

AUTHOR(S):

TITLE:

YEAR:

Publisher citation:

OpenAIR citation:

Publisher copyright statement:

OpenAIR takedown statement:

 This publication is made
freely available under
________ open access.

This is the ___________________ version of proceedings originally published by _____________________________
and presented at __
(ISBN __________________; eISBN __________________; ISSN __________).

This publication is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

ITiCSE 2011 Working Group Report
Motivating All our Students?

Janet Carter

School of Computing
University of Kent

Canterbury, Kent, UK
+44 1227 827978

J.E.Carter@kent.ac.uk

Dennis Bouvier

School of Engineering
Southern Illinois University

Edwardsville, IL, USA
+1 618 650 2369
djb@acm.org

Rachel Cardell-Oliver

School of CS & SE
University of Western Australia

Crawley, WA, Australia
+61 8 6488 2231

rachel.cardell-oliver@uwa.edu.au

Margaret Hamilton

School of Computer Science & IT
RMIT University

Melbourne, Australia
+61 3 9925 2939

margaret.hamilton@rmit.edu.au

Stanislav Kurkovsky

Computer Science Department
Central Connecticut State Uni

New Britain, CT, USA
+1 860 832 2720

kurkovskysta@mail.ccsu.edu

Stefanie Markham

Department of Computer Science
Georgia State University

Atlanta, GA, USA
+1 404 413 5700

smarkham@gsu.edu

O William McClung
Math & CS Department
Nebraska Wesleyan Uni

Lincoln, NE, USA
+1 402 465 2252

mcclung@newbrwesleyan.edu

Roger McDermott
School of Computing

Robert Gordon University
Aberdeen, Scotland, UK

+44 1224 26 2717
roger.mcdermott@rgu.ac.uk

Charles Riedesel

CS & Eng Department
University of Nebraska-Lincoln

 Lincoln, NE, USA
+1 402 472 3486

riedesel@cse.unl.edu

Jian Shi

Electronics & Computer Science
 University of Southampton
 Southampton, Hants, UK

+44 23 8059 6000
js9g09@ecs.soton.ac.uk

Su White

Electronics & Computer Science
University of Southampton
Southampton, Hants, UK

+44 23 8059 4471
saw@ecs.soton.ac.uk

ABSTRACT
Academics expend a large amount of time and effort to sustain
and enhance the motivation of undergraduate students. Typically
based on a desire to ensure that all students achieve their full
potential, approaches are based on an understanding that students
who are highly motivated will learn more. Furthermore,
institutional rewards accrue from effective use of academics’
time, along with financial benefits associated with high levels of
retention and progression. This working group report, based on
practice in Europe, Australasia and North America, builds on

previous work. It provides an updated and revised literature
review, analyses a larger collection of survey data and has sought
to triangulate earlier findings with qualitative data from
practitioner interviews. The report covers established approaches
in teaching, support and extra-curricular activities. It tracks
emerging practice such as streamed and differentiated teaching,
and research based and authentic learning. It also considers
contemporary innovations in student activities. Finally it reports
on a repository of tips and techniques which has been established
to support faculty wishing to change or review current methods.

Categories and Subject Descriptors
K.3.2 [Computers and education]: Computer and information
science education – computer science education

General Terms: Human Factors.

Keywordss: otivation, differentiation in the classroom,
learning programming, Higher Education.

1. INTRODUCTION
This working group report reports on work which extends and
develops the initial study undertaken by the 2010 ITiCSE working
group “Motivating Our Top Students” [26]. A team drawn from
ten different institutions across Europe, Australasia and North
America has built on previous work specifically addressing some
of the issues which arose from that initial analysis. The survey
data has been extended and qualitative triangulation data gathered
from practitioner interviews to augment our analysis.

Undergraduates in the computing disciplines are drawn from
diverse backgrounds and student cohorts are often extremely
heterogeneous as a consequence. Undergraduate CS (Computer
Science) degree studies are often open to students who have no
prior knowledge of programming or computing – it is not
necessary to have studied IT or CS at pre-university level to gain
entry to the course. We have designed courses to suit the majority
of such students but we still have our 5% top performing students
to teach, some of whom have previously studied the subject and
may even be established and sometimes professional
programmers who consider themselves already part qualified.

These students begin their first year at university looking forward
to an opportunity to finally be challenged after possibly many
mundane years at school, comfortably sitting at the top of the
class. What a let down, after having possibly entered the
hallowed doors of a much respected university, which has a
stream of top academic scholars to its name, only to be asked to
type in “hello world” after the first week of lectures.

Pre-university educators recognize that some students demonstrate
characteristics such as the extreme need to learn at a much faster
pace and process material to a much greater depth than others in
their class. Some children may be so far ahead of their peer-group
that they know more than half the curriculum before the school
year starts, and the resulting boredom can lead to low
achievement and poor grades; there are recognized mechanisms in
place to help such students and their educators. Unfortunately,
once these students reach higher education we are so busy
providing extra help for our struggling students that their needs
are often ignored. Concentrating upon catering to the lowest
common denominator in the learning setting can lead us to fail to
meet the needs of our more advanced learners in a student centric
manner.

The 2010 report investigated ways in which instructors attempt to
enthuse the entire cohort: and what special approaches are
adopted to support strugglers and those capable of making very
rapid progress. The working group also investigated the use of
competitions as a motivational tool for engaging high achieving
students [67]. The current working group has had the chance to
clarify and expand understandings, addressing issues which were
raised in the concluding paragraphs of the report.

Furthermore the initial intention of the 2010 working group was to
create a repository of resources, but as issues emerged from the
data collection it became apparent that the scope of the project
was greater than originally anticipated. This year the working
group has been able to establish a repository of tips and
techniques which has been can be used to support faculty wishing
to change or review current methods. The repository also
includes a consolidated version of the references used across both
years of investigation. Details of the repository content are
covered in Section 9.

1.1 Why Worry About the Top Students?
Dropout rates are a major worry for many institutions. “On
average, one-third of students “drop out” before they complete
their first degree, regardless of whether they are following
university level or advanced programs [83]. Some studies suggest
that computing experiences a larger proportion of dropouts than
other academic areas [47].

Whilst we lose students at the lower end of the achievement
spectrum we do also lose those who might have been amongst our
higher achieving students – often because they have become
bored, then underachieve and ultimately either drop out or
underperform. With increasing emphasis upon measuring the
numbers of top grade final results it becomes increasingly
important for each institution to ensure our high ability students
perform to their maximum capabilities.

A number of changes in the context of higher education have
worked to make this a particularly important objective. External
desires for ‘objective’ measures of higher education provision
have been driven by government or consumer demands. In many
countries student experience and institutional achievements are
being audited and published for analysis. In the UK, the
introduction of a National Student Survey provides a portal of
institutional data which can furnish league tables that can in turn
have beneficial or detrimental effects upon student recruitment.

Students who have higher levels of satisfaction, and are well
motivated are likely to provide better feedback. Profession pride
will also motivate academics to ensure that their students have a
more successful educational experience. In institutions where
students can be recruited to study for higher degrees, working
specifically to achieve the highest level of performance may in
turn lead to greater numbers of postgraduate applications.

Every cohort of students contains a range of abilities and learning
styles. No cohort is entirely uniform. The term “top students” is
a relative one; the weaker students at one institution may
outperform the stronger students at another.

1.2 Background
Enhancing student motivation leads to better and more effective
learning for all our students, wherever their rankings in our
cohort; it maximizes their potential. This is beneficial for the
students and, as professionals wishing to do our best for our
students, it is beneficial for us also.

The goal of this work has been to survey academics from around
the world in order to explore the ways in which they enthuse their
students; seeking things that work and things that don’t. This has
been supplemented by an in-depth literature review. In reviewing
the literature and collecting evidence of current practice we
identified and attempted to inter-relate a broad body of work
which spans teaching methods, student motivations, curriculum
design and some aspects of educational theory [17, 51, 118].

The synthesis of these formed the basis for the recommendations
made by the group:

1.2.1 The Good
 Challenge tasks – setting graduated assessments emerged

from both the literature and practical experience. Students
are all presented with the same assessment, but they choose
how much they wish to attempt. Students struggling to
master the basics may opt to attempt only the baseline
section of the work to obtain a pass, whilst students who find
everything easy may opt to attempt everything in the hope of

attaining top grades.
 Streaming – Students who struggle can be demoralized

by the students who don’t. They are unlikely to ask
questions about initial basic concepts in front of those asking
questions aimed at testing the knowledge of the instructor.
Some of these questions are a mechanism for top students to
show the instructor that they understand, but also serve to
reinforce their ranking within the class.

1.2.2 The Bad
 Doing nothing – it is easy to treat everybody in the class

the same, but it benefits nobody.
 Humiliating students – some academics believe that

humiliating students who know more than expected is a
means to keeping them in line!

The aim for the 2011 working group was to further explore the
educational arguments for and against some common themes that
emerged previously. We identify the major themes and have
conducted conduct in-depth interviews with practitioners who
epitomize these themes. This has allowed us to identify and
classify good practice and ideas, so that a repository can be
created. It is important to further develop understanding and good
practice in this important area.

1.3 Continuing the Work
The major stages involved in addressing our aims are outlined
here. We detail what is actually current practice, locate it within
educational theory, and create a dissemination mechanism. We
based our work around the themes that emerged from the 2010
survey [67]:

 Streamed teaching [14, 27],
 Meeting student expectations [40],
 Research experiences [9, 61, 87] ,
 Maximizing individual potential [24],
 Interdisciplinary connections [115].

Motivating top students and strugglers is within the scope of this
paper, but motivating non-majors is not – see [63, 41, 72] for this
kind of work.

1.3.1 Analysis
We compared results seeking common issues, problems and
themes; these form the basis of Section 3 of the report. It is
important to be conscious of the fact that the evidence we have
gathered is the product of individual or institutional compromises
that must balance workload represented by staff student ratios and
individual teaching commitments.

1.3.2 Artifact
The major output of our work to date is a repository of, and
guidelines for the use of, materials to stretch and motivate the
students who find the work easy, whilst not demotivating those
who struggle with basic concepts.

Items for inclusion in the repository emerged from the data-
gathering phase and we are in the early stages of formulating an
appropriate categorization system and format for the repository at
this stage. Appropriate links to currently available materials and
sources are also provided. Visitors to the website will be
encouraged to suggest examples of good or bad practice that they
have encountered within the classroom to add to the current body
of knowledge. It is envisaged that the website will eventually
become a first port of call for any CS academic wishing to
improve, alter or adopt practices aimed at motivating the students
who do, or have the potential to perform at the top of their class.

2. WHAT WE DID
This paper draws together evidence based on practice in different
countries, which in turn incorporate differing assumptions and
process structures. In the US it is often normal for students’ first
experience of programming at university level to be as part of a
broad program of studies. In contrast, in the UK, Australasia and
Europe students typically embark on a specialized program of
study from the outset. Thus this latter group of students will have
already chosen Computer Science (CS) or its related disciplines as
a future academic career path. Evidence drawn from different
countries needs to be considered within this context, and,
consequently, the findings of the research may be of differing
value and relevance accordingly.

2.1 Where the Data Came From
The findings and recommendations presented in this report are
based upon interviews conducted with academics across a range
of institutions.

Several issues must be considered when assessing transferability.
Not only are there differences between educational systems in the
different countries that are represented, there are many differences
between institutions within the same country. Issues such as entry
qualifications and grading systems (e.g. GPA in USA) are more
obvious than others. Do first year results count? Is it only final
year results that determine degree classification? Do students
choose a major once they are settled at college or did they apply
for a particular subject? Is there an industrial placement as part of
the program? All of these issues, and more, have been discussed
and considered by the group so that we feel confident in
presenting repository ideas that can be adapted to suit most
situations.

2.1.1 Institutions
The ten institutions represented here range from a small liberal
arts college with fewer than 2,000 students to a large international
one with over 90,000 students enrolled upon both face-to-face and
distance courses. Some institutions have existed as places of
learning for over 100 years, many changing to university status at
some point along the way, to purpose built modern universities
that emerged from the 1960s expansion in Higher Education. All
the institutions have their own ethos and atmosphere meaning that
choosing to study there an issue of personal preference as well as
league table listings.

2.1.2 National Issues
Here we provide a brief introduction to the educational systems of
the countries involved to illustrate the contexts in which we use
the responses.

2.1.2.1 USA
The United States has a mixed public/private system of higher
education. In 1987 54% of colleges and universities were private
and 46% were public. There is no centralized authority exercising
control over colleges and universities. Regional accreditation
agencies are responsible for ensuring that individual institutions
meet corresponding standards. Additionally, professional and
specialized accreditation agencies, such as the Computing
Accreditation Commission (CAC) of ABET, establish the
standards for individual accredited degree programs. Most
colleges and universities use the results of two privately
developed admissions examinations, the SAT and ACT, in their
acceptance process.

2.1.2.2 UK
Students wishing to enter higher education in the UK for their first
Bachelors (Honors) degree apply via a centralized system to a
named degree program. They may make several choices of
institution on the application form. Offers are made on the basis
of a total number of points earned by different grades of entry
qualifications. The majority of universities also offer
postgraduate research degrees for which there is a different
application process.

Degree programs usually last 3 years in England and 4 in
Scotland. An extra year of Industrial placement may be added to
degrees from some institutions in both countries; extending by
one year the time taken to complete the degree program.

2.1.2.3 Australia and New Zealand
The Australian and New Zealand university application systems
are similar to the UKs, although each state has a different
Admissions Centre and students usually live at home during their
studies going to university in their home state. Bachelor degree
courses are offered by universities. Universities are self-
governing with funding from a federal model. Degrees, diplomas
and certificates are offered by TAFE (Technical and Further
Education) Institutions funded federally. TAFE education is
targeted to industry relevant, work-ready students. The selection
process for both Universities and TAFEs is generally based on
students’ VCE marks, called their ENTER score. Most
Universities offer Masters level courses, that enrol a large cohort
of full-fee paying international students.

3. ACADEMICS’ OPINIONS
We applied a qualitative methodology to the study, undertaking
semi-structured interviews with academics teaching introductory
programming in their institution. The questions we asked were
based upon an agreed list of themes for consistency and
comparability; the list was derived from the questionnaire
administered last year [26].

The responses were recorded and transcribed to provide direct
quotations. Previous work has shown that it is profitable to pool
information gleaned from different institutions in this way [22, 23,
25]. Respondent validation is essential in order to ensure that the
data collected by the interviewers was accurate.

The documentation of the academics’ opinions, memories and
experiences is more than a simple task of transcribing their
comments from the interviews; it involves the subjective
interpretation of what they say and do. We have, therefore,
compared and contrasted their comments within the contexts of
the different institutions and national educational systems.

The opinions documented here fall into nine distinct groups; eight
sections contain tried and tested methods of enhancing
motivation, and the last contains a summary of things that are less
than helpful to try.

3.1 Differentiated Delivery
One outcome of the policy of increasing access to Higher
Education is that many classes now contain students with a much
wider range of abilities than was the case ten or fifteen years ago.
Whereas, in the past, it was sometimes possible to teach to the
median level of the class and be reasonably confident that the
abilities of most students would fall in a narrow band either side,
nowadays instructors often find that this strategy gives little
support for those struggling with the course and, moreover, leaves
high-achieving students unsatisfied because they feel

insufficiently challenged by the material being presented. One
way of addressing this issue is to incorporate some kind of
mechanism in the delivery of courses which differentiates
between the various parts of the spectrum of ability. While this
may be an appealing response from the point of view of student-
centered pedagogy, there are a number of operational issues which
are problematic with regard to implementation. Among the most
important of these is the mechanism by which one modifies
teaching to respond to the needs of specific groups, e.g. the
provision of extension material to top students, and forms of
assessment which address the non-homogeneity of ability levels
within a student cohort.

3.1.1 Providing Extension Material
One example of addressing differentiated teaching methods within
a single class is to break the students into small groups of
homogeneous ability level and ensure that they undertake
problem-based learning. This allows the tutor to spend more time
with the groups of less able students while allowing the groups of
highly able students to progress at their own rate.

Extension material consisting of further activities can be provided
on topics studied by all class members. Realistically, however,
much of this will only be undertaken by students with a more
advanced understanding of the subject. While this requires
instructor effort, it serves to convince high-achieving students that
they remain an educational priority. Such measures are well-
received by this group of students who may often lose interest
without such intervention.

Another strategy which addresses heterogeneity is examination of
the contribution of students beyond the level required to
minimally satisfy the learning objectives of the assessment. This
can be done in several ways. Description of the assessment may
be given in terms of a graduated set of learning objectives which
correspond to grading criteria. This allows all students to engage
with the assignment to achieve a passing grade, but allows more
able students to receive a higher grade for satisfying more of the
learning objectives. Alternatively, it is sometimes possible to
specify the components that need to appear in a particular
assessment but expect the students to inject elements of their own
creativity into the assignment in order to attain a higher grade.
This may involve additional criteria beyond mere correctness: for
example, style or elegance in coding.

The disadvantage of this approach is the time it takes for the
instructor to create the differentiated material. This may be
significant and the number of students who undertake the extra
exercises, and so receive benefit from it, may be small.
Nevertheless, it contributes to a greater sense of satisfaction
among all students and so better addresses the range of abilities
which now appear in the classroom.

3.1.2 Tools for Differentiation
Several tools support computer science education. Though these
tools support a variety of facets of the learning environment,
differentiation is facilitated through either automating some facet
of the course, or by facilitating peer activity. In either case, tool
usage leads to increased student autonomy (students can proceed
at independent rates) and allows the speedy provision of
individualized feedback.

Studies have shown that using such tools increases students’
learning. Hamer et al have produced an extensive overview of
tools for use in both computing and general courses [44]. It

should, however, be noted that many existing tools are in a state
of evolution and typically have low adoption rates.

3.1.2.1 Programming Evaluation Tools
Tools to aid program evaluation are particularly useful in courses
that involve extensive amounts of programming. These tools can
be classified as either instructor-directed (the instructor develops
the testing criteria) or student-directed (students contribute to the
testing criteria). In both cases, all students benefit from the
availability of early and frequent feedback on their programming
code. Ihantola et al [54] provide an overview of automatic
program assessment tools, noting the strengths and weaknesses of
each tool investigated.

3.2 Streaming
Some CS schools provide a variety of different entry streams for
their students. Dependent upon the type of streaming offered,
students may self-select their stream or may be allocated to a
particular stream with regard to previous qualifications and
experience; streams may be explicitly defined by the degree in
which the student is enrolled, or they may be defined by the
School, the University, funding from an outside organization for
select students.

Self-selecting streams include different versions of a similar
degree program and may be identifiable by a subtle difference in
eventual degree title: e.g. BSc Computer Science (Database
Systems), BSc Computer Science (Networks), etc. Such streams
often share a common first year, and students can swap to a
different stream (or degree program) if they wish once they arrive
and have learnt more about the subject.

Qualification-based streams may be defined by entry pathways
into the degree, such as the Renaissance Program [91], which
provides multiple entries into a CS School in order to attract
Humanities, Engineering, Science and Multimedia students. It
delivers the main content of CS1 with four options: Java, C,
Fortran/Matlab, python/Perl. The philosophy behind the scheme
is to allow the same first year outcome regardless of the entry
route; this can encourage the students to choose and continue with
CS.

At some institutions registering for an honors degree is not
automatic. One case study provided by our participants explains a
scheme whereby High School students may win scholarships,
financial benefits, the chance to undertake some specialized
courses and an appropriate project that, subject to successful
completion, allows them to graduate with Honors. Another
pathway to an Honors degree in such an institution is for high
achieving students who elect to enter the Honors program to
identify the extra courses required and to attend extra labs and
lectures as necessary.

It is occasionally the case that an outside body may fund the top
stream of students. For example, the Raikes program [90] allows
30 talented students per year to enroll into Computer Science or
specialized Business and Computing Engineering classes.
Students benefit from a cooperative learning community living on
campus and progressing as a group, taking special versions of
classes and finishing with a two-year project in a design studio,
offering them the opportunity to work on projects contracted in
from external companies.

3.3 Tangible Results within a Context
Context is recognized as an important issue within CS education
[37, 41]. Using a context allows educators to focus on a subject
that is important and familiar to students while learning new

concepts; it provides a motivational tool and offers a wider
playing field for experimentation and engaging students in the
educational process. Using motivational learning context has a
strong potential to improve student success in introductory CS
courses and, where applicable, increase student motivation to
remain in the major. The ACM Computing Curriculum (CC)
recognizes the role of mobile computing, games programming and
robotics in today’s world as well as in the CS discipline.

Academics employ a variety of techniques within a range of CS
courses that are designed to allow their students to see the
immediate, tangible results of their work; students attempt tasks
that they find engaging and perceive as relevant to real-world
applications.

The use of hands-on tools and techniques provides enough
flexibility for academics to manage varying levels of student
experience and background; the implementation of concepts is
central to the learning process. To quote Sophocles, “One must
learn by doing the thing; for though you think you know it, you
have no certainty, until you try.” It is very important to provide
students with an opportunity to apply theoretical concepts in
practice. For example, it is one thing to tell students about the
computational complexity of an algorithm, but quite another to
have the students apply the same algorithm to problems of
differing sizes to see firsthand a significant difference in the
execution time by a device with a relatively slow processor. It is
one thing to tell a student about the properties of an algorithm
exploring a game search space, but quite another to have students
observe their implementation run out of the small amount of
memory on a mobile device. Through such experiences, students
gain a much deeper appreciation of the design issues at stake.
Using hands-on experiences with real-world devices as a learning
context in introductory CS courses aims to provide a simple and
elegant means to motivate students and communicate the diversity
and power of many advanced CS areas in a manner that engages
students in experiential education.

Current research indicates that more participatory learning
methods such as those used in graphics programming, robotics
and mobile application development can level the playing field for
different types of students. For example, CS and Engineering
have historically been less accessible for female and
underrepresented minority students, and as a result, these students
are underrepresented in most CS and Engineering departments in
this country. A shift to a learning environment which values
interactivity, cooperation, and collaboration can result in female
and minority students feeling more comfortable and, by extension,
can lead to greater persistence and success. In fact, several
studies have shown that these learning methods more closely
match the learning styles and preferences of women and
minorities [10, 13, 64, 100, 114].

Games development has been successfully used as a CS learning
context at many levels. Young people have a special affinity to
mobile gadgets; they would find it difficult to live a day without
using their mobile phones to talk, check email, send text
messages, and play games. Using mobile ubiquitous devices in
the educational process adds a social dimension to the success of
this learning context – students are able to see a connection
between the technical material and their everyday lives.

3.4 Peer Mentoring
Peer mentoring refers to “students learning from students”. This
can take many forms: for example, a set time every week where
first-year students can obtain help on homework from more

advanced students who are paid for their efforts. Another
example is “Supplementary Instruction” in which the more
advanced students who tutor get credits toward an extra-curricular
certificate for volunteering rather than payment. A third example
is the use of discussion boards such as those provided by learning
management systems (e.g. Moodle). On these boards students ask
and answer questions related to homework assignments. These
questions can be anonymously posed. Another possible
interpretation of peer mentoring is cooperative learning inside CS
classes in which students work in groups on specific homework
problems. This group discussion often clarifies an individual’s
understanding of the CS concepts exercised in these problems.
Instructors can monitor students’ progress on these problems and
intervene with “mini-lectures” when it appears that peer learning
has not been completely effective.

A risk in peer group learning is that individuals may not be able to
accomplish individually what their group can. This is an
assessment problem for the instructor. One way to minimize this
risk [76, 112] is to conduct individual interviews of each member
of the group after the group work has been submitted. A risk with
first year students going to more advanced students for help is that
the more advanced student will simply do the homework exercise
of the first year student. This risk can be minimized by proper
training of the advanced students. On discussion boards complete
solutions to a homework exercise can be posted by competent
students. In addition, anonymity allows students to post rude and
inappropriate comments. As a consequence, posters may
withdraw from using this resource. Top students can also “show
off” by posting difficult questions on the board which tends to
demotivate less able students. All these risks can be minimized
by moderating the discussion board [7].

The mentors are often “top students”. Top students tend to feel
that helping less able students ensures that the course as a whole
can progress more quickly and, hence, are also beneficial to them.
They believe that explaining things in detail to others cements
their understanding of the field and gives them a feeling of
“helping others”. Of course, not every top student is motivated to
help others struggling with a topic they find easy. Also
sometimes, students who have really struggled coming to terms
with the material are better able and really want to explain it to
other students [34].

A case study taken from one of our participants suggests that
senior students can be encouraged to lead technical sessions and
help prepare training resources and sample exercise questions that
can be used to educate junior students. This form of peer tutoring
has four major benefits:

1. Forcing senior students to solidify their understanding of the
material: teaching others requires a concrete understanding
of the material and explaining concepts reinforces ideas in
one’s own mind,

2. Creating interest and a sense of contribution for the senior
students (a controlled avenue to show off their
understanding), creating a sense of community among the
cohort of students,

3. Providing senior students with valuable teaching experience,
and lastly,

4. Reducing faculty workload with regard to developing and
delivering technical material, thus freeing time for renewing
the program and setting high-level direction.

Peer learning, in all its forms, reduces the amount of instructor
time spent both in lecturing and answering questions. This

counteracts some of the time taken to moderate discussion boards
and interview individuals whose work is submitted [45]. An
obvious cost of providing paid student helpers is their wages. But
if only one student who would have failed passes as a
consequence of this help, this has more than recouped the
investment.

3.5 Self and Peer Assessment
Students assessing the work of peers has been shown to support
learner autonomy and self-regulation [12, 43, 97]. It provides
opportunities to develop the skills and abilities required to
critically appraise one’s own work in the context of providing
assessment of work done by others. This feedback complements
the feedback given by instructors.

Possibly the strongest argument for the use of peer (and self)
assessment is that it demands significant student engagement with
the both course content and the assessment criteria. As noted by
Nicol [81], students cannot be passive when giving feedback
whereas they can be passive in using the feedback they receive.
This type of activity can help students to more fully understand
academic expectations of ‘good performance’; lack of such
understanding is a significant factor in student under-performance.
Students engaged in peer review typically come into contact with
several examples of different solutions to the same problem they
are solving. This facilitates an understanding of different
approaches to assignments and the different ways that high-
quality work can be produced.

There has also been research that suggests that the use of such
activity can promote the social or collaborative aspects of learning
[64, 108] such as interaction between students, between students
and teachers, and the development of learning communities. It
can also lead to an enhanced motivation to learn and improved
time commitment to study.

3.5.1 Practices
Peer and self-assessment has a role in promoting higher cognitive
skills and enhancing student learning, as well as employability
skills. This has often been within the context of collaborative
group activities, although some recent work (e.g. Nicol, [80]) has
suggested routinely incorporating peer review into individual
assignments by students. In a collaborative context, students
engaging in team programming exercises are asked to appraise
both the technical and non-technical performance of their peers.

Another obvious benefit of peer assessment is that, with
appropriate management, much of the workload associated with
the provision of immediate feedback is transferred from academic
staff, thus allowing them to engage more profitably with specific
groups of students. While manual administration of such a
process for large numbers of students will be time-consuming, and
therefore impractical, there are a number of software tools (e.g.
[45]), which can be used to automate the various sub-tasks will
facilitate scalability of the activity to arbitrary class-sizes.

3.5.2 Problematic Issues
Clearly, appraisal of student’s work by their peers could be
fraught with difficulty. Students often feel unable to engage in the
activity without clear guidance on both the nature of the
assessment criteria and their applicability to the exercise in
question. This itself requires that the activity be scaffolded by
auxiliary instruction, which may be time-consuming for the tutor.
Students themselves often articulate the fear that affective
reactions may color an impartial assessment of their work by other
students. Some studies show a tendency for high achieving

students to be more self-critical and so award proportionately
lower marks. These issues are not superficial and may well
impact significantly on the student’s appreciation of the
reviewers’ responses which, in turn, affects the assimilation of
learning associated with the feedback. Student perceptions
concerning the validity of criticism can, to some extent, be
ameliorated by careful analysis of the feedback itself and the
software tools that facilitate large-scale peer-review are often able
to identify statistical outliers in grades that can then be moderated
by tutors. However, a different response to this issue is often to
use the reviews as formative feedback on a first draft of the
assessed material, rather than as a summative grade. This allows
the reviewee to incorporate any criticism back into a subsequent
submission of the assignment. An alternative approach is to also
allow the reviewee some role in assessing the quality of feedback.

3.6 Competitions
National and international programming competitions such as the
ACM International Collegiate Programming Contest (ICPC) are
widely used to motivate students. Respondents to our survey
(mostly from Australia and the USA) cite the ACM International
Collegiate Programming Contest (ICPC) as the most popular
programming competition. Competition teams practice advanced
programming, data structures, algorithm analysis, mathematical
modeling, discrete mathematics and computational geometry.

Competitions can, however, inspire students at all levels. Within
a programming course they provide an opportunity for students to
test their ability in designing, understanding and implementing
code. Competition can also be the spur that pushes ordinary
students to achieve much more than in classroom situations and
participation in competitions enhances a graduates’ CV.

Key reasons why university teachers use competitions when they
are teaching students to program include: testing students’ ability,
design, understanding and implementation [24]; students
strengthening their basic programming skills and insight into
practical problems [60, 86]; learning effective teamwork and
communication [18, 24, 60]; and stimulating student enthusiasm.

Not only can competitions and training programs inspire students
to learn, they can also yield rewards for the university when teams
do well in the regional, national, or international level. This
publicity can attract high school students and graduate students to
study at the host University.

Material from competitions, such as the ACM ICPC, can be
integrated into degree courses such as Algorithms and Data
Structures, using past problems to highlight concepts and for
assessment purposes. The training program can also seed
capstone group student projects to develop support software.

Competition teams are usually mentored and trained by one or
more Faculty member. There is a high time factor cost associated
with this, which needs to be recognized as a service activity that is
part of the department’s overall strategy.

Other programming competitions include Microsoft Imagine Cup
[77], IEEEExtreme [53] and TopCoder [102]. Rosenbloom
reported that establishing an in-class competition was “a great,
motivational, educational and engaging break from their usual
routine” [96]. Moving away from coding competitions O’Leary
[84] presents a poster competition as a way to motivate students.

Participating in competitions is not motivating for all students.
Some will not enjoy that type of pressured experience and some
do not like finding out that they are not the best.

3.6.1 ACM ICPC
Institutions that enter teams in the ACM ICPC competition [1]
support their teams with technical sessions and practice
competitions that extend the material taught in the standard
program. Sessions increase in difficulty over the course of the
year: initial training sessions focus on preliminary skills,
competition strategies, and team-work essentials; later sessions
focus on advanced material. Academics are invited to contribute
by providing expert advice on technical topics in their areas of
specialty.

One Faculty mentor for this program notes that:

The success of the training program is due to two core principles:
challenge and fun. The material presented as part of the technical
components of the training program is advanced in nature,
exposing students to some difficult algorithmic concepts not
presented in their regular undergraduate computing courses.
This advanced material provides a challenge for even the very
best students; students who may have become bored or
disillusioned by the slower pace of the traditional undergraduate
programs and are seeking something to challenge or drive them
further.

3.6.2 TOPS UK
The Teaching Over-Performing Students competition also
complements the usual scenario of helping strugglers and focuses
on the other extreme of the cohort – high performing students
[23]. The competition involves teams of six students from each
participating institution and is split into two sections: designing a
challenge for other student teams to attempt in pairs; attempting
the challenges designed by students from the other institutions.
Four students from each team pair up to attempt the coding
challenges; this allows students with commitments or who are
reticent about competing in the programming stage of the
competition to join in, as well as allowing for drop-outs.

The teams are given the brief to design a challenge that can be
undertaken by a pair of students sharing a laptop within the
timeframe of 1-hour. The challenges must relate to a specific
scenario such as “something useful for a group of students
attending an event in London”. Even the process of choosing
teams is worthy of note. Some students push themselves forward
because they want to achieve for themselves, others will nominate
the strongest students in their group in order for their own
institution to have the best chance of winning.

3.6.3 CSE Day Nebraska
CSE day is a high school competition that has run for more than
10 years and is modeled after the ICPC. It is used for recruitment,
and the winning teams are awarded scholarships into the Nebraska
degree program.

3.7 Research Experiences
The integration of research into undergraduate teaching is a theme
in many university CS departments. The definition of “research”
activities is rather broad, covering both software development and
traditional research projects. A defining characteristic that links
both strands is that the learning is student driven: “students should
be seen as producers, not just consumers of knowledge” [48]. The
Scottish Higher Education Enhancement Themes has reported on
research-teaching linkages in Computer Science [52]. Their
report identifies many different types of suitable research project;
documents student and academic attitude to research; and presents
case studies of successful schemes in Information and
Mathematical Sciences.

Jenkins and Healy [48] classify four ways in which
undergraduates may engage with research and inquiry across
many disciplines:

1. research-led: learning about current research in the
discipline,

2. research-oriented: developing research skills and techniques,
3. research-based: undertaking research and inquiry,
4. research-tutored: engaging in research discussions.

University-based research enrichment programs are typically
offered to top-performing students. Such research programs are
often outside the formal curriculum, e.g. summer enrichment
programs [62]. In a number of countries these summer
internships are sponsored (e.g. NSF REU, DAAD RISE) to
provide scholarships and living expenses for the students
undertaking them [9]. Students are supervised and mentored by
academic staff. The one-to-one supervision of research activities
is deemed to be an important benefit of the experience. Many of
these research projects are interdisciplinary, which can be
particularly motivating for students [48, 62].

Academics and universities maintain active partnerships with
industry and projects with industrial (real world tangible contexts
– see section 3.3) links can be initiated by a Faculty member or by
an industry partner and may be undertaken by individual students
or groups.

Research experiences can begin as early as the first year [43] and
may be integrated throughout the degree program [97]. In the
UK, Sweden and Australia, undergraduate honors degree
programs include a research project assessed by dissertation [12].

There are many advantages and benefits to supporting
undergraduate research. For example, academic departments
benefit from the reflected glory of successful projects which can
be reported on web sites and in news articles. Student successes
in research projects help encourage and motivate other students as
well.

There are two major disadvantages to offering research
experiences to undergraduates: one-to-one supervision takes up a
significant amount of academic time; students need to be paid
some sort of living expenses either at an hourly rate, by an
honorarium or scholarship. For these reasons, most departments
offering such experiences do so only to selected students.

3.8 Extra Curricular Activities
Extra curricular activities can provide a welcome diversion for
students with an interest in aspects of the course that are not met
by the curriculum. An example of this is cited by one of our
respondents: a programming club.

The programming club is open to all students within the
university, as well as High School Students. It is run by students
and an academic who maintain an external website [94] and the
only requirement for membership is a keen interest in computer
programming. The club meets once per week in a lab that is
specially reserved for them. The Programming Club provides a
stimulating, cooperative environment where students can interact
and learn from each other by solving various programming
problems.

Some objectives of the club are to:

 Gain and develop good programming skills and general
problem solving skills,

 Learn how to work in a team

 Develop programming solutions using various data
structures, sorting algorithms, arithmetic, algebra, graph
algorithms, and number theory,

 Enhance students’ career prospects (it looks really good on a
CV),

 Start a potential research project which may lead to postgrad
studies,

 Learn from senior and more experienced students,
 Have fun with other fellow students!

3.9 Motivation Anti Patterns
As well as identifying interventions and approaches that help to
improve motivation, we have identified several motivation anti-
patterns. An anti-pattern is an approach that demotivates students
and so should never be used. In the context of motivating all our
students, anti-patterns include approaches that motivate one group
of students whilst strongly de-motivating another.

3.9.1 Doing Nothing
The easiest approach is to treat everyone in the class in the same
way. But this isn’t fair to anybody – even the instructor suffers
when students fail and drop out.

3.9.2 Sink or Swim
In this anti-pattern it is argued that students are adults and so it is
up to them to find out what is required of them, and then how to
achieve that and whether they have done so. The working group
argues that teachers should take responsibility for ensuring that
expectations are made clear, and that students are taught how to
learn as well as what to learn.

3.9.3 Teach to Only One Section of the Class
Some instructors elect to teach to one section of the class only: the
best students, the middle students or to focus on the weakest
students. This approach may be justified as teaching only the
students “we want to have” or focusing on those “we know we
have”. Alternatively, instructors may focus on only one learning
style, ignoring the needs of other types of learners. In each case,
the students who are not being catered for are likely to lose
interest and either drop out or under-achieve in the course. We
argue that the diversity of student abilities and preferences needs
to be addressed by a mix of different teaching approaches.

3.9.4 Humiliating Students
Telling students they aren’t as good as they think they are, or
constantly reminding them about a silly error they once made
(when they were having a bad day / ill / hung-over / suffering a
bereavement) is not the way to motivate anybody.

3.9.5 Scare Tactics
Many Computer Science courses have high failure rates and
meaningful learning requires significant effort on the part of the
learner. However, since anxiety inhibits learning, negative
motivation techniques are not an effective strategy. Negative
motivators include unreasonable workload, exam questions that
are badly matched to students’ level of development, and taking
high failure rates as a given and telling the students that will
happen (whatever they do).

4. WHAT THE STUDENTS SAY
There are a number of significant challenges when attempting to
motivate all students: the diversity of students’ prior experience;
preferred activities; and their attitude towards problems they
encounter. Another major hurdle is that every student is
motivated by something different. In Section 3 we presented

academics’ views on techniques they have used to motivate their
students. In this section we present the views of the students. The
quotations presented here are taken from course evaluations from
the UK, Australia and the USA. They represent the voices of
cross sectional mix of students (including female, mature,
international) taking CS degree programs.

Differing student motivations are evidenced by the contradictory
statements made by different students taking the same course. To
put these differences into context we need to consider the
diversity of students’ backgrounds and their different reasons for
taking Computer Science courses.

[My first choice unit] got cancelled and I needed a unit so I chose
this one. This is by far the best unit I have ever done, and it was
all an accident.

I liked things about programming since I was young, so basically
no opinion. The lectures and labs are just fine for me.

Honestly, I just do NOT like programming at all! It’s my parents
force me study this boring subject, because they thought I would
have a great job with high income after graduation. – Female
student, whose parents work in IT and used to be programmers.

Motivating all Computer Science students is challenging because
those entering Computer Science degrees have a wide range of
prior experience in the subject area. For example, entrants to a
first year programming unit included:

No programming background

Picked up programming as a hobby about...11 months before I
started this course

This is my 5th semester at uni ... did some C programming in
other units, learning c# at same time ... playing around with the
xna dev environment for games

Had 2 years off in which I worked in web development,
programmed interactive websites (PHP, JS, SQL) and did work
creating a relatively simple PHP project tracking system. During
that time I also taught myself a (very) little bit from many
programming areas (Python, C++, VMC, Programming
paradigms etc.). This is my first semester (Bachelor of CS).

4.1 Differentiated Delivery
The need for differentiated delivery can be appreciated from the
wide range of prior experience of students in Computer Science.
Differentiated assessment tasks appeal to top students, who can
demonstrate their skills by attempting the most complex
challenges. Weaker students, however, may still struggle with the
basic tasks that are set.

I enjoyed implementing features that were more advanced than
what the assignment required (e.g. drawing the “Don’t Bother”
flags) and optimizing important methods.

What did I like most about this unit? Absolutely the labs. The
discrete marking style was excellent motivation to aim for the
harder tasks.

This course nearly drove me to insanity. I put so much time into
this subject – time that was so desperately needed in my other
subjects – with almost always fruitless results

I can sing a song, but I can’t compose one. The same deal with
Java

4.2 Streaming
Students quickly become aware of the wide range of abilities in
their classes, and their ranking within the group. From this they

may then identify a need for streamed classes or differentiated
delivery.

I know it is more work and a pain for you, but the unit needs to be
split, possibly into 2 units: One for total beginners and one for
people with knowledge but no formal education. The second unit
could run faster, requiring more work to keep up

The pace was a bit slow for me ... I still felt the course was worth
my time, and the assessments gave me a bit of room to think for
myself (in the extensions) and construct something I was proud of.

Students who do not plan on majoring in computer programming
or engineering should not be required to take the same class as
those students who do plan on majoring in programming orE.

The problem with this class is it is a very hard subject to grasp.
Either you get it or you don’t. It’s very hard to understand some
of the things taught. I always said this class was like someone
handing you tennis shoes. The teachers and book told me all
about this shoe they told me what the laces were and the tongue
and the sole. Then I would get to lab and they would say tie the
shoe. I could tell you everything about the shoe, but I have no
idea how to tie it. It is the same as C programming. I can tell you
what a struct and an array is but I have no idea how to properly
implement them.

4.3 Tangible Results Within a Context
Hands-on projects that allow students to see immediate tangible
results for their work have been developed in many institutions
and are widely, although not exclusively, appreciated by their
students. A major aspect of projects with tangible results is that
students are motivated by activities that they see to be relevant to
their future careers.

The assignments [were the most enjoyable part of the course]
because it was good to see the coding I wrote actually do
something.

I found the last assignments, ... very interesting, as the programs
were ‘real’ and required some careful thought and problem
solving.

I just really hope there could be more opportunities for me to
create some real applications.

This unit was boring ... If this course was the first programming
I’d ever experienced, I would drop computer science ... doesn’t
get the student interested because we never end up with a
standalone application that we can run

Nothing else, more practical work please! I wanna build up
something that people may actually use. I’m tired of doing some
work only for the purposes of checking if we could master the
theories or not.

Sometimes I just feel that I’m wasting my time, learning stuff
which would never be used in my future career. It would be great
if I knew what the real work looks like in advance.

4.4 Peer Mentoring
Students usually appreciate mentoring from their peers and from
tools. However, working with peers can also be frustrating.

I was also encouraged ... to help train other students. This
provided me, and other strong students involved, with invaluable
teaching experience.

Every time ... I do teamwork, there will always be some strugglers
hidden behind, doing nothing. Sometimes I just coded for a
teamwork all by myself, which I do NOT think I could practice my

cooperation ability. So I’m thinking, maybe the real managers
from IT companies could lead us, showing what the REAL
TEAMWORK is.

4.5 Self and Peer Assessment
Many students benefit from using tools for self and peer
assessment.

[The best aspect of the unit were] the test cases and the help
[forum] meant you didn’t have to stop when you hit a wall. It just
kept the right amount of difficulty in the unit.

I really liked the codelab within this course. I thought it did a
good job of applying what we learned in the lecture. Also most of
the labs did a good job as well.

[The lecturer was] really helpful outside of the class. The drill
exam [a second opportunity to retake an examination] really help
for understand what is wrong of the exam, it is good that the drill
exam as a bonus credits.

4.6 Competitions
Most students find programming competitions motivating; they
value the professional and team work skills that they gain from
training and taking part in competitions.

Overall, participating in [the ACM ICPC] training program was
one of the highlights of my time at [university] and I’ve
recommended it to every CS undergrad I’ve met.

A very inviting and rewarding experience. Truth be told, I doubt I
would still be doing my CS degree if it weren’t for taking part in
the ACM.

The ACM training offered a highly engaging environment for
reinforcing both my own studies and extending less experienced
students with material they would not otherwise encounter.

I believe that the program provides students with experience that
is not normally available to students through coursework.

I joined the ACM-ICPC [after joining the] challenging but
extremely entertaining training course. It was such an important
and thrilling learning experience that I attended every year after
that.

The training program is structured so well that it is no longer
simply a matter of learning how to win, but enjoying the learning
while we do it, which to my mind makes the information stick a
whole lot easier.

I liked that we were supposed to work at our natural pace and
that we had to think.

It was really intense, but great fun.

Training taught me to identify cases where knowledge learned in
my degree could be applied to real problems and inspired me to
learn above and beyond my usual undergraduate studies.

The structure of the competitions and discussions encourages
students to learn from each other. These activities are
particularly rewarding, combining a socially-supportive
environment with the acquisition of widely-applicable problem-
solving techniques.

Before I participated in the ICPC I was a student who was rather
isolated and, at times, quite uncomfortable working with my
peers. As a result of the training, I became far more effective at
working with others and formed mutually beneficial relationships
with other motivated students.

Working together was great, everyone worked amazingly well in
teams…I felt I learnt an enormous amount from the activity, and I
thank you sincerely for making it available to us.

5. DISCUSSION
The intrinsic motivation for motivating all students is obvious:
educators aim for students to experience “higher learning” in their
courses [5], and high student motivation is an important pre-
requisite for higher learning. There are also many extrinsic
motivations for motivating all students. Most institutions are
aiming to reduce both their failure rates and their withdrawal rates
for students. Furthermore, even if they do not leave, demotivated
students may simply switch off and so achieve a low final degree
grade instead of the high grade they were capable of. There are
hidden curriculum benefits to motivating students in that the
advertised achievements of top students (e.g. in competitions and
research projects) are motivating the other students. They
introduce an organizational culture of excellence. Successes can
also be used for attracting and retaining students. Top performing
undergraduate students are an asset to their departments on
graduation, either as employees in industry or as PhD students.

Solving the problem of motivating all our students is particularly
challenging for two main reasons. First, Computer Science
cohorts are extremely diverse: students have different
backgrounds and expectations, learn at different rates, and are
motivated by different types of activities. Second, most
departments are under pressure to reduce their course delivery
costs, but techniques to motivate all students usually increase
costs because they require the development of new material,
running multiple level classes, and offering differentiated
material.

Three major categories of concern emerged from the analysis:

1. Program Level – providing mechanisms at the degree
program level, such as a series of honors courses, etc.,

2. Course Level – techniques and tools used within a single
course (Table 1),

3. Extra-Curricular Issues – strategies outside of the degree
program.

Alongside issues relating to the level at which an intervention
strategy should be employed or considered were issues relating to
different sectors of the cohort – not split by ability or aptitude for
the subject.

5.1 Issues Transcending Teaching
There are two further, overarching, issues that require
consideration, whichever level of intervention or change is being
considered. Dealing with all our students does not simply mean
all ability levels, but also students of differing social backgrounds.
The other issue that cannot be ignored is that of plagiarism.

 Lecture Laboratory / Assignment Other

Classroom
Approach

 Studio
Lecture in Lab

n/a n/a

Material Engaging/Relevant Challenge n/a

Tools Classroom interaction Automated program assessment
 Peer study tools
 Customized problems /

quizzes

Mentoring Peer
 Pair Programming (Peer)
 Tutors

 Tutor

Table 1: course level techniques

5.1.1 Dealing with Under-represented Groups
According to the United States National Science Foundation, the
major underrepresented U.S. groups CS and Engineering include
women and these three minorities: Blacks, Hispanics, and
American Indians [82]. Underrepresented groups in Europe and
Australia also include women [2, 49].

Generally, students from underrepresented groups have lower self-
confidence, and women in computing particularly experience this
challenge [69]. Current research indicates that women tend to
perform better in collaborative environments [10, 13, 64]; pair
programming has been shown to be especially beneficial [110].
Students belonging to underrepresented groups tend to perform
better when paired with the team members from the same group as
well as when they have a mentor or a role model from the same
underrepresented group [14, 19, 50]. While role models and
teammates from the same group can be helpful, it is important to
acknowledge that a mixed group of men and women is best for
overall team performance for all students [83]. Therefore an ideal
team would include more than one female along with other males.
However, considering actual enrollment percentages, achieving the
ideal team may not feasible.

Helping female students overcome their lack of self-confidence can
reveal their natural abilities and raise their achievement level. The
same is true of interest. The curriculum has been shown to bias
toward the majority demographic in the student population [47].
Once the interests are discovered and taken into consideration in the
curriculum without excluding any particular group, then the
students can realize their capabilities and rise to their natural level
of achievement.

5.1.2 Plagiarism
We tend to think of plagiarism and collusion in Computer Science
as one student copying another student’s code and submitting it as
their own, or two or more students working on the same assignment
together as a group project, and then each submitting the same work
as their own individual assignment. In the context of large classes,
and with many international students, some students expect that this
will not be discovered [117]. However, when a student posts their
assignment to a website, such as Rent-a-coder, and offers to pay the
least amount of money for their completed assignment [57], or
offers to pay a private tutor to complete their assignment [116] this
also falls under the same banner of plagiarism and collusion. It can
be argued that this is a more serious form of plagiarism, and should
be considered differently.

Some universities distinguish between “accidental” or “minor”
plagiarism, which occurs when a student may not know or
understand the problems associated with submitting the work of
another as their own. The remedy for this kind of plagiarism is
often a warning, or process of education such as a workshop or

direction to read material on how to reference correctly, in particular
how to reference code appropriately [46]. However, when students
deliberately set out to cheat on their assessments, and steal or buy or
coerce other people into carrying out their work, this is the kind of
case that requires further investigation as to the cause.

In our interviews, we have identified various approaches to
investigating this problem. One approach is to interview the student
and find out why they have taken this path. One scenario that is
relevant here occurs when students are under time pressure from
outside work commitments, where the student has to undertake paid
work to be able to afford their studies; in countries such as
Australia, many international students find they must work in order
to support themselves during their expensive study abroad. Some
students, however, choose to undertake the paid work because they
find their study easy and even boring, and think they will benefit
from real world experiences, and paid employment. These students
can easily undertake too many hours of work per week, in the
mistaken belief that their university work is easy now, and will
continue to be so. One risk of making initial work easy to aid the
struggling novice, is that average to middling programming students
are encouraged to believe that they can undertake more outside
activities, such as paid employment, without affecting their grades.
When they realize they cannot, often the day before the assignment
is due, they can take desperate measures to submit their assignment.

Other triggers that have been cited for students submitting
assignments to an external website or newsgroup or forum, are the
isolation of an individual, either through physical location (distance
education) and students for whom the language of instruction is not
their mother tongue; students who struggle through lack of personal
support from the university.

The risk of aiming delivery of education at one particular cohort, is
the isolation of another cohort. The level of plagiarism may be an
indicator of students being disengaged, and not recognizing the
relevance of their assignment work to learning, or indeed the
necessity of why they are undertaking the learning in the first place.

5.2 Mechanisms
A number of pedagogical interventions have been made in response
to the issues articulated in previous sections. Some of these, such as
peer mentoring, and peer and self-assessment, try to circumvent
many of the difficulties inherent in teaching large classes by using
the students themselves to provide some of the functions usually
associated with tutors (e.g. reviewing work, giving feedback and
providing continuing academic support). While this may provide a
range of benefits to the instructor in terms of reduced workload, it
does not specifically address the problem of the alienation of
various parts of the ability spectrum when confronted with a lecturer
who teaches to the level of the average student. These include those
students who struggle to assimilate the work and also those high
achievers who do not find the material enough of a challenge to

sustain interest. A second approach may be to divide the target
audience into several groups with a narrower ability range by
explicit streaming of classes, or by implicit differentiation using
voluntary or extra-credit extension material and divergent
assessment practices.

5.2.1 Tangible Results Within a Context
Sometimes it may appear as if educators and students live in two
different universes and have completely different ideas of what
represents the “real world” of computing. A smart phone or a
gaming console, not a desktop PC, is what exemplifies a real-world
computing device for many undergraduate students of today. Using
a relevant context allows educators to focus on a subject that is
important and familiar to students while learning new concepts; it
provides a motivational tool and offers a wider playing field for
experimentation and engaging students in the educational process.
Application of hands-on tools and techniques provides enough
flexibility for varying levels of student experience and background,
with implementation of concepts being central to the learning
process. All the student participants that had experienced
contextualized learning thought it a valuable experience and many
who had not expressed the wish to do so.

5.2.2 Competitions
Competitions can be good motivators for students. They also
provide good publicity for the institutions with victorious
contestants. While many students do enjoy competition and have a
desire to compete some do not.

5.2.3 Peer Learning
Such mentoring reduces instructor time and, hence, may scale to
large classes. Top students, who take on “teaching” roles, often
increase their engagement with the class as a result. Any financial
costs incurred by such measures are often balanced by student
retention. When student mentors are trained appropriately it is often
the case that weaker students would rather approach them than
faculty with issues relating to early material.

6. WHAT NEXT?
The outcomes from this work do begin to address all the goals
identified at the outset and they also continue previous work and
form a solid basis for future work in the area. We have identified
recurrent themes and linked current practice with current literature.
The beginnings of a repository have emerged, but this needs to be
expanded.

It is also the case that what works at one institution with a one set of
circumstances and a particular instructor with particular ideals and
personality may not translate elsewhere without serious tweaking;
learners and groups of learners will experience initiatives
differently. For this reason an evaluation of the effectiveness of the
transferability of the suggestions is now required.

7. ACKNOWLEDGEMNETS
Thanks to all participants, both academics and students, who agreed
to be interviewed or complete the questionnaire.

8. REFERENCES
[1] ACM international collegiate programming contest,

http://www.csse.uwa.edu.au/icpc/UWATrainingSessions

[2] ACS-W Board, ACS Survey of Women in IT Report,
Australian Computer Society, 20 September 2010

[3] Anderson N, Why aren’t Australian girls getting into IT?,
http://www.schools.ash.org.au/litweb/gender.html, 2000

[4] Anderson R, Anderson R, Davis P, Linnell N, Prince C,
Razmov V and Videon F, Classroom Presenter: Enhancing
Interactive Education with Digital Ink, IEEE Computer,
September 2007

[5] Angelo TA, A teacher’s dozen: Fourteen general, research-
based principles for improving higher learning in our
classrooms, AAHE Bulletin 45(8), 1993

[6] Baldwin J, Crupi E and Estrellado T, WeBWorK for
programming fundamentals, SIGCSE Bulletin 38(3), June
2006

[7] Barnes D, Public Forum Help Seeking: the impact of
providing anonymity on student help seeking behavior,
proceedings of Computer Based Learning in Science
(CBLIS ‘99), Czech Republic, 1999

[8] Barnes T, Richter H, Powell E, Chaffin A and Godwin A,
Game2Learn: building CS1 learning games for retention,
SIGCSE Bulletin 39(3), June 2007

[9] Barker L, Student and Faculty Perceptions of
Undergraduate Research Experiences in Computing,
Transactions on Computing Education 9(1), March 2009

[10] Baxter-Magolda MD, Knowing and Reasoning in College:
Gender-Related Patterns in Students, Intellectual
Development. San Francisco: Jossey-Bass, 1992

[11] Bayliss J and Strout S, Games as a “flavor” of CS1,
SIGCSE Bulletin 38(1), March 2006

[12] Beck J, Buckner B and Nikolova O, Using interdisciplinary
bioinformatics undergraduate research to recruit and retain
computer science students, proceedings of the 38th SIGCSE
technical symposium on Computer science education
(SIGCSE ‘07), Covington, 2007

[13] Belenky MF, Clinchy BM, Goldberger N and Tarule JM,
Women’s Ways of Knowing: The Development of Self, Voice,
and Mind, New York: Basic Books, 1986

[14] Biggers M, Yilmaz T and Sweat M, Using collaborative,
modified peer led team learning to improve student success
and retention in intro cs, proceedings of the 40th ACM
Technical Symposium on Computer Science Education,
Chattanooga, 2009

[15] Birch M, McCormick F and Haddow J, Improving Student
Progression by a combination of Streaming, Close
Attendance and Target Setting, proceedings of 6th Annual
HEA-ICS conference, York, August 2005

[16] Bornat R, Programming from First Principles , Prentice Hall
International, 1987

[17] Bower M, A Taxonomy of Task Types in Computing,
proceedings of ITiCSE’08, Madrid, 2008

[18] Bowring JF, A new paradigm for programming
competitions, proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education, Portland, 2008

[19] Boyer KE, Thomas EN, Rorrer AS, Cooper D and Vouk
MA, Increasing technical excellence, leadership and
commitment of computing students through identity-based
mentoring, proceedings of the 41st ACM Technical
Symposium on Computer Science Education, Milwaukee,
2010

[20] Bransgrove E, Teachers understanding of gender
implications for learning with computers, Australian
Educational Computing, May 1994

[21] Buckley M, Nordlinger J and Subramanian D, Socially
relevant computing, proceedings of the 39th SIGCSE
technical symposium on Computer science education
(SIGCSE ‘08), Portland, 2008

[22] Carter J and Boyle R, Teaching Delivery issues: Lessons
from Computer Science, Journal of Information Technology
Education, Volume 1, pp77-90, 2002

[23] Carter J, Efford N, Jameison S, Jenkins T and White S, The
TOPS Project – Teaching our Over-Performing Students,
proceedings of 8th Annual HEA-ICS conference,
Southampton, August 2007

[24] Carter J, Efford N, Jamieson S, Jenkins T, and White S,
Taxing our best students, ITALICS, 7(1):120-127, June 2008

[25] Carter J and Jenkins T, The Problems of Teaching
Programming: Do They Change with Time?, proceedings of
11th annual HEA ICS conference, Durham, 2010

[26] Carter J, White S, Fraser K, Kurkovsky S, McCreesh C and
Wieck M, ITiCSE 2010 Working Group Report: Motivating
our Top Students, proceedings of the 2010 ITiCSE working
group reports, ACM digital library, 2010

[27] Chan CK and Lee EY, Fostering knowledge building using
concurrent, embedded and transformative assessment for
high-and low-achieving students, proceedings of the 8th
International Conference on Computer Supported
Collaborative Learning, New Brunswick, 2007

[28] Chao C, An Investigation of Learning Style Differences and
Attitudes toward Digital Game-based Learning among
Mobile Users, proceedings of the 4th IEEE International
Workshop on Wireless, Mobile and Ubiquitous Technology
in Education, Washington, 2006

[29] Clua E, Feijó B, Rocca J, Schwartz J, das Graças M, Perlin
K, Tori R and Barnes T, Game and interactivity in computer
science education, ACM SIGGRAPH 2006 Educators
Program SIGGRAPH ‘06, Boston, 2006

[30] Codelab, http://turingscraft.com/

[31] Denny P, Luxton-Reilly A and Hamer J, Student use of the
PeerWise system, SIGCSE Bulletin 40(3), June 2008

[32] Die Initiative Bundesweit Informatiknachwuchs fördern,
http://www.bwinf.de/competition-
workshop/Submissions/11_Cormack.pdf

[33] D’Souza D, Hamilton M and Harris M, Software
Development Marketplaces - Implications for Plagiarism,
Computing Education 2007, CRPIT (66), pp27-33, 2007

[34] D’Souza D, Hamilton M, Harland J, Muir P, Thevathayan C
and Walker C, Transforming Learning of Programming: A
Mentoring Project, Tenth Australasian Computing
Education Conference (ACE2008), Wollongong, Australia,
January 2008

[35] Edwards S, Using software testing to move students from
trial-and-error to reflection-in-action, proceedings of the
35th SIGCSE technical symposium on Computer science
education (SIGCSE ‘04), Norfolk, VA, 2004

[36] Farrell JJ, Moog RS and Spencer JN, A Guided Inquiry
Chemistry Course, Journal of Chemistry Education 76(4),
1997

[37] Forte A and Guzdial M, Computers for Communication, Not
Calculation: Media as a Motivation and Context for

Learning, proceedings of 37th Hawaiian International
Conference of Systems Sciences, Big Island, HI, 2004

[38] Fu X, Peltsverger B, Qian K, Tao L and Liu J, APOGEE:
automated project grading and instant feedback system for
web based computing, SIGCSE Bulletin 40(1), March 2008

[39] Google Docs, http://preview.tinyurl.com/5t4wvcg

[40] Guerreiro P and Georgouli K, Combating Annonymousness
in Populous CS1 and CS2 Courses, proceedings of
ITiCSE’06, Bologna, 2006

[41] Guzdial M, Teaching computing to everyone,
Communications of the ACM 52(5), May 2009

[42] Guzdial M, Technology for Teaching the Rest of Us,
Keynote talk ITiCSE ‘11, Darmstadt, June 2011

[43] Hadfield s and Schweitzer D, Building an undergraduate
computer science research experience, proceedings of the
39th IEEE international conference on Frontiers in education
conference (FIE’09), San Antonio, Texas, 2009

[44] Hamer J, Purchase H, Luxton-Reilly A and Sheard J, Tools
for "contributing student learning", proceedings of the 2010
ITiCSE working group reports, ACM Digital Library, 2010

[45] Hamer J, Kell C and Spence F, Peer Assessment Using Arop
�a, proceedings of Ninth Australasian Computing
Education Conference (ACE2007), Ballarat, Australia, 2007

[46] Hamilton M, Tahaghoghi S and Walker C, Educating
Students About Plagiarism Avoidance - A Computer Science
Perspective, proceedings of ICCE2004: International
Conference on Computers in Education, Lisobon, 2004

[47] HEA, A Study of Progression in Irish Higher Education,
Higher Education Authority, 2010

[48] Healey M and Jenkins A, Developing undergraduate
research and inquiry, HE Academy, York, 2009

[49] Higher Education Statistics Agency (HESA) United
Kingdom, Student Introduction and Population reports
2009/10, http://www.hesa.ac.uk/, 2010

[50] Horwitz S, Rodger SH, Biggers M, Binkley D, Frantz CK,
Gundermann D, Hambrusch S, Huss-Lederman S, Munson
E, Ryder B and Sweat M, Using peer-led team learning to
increase participation and success of under-represented
groups in introductory computer science, proceedings of the
40th ACM Technical Symposium on Computer Science
Education, Chattanooga, 2009

[51] Huang T and Briggs A, A Unified Approach to Introductory
Computer Science: Can One Size Fit All?, proceedings of
ITiCSE’09, Paris, 2009

[52] Hughes J, Gregor P, Chaplain M, Coleman G and McIver L,
Research-Teaching Linkages: enhancing graduate attributes
Information and Mathematical Sciences, The Quality
Assurance Agency for Higher Education,
http://www.enhancementThemes.ac.uk/documents/Research
Teaching/Info_Math_Science.pdf, 2009

[53] IEEEExtreme, http://www.ieee.org/xtreme

[54] Ihantola P, Ahoniemi T, Karavirta V and Sepp O, Review of
recent systems for automatic assessment of programming
assignments, proceedings of the 10th Koli Calling,
International Conference on Computing Education Research
(Koli Calling ‘10), Berlin, 2010

[55] Institute for personal robots in education
http://www.roboteducation.org/

[56] International Contest on Informatics and Computer Fluency
http://www.bebras.org/en/welcome

[57] Jenkins T and Helmore S, Coursework for Cash: The Threat
from On-Line Plagiarism, proceedings of 7th Annual HEA
ICS conference, Dublin, 2006

[58] Johnson, Johnson, & Smith, Active Learning: Cooperation
in the College Classroom, Interaction Book Company, 1991

[59] Jplag, https://www.ipd.uni-karlsruhe.de/jplag/

[60] Kearse IB and Hardnett CR, Computer science olympiad:
exploring computer science through competition,
proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, Portland, 2008

[61] Kölling M, and Barnes DJ, Enhancing Apprentice-Based
Learning of Java, presented at 35th SIGCSE technical
symposium on computer science education, 2004

[62] Knox DL, DePasquale PJ and Pulimood SM, A model for
summer undergraduate research experiences in emerging
technologies, proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education, Houston, 2006

[63] Lahtinen E, Ala-Mutka K and Jarvinen HM, A Study of the
Difficulties of Novice Programmers, proceedings of
ITiCSE’05, Lisbon, 2005

[64] Liu N and Carless D, Peer feedback: the learning element of
peer assessment, Teaching in Higher Education, 11(3), 279-
290, 2006

[65] Lundeberg MA and Diemert S, Influence of Social
Interaction on Cognition: Connected Learning in Science,
Journal of Higher Education, 66(3), pp312-335, 1995

[66] Luxton-Reilly A, Plimmer B and Sheehan R, StudySieve: a
tool that supports constructive evaluation for free-response
questions, proceedings of the 11th International Conference
of the NZ Chapter of the ACM Special Interest Group on
Human-Computer Interaction (CHINZ ‘10), Massy, NZ,
2010

[67] Machado R, Guerreiro P, Johnston E, Delimar M and Brito
M, IEEEXtreme: From a student competition to the
promotion of real-world programming education,
proceedings of 39th Frontiers in Education Conference, San
Antonio, 2009

[68] Mahmoud Q and Dyer A, Mobile Devices in an Introductory
Programming Course, Computer 41(6), June 2008

[69] Margolis J and Fisher A, Unlocking the clubhouse: Women
in computing, MIT Press, Cambridge MA, 2002

[70] Markham S, Georgia State University Department of
Computer Science: a Positive Place for Women and
Minorities, The Young Scientist: A Career Guide for
Underrepresented Science Graduates, Spectrum Publishers,
2011

[71] Markham S and King K, Using personal robots in CS1:
experiences, outcomes, and attitudinal influences,
proceedings of the fifteenth annual conference on Innovation
and technology in computer science education (ITiCSE ‘10),
Ankara, 2010

[72] Matthiasdottir A, What Student find Difficult in learning
Programming, proceedings of 5th Annual HEA-ICS
conference, Ulster, August 2004

[73] Mazur E, Peer Instruction: A User’s Manual, Prentice Hall,
1997

[74] McWhorter W and O’Connor B, Do LEGO® Mindstorms®
motivate students in CS1?, proceedings of the 40th ACM
technical symposium on Computer science education
(SIGCSE ‘09), Chattanooga, 2009

[75] Media computation resources,
http://www.mediacomputation.org

[76] Mendes E, Al-Fakhri LB and Luxton-Reilly A, Investigating
pair-programming in a 2nd-year software development and
design computer science course, proceedings of ITiCSE’05,
Lisbon, 2005

[77] Microsoft Imagine Cup, http://www.imaginecup.com/

[78] Mobile games, https://sites.google.com/site/csmobilegames/

[79] Moritz S, Wei F, Parvez S and Blank G, From objects-first
to design-first with multimedia and intelligent tutoring,
SIGCSE Bulletin 37(3), June 2005

[80] Morrison B and Preston J, Engagement: gaming throughout
the curriculum, proceedings of 40th ACM technical
symposium on Computer science education (SIGCSE ‘09),
Chattanooga, 2009

[81] Nicol, D,
http://www.enhancementthemes.ac.uk/documents/G21C/Ass
essment_230210.pdf, 2001

[82] NSF, Women, Minorities, and Persons with Disabilities in
Science and Engineering: 2011,
http://www.nsf.gov/statistics/wmpd/pdf/nsf11309.pdf

[83] OECD, Higher Education: Quality, Equity and Efficiency,
2008

[84] O’Leary E, Fancy A Prize? Motivating Students Using
Competitions in Formative Assessment, proceedings of the
3rd annual ICEP conference, NUI Maynooth, 2010

[85] Parlante N, Murtagh T, Sahami M, Astrachan O, Reed D,
Stone C, Heeringa B and Reid K, Nifty Assignments,
proceedings of the 40th ACM technical symposium on
Computer science education (SIGCSE ‘09), Chattanooga,
2009

[86] Pastor J, Gonzalez I and Rodrigues FJ, Participating in an
International Robot Contest as a Way to Develop
Professional Skills In Engineering Students, proceedings of
the 38th Annual Frontiers in Education Conference, New
York, 2008

[87] Peckham J, Stephenson P, Hervé J, Hutt R and Encarnação
M, Increasing student retention in computer science through
research programs for undergraduates, proceedings of the
38th SIGCSE Technical Symposium on Computer Science
Education, Covington, 2007

[88] Programming challenges, http://www.programming-
challenges.com/pg.php?page=index

[89] Project Euler, http://projecteuler.net/

[90] Raikes program http://raikes.unl.edu/

[91] Renaissance Program
http://cse.unl.edu/~riedesel/pub/Advise/CSbull11.pdf

[92] Rentacoder, http://www.rent-acoder.com/

[93] Riedesel C,
http://cse.unl.edu/~riedesel/pub/cse155N/HW1.docx

[94] RMIT programming club
https://sites.google.com/site/rmitprogrammingclub

[95] Rocktest, http://cs.sru.edu/~contest/rocktest

[96] Rosenbloom A, Running a Programming Contest in an
Introductory Computer Science Course, proceedings of
ITiCSE’09, Paris, 2009

[97] Schneider GM, A new model for a required senior research
experience, SIGCSE Bulletin 34(4), December 2002

[98] Skiena S and Revilla M, Programming Challenges,
Springer-Verlag, USA, 2003

[99] Skupas B, Dagiene V and Revilla M, Developing
classification criteria for programming tasks, SIGCSE
Bulletin 41(3), July 2009

[100] Starr C, Bergman D and Zaubi P, The development and
implementation of a context-based curricular framework for
computer science education in high schools, proceedings of
the 14th annual ITiCSE conference, Paris 2009

[101] Tew A, Fowler C and Guzdial M, Tracking an innovation in
introductory CS education from a research university to a
two-year college, SIGCSE Bulletin 37(1) February 2005

[102] TopCoder, http://www.topcoder.com/

[103] TOPS http://www.cs.kent.ac.uk/~jec/TOPS

[104] Tremblay G, Laforest L and Salah A, Extending a marking
tool with simple support for testing, proceedings of the 12th
annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE ‘07), Dundee 2007

[105] TurnItIn http://turnitin.com/static/index.php

[106] Universidad de Valladolid, http://acm.uva.es/

[107] University of Nebraska-Lincoln CSE day,
http://www.cse.unl.edu/cseday/

[108] Van den Berg I, Admiraal W and Pilot A, Peer assessment in
university teaching: evaluating seven course designs,
Assessment and Evaluation in Higher Education, 31(1), 19-
36, 2006

[109] Vincent Chu, Programming contest management project
overview,
http://www.sfu.ca/~vwchu/projects/programmingcontestenvi
ronment.pdf

[110] Weinberg J, Pettibone J, Thomas S, Stephen M and Stein C,
The impact of robot projects on girls’ attitudes toward
science and engineering, Robotics science and systems
(RSS) workshop on research in robots for education, Georgia
Institute of Technology, Atlanta, GA, 2009

[111] Werner L, Hanks B and McDowell C, Pair-programming
helps female computer science students, Journal of
Educational Resources in Computing 4(1), March 2004

[112] Wilkerson M, Griswold W and Simon B, Ubiquitous
presenter: increasing student access and control in a digital
lecturing environment, proceedings of the 36th SIGCSE
technical symposium on Computer science education
(SIGCSE ‘05), St Loius, 2005

[113] Williams L, Lessons learned from seven years of pair
programming at North Carolina State University, SIGCSE
Bulletin 39(4), December 2007

[114] Wirth A and Bertolacci M, New algorithms research for first
year students, SIGCSE Bulletin 38(3), June 2006

[115] Wolz U, Barnes T, Bayliss J and Cromack J, Girls do like
playing and creating games, proceedings the 40th SIGCSE
Technical Symposium on Computer Science Education,
Chattanooga, 2009

[116] Zhang M, Lundak E, Lin C, Gegg-Harrison T and Francioni
J, Interdisciplinary application tracks in an undergraduate
computer science curriculum, proceedings of the 38th
SIGCSE Technical Symposium on Computer Science
Education, Covington, 2007

[117] Zobel J, “Uni cheats racket”: a case study in plagiarism
investigation, proceedings of ACE’04, Dunedin, NZ, 2004

[118] Zobel J and Hamilton M, Managing Student Plagiarism in
Large Academic Departments, Australian Universities
Review 45(2), pp23-30, 2002

[119] Zohar A and Peled B, The effects of explicit teaching of
metastrategic knowledge on low- and high-achieving
students, Learning and Instruction 18(4), August 2008

9. APPENDIX – REPOSITORY
This section contains detailed instructions about how some of the
ideas presented in this report have been implemented. They should,
however, be treated with caution. A method which works at
institution X in country Y with student intake Z may need
adaptation to be applicable for student body A at institution B
within country C.

The sections provided here are indicative of content created to date.
Differences between the styles and lengths of the sections are
determined by the nature of the resources we refer to. Some
sections include links to on-line documents and support materials.
Where these do not exist we describe the approach and provide
references to paper documentation.

The repository can be found at:

www.cs.kent.ac.uk/~jec/ITiCSE2011wg

All references in the Appendix that relate to web documentation are
links within the repository.

9.1 Study Support Tools
Support tools can be an aid to differentiated teaching (Section 3.1).
The tools can be classified into three broad groups: outside the
classroom; inside the classroom; evaluation.

9.1.1 Learning Outside the Classroom
 WebWork – automatic generation of program based problems

for quizzes or homework [6],
 PeerWise – student collaboration in creating and assessing

multiple choice questions [31],
 StudySieve – student collaboration in creating and assessing

free response questions [66].

9.1.2 Classroom Interaction Tools
Tools can facilitate differentiation of instruction even in a large
classroom setting.

 Clickers – provides a way to engage students in lecture
providing feedback through integrated testing-in-lecture, also
can be used to facilitate peer instruction,

 Classroom / Ubiquitous Presenter – Ubiquitous Presenter is an
extension project from Classroom Presenter [4, 112].

9.1.3 Programming Evaluation Tools
 Online Judge – originally used in programming contests; a

recent version is available as a Moodle plug-in and allows for
assignment assessment [99],

 Oto – “Oto is a customizable and extensible marking tool
which aims at providing timely feedback to students. Based on
simple test cases description formats, Oto also includes
operations that help students easily test, even “mark”, their
own programs” [104],

 APOGEE – (Prototype of Automated PrOject Grading and
instant fEEdback system for web computing) - used to evaluate
many facets of web-development projects [38],

 WebCAT – Tests not only the students’ submitted code, but
also provides mechanisms for students to provide test cases
[35].

9.2 Group Work
9.2.1 Collaborative Book Review
A common criticism of graduates from technical disciplines such as
computing is that they emerge from their course of study with poor
communication skills in general, and academic writing skills in
particular. Attempts to remedy this problem have been made in
many institutions and usually take the form of a module on
technical communications, which is included somewhere in the
curriculum, often with questionable success. Embedding academic
writing exercises within a computer science context is sometimes
more successful but instructors usually find this type of activity very
time-consuming to mark as many students have a limited grasp of
the need to include basic punctuation and elementary grammar, and
this presented an initial barrier to communication of technical ideas
and concepts.

One case study that seeks to help alleviate this problem uses a
Collaborative Book Review, in which students are asked to compile
a chapter-by-chapter review of an accessible introduction to a
computer programming. This particular activity is useful because it
allowed groups of students to do some pre-processing on the text of
their assignments prior to submission. Iteration of student feedback
resulted in significant improvement in the quality of the academic
writing: spelling and punctuation errors were reduced through peer
review and the dialectic structure of the arguments was generally
enhanced [39].

9.2.2 Tools for Peer Assessment
Peer assessment is very useful pedagogical tool (Section 3.5), which
students do seem to appreciate, but is notoriously difficult to scale
up for large numbers of students. John Hamer, from the University
of Auckland, has developed a system called Aropa, which can be
used to automate many of the processes that are needed to make
peer review and assessment feasible in large classes. These include
addition of courses, submission management, setting rubrics and
deadlines, etc. [45].

9.2.3 Matlab Programming Project
Assessments that include extension material, which can be studied
by more able students, are examples of differentiated teaching
mechanism. There are numerous examples but one that has a group

element and includes extra-credit material is a Matlab programming
project [93].

Rather than completely specifying the project and the required
external knowledge base, it is left to the students to collaboratively
determine what is required. The scenario for the students is a
workplace environment where they are to pool specialized
knowledge. They do this by forming small teams and producing a
variety of prototype systems from which management will choose
the best ones. For evaluation purposes, all collaboration is to be
logged. Otherwise, this is a friendly competition among cooperative
teams. The resulting prototypes are presented as full reports
detailing their features and limitations, testing, design details,
operating instructions, references to external sources and research,
and collaborations as well as the fully documented code.

9.3 Tangible Results within a Context
9.3.1 Mobile Game Development
Incorporating mobile game development projects into introductory
CS courses provides instructors with a relevant learning context to
reinforce a number of fundamental topics (e.g. loops or inheritance)
while exposing students to a number of advanced topics (e.g.
networking or databases). A collaborative project between Central
Connecticut State University and Rose Hulman Institute of
Technology funded by NSF developed several curricular modules
aimed at programing games for mobile devices using Java ME. An
overarching goal of this project is to improve student success and
satisfaction, and, as a result, decrease student attrition in
introductory CS courses at high school, college, and university
levels. This project uses casual games, which do not require any
special skills to play and can be enjoyed over short bursts of time.
Each project module is designed to be completed within a week and
result in a playable game that students can upload to their mobile
phones [78].

9.3.2 Personal Robots
Students at various levels, K12 through college, find robots very
interesting. Educators realize using robots as an earning context
offers a new way to motivate and engage their students. The
Institute for Personal Robots in Education (IPRE) promotes using
robots as a context for computer science education. IPRE is a joint
venture between Georgia Institute of Technology and Bryn Mawr
College sponsored by Microsoft Research [55]. Georgia State
University uses IPRE robots in CSc 2010 (Introduction to Computer
Science). Each student is loaned (or is required to purchase for
about US$200) a small robot designed by IPRE for the duration of
the semester. Each robot is equipped with three wheels, two
motors, a variety of sensors including a video camera, and a
speaker. In this course students learn how to control the robots by
writing programs in the Python language.

9.3.3 Media Computation
Media Computation is an approach to teaching introductory CS
courses using the context of manipulating media, such as still
images, video, and audio. Mark Guzdial pioneered this approach,
which has been popularized by a number of scholarly publications
and textbooks. Specific approaches to incorporating media
computation principles vary depending on the programming
language (Java or Python) and the level of the target course [75].

Some examples of learning contexts offering opportunities for
student engagement and motivation:

 robotics [74, 100, 110],
 game development [8, 11, 29, 80],

 mobile devices / computing [28, 79],
 multimedia computing [79, 101],
 social applications (Facebook, Twitter) [21, 71, 85].

9.4 Peer Mentoring
A number of approaches to Peer Mentoring have received
considerable academic attention. Peer Instruction, first proposed by
Erik Mazur [73], involves the students engaging in classroom
activities that require them to apply the main concepts by explaining
them to their peers. A related approach is that of Process Oriented
Guided Inquiry Learning (POGIL) which was initially used in the
context of Chemistry teaching to teach communication and
collaboration skills using an inquiry based learning approach.

In addition to these two large-scale pedagogical programmes, many
instructors have used peer-mentoring methods in a less formal
context.

9.4.1 Groups with Pre-assigned Roles
An example of this approach relates to a CS 1 course in Java in
which all programs are graphic Java applets. The class meets each
week for two 90-minute sessions in an ordinary classroom (no
computers) and one 120-minute period in a computer lab.

Before the class starts, students are broken up into groups of size 2-
4 (ideally 3) based on their grades in university math courses or, if
that information is not available, on math ACT and self-described
prior programming experience. Women are placed into groups in
which they are not the minority [58].

Before each class students read a section of the textbook and answer
questions on the reading posed by the instructor. These are graded
0 (not submitted) or 1 (submitted) since their purpose is to ensure
that students have read the text before coming to class.

In the first ten minutes of class, the instructor describes and
demonstrates the Java applet(s) of the day. For some relatively
complex CS 1 topics, e.g. recursion, the instructor might also
provide examples to supplement the texts. In the remainder of the
class period, each group writes on the board the code for the
required applet(s).

There are three roles in a group: the driver, who writes the code on
the board with advice from the group; the simulator, who draws the
applet on the board and synchronizes the picture with the evolving
code; and the navigator, who checks syntax, book in hand, and
ensures that driver and simulator are truly synchronized. Roles are
permuted each class.

The instructor carefully monitors each group’s progress by
inspecting the evolving code on the board and listening carefully to
oral interchanges among group members. Evidence of conceptual
misunderstanding prompts a “mini-lecture” by the instructor for a
particular group. The instructor also provides hints for those groups
whose progress is sufficiently slow. Because of homogeneity, the
instructor spends most of the time with less competent groups. It is
not unusual for highly competent groups to create working applets
without any help from the instructor. Students learn the
programming concepts through peer discussion and the group
problem-solving effort.

After the class, the applets are tested and debugged in the lab with
assistance from the instructor or completed as homework (without
assistance from the instructor). The students’ programs are graded
by the instructor for both correctness and adherence to a
predetermined programming style.

With this approach students learn somewhat more that a normal
lecture presentation [16]. While students are initially sceptical that

a peer learning, student-centric approach can be more effective than
an instructor-centric approach, at the end most prefer this pedagogy.
Women, in particular, feel more comfortable with a cooperative
learning approach and, hence, are more successful with this
approach as compared to lecture [90].

9.5 Programming Competitions
Programming competitions can be used to motivate students,
although not all students – including the best in the class – are
happy to participate (Section 3.6).

Contests may be set up within a single class, between classes at one
site or between several schools (excellent for promoting rivalries!)
or distributed across many. They can be single round or multiple
round, ad hoc or as part of a wider contest such as the International
Collegiate Programming Contest (ICPC) [1]. Other types of
contests can be found online, for example:

 Bebras [56],
 International Olympiad in Informatics [32],
 Microsoft Imagine Cup [77],
 IEEEExtreme [53].

9.5.1 An ICPC Style Contest
Contests can be quite varied, meeting the constraints and
educational goals of the administrators. An ICPC [1] style contest
is outlined here:

9.5.1.1 Rules
Here is an overview of the rules for an ICPC style competition.
Teams of three students attempt a set number of previously unseen
problems within a session of maximum duration 5 hours. They
score points for each problem solved. The time taken to solve the
problems is noted. An incorrect solution will incur a penalty time.
In the event of a tie the team with the shortest time for the same
number of points is awarded victory. Undergraduate students may
choose to program in C, C++ or Java, whilst high school students
are permitted virtually any available language.

9.5.1.2 Personnel
There are several crucial roles that must be filled, but they can be
combined if the contest is of a small scale.

 Site Director – overall responsibility
 Problem Writers/Editors – create, develop solutions, verify

non-ambiguity and completeness of descriptions
 Chief Judge – overall responsibility for judging, decision is

final
 Judges – coordinate with chief judge
 Communications Coordinator – team/coach contact person
 Sys Admin Team – set up and maintain hardware/software for

contest
 On-site Volunteers – general assistance

9.5.1.3 Problem Sets
The characteristics of a good problem set include this classic line:
“All can solve at least one, no one can solve all.” The number of
problems is usually between 6 and 12, dependent upon the ability
level of the students and duration of the contest. There should be a
variety of easy, medium, and hard problems placed in random order.
Problems should be “interesting” with a story line that draws
attention. Make sure there is a well-constrained solution that is easy
to score (electronically, for example using diff, or eyeballing).
Problems should not favour a solution in one language over another
and they should be thoroughly tested by more than one Problem
Writer or Judge prior to the contest.

9.5.1.4 Contest Management Software
 Rocktest [95]
 Programming Contest Environment [109]

9.5.1.5 Training Teams
Training may involve just a presentation of rules and orientation to
the programming environment; instruction in the official rules is
essential. In addition, you may wish your students to work on
content and teamwork using practices, summer camps, special
classes, mock contests using online sources [106] can be very
valuable.

9.5.2 TOPS
TOPS (Teaching Over-Performing Students) is an on-going UK
project which has been led by the Universities of Kent and
Southampton in conjunction with a number of other universities in
the UK. It is researching how to teach students who arrive with
already established programming skills and experience. Issues
include maximizing the educational effects and sustaining
motivation for each participant [103].

The most popular aspect of TOPS is the competition. This
competition involves two major components: designing a challenge
for the other students to attempt in pairs; and attempting the
challenges designed by the teams from the other institutions.
Students find it intense but enjoyable because of the challenging and
collaborative atmosphere. The academics gain a deeper insight into
both the educational achievements of students from other
universities and the aspects which interest their students as
evidenced by the challenges the teams create.

9.6 Extra-Curricular Activities
Extracurricular activities may involve the formation of clubs or
groups, either to encourage or include students of under-represented
groups, or higher-achieving, extension-seeking individuals.
Sometimes these groups may require materials to work on to unify
or direct their activities.

A programming club is an example of such a group, and the website
recommend by one such club for extra programming challenge idea
is aptly titled “programming challenges” [88]. Skiena and Revilla
also have a useful book of the same title [98].

Project Euler [89] provides another example of a series of
challenging mathematical/computer-programming problems that
require more than just mathematical insights to solve. As their
website states: “The motivation for starting Project Euler, and its
continuation, is to provide a platform for the inquiring mind to delve
into unfamiliar areas and learn new concepts in a fun and
recreational context.” Their intended audience includes “students
for whom the basic curriculum is not feeding their hunger to learn,
adults whose background was not primarily mathematics but had an
interest in things mathematical, and professionals who want to keep
their problem solving and mathematics on the edge.” The project
includes problems of varying degrees of difficulty which may be
tackled by individuals or groups.

9.7 Engaging Underrepresented Groups
It has been established that the traditional style for teaching
computer science has done little to attract and retain women in

technology. By making simple changes in the educational
techniques and the presentation of the course material, female and
minority students can engage and be successful in this field. How to
attract and retain women to this field remains an on-going subject of
research. One solution is to focus on open-ended projects as well as
offer assignment choices. This approach can help lessen gender or
racial bias in the coursework. Ideally, educators track, identify, and
share interest areas of women and minorities in order to make the
study more attractive for these underrepresented groups. For
example, “the male students in the robot-based introduction to
computing course chose projects that included gaming and sports
while the female students created applications that focused on
multimedia, relationships and fashion. Both groups learned how to
program and enjoyed the class because they were able to apply the
technology to areas of interest and relevance in their lives” [70].

9.8 Plagiarism
When an assignment is set, it is important to be clear from the outset
about whether students are allowed to use code from elsewhere
(including the text book, lecture notes, tutee classes) and if they can,
how they should reference it [46]. It is also important to explain
upfront whether you intend to use plagiarism detection software to
identify copied work.

Many universities around the world subscribe to Turnitin [105]
which is a software package designed to compare assignment
submissions to their repository. This ensures original work “by
checking submitted papers against 14 billion web pages, 150
million student papers and leading library databases and
publications.” Turnitin [105] is useful for text and reports, however,
for computer code, there are many other open source solutions.

jPlag [59] is a useful system for detecting plagiarised java and C
code. jPlag, however, does not compare student work with code on
the internet, merely with other assignment submissions in the same
batch. Hence it can detect if two or more students have copied code
from each other, or if two students have copied from the same
website, but not if an individual has paid a private tutor.

It is possible to search around popular websites, such as Rentacoder
[92] and many others to check whether any assignment submissions
are posted to these software marketplaces [33].

Finally, it is useful to be explicit about how many hours you expect
a student to spend on the work for this assignment, why it is
relevant to their learning, placing it in a context and motivating the
kind of submissions which are expected.

9.9 Reference List
The reference list that has been created over the last 2 years will
also form a section within the repository. We have spent a
considerable amount of time compiling a list of over 250 suitable
references, both papers and on-line resources. If visitors find
references to resources or work that we have not listed they are
welcome to send us details and we will add them to the list.

	coversheetConferences
	CARTER 2011 Motivating All our Students

	OA: GREEN
	OA Logo:
	AUTHORS: CARTER, J., BOUVIER, D., CARDELL-OLIVER, R., HAMILTON, M., KURKOVSKY, S., MARKHAM, S., MCCLUNG, O.W., MCDERMOTT, R., RIEDESEL, C., SHI, J. and WHITE, S.
	TITLE: Motivating all our students?
	YEAR: 2011
	Publisher citation: CARTER, J., BOUVIER, D., CARDELL-OLIVER, R., HAMILTON, M., KURKOVSKY, S., MARKHAM, S., MCCLUNG, O.W., MCDERMOTT, R., RIEDESEL, C., SHI, J. and WHITE, S. 2011. Motivating all our students? In Proceedings of the 16th innovation and technology in computer science education annual conference: working group reports (ITiCSE-WGR '11), 27 - 29 June 2011, Darmstadt, Germany. New York: ACM [online], pages 1-18. Available from: https://doi.org/10.1145/2078856.2078858.
	OpenAIR citation: CARTER, J., BOUVIER, D., CARDELL-OLIVER, R., HAMILTON, M., KURKOVSKY, S., MARKHAM, S., MCCLUNG, O.W., MCDERMOTT, R., RIEDESEL, C., SHI, J. and WHITE, S. 2011. Motivating all our students? In Proceedings of the 16th innovation and technology in computer science education annual conference: working group reports (ITiCSE-WGR '11), 27 - 29 June 2011, Darmstadt, Germany. New York: ACM, pages 1-18. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk.
	Version: AUTHOR ACCEPTED
	Publisher: ACM
	Conference: 16th innovation and technology in computer science education annual conference: working group reports (ITiCSE-WGR '11), 27 - 29 June 2011, Darmstadt, Germany.
	ISBN: 9781450311229
	eISBN:
	ISSN:
	Set statement: © McDermott | ACM 2011. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ITiCSE-WGR '11, https://doi.org/10.1145/10.1145/2078856.2078858.
	License: BY-NC 4.0
	License URL: https://creativecommonslorg/licenses/by-nc/4.0
	CC Logo:
		2017-04-07T15:00:08+0100
	OpenAIR at RGU

