
Is Your OpenFlow Application Correct?

Peter Perešı́ni, Marco Canini
EPFL, Switzerland

{peter.peresini,marco.canini}@epfl.ch

ABSTRACT

OpenFlow enables third-party programs to dynamically re-

configure the network by installing, modifying and deleting

packet processing rules as well as collecting statistics from

individual switches. But how can we know if such pro-

grams are correct? While the abstraction of a logically-

centralized network controller can ease their development,

this abstraction does not remove the complexity of the un-

derlying distributed system. For instance, small differences

in packet header fields or packet orderings can “tickle” sub-

tle bugs [1]. We argue for the need of thorough, automatic

testing of OpenFlow applications. In this paper, we describe

our preliminary experiences with taking two state-of-the-art

model checkers (SPIN and Java PathFinder) and applying

them “as is” for checking an example of OpenFlow program:

aMAC-learning switch application. Overall, the preliminary

results we report suggest that these tools taken out-of-the-

box have difficulties to cope with the state-space explosion

that arises in model checking OpenFlow networks.

1 Model Checking OpenFlow

Model checking is an automatic approach for verifying
the correctness of a system. Traditionally, model check-
ing operates with a model that describes an abstraction
of the system and discovers whether correctness prop-
erties asserted by the user are valid on the model. The
main idea behind this approach is to systematically ex-
plore the space of all global states reachable from an
initial state. Depending on the size of the system, the
number of reachable states can become too high for
current computing resources. Fortunately, a number of
general techniques exist that help to mitigate this prob-
lem. For instance, partial-order reduction (POR) avoids
exploring sequences of transitions when the relative or-
dering of independent events is irrelevant to determine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT Student Workshop, December 6, 2011, Tokyo, Japan.

Copyright 2011 ACM 978-1-4503-1042-0/11/0012 ...$10.00.

Figure 1: The network model used for model checking.

the final state; so, it explores just one sequence.

Modern model checking uses the actual implementa-
tion as the model, which has the advantages of making
the verification more realistic and not requiring to use
a modeling language. However, the sizes of the systems
that can be verified are limited because a real program
has more states than its abstract model representation.

We believe model checking is a good fit for testing
OpenFlow applications because we want to check cor-
rectness properties (e.g., absence of forwarding loops)
that entail the network state, i.e., states of the con-
troller and switches. Moreover, we expect their viola-
tions to be caused by unexpected interleavings of events
and corner-case conditions, which are a convenient do-
main for applying model checking. Therefore, we want
to quantify the state-space explosion in this verifica-
tion problem and investigate the limitations of existing
model-checking tools to constrain that explosion.

We consider a small network consisting of two Open-
Flow switches driven by a single controller that mim-
ics the functions of a simple MAC-learning switch1. As
testing requires a closed system, we model two end hosts
that behave in this simple way: host 1 sends a packet
to host 2; host 2 replies with another packet. Figure 1
shows how these components are inter-connected.

2 Traditional Model-Checking: SPIN

Model. We model the system in PROMELA, the
modeling language supported by SPIN2, a very efficient
model checker. This language exposes non-determinism
as a first-class concept, making it easy to model the dis-
tributed behavior of our simple system. But we found
the language to be lacking in expressiveness (e.g., there
is no support for procedures and common data struc-

1Derived from NOX’s pyswitch component.
2http://spinroot.com

tures). Finally, we need to cautiously capture the sys-
tem concurrency at the right level of granularity. In
our case, this means that any event at a single compo-
nent (e.g., processing a packet on a switch) has to be
modeled as a single atomic computation.

Experiments. To understand the scalability chal-
lenges in model-checking for OpenFlow, we perform an
exhaustive search of the state space and we report on
these metrics: memory usage, elapsed time, and num-
ber of transitions. We assign exclusive rights to the
processes involved in each communication channel so to
allow SPIN’s implementation of POR to be most effec-
tive. The final valid state of our system is when host 1
receives a reply to each packet it sends.

Results. Figure 2a shows the memory usage and
elapsed time3 for the exhaustive search with POR as
we increase the number of packets sent by host 1. As
expected, we observe an exponential increase in compu-
tational resources until SPIN reaches the memory limit
when checking the model with 8 pings (i.e., 16 packets).

To see how effective POR is, we compare in Figure 2b
the number of transitions explored with POR vs. with-
out POR (NOPOR) while we vary the number of pings.
In relative terms, POR’s efficiency increases, although
with diminishing returns, from 24% to 73% as we in-
ject more packets that are identical to each other. The
benefits due to POR on elapsed time follow a similar
trend and POR can finish 6 pings in 28% of time used
by NOPOR. However, NOPOR hits the memory limit
at 7 pings, so POR only adds one extra ping.

Finally, we test if POR can reduce the search space by
taking advantage of one simple rule of independence for
the networking domain: i.e., packets involving disjoint
pairs of source and destination addresses are completely
independent. Unfortunately, we observe that there is no
reduction when we inject two packets with distinct ad-
dress pairs compared to the case with identical packets.
This is because SPIN uses the accesses to communica-
tion channels to derive the independence of events.

3 Modern Model-Checking: Java PathFinder

Model. Using Java, we follow two approaches to write
two models of the system (based on porting the origi-
nal Python code) for Java PathFinder (JPF)4, an ex-
plicit state model checker. In the first approach, we
naively use threads to capture non-determinism. How-
ever, in our case, the built-in POR is not very effi-
cient in removing unnecessary network event interleav-
ings because thread interleaving happens at finer gran-
ularity than event interleavings. To solve this problem,
we tuned this model by using the beginAtomic() and
endAtomic() JPF functions. As this still produces too

3The machine where we run the experiments has 64 GB of
RAM and a clock speed of 2.6 GHz.
4http://babelfish.arc.nasa.gov/trac/jpf

2 4 6 8
10

0

10
1

10
2

10
3

10
4

10
5

Number of pings

M
e

m
o

ry
 [

M
B

]

10
−2

10
0

10
2

10
4

T
im

e
 [

s
]

Hits memory limit
of 65000 MB

(a) Memory usage and
elapsed time (log y-scales).

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of pings

1
 −

 P
O

R
/N

O
P

O
R

 t
ra

n
s
it
io

n
s

(b) Efficiency of POR.

Figure 2: SPIN: Exponential increase in computational

resources partially mitigated by POR.

pings time [s] unique states end states mem [MB]
1 0 55 2 17

2 9 20638 134 140

3 13689 25470986 2094 1021

Table 1: JPF: Exhaustive search on thread-based model.
pings time [s] unique states end states mem [MB]

1 0 1 1 17

2 1 691 194 33

3 16 29930 6066 108

4 11867 16392965 295756 576

Table 2: JPF: Exhaustive search on choice-based model.

many interleavings, we further introduced a global lock.
In a second approach to further refine the model,

we capture non-determinism via JPF’s choice genera-
tor: Verify.getInt(). This gives a huge improvement
over threads (shown in the results later), mainly be-
cause we are able to specify precisely the granularity of
interleavings. However, there are several caveats in this
case too. For example, explicit choice values should not
be saved on the stack as the choice value may became a
part of the global state, thus preventing reduction. The
vector of possible transitions must also be sorted5.
Experiments. We perform an exhaustive search with
the default JPF settings and report on the following
metrics: elapsed time, number of unique states, number
of distinct end states, and memory usage.
Results. Table 1 illustrates the very fast exponential
explosion when using the thread-based model. Unfortu-
nately, as show in Table 2, the choice-based model im-
proves only by 1 ping the size of the model that we can
explore within a comparable time period (≈ 4 hours).

4 Conclusion and Future Work

We presented our experiences with model checking for
OpenFlow. While SPIN is fast, the main difficulty lies
in writing the model. It took several person-days to
implement the model. JPF solves the complexity of
model specification but this comes at the cost of signif-
icant performance slowdown. To cope with the state-
space explosion of OpenFlow networks, our next step
will be to supply the model checker with domain-specific
knowledge (e.g., independence based on packet header
fields) that can reduce non-interesting interleavings.

5 References
[1] M. Canini, D. Kostić, J. Rexford, and D. Venzano.

Automating the Testing of OpenFlow Applications. In
WRiPE, 2011.

5We order events by their states’ hash values.

