.

Proof. The first part is obviously true, so we just prove the
second part. We proceed by induction on k. For & = 0,
this is true since the only cell in S is the one at the right
boundary of the i-th input block.

For the induction step, consider any k£ > 0. At level k,
a cell gets its input dependency from at most ¢ cells on ¢
tapes at level £ — 1 that it depends on. Thus, for any cell
¢ € 5, there must be some cell ¢ from level £ — 1 such that
¢ depends on ¢, ¢ € Z(¢), and either r(c) depends on r(¢)
and ¢ ¢ Z(r(¢)), or r(c) depends on ¢(¢) and ¢ ¢ Z(¢(¢))
(depending on whether ¢’s tape head direction and ¢’s tape
head direction are the same or not between the (k — 1)-
st and k-th reversals). By induction, this happens at most
t-tF=1 = t* times. O

For a set T', we write St to denote the set of strings of
length |T'| that are permutations of 7. A string s of length
|s| is said to be the interleaving of another set of strings
{s1,...,8¢} if there is a partition of {1, ..., |s|} into ¢ sub-
sets {q1,...,q:} such that for every 1 < i < ¢, 5, = s,
where 5|4, denotes the string obtained from s projected on
coordinates in ¢; only, and for every j € ¢;, the j-th entry
of s is said to be assigned to s;.

Consider the dependency graph o(v) associated with an
input v. For any level k in o(v) consider the sequence
of nodes in o(v) corresponding to one of the tapes. An
input dependency string C' of this tape is any string in
S7(er) "+ S1(cy) Where the cells of the tape are c1,. .., cr,
in order. For any cell ¢;, a string in Sz(.,) that is a substring
of C is called a cell portion of C associated with c;.

Proposition 3.2. Let C' be an input dependency string of
any one tape at any level k in o(v), for0 < k < r+1. Then
C can be written as the interleaving of at most t* monotone
sequences so that for every such sequence s, there is at most
one entry in every cell portion of C that is assigned to s.

Proof. The general idea is taken from [8]. We proceed
by induction on k. We will prove a somewhat stronger
inductive claim, namely that the property above also
holds for more general strings, namely those strings C' in

503

Uai>1SZ(er) " Sz{ey)> Which we call the set of extended
dependency sequences for a tape with cells ¢y, . . ., c,. Note
that each of these strings can be partitioned into Zle a;
cell portions, each of which corresponds to a string in Sz..,)
forsome 1 <: < L.

For k = 0, the only non-empty tape is the input tape and
C'itself is a monotone sequence. Thus this is true for & = 0.

For the induction step, suppose that the tape we are con-
sidering is the j-th tape, where 1 < j < ¢. At level k the
tape head visits consecutive cells in the j-th tape and the
remaining cells are kept intact. Thus C' can be written as
C = C'DC", where C’" and C” correspond to those cells
that are intact from level £ — 1 and D corresponds to those
cells that are visited. For each of those former cells, its input
dependency is unchanged from level £ — 1, and for each of
those latter cells, its input dependency is the union of those
of the ¢ cells it depends on. Thus D can be written as the
interleaving of ¢ sequences D1, . .., D;, where sequence D;
for 1 < ¢ < t denotes a substring of an extended input de-
pendency of tape i from level £ — 1. One observation here is
that C'D;C" is also a substring of an extended input depen-
dency string of tape j at level £ — 1. By induction, each of
Dy, ...,D; and C'D;C" can be written as the interleaving
of at most t*~! monotone sequences satisfying the require-
ment. Hence C can be written as the interleaving of at most
t* monotone sequences satisfying the requirement. [

Proposition 3.3. Suppose that an input v is partitioned into
b blocks v = (v1,...,vy) for some b > 1. For any cell ¢
(at any level) in o(v), let H(c) = {{i,j} |1 <i# j <
bandi,j € I(c)}. Then | Upeq vy H(c)| < t37 0.

Proof. Note that for any two input blocks v; and v;, if
1,7 € Z(c) for some cell ¢ at any level I < r + 1, then
1,7 € Z(c') for some cell ¢’ at level r + 1. Thus it suffices
to consider the last level.

Fix any tape j for 1 < j < ¢. Let C' be an input depen-
dency string of tape j at level 4 1. From Proposition 3.2,
C can be decomposed into a set S of ¢"! interleaved
monotone sequences as described there. For any cell ¢ on
this tape and for any sequence s € S, we say that ¢ stands
at some stage ¢ in s if ¢ is the rightmost entry before or
in the cell portion of ¢ in C' that is assigned to s. Define
a table 7 whose t"*! rows correspond to the sequences
in S and whose columns correspond to the cells in tape
j as follows: 7 has a number of columns equal to the
number of cells with nonempty input dependency, where
the columns are placed in the same left-to-right order as
their corresponding cells. Each entry in 7 records the stage
at which its corresponding cell stands in its corresponding
sequence. For each column c corresponding to a cell c, let

H’(C) = {{7;'»0 ’ 7;"7‘3} | r 7& I‘/ and ﬂ,c 7é ﬂ’,c}.
Obviously H(c) C H'(c) and |H'(c)| < (t"H1)2 = ¢2r+2,

For any two adjacent columns ¢ and ¢’ corresponding to
two adjacent cells c and ¢/, respectively, if H'(c) # H'(c’),
then there must be a sequence s € S such that c and ¢’ stand
at different stages in s. Since s is monotone, this happens at
most b times. Since there are at most ¢"+! sequences, there
are at most bt" 1 different H’(c) over all columns. Thus
| Uceov) H(c)| < - #2712 b th = pgdr+e, O

Proposition 3.4. Suppose that an input v is partitioned
into b = p - m blocks: v (Viy..o, Vpm), for some
p > 2,m > 1. For any sequence of permutations
&1, P2, ..., Pp on [m], there exists a set I C [m] with
[I| > m —p -t Brelsorted({¢1, ..., ¢p}) satisfying the
following property: for every i € I, let J; = {¢1(i),m +
$2(7), ..., (p—1)ym~+ ¢, ()}, then there is no cell cin o(v)
such that | J; NI (c)| > 1.

Proof. This is a generalization of an argument in [8] which
gave a proof for the special case p = 2. As in the pre-
vious proposition, it suffices that we consider level r + 1
only. Let @ = {i € [m] | 3¢ : |J; NZ(c)] > 1}.
Then I = [m] \ Q. Thus we need to prove |Q| <
p - t>Brelsorted ({¢1, ..., Pp}).

We partition () into disjoint subsets such that)
Ui<p <pe<p@pi,po a0 Qp, p, S{i € Q [ez (pr—1)m+
s (1), (D2 — 1)+ Gy (i) € Z(0)} forany 1 < p1 < py <
p. By Proposition 3.3, there are at most pt>"+* nonempty
Qp. p,- Therefore there must be some p; < ps € [p] such
that |Qp, p,| > |Q|/ (3 *p). Fix these p; and ps.

Let Qp,po = {i1,...,0q}, Where ¢ = |Qp, p|- Let
C € {1,...,pm}* obtained by concatenating the input
dependency of all ¢ tapes, so that for any cell ¢, if Z(c)
contains both (p1 — 1)m + ¢p, (¢) and (p2 — 1)m + ¢p, (%)
for some i € @y, p,, then both of them are placed con-
secutively and in this order. By Proposition 3.2, C' can
be decomposed into a set S of ¢ - "+ = "2 monotone
sequences. Let 7 be a permutation on {1, ..., ¢} so that

(pl - 1)m + ¢;D1 (%’(1))7 (PQ -]-)m + ¢p2 (7:71'(1))? ceey

ceey (pl - l)m + ¢p1 (iﬂ(q))v (pQ - l)m + ¢P2 (Zﬂ'(q))

occur in the same order in C. Since there are ¢ entries
in input block p; and each of them must be in at least
one sequence in S, there is some sequence s € S such
that there are at least ¢/|S| = ¢/t""2 such entries in
s. In other words, there exists a set Q1 C {1,...,q}
of size at least ¢/t"*? such that for every j € Qi,
(p1 — 1)m + ¢y, (ir(;)) € s, and since s is monotone, for
every j1 < jo € Q1, either ¢y, (ir(j,)) < @p, (i) OF
Gpy (in(j1)) > ®p, (in(j,)), depending on the monotony of
s. Let the indices in Q1 be j; < ... < jg,. Consider the
following list of entries

(p2 - l)m + d)Pz (iﬂ(j1))7) (p2 - l)m + ¢P2 (iﬂ(qu))’

which occurs in this order in C. As before, there must be
at least one sequence s’ € S such that there are at least

504

q1/]S| = q1/t"*? such entries in s’. In other words, there
exists a set Q2 C Q; of size at least q; /t" "2 = q/t*" 4
such that for every [€ Q2, (p2 —1)m+dp, (ir)) € s, and
hence since s’ is monotone, for every l; < ly € Qo, either
Gps (in(t)) < Opslinn)) OF py(in(iy)) > Opy(inay)),
depending on the monotony of s’. Therefore, by definition
of sortedness we see that

relsorted({¢1, ..., $,}) > sortedness(d,,, ¢p,) > q/t* 4

, ¢ })t* ™ and hence
O

which gives ¢ < relsorted({¢1, ...
concludes the proposition.

4. Simulation of read/write stream algorithms
by communication protocols

Letp>2,m >1and ® = (¢1,...,®,) be asequence of p
permutations defined on [m]. Let X be a non-empty set and
Y=MN,...,Y,) € X"

For each i € [m] and p € X~ VP we define
Ji = {$1G),m + ¢2(4),...,(p — 1)m + ¢,(i)} and
v v(Y,i,p,®) = (v1,...,Vpm) € XP™ such that
V(i—1)m+e;(i) = Yy forevery j € [pl,and v pmy—g, =
p- Let A be a deterministic read/write stream algorithm de-
fined on XP™. Let o(v) be the dependency graph induced
by A on v and I, C [m] be the set of input indexes defined
by o(v) as described in Proposition 3.4.

The following theorem will be used to show that by
simulating an efficient deterministic read/write stream al-
gorithm for fy/, one can derive efficient p-party number-in-
hand communication protocols for a variety of embeddings

of fin f.

Theorem 4.1. Letp > 2, m > 1and ® = (¢1,...,¢p)
be a sequence of permutations on [m|. Let X #
with n = [logy(X)]. Suppose that A is a deterministic
(r, s,t)-algorithm defined on XP™. Then there is a con-
stant ¢ > 0 depending on t such that, for each i € [m]
and p € XP"=) there is a p-party number-in-hand pro-
tocol P; , in which player j has access to'Y; € X (and
implicitly © and p) for each j, each P;, communicates
at most O(t°"p(s + logpmn)) bits, and for each i,p and
v = v(Y,i,p, ®) there is a set I] ,, C [m] containing I
suchthatifi & I , , then P; , on input v outputs “fail” and
ifi € I |, then P; , on input v outputs the value A(v).

PV
Before going to the proof we need the following lemma.

Lemma 4.2. When A terminates, the total length of all
tapes used by A is at most 20"V pmn.

Proof. The initial total length is clearly pmmn. It is also clear
that immediately after each reversal, the total length is mul-
tiplied by at most 2°. The lemma follows. O

Proof of Theorem 4.1. We describe and then analyze the
protocol. Each player first constructs v = v(Y, ¢, p, ®) and

then executes A on v. Note that all players can access the
whole input v except for the p blocks holding Y7,...,Y,,
each of which is known to exactly one player. Since no
player knows the whole input, in order to correctly simulate
A, they need to communicate during the simulation. Along
the way, each player gradually constructs and keeps a copy
of o(v). Each keeps track of the level (number of reversals)
in o(v) that A is currently working on and the machine state
of A. Essentially, for every tape cell at every level in o (V)
written by A, the players record whether (1) the contents of
the cell can be computed by everyone, or (2) the contents of
the cell can only by computed by a specific player.

Those cells of type (1) are those cells ¢ such that (j —
)m + ¢;(i) ¢ Zpm(c) forany 1 < j < p. For each of
these cells, each of the players records: the machine state
immediately before overwriting the cell, and the (at most t)
cells of the previous level on which this cell depends. Note
that those cells that a cell of type (1) depends on are also
type (1) cells. It is clear that by recursion, every player can
compute the contents of each of these cells as needed.

Those cells of type (2) are those that depend on some
input held by a particular player. Consider a cell ¢ such that
(j —1)m+ ¢;(i) € Zpm(c) for some j € [p]. Each player
records that this cell depends on player j. We will show
later what information player j needs to record so that she
can compute the contents of ¢ herself.

Note that there is another type of cell, whose contents
depend on the inputs from more than one player. As soon
as the simulation discovers one of these cells, it will stop
and the protocol outputs “fail”. We will explain more about
this point later.

The simulation proceeds as follows. Each player exe-
cutes A step by step. At every new step in which all the ¢
tape heads are to read cells of type (1) only, every player
can compute the contents of the ¢ cells without any com-
munication. Since each of them holds the current machine
state, they can compute which one of the ¢ tapes is written
and the moves and the content of the write. Each of them
thus records, for the overwritten cell, that it is of type (1)
as well as the tape heads and the machine state. To end this
step, each of the players also has the new machine state.

The more interesting case is when at a new step, at least
one of the tape heads is to read at least one cell of type (2)
and all of the type (2) cells depend on a player j. All play-
ers will then wait for player j to communicate. Player j
will proceed as follows. As long as at least one of the tape
heads still reads a cell depending on her or the algorithm
does not make any reversal, she proceeds with the simula-
tion, and clearly has sufficient information to do so. Along
the way, for every cell she overwrites, she records the ma-
chine state and all the tape head positions for that cell, so
that she can compute the cell later when needed. This pro-
cess stops when the algorithm comes to a new step in which

505

either all the tape heads are to read a cell of type (1), or at
least one of the tape heads depends on another player, or one
of the tape heads reverses its direction. When this process
stops, player j broadcasts: (a) all ¢ updated tape head posi-
tions and directions, and (b) the new machine state. Since
there has been no reversal, all other players know precisely
which cells were visited by player 5 and they mark all those
overwritten cells, which are all of the same level in o(v), as
of type (2) and depending on j. Therefore, all players now
have sufficient information to proceed.

The last case is when at a new step, at least two of the
tape heads are to read cells of type (2) and these two cells
depend on two different players. In this case, all players
stop the simulation and output “fail”. It is clear that if ¢ €
I, by Proposition 3.4, this case will never happen.

When A terminates, the protocol will output exactly as A
does. It remains to compute the communication cost.

We need to bound the cost of each communica-
tion and the number of times a communication occurs.
From Lemma 4.2, the cost of one communication is
tlog(2"°pn)+s = O(rs+log pmn), where the hidden con-
stant depends on ¢. When one player communicates, one of
the tape heads has either just reversed or just moved from a
cell depending on her to another cell that does not. The for-
mer means that the algorithm comes to the next level, which
happens at most r times. By Proposition 3.1 (with b = p),
the latter occurs at most "1 4 ¢" 4 ... 4 1 times for a sin-
gle tape and single player. Summing over all tapes and all p
players, this occurs at most pt”+3 times in total. O

5. Bounds for disjointness and frequency
moments

Using Lemma 2.3 and the fact that PDISJZZ:I’

case of PDISJ%)p where N = mn, we will lower bound the
frequency moment problems by giving lower bounds for the
PDISJ%}’ problem. This problem was previously studied
in [5] for the special case p = 2; our bounds extend those

in [5] for any p > 2 and also improve the bounds for p = 2.

is a special

Lemma 5.1. There is a positive constant c such that
given a randomized (r,s,t)-read/write stream algorithm
A for PDISJ:Z};D on XP™ where X = {0,1}" and

5r+48
ptrelsorted(®) d < 1, with error at most 0, there is

m
a randomized public-coin p-party number-in-hand protocol
P for PDISI,, ,, of communication complexity O(t“"p(s +
log pmn)) with error at most § + d(1 — 9).

Proof. Suppose that A uses at most I random bits in its
execution. For any string 3t € {0, 1}, let Ay denote the
deterministic algorithm obtained from A using R as source
of randomness. Following the view of X as representing
the power set of [n], we use |z| to denote the number of 1°s
inz € X and (")) to denote the set of = € X with || = .

We consider the following public-coin randomized com-
munication protocol P. Oninput Y = {Y¥7,...,Y,} € X7
1. Each player j broadcasts |Y]|.

2. The players use the public coins to
(a) uniformly and randomly generate
p e (f7HO) N X (F))m=t € xpim=),

j=1
(b) choose 1 < i < m uniformly and randomly,
(c) uniformly and randomly generate % € {0, 1},

(d) uniformly and randomly generate a permutation
¢ = [n] = [n].
3. Each player j computes Y, = ¢(Y}).

4. The players run protocol P; , based on Ay on inputs
Z = Z(Y{,...,Y,,i,p,®), as described in Theo-
rem 4.1

5. If P; , outputs “fail” then output 1; else output what
P; , does.

We analyze this protocol P. Let o(v) be the dependency
graph induced by Ag; on input Z and I C [m] be the set
of input indexes defined by o(v) as described in Proposi-
tion 3.4. Let I" = I; , , be the set of input positions in-
duced by Ax given the choice of ¢, p and input Z as de-
scribed in Theorem 4.1. The correctness of the protocol
depends on whether i € I’ and whether A (Z) is correct.

First we consider the case that the sets Y7, .. ., Y), are not
disjoint; i.e, PDISI,, ,(Y") = 1. In this case if P; , outputs
“fail”, the protocol always outputs correctly. Otherwise it
will output what A does. In other words, we have

Pr[P(Y) =1 | PDIsJ,,(Y) = 1]
=Pr[P(Y)=1andi ¢ I' | PDISJ, ,(Y) = 1]
+Pr[P(Y)=1landi € I’ | PDIsy, ,(Y) = 1]

=Prfi ¢ I' | PDISJ, , (V) = 1]
+ Pr[An(Z) =1andi € I' | PDI1sJ, ,(Y) = 1]
> Pr[An(Z) =1|pDis1, ,(Y) =1 >1-4.
Next we consider the case the sets Yp,...,Y), are
disjoint. After being re-mapped by ¢, the sets
Y/, ..., Yp’ are also disjoint and uniformly distributed

in f710)N (x5, (‘[{;]‘)]. Hence Z is uniformly distributed
over (f~H(0)N[x¥_, (‘[{;]‘)])m. Therefore I is statistically

independent from i. By Theorem 4.1, I; C I’ and by
Proposition 3.4, |Iz| is always at least (1 — d)m. Thus
the probability that ¢ € I’ is at least 1 —d. Formally, we have

Pr[P(Y) = 0] PDIsJ, ,(Y) = 0]
> Pr[An(Z) =0 | PDI1SJ, ,(Y) = 0]
-Pr[P(Y) =0 | Ax(Z) = 0,PDIsJ,, ,(Y) = 0]
> (1—-6)Pr[P(Y)=0]Ax(Z) =0,pPDIsJ, ,(Y) = 0]
=1-0)Prli e I' | An(Z) = 0,PDIsI,, ,(Y) = 0]
>(1—-0)Prli € Iz | Ax(Z) = 0,PDISJ, ,(Y) = 0]
[

=(1—-96)Prli € Iz |PDIsI, ,(Y)=0] > (1—-96)(1—4d).

506

The communication complexity is p log, n plus the com-
plexity of P; , which completes the lemma. O

Lemma5.2. Letd < 1/4,t>1,1/2>03>0,¢ > a >0,
and m,n,p > 1 so that p < m2= = nP. Let N = mn.
Then for large enough N, there is a constant a > Q wzth the
following property: ifr < alog N and s = O(N1
then there is no randomized (r, s, t) read/write stream al-
" on {0,1}Pmn,

,3+1 6)’

gorithm with error at most § for PDISJ’,?:}:I>

Proof. Suppose by contradiction that there is such an algo-
rithm A. By Lemma 5.1, there is a public-coin randomized
number-in-hand communication protocol for PDISJ,, , with
complexity O(t¢"ps) for some positive constant ¢ with error
at most d + (1 — d)d, where d = w Since
r < alogN = a(1 + 133%)logm and relsorted(®*) <
2e\/m, we have d + (1 —)6 < 20 < 1/2 for a sufficiently
small depending on 4, ¢, and .

By [7], this communication complexity must be
). This gives us, for some constant ¢’ depending on

— Q(Ni(l Tty =
O

n
(plogp
a and o that s = Q(n'~20~<")
QN =z),

This immediately implies a lower bound on PDISJ%TP
where IT* is the extension of ®* to a sequence of p permu-
tations on [V].

Theorem 5.3. Let § < 1/4,t > 1, ¢ > 0, and N,p > 1
so that p < N7 for v < i. Then for large enough N,
there exists sequence I1* of p permutations on [N] such that
there is no randomized (o(log N), N'=477¢ t)-read/write

stream algorithm with error at most § for PDISJ %Tp'

Proof. Follows from Lemma 5.2 where we set N = mn,
I = (n3,..., p) to be the extension of ®* to p permuta-
tions on [N] as described in Section 2, and set «, § so that
% = % + 1_22a and « is sufficiently small. O

By Theorem 5.3 and Lemma 2.3(a) we obtain the fol-
lowing lower bounds for approximating F}, and F.

Corollary 54. Let £ > 1, t > 1, n > 0
and 1 > € > 1/N. Then there is no random-
ized (o(log N), O(ﬁNl’%’”), t)-read/write stream al-
gorithm that with probability at least 3/4 outputs an ap-
proximation of Fy within a factor of (1 + €) on an input
stream of up to N elements from [N].

Proof. Let ¢ satisfy ¢ = N7¢/4. Then setting p =
[NO+O/F] = [(4eN)'/*] and applying Lemma 2.3(a)
and Theorem 5.3 we obtain that no randomized read/write
stream algorithm with o(log V) reversals, ¢ tapes, and space
O(N1=4(1=C)/k=n) can compute F}, within a (1 +) factor.
Replacing N ¢ by 4e yields the claimed bound. O

Letting e = 1 in the above implies that there is no factor
2 approximation to Fj, for & > 4 that uses small space and a
small number of reversals in the read/write streams model.

Corollary 5.5. Let k > 4, t > 1, and n > 0.
Then there is no randomized (o(log N), O(Nl’%’”),t)—
read/write stream algorithm that with probability at least
3/4 outputs an approximation of Fy, within a factor of 2 on
an input stream of up to N elements from [N].

By similar means we can derive improved lower bounds
1 *
for computing F7.

Corollary 5.6. Lett > 1, and 7 > 0. Then there is no
randomized (o(log N'), O(N'="), t)-read/write stream al-
gorithm that with probability at least 3/4 outputs an ap-
proximation of F7 within a factor of 2 on an input stream
of up to N elements from [N].

We also derive lower bounds for the case that £k < 1
using Theorem 5.3 and Lemma 2.3(b).

Corollary 5.7. Let £ < 1, t > 1, n > 0, and
1/N < e < 1/N3/%. Then there is no randomized
(o(log N), O(=rxtsrs), t)-read/write stream algorithm that
with probability at least 3/4 outputs an approximation of
F}. within a factor of (1 + €) on an input stream of up to N
elements from [N].

Proof. Define ¢ so that ¢ = N~¢/3. Then for N suffi-
ciently large as a function of k, if p = N'=¢ = 3¢N then
p—p* > 2eN so Lemma 2.3(b) and Theorem 5.3 imply that
no randomized read/write stream algorithm with o(log N)
reversals, t tapes, and space O(N'~4(1=¢)=") can compute
F, within a (1 + ¢) factor as described. Replacing N ¢ by
3e yields the claimed bound. [

Our lower bound for PDISJ %p is only interesting when

N = w(p*).? This is because in order for the reduction from
PDISJ%:D to work (Lemma 5.2), we need N = nm and
both n = w(p?) and m = w(p?). The condition n = w(p?)
is induced by the communication complexity lower bound
for PDISI,, ;,, which is optimal up to a logarithmic factor.
The following lemma shows that a condition requiring m
to be polynomially larger than p is also necessary and that
the above technique cannot yield bounds for constant factor

approximations for & < 3.5.

Note that if N is O(p?) there is a simple deterministic algorithm for
PDISJ% » for any II. First check that the total size of the p subsets is
at most N; otherwise output 1. Then scan for a subset of size s at most
N/p = O(p) and look for these p elements in each of the other subsets in
turn. Then split these s elements into p — 1 groups of consecutive elements
of constant size and look for the elements in the ¢-th group in the i-th of
the other subsets. It is clear that the algorithm can be implemented using
only two tapes, O(logn) space, and O(1) reversals.

507

Lemma 5.8. For integer m < p>/? /64, any integer n, and
forany ® = (¢1,...,¢p) defined on [m), there is a deter-
ministic (2,0 (log(mnp)), 2)-read/write stream algorithm
computing PDISJfof.

To produce the algorithm claimed in Lemma 5.8, we
need to show the following property of permutations that
does not appear to have been considered previously. Its
proof is inspired by Seidenberg’s proof of the well-known
theorem of Erdos and Szekeres (cf. [15]) which shows that
any pair of permutations must have relative sortedness at
least \/m. The difference is that with three permutations we
can now ensure that the sequences appear in the same order
in two of them rather than one possibly being reversed.

Lemma 5.9. Let ¢1, ¢o, and ¢3 be permutations on [m).
Then there is some pair 1 < a < b < 3 such that
Da(1),...,0a(m) and &p(1), ..., Pp(m) have a common

subsequence of length at least m*/>.

Proof. Suppose by contradiction that there are no such a
and b. For every i € [m], let ¢; € [m/]?, where m/
[m!/3 — 1], be defined as follows: /;[1] is the length of
the longest common subsequence of ¢;(1),...,¢1(s) and
¢2(1),...,Pa(t), where ¢1(s) = ¢2(t) = i, and ¢;[2] and
¢;]3] are defined analogously for the other two pairs ¢2, ¢,
and ¢4, ¢3, respectively.

Now for any i # j € [m], we must have ¢; # ;. This is
because there must be some pair, say ¢; and ¢s, such that
either ¢ occurs before j in both sequences or j occurs before
i in both. In the first case ¢;[1] < ¢;[1] and in the second
case 4;[1] > ¢;[1].

However since m’ < m!/3, the number of different /;
overall ¢ € [m] is strictly < m which is a contradiction. [

It is not hard to show that the above lemma is tight, even
for any four permutations.

Proof of Lemma 5.8. Given ® there exist L1, Lo, ..., L, /3
defined as follows: L, is a common subsequence of two of
b1, b2, and 5, of length at least m'/3 given by Lemma 5.9;
L5 is a common subsequence of two of ¢4, ¢, and ¢g that is
disjoint from L; and of length at least (m—|L;|)*/3; Lz isa
common subsequence of two of ¢, ¢g, and ¢g disjoint from
L1UL, and of length at least (m—| L1 |—|Lz|)'/3, and so on,
with no index ¢ € [m] appearing in more than one sequence.
For each of the L; let a; and b; denote the indices of the
two permutations having the common subsequence L;. The
number of elements that do not appear in Ly, ..., Ly is at
most m, where my is defined by the recurrence with mg =
mand mj41 = mj — [m;/g] for j > 0. If m < p3/2/64,
then p > (64m)?/® = 16m*®. Now if m,,/s > m/8 then
at least (m/8)'/% = m!/3/2 elements have been removed
for each of p/8 = 2m?/3 steps which implies myg = 0,
which is a contradiction. Repeating this argument reduces

m; to at most m/64 after another 2(m/8)%/% = m?/3/2 =
p/32 steps. Repeating this eventually yields that m,, 3 =
0, which implies that every ¢ € [m] is in exactly one L
sequence.

The algorithm copies the input to tape 2 leaving both
heads at the right end of the tape. It will use the head on tape
1 to scan the blocks for the players and the head on tape 2 to
scan the corresponding blocks for the even-numbered play-
ers. It will solve the disjointness problems for each block in
the common subsequences L, 3, ..., La, L1, in turn. If an
intersection is found in some pair of corresponding blocks
in these sequences then the output is 1; otherwise, the out-
put is 0. The promise ensures that, for each of the m sub-
problems, to check for a given common element it suffices
to compare the blocks for a single pair of players. Since
every ¢ € [m] appears in some L;, if we can position the
heads to check the corresponding blocks then we can com-
pute each of the m disjointness subproblems exactly and
hence PDISJnm’f.

The positioning of the tape heads to execute these com-
parisons can be achieved by suitably hardwiring the se-
quences Ly 3,...,L; into the state transition function of
the algorithm; this requires only O(logpmn) bits of state
as required. We leave the details to the full paper. O

6. Open questions

The general question that we have begun to answer here
is: for what natural approximation problems does the
read/write streams model (with o(log N) passes) add sig-
nificant power to the data streams model? We have mostly
but not fully resolved the case of frequency moments —
can one close the gap between the upper and lower bounds
for computing PDISJ%W and approximating Fj? As we
have shown, we are not far from the limit on lower bounds
using the blocked and permuted version of disjointness,
PDISJfo’; moreover, it is not clear how a simulation like
that in Theorem 4.1 (which appears to be optimal up to a
polylogarithmic factor) can be made to work for more gen-

eral instances of PDISJ%,},.

Optimizing our upper bound for PDISJ fo’ raises the fol-
lowing interesting combinatorial question: Given a set of k
permutations on [m], what is the length of the longest com-
mon subsequence that can be guaranteed between some pair
of these k permutations as a function of m and k? We orig-
inally conjectured that subsequences of length m!/2—°(1)
must exist for ¥ = O(logm), which would have shown
the approximate optimality of our algorithm, but recently
O(m*/?) upper bounds have been shown for this case [4].

Acknowledgements We would like to thank T.S. Jayram
and Atri Rudra for useful discussions and an anonymous
referee for helpful comments.

508

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

(13]

(14]

(15]

[16]

N. Alon, Y. Matias, and M. Szegedy. The space complexity
of approximating the frequency moments. J. Comput. Sys.
Sci., 58(1):137-147, 1999.

B. Babcock, S. Babu, M. Datar, M. R, and J. Widom. Models
and issues in data stream systems. In Proc. 21st ACM PODS,
pages 1-16, 2002.

Z. Bar-Yossef, T. Jayram, R. Kumar, and D. Sivakumar. An
information statistics approach to data stream and commu-
nication complexity. J. Comput. Sys. Sci., 68(4):702-732,
2004.

P. Beame, E. Blais, and D.-T. Huynh-Ngoc. Longest com-
mon subsequences in sets of permutations. In preparation.
P. Beame, T. S. Jayram, and A. Rudra. Lower bounds for
randomized read/write stream algorithms. In Proc. 39th
ACM STOC, pages 689-698, 2007.

L. Bhuvanagiri, S. Ganguly, D. Kesh, and C. Saha. Sim-
pler algorithms for estimating frequency moments of data
streams. In Proc. Seventeenth ACM-SIAM SODA, pages
708-713, 2006.

A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower
bounds on the multi-party communication complexity of set
disjointness. In Eighteenth IEEE Conference on Computa-
tional Complexity, pages 107-117, 2003.

M. Grohe, A. Hernich, and N. Schweikardt. Randomized
computations on large data sets: Tight lower bounds. In
Proc. 25th ACM PODS, pages 243-252, 2006.

M. Grohe and N. Schweikardt. Lower bounds for sorting
with few random accesses to external memory. In Proc. 24th
ACM PODS, pages 238-249, 2005.

P. Indyk and D. P. Woodruff. Tight lower bounds for the
distinct elements problem. In Proc. 44th IEEE FOCS, pages
283-292, 2003.

P. Indyk and D. P. Woodruff. Optimal approximations of fre-
quency moments of data streams. In Proc. 37th ACM STOC,
pages 202-208, 2005.

S. Muthukrishnan. Data streams: Algorithms and applica-
tions. Foundations and Trends in Theoretical Computer Sci-
ence, 1(2), 2006.

A. A. Razborov. On the distributional complexity of dis-
jointness. Theoretical Computer Science, 106(2):385-390,
1992.

M. E. Saks and X. Sun. Space lower bounds for distance
approximation in the data stream model. In Proc. 34th ACM
STOC, pages 360-369, 2002.

J. M. Steele. Variations on the monotone subsequence prob-
lem of Erdds and Szekeres. In Aldous, Diaconis, and Steele,
editors, Discrete Probability and Algorithms, pages 111—
132. Springer-Verlag, 1995.

D. P. Woodruff. Optimal space lower bounds for all fre-
quency moments. In Proc. Fifteenth ACM-SIAM SODA,
pages 167-175, 2004.

