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Writeback-Aware Partitioning and Replacement for Last-Level Caches
in Phase Change Main Memory Systems

MIAO ZHOU, YU DU, BRUCE CHILDERS, RAMI MELHEM, and DANIEL MOSSÉ,
University of Pittsburgh

Phase-Change Memory (PCM) has emerged as a promising low-power main memory candidate to replace
DRAM. The main problems of PCM are that writes are much slower and more power hungry than reads,
write bandwidth is much lower than read bandwidth, and limited write endurance. Adding an extra layer of
cache, which is logically the last-level cache (LLC), can mitigate the drawbacks of PCM. However, writebacks
from the LLC might (a) overwhelm the limited PCM write bandwidth and stall the application, (b) shorten
lifetime, and (c) increase energy consumption. Cache partitioning and replacement schemes are important
to achieve high throughput for multi-core systems. However, we noted that no existing partitioning and
replacement policy takes into account the writeback information.

This paper proposes two writeback-aware schemes to manage the LLC for PCM main memory systems.
Writeback-aware Cache Partitioning (WCP) is a runtime mechanism that partitions a shared LLC among
multiple applications. Unlike past partitioning schemes, our scheme considers the reduction in cache misses
as well as writebacks. Write Queue Balancing (WQB) replacement policy manages the cache partition of each
application intelligently so that the writebacks are distributed evenly among PCM write queues. In this way,
applications rarely stall due to unbalanced PCM write traffic among write queues. Our evaluation shows
that WCP and WQB result in, on average, 21% improvement in throughput, 49% reduction in PCM writes,
and 14% reduction in energy over a state-of-the-art cache partitioning scheme.
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1. INTRODUCTION

Energy efficiency is one of the most important considerations in designing computer
systems. The expected annual energy cost for data centers is $7.4 billion in 2011 [U.S.
Environmental Protection Agency 2007]. Reducing energy consumption for proces-
sors and memory systems are two ways to improve energy efficiency. Modern proces-
sors have lowered energy/power demand by implementing either dynamic voltage and
frequency scaling (DVFS) for sets of cores or by allowing systems to turn cores on
and off independently [Kim et al. 2008]. With increasingly energy efficient processors,
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reducing the energy consumption of memory is critical to the design of energy efficient
computers.

In past decades, DRAM has been the best candidate for main memory due to its low
cost per bit. However, the memory capacity of data centers and servers has increased
tremendously due to the large footprints of modern applications and the advent of
multi-core systems. In these systems, DRAM static power accounts for a substantial
portion of energy. As a result, the memory subsystem has become a major consumer of
power, which has fueled research in alternative memory technologies. Phase-Change
Memory (PCM) [Lee et al. 2008; Kang et al 2006; Pellizzer et al. 2006] is proposed as a
replacement for DRAM or in addition to DRAM (using a smaller DRAM as a cache for
the larger PCM). PCM is a desirable technology because it is non-volatile, scales better
than DRAM, has low power for reads and very low idle power.

PCM, nevertheless, faces important challenges. It is wearable such that only about
107 or 108 writes can be performed. A PCM system would fail in days or even hours
without wear-leveling or write minimization [Zhou et al. 2009; Qureshi et al. 2009;
Cho and Lee 2009; Ferreira et al. 2010b]. PCM is slower and consumes more energy on
writes than DRAM.

To mitigate these shortcomings, researchers organize PCM main memory with a
small cache [Lee et al. 2009; Ferreira et al. 2010a; Qureshi et al. 2009a]. The cache
could be an on-chip cache or an off-chip DRAM cache. Logically, it is the last-level cache
(LLC) of the PCM main memory. The LLC improves performance by caching highly
accessed data, extends PCM lifetime, and reduces energy consumption by filtering a
large portion of writes. The system we study has a shared on-chip LLC and a PCM
main memory. Efficiently using the LLC is crucial for PCM main memory.

In this paper, we investigate writeback-aware cache partitioning and replacement
for the LLC that are beneficial to PCM main memory. Many existing policies focus on
minimizing total misses and do not account for writebacks. These policies are suitable
for traditional main memory because DRAM reads and writes have the same latency
and power consumption, and writebacks are not on the critical path.

Taking into account writebacks is essential due to PCM’s unique asymmetric char-
acteristics. PCM writes are much slower and more power hungry than reads. PCM
write bandwidth is much lower than read bandwidth. Lastly, PCM has limited write
endurance. As a result, too many writebacks from the LLC are likely to overwhelm the
limited PCM write bandwidth and stall the application. In addition, each writeback
causes a write to the PCM device, which wears the device and consumes a large amount
of energy. These negative impacts on throughput, lifetime and energy are shown to be
mitigated by adopting writeback-aware cache partitioning and replacement policies.

We study the effects of two techniques on writebacks: reducing writebacks and
distributing writebacks evenly among write queues of the PCM device. We propose
two writeback-aware schemes to manage the LLC. Writeback-aware Cache Partition-
ing (WCP) partitions a shared LLC between applications to reduce cache misses and
writebacks. Write Queue Balancing (WQB) replacement ensures that the writebacks
are distributed evenly among write queues. By reducing writebacks and avoiding con-
gested write queues, WCP and WQB improve application performance and overall
throughput. Our evaluation shows that WCP and WQB result in an average 21% im-
provement in performance, 49% reduction in PCM writes and 14% reduction in energy
over the state-of-the-art Utility-based Cache Partitioning (UCP) [Qureshi and Patt
2006].

In this paper, we make the following contributions.

—We introduce the concept of writeback-aware cache partitioning and cache replace-
ment for the shared last-level cache in PCM main memory.
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—We propose WCP to partition the LLC of PCM main memory. Based on writeback
information, WCP outperforms a seminal technique, UCP, in terms of throughput,
fairness, PCM lifetime and energy efficiency. We further propose WCP with dynamic
partitioning weight adjustment (WCP DYN) that can learn the best partitioning
weights at runtime. WCP DYN outperforms WCP with the best static partitioning
weight.

—We propose WQB to manage the cache partition of each application. WQB ensures
that the writeback traffic to write queues is balanced.

—We provide a thorough evaluation of WCP and WQB, and analyze their impact on
throughput, fairness, lifetime and energy consumption for a variety of workloads.

The remainder of this paper is organized as follows. Section 2 provides background
on PCM and motivates this work. Sections 3 and 4 describe WCP and WQB. Sec-
tion 5 explains the experimental methodology. Section 6 presents evaluation results
and analysis. Section 7 discusses related work and Section 8 concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1. Phase Change Memory

PCM is a type of non-volatile memory that stores information by changing the state
of a chalcogenide material. By applying electrical currents of different intensities and
durations (which melt the material and let it cool at different rates), the physical state
or phase of the material can be changed from amorphous to crystalline and vice versa.
This property implies that the state persists for longer periods of time without needing
power hungry refresh. PCM consumes very little power when idle, which makes it
an ideal choice for energy efficient memory. Since the configuration of atoms in the
material is different for each state (as opposed to the amount of charge stored, as in
DRAM), the energy required to change the stored value is much higher.

Although these properties make PCM a good replacement for DRAM, it has undesir-
able write properties. PCM has limited endurance, which is caused by a reduction in a
PCM cell’s ability to change its physical state after it has been written a large number
of times. In addition, PCM writes consume more energy than reads, writes to PCM are
about 20-50 times slower than to DRAM (reads are only 2-3 times slower) [Chen et al.
2011], and PCM write bandwidth is smaller than read bandwidth.

2.2. Phase Change Main Memory Architecture

To mitigate the shortcomings of PCM, many researchers propose adding an extra
cache layer in front of the PCM main memory [Lee et al. 2009; Ferreira et al. 2010a;
Qureshi et al. 2009a]. This cache layer can be used in two ways. It can cache clean and
dirty blocks for PCM. It could also be used as a write cache to store dirty blocks. The
architecture that we study applies the first method because it benefits both read and
write accesses, while the latter approach benefits only writes.

Figure 1(a) shows the main memory architecture that we consider throughout the
paper. Memory operations issued by the CPU are serviced by private L1 and L2 caches.
Misses to the L2 cache, as well as writebacks from the L2 cache, are sent to the shared
on-chip L3 cache, which is the last-level cache. The LLC works as a traditional write-
allocate cache with a write-back policy (to PCM). That is, when a modified cache line
is evicted from the LLC, it must be written to the PCM. The LLC is beneficial to PCM
main memory: by coalescing a sequence of writes to the same line in the cache, the
LLC partially mitigates the negative impacts of PCM writes.

Figure 1(b) presents the organization of PCM main memory that we consider, with 2
channels of 8 banks each. Each bank has a 8-entry read queue (RDQ) and a 32-entry
write queue (WRQ) for pending requests. When a writeback of a cache line from the
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(a) Architecture (b) Organization of PCM

Fig. 1. PCM-based main memory architecture.

LLC occurs, a write request is sent to the PCM, which is queued at a write queue. The
application progresses without delay if the write queue has available entries since the
writebacks are not on the critical path. Otherwise, the application stalls.

2.3. Motivation

Efficiently using the LLC is crucial to improve throughput. For DRAM systems, Qureshi
and Patt [2006] show that a reduction in LLC miss rate correlates with an improvement
in IPC. In their work, they classify applications as low utility, high utility and saturating
utility depending on whether and how much an application benefits from a larger cache.
A low-overhead circuit named UMON is introduced to monitor the utility information
of each application. They propose Utility-based Cache Partitioning (UCP) to partition
the LLC in a way that applications with high utility are given more cache quota,
while applications with low utility get a small portion of the LLC. In this way, UCP
outperforms LRU.

For phase change main memory, however, reducing miss rate is insufficient to achieve
high throughput. Reducing the number of LLC writebacks is also important due to the
asymmetric property of PCM. PCM writes are much slower than reads, and PCM
write bandwidth is much lower than read bandwidth. These characteristics make it
likely that the write queues will become congested. Once the write queues are full, the
application stalls when a writeback from the LLC occurs. In this case, a writeback is
more harmful than a cache miss because a PCM write is much slower than a read.

Writebacks can also negatively affect PCM lifetime and energy consumption. PCM
has limited write endurance, and PCM writes are more power hungry than reads. As a
result, too many writebacks from the LLC shorten lifetime and consume more energy.

To the best of our knowledge, no existing cache partitioning and replacement scheme
accounts for writeback information. Figure 2 shows the architectural overview of our
approach to support writeback-aware cache partitioning and replacement. We present
four major architectural components (gray colored in Figure 2), as follows. The extended
utility monitor (E-UMON) is an extension of UMON that tracks hit and writeback
information about an application. The memory monitor (MMON) tracks information
about the write queues of the PCM device. The writeback-aware cache partitioning
logic uses information collected by E-UMON and MMON to select a cache partitioning
configuration. It includes two modules: partition selection and weight computation.
The write queue balancing replacement logic uses information from MMON to pick a
victim entry when a cache miss occurs. Section 3.2 describes E-UMON. Section 3.3
explains the partition selection scheme. Section 3.4 describes MMON and the weight
computation. WQB replacement is described in Section 4.
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Fig. 2. Architectural overview.

3. WRITEBACK-AWARE CACHE PARTITIONING

Writeback information is important for efficient partitioning of the LLC in a PCM
main memory. This section describes the mechanism to track writeback information
and proposes writeback-aware cache partitioning.

3.1. Monitoring of Writebacks

The writeback information that we monitor is based on the concepts of stack distance
and stack property. Stack distance was introduced to study the behavior of storage
hierarchies by Mattson et al. [1970]. In a replacement policy that has the stack property,
such as Least Recently Used (LRU) replacement, each set of a set-associative cache is
viewed as a stack. All cache lines in the set are ordered by the last access time, where
the top of the stack is the Most Recently Used (MRU) cache line, and the bottom is the
LRU cache line. Stack distance is defined as the LRU recency position of a cache line
when it is accessed again. It is critical for monitoring miss rate. An access is a hit if
the cache associativity is no less than the stack distance.

Figure 3 shows a sequence of references to an M-way set-associative cache. The five
accesses are to the same cache line X. Assume that a write-back policy is used by the
cache. A dirty cache line X exists in the cache after time t1 when the first write access
to X happens. Assume also that subsequent reads to the same cache line occur at t2, t3
and t4, and another write access occurs at t5. The stack distances for these five accesses
are 4, 3, 5, 2 and 7. For instance, the cache line X has a LRU recency position of 3
before the read access happens at t2 and is promoted to the top of the LRU stack after
t2. We make the following observations.
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Time Access LRU Stack Stack Distance Writeback Avoidance Distance
...

t1 04XetirW

...

t2 33XdaeR

...

t3 55XdaeR

...

t4 52XdaeR

...

t5 77XetirW

Fig. 3. An example of tracking writebacks from a cache.

—If 1 ≤ M < 3, then the dirty cache line X is evicted from the cache. The eviction
causes a writeback to the next level cache/memory between t1 and t2.

—If 3 ≤ M < 5, then the writeback of cache line X happens between t2 and t3.
—Finally, if 5 ≤ M < 7, then cache line X is written back to the next level cache/memory

between t4 and t5.

Hence, to avoid the writeback of cache line X between t1 and t5, the cache associativity
should be at least 7, which is the maximum value among 3, 5, and 7.

We draw two conclusions from the example. First, each write access leads to a po-
tential writeback. A dirty line exists in the cache after a write access. The dirty line
might eventually be evicted and cause a writeback. Second, a writeback is avoided if
the dirty line stays in the cache until the next write access happens to the same line.

Consider a general example for an M-way set-associative cache. There is a sequence
of accesses to the same cache line X, {W0, R1, R2, . . . , Rn, Wn+1}, including two write
accesses (W0 and Wn+1) and n read references (R1, R2, . . . , Rn). The stack distances for
these accesses are SD0, SD1, SD2, . . . , SDn, SDn+1. Write access W0 causes a writeback
when the dirty cache line X is evicted before the next write access W1 arrives. Cache
line X will not be written back to the next level cache/memory between two write
accesses W0 and W1 if and only if accesses R1, R2, . . . , Rn and Wn+1 are hits on the
cache. In other words, we can save a writeback of the cache line X if and only if
M ≥ max(SD1, SD2, . . . , SDn, SDn+1).

We define the writeback avoidance distance of write access W0 to cache line X as the
maximum stack distance of all the accesses to cache line X which happens between W0
and the next write access to cache line X. A write access causes a writeback if the cache
associativity is less than its writeback avoidance distance.

It is known that the LRU policy obeys the stack property, which means that an
access that hits in a LRU managed cache containing M ways is guaranteed to also hit
if the cache has more than M ways. We observe that the stack property also applies to
writebacks: a write that does not cause a writeback in an M-way cache is guaranteed
to also not cause a writeback in a cache with more than M ways. The reason is that all
accesses between two consecutive writes are hits on a cache with more than M ways,
if they are all hits on an M-way cache.
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ALGORITHM 1: Monitoring Hits
parameters:
c: Core id
st: The accessed shadow tag entry
addr: The accessed address

if st.T AG == GetTagAddress(addr) then
st.SD ← GetLruRecencyPosition()
HIT c

st.SD ← HIT c
st.SD + 1

end if

3.2. Extended Utility Monitors (E-UMON)

To make cache partitioning decisions among applications, the partitioning scheme
needs to know the hit and writeback information of applications with different number
of ways. Since LRU obeys the stack property, it is possible to track this information
with a shadow tag array containing the same number of ways as the shared cache.

Mechanisms to monitor hit information have been described by many re-
searchers [Moreto et al. 2007; Qureshi and Patt 2006]. Similar to UMON [Qureshi
and Patt 2006], E-UMON monitors hit information of an application executing on core
c through a shadow tag array and hit counters. The shadow tag array has the same
associativity as the shared LLC. Each shadow tag entry has three fields: valid bit (V),
tag address (TAG), and LRU bits (LRU) that track stack distance of each access. Dy-
namic set sampling [Qureshi et al. 2006] is applied to reduce the hardware overhead.
Our evaluation shows that sampling 32 sets is sufficient for a cache with 2048 sets.

The shadow tag array is updated on every access to the LLC, using LRU replace-
ment. Of course, E-UMON only updates the tag entries that belong to the sampled
sets. E-UMON tracks the hit information through a set of counters, based on the in-
formation in the shadow tag array (see Algorithm 1). For an M-way cache, M counters
HIT c

0, HIT c
1, . . . , HIT c

M−1 are used to get hit information. HIT c
i is the number of addi-

tional hits when the ith way is available for core c, where 0 ≤ i ≤ M−1. Counter HIT c
sd

is incremented on each hit on the shadow tag array, where sd is the stack distance.
To obtain writeback information, E-UMON adds two additional fields to each

shadow tag entry: dirty bit (D) and the writeback avoidance distance (WAD).
Writeback information is recorded through the avoidable writeback counters
AWB c

0, AWB c
1, . . . , AWB c

M−1, where AWB c
i is the number of avoidable writebacks if

the ith way is available for 0 ≤ i ≤ M − 1 (see Algorithm 2). The writeback avoid-
ance distance for each write access is tracked through the WAD field of the shadow
tag entry. Initially, the WAD fields of all shadow tag entries are initialized to 0. Once
the shadow tag entry is modified (i.e., the dirty bit D has been set), WAD records the
maximum stack distance of the following accesses to the entry until the next write
occurs. When a write hit happens, counter AWB c

wad is incremented, where wad is the
writeback avoidance distance. The WAD field is reset after each write hit and starts
tracking the writeback avoidance distance of the newly arrived write access.

With the knowledge of hit and writeback information, the partitioning scheme can
compute the number of hits (hitsM′) and avoidable writebacks (avoidablewritebacksM′)
for an M′-way cache, where M′ < M, as follows.

hitsM′ =
M′−1∑
i=0

HIT c
i (1)

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 53, Publication date: January 2012.



53:8 M. Zhou et al.

Table I. Partitioning Weights for Different Optimization Objectives

Optimization Objective Partitioning Weights
Cache Miss Rate [Qureshi and Patt
2006]

wHit = 1, wAwb = 0

Memory Dynamic Energy wHit : wAwb = EP R : EPW ,
where EP R and EPW are energy consumption of a PCM
read and write.

PCM Writes wHit = 0, wAwb = 1

ALGORITHM 2: Monitoring Writebacks
parameters:
c: Core id
st: The accessed shadow tag entry
addr: The accessed address

if st.T AG == GetTagAddress(addr) then
st.SD ← GetLruRecencyPosition()
if st.D == TRUE then

st.WAD ← max(st.WAD, st.SD)
end if
if the access is a write operation then

AWBc
st.W AD ← AWBc

st.W AD + 1
st.WAD ← 0

end if
else

st.WAD ← 0
end if

avoidablewritebacksM′ =
M′−1∑
i=0

AWB c
i (2)

3.3. Partition Selection

Let πi be the number of the ways used by core i. For cache way partitioning,
{π0, . . . , πN−1} is a valid partition for a system with N cores and an M-way shared
LLC, when

∑N−1
i=0 πi = M, and 0 < πi < M for 0 ≤ i ≤ N − 1. Based on the hit and

avoidable writeback counters in E-UMON, Writeback-aware Cache Partitioning (WCP)
tries to select a valid partition that maximizes a weighted sum of the number of misses
and the number of writebacks:

N−1∑
c=0

πc−1∑
i=0

(
wHit · HIT c

i + wAwb · AWB c
i

)
. (3)

Two parameters wHit and wAwb are partitioning weights assigned to hit counters
and writeback counters. These two parameters determine the relative importance of
reducing misses and minimizing writebacks. The suitable partitioning weights differ
for various system optimization objectives.

Table I gives the partitioning weights for three optimization objectives. UCP was
proposed to improve the throughput of a DRAM system by reducing the overall LLC
miss rate [Qureshi and Patt 2006]. UCP is a specific case of WCP with wHit = 1 and
wAwb = 0. If the dynamic power efficiency of the memory is the criteria, then the
partitioning weights should satisfy wHit : wAwb = EP R : EPW , where EP R and EPW are
energy consumption of a PCM read and write. The reason is that a PCM read is avoided

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 53, Publication date: January 2012.



Writeback-Aware Partitioning and Replacement for Last-Level Caches 53:9

for a hit, while a PCM write is saved for each avoided writeback. If reduction of PCM
writes is the objective, then wHit = 0 and wAwb = 1 should be used.

3.4. Weight Computation for Throughput Optimization

The appropriate partitioning weights for throughput optimization are not obvious.
Different workloads might favor different weights. Consider two extreme scenarios.
For applications with few write memory accesses, there are limited writebacks from
the LLC, which is not enough to saturate PCM write bandwidth. In this case, the system
throughput is affected by the hit rate, not the number of writebacks, and thus, the best
choice is wHit = 1 and wAwb = 0 (WCP behaves the same as UCP). At the other extreme,
for applications with many write accesses, many writebacks cause applications to stall
due to overwhelmed PCM bandwidth. The penalty of incurring a writeback is much
higher than a cache miss as a PCM write is much slower than a read. Therefore,
the parameters should satisfy wAwb > wHit. More importantly, these two cases might
happen for the same applications from one execution phase to another. To simplify the
problem, we define a new parameter w = wAwb/wHit, which is used in the following
maximization problem:

N−1∑
c=0

πc−1∑
i=0

(
HIT c

i + w · AWB c
i

)
. (4)

We experimentally show in Section 6.1 that a universal partitioning weight does
not exist. A partitioning weight that works the best for one workload might be a bad
choice for another workload. A good solution should adjust w dynamically for different
workloads, or even for different phases of the same workload. We make two observations
on picking the partitioning weight.

First, w should be proportional to the urgency of reducing writebacks. It is not
desirable to reduce (or increase) the total number of misses at the cost of much higher
(lower) number of writebacks. For example, if the write queues are rarely congested,
then it is unimportant to reduce the number of writebacks for throughput optimization.
In this case, a small weight is favorable. However, a large weight should be used to
reduce miss rate as well as writeback rate, if the write queues are congested.

Second, applications tend to have bursts of writes that cause bursts of writebacks
from the LLC. It is beneficial to recognize the burst periods as soon as possible and
choose a big weight to mitigate the negative impact of saturated PCM bandwidth.

We propose to adjust w periodically at epochs that last 5 million cycles. The weight
computation module selects a weight at the beginning of each epoch based on infor-
mation from MMON. MMON has three types of information about the phase change
main memory: write queue congestion time, sampled write queue occupancy, and av-
erage write queue occupancy. Write queue congestion time (WQCT) is the number of
cycles when a write queue is full. Sampled write queue occupancy (SWQO) records the
occupancy of write queues. The occupancy of a write queue is defined as the ratio of the
number of pending requests to its capacity. Average write queue occupancy (AWQO) is
the average occupancy of write queues during an epoch. WQCT and AWQO are reset
at the beginning of each epoch, while SWQO is updated at fixed-length time intervals
called quanta (i.e., 10 thousand cycles).

The weight is initialized to 0 when the system starts and changed by the partitioning
weight adjustment policy (Algorithm 3). We use the parameters ThreshOccuHigh =
80%, ThreshOccuLow = 50%, wBoostValue = 5 and ThreshWQCongest = 20%.

—If there is a write queue with high average occupancy (AWQO ≥ ThreshOccuHigh)
and the write queues are congested for a long time (WQCT/EPOCH CYCLES ≥
ThreshWQCongest), then the weight is either boosted to wBoostValue or incremented.
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ALGORITHM 3: Adjusting Partitioning Weight (w) Dynamically
parameters:
WQ: Number of write queues
AWQOi : The average occupancy of write queue i
WQCT: Number of cycles when there exists a congested write queue
EPOCH CYCLES: Number of cycles per epoch

MaxAWQO = W Q−1
max

i=0
AW QOi

if MaxAWQO ≥ ThreshOccuHigh then
if (WQCT/EPOCH CYCLES ≥ ThreshWQCongest) and (w < wBoostValue) then

w ← wBoostValue
else

w ← w + 1
end if

else if MaxAWQO ≤ ThreshOccuLow then
w ← w − 1

end if

If the weight is already larger than wBoostV alue, then it is incremented. Otherwise,
the weight is set to wBoostV alue.

—If there is a write queue with high occupancy (AWQO ≥ ThreshOccuHigh) but
the write queues are not congested for a long time (WQCT/EPOCH CYCLES <
ThreshWQCongest), then the weight is incremented.

—If all write queues are underutilized (AWQO < ThreshOccuHigh), then the weight is
decremented.

WCP partitions the LLC after the selection of the partitioning weight. WCP selects
the partition that produces the maximum weighted sum of total hits and saved write-
backs (equation (4)). Our scheme guarantees that each partition has at least one way
(πi ≥ 1 for 0 ≤ i ≤ N −1). To better blend past and recent information, the hit counters
and saved writeback counters in E-UMONs are halved after each epoch.

To enforce the cache partitioning decisions of WCP, we add a (log N)-bit core identifier
field to the tag-store entry of each cache line for a N-core processor. The core identifier
indicates which core owns the cache line. The cache replacement engine ensures that
each core does not use more cache resources than its quota. On a cache miss, the
replacement engine counts the number of cache blocks within the set that belong to
the application that causes the miss. If the application uses more cache blocks than
its quota, the replacement engine replaces the LRU block among all the blocks that
belong to that application. Otherwise, the LRU block among all the blocks that do not
belong to the application is evicted.

3.5. Multiprogrammed and Multithreaded Workloads

WCP works for both multiprogrammed and multithreaded workloads. For multipro-
grammed workloads, E-UMON monitors the hit and writeback information of each
thread (application), and WCP chooses the cache partition configuration for different
threads (applications) that maximizes equation (4).

Kim et al. [2010] classify multithreaded applications into two categories: those whose
threads execute mostly independent of each other and those whose threads require
frequent synchronization. The first type of multithreaded applications behave in a way
similar to multiprogrammed workloads. As a result, WCP and E-UMON deal with
them in the same way as multiprogrammed workloads. In contrast, for the second type
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ALGORITHM 4: Write Queue Balancing Replacement
output:
V ictimEntry: the victim entry

Populate S with candidate entries
Set S ⇐ SortByLastTimeUsed(S) {S[1] ← LRU}
if there exists invalid entries then

VictimEntry ← an invalid entry
else

VictimEntry ← S[1]
for i ← 1 to LengthOf (S) do

WriteQueueId ← GetMappedWriteQueueId(S[i])
if (IsEntryClean(S[i]) == TRUE) or
(GetSampledOccupancy(WriteQueueId) < ThreshOccuHigh) then

VictimEntry ← S[i]
break

end if
end for

end if

multithreaded applications, WCP should partition the cache among applications, not
threads. E-UMON and WCP view all threads that belong to an application as a group
because these threads share, not compete for, the cache resources.

4. WRITE QUEUE BALANCING REPLACEMENT

When a dirty cache line is evicted from the LLC, it will cause a PCM write. The
PCM write request will be queued in the corresponding write queue when possible,
and the application continues without stalling. However, the application stalls if the
corresponding write queue is full. Write Queue Balancing (WQB) replacement avoids
these delays by evicting (a) a clean line or (b) a dirty cache line which is mapped to
a write queue with fewer pending requests. By distributing writebacks evenly among
write queues, WQB reduces the delays due to writebacks from LLC. Note that WQB is
in charge of replacing cache lines within cache partition (i.e., for each application) and
is orthogonal to the cache partitioning policy.

Algorithm 4 shows the pseudocode for WQB that finds a victim entry. When a cache
miss happens, an invalid entry is used whenever possible. When all entries are valid,
starting from the LRU to the MRU entry, WQB searches the candidate entries, and
checks whether there exists one that is (a) clean or (b) mapped to a write queue under
relatively low load (i.e., with a sampled occupancy less than T hreshOccuHigh). Such
an entry is selected as a victim, if it exists. Otherwise, the LRU entry is selected as the
victim. WQB behaves the same as LRU when the applications generate few writes. In
this case, each write queue has few pending requests.

5. EXPERIMENTAL METHODOLOGY AND METRICS

We use Simics to model the processor, L1 and L2 caches, and generate memory traces,
which are input to an in-house cycle-accurate simulator that models the shared L3
cache and PCM. Our baseline system is a quad-core CMP with a three-level cache
hierarchy. The L1 and L2 caches are private to each core. Each L1 instruction and data
cache is a 4-way 64KB cache and each L2 cache is a unified 2MB 8-way associative
cache. The sizes of the L1 and L2 caches are unchanged throughout our study. The
L3 cache for a quad-core system is a 32-way 16MB shared last-level cache (4MB per
core). Each core issues two instructions per cycle, and has a 168-entry instruction
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Table II. Baseline Configuration

Processor 4-core CMP, 4GHz, Out-of-Order
168-entry instruction window, 2 instructions per cycle in each core

L1 Icache, Dcache private, 64KB, 64B line, 4-way, LRU

L2 Cache private, 2MB, 256B line, 8-way, LRU
15 cycles access latency

L3 Cache shared, 16MB, 256B line, 32-way, writeback policy
50 cycles access latency

Main Memory

32GB PCM, 2 channels of 8-banks each
32 entry write queue per bank
8 entry read queue per bank
read priority scheduling via write pausing [Qureshi et al. 2010]

PCM read: 200 cycles (50ns) latency, 1 J/GB energy consumption
write: 4000 cycles (1μs) latency, 6 J/GB energy consumption

Table III. Benchmark Classification Based on Writebacks per 1000 Instructions

Type Benchmark
L 400.perlbench, 403.gcc, 416.gamess, 434.zeusmp, 435.gromacs, 436.cactu-

sADM, 444.namd, 447.dealII, 453.povray, 454.calculix, 456.hmmer, 458.sjeng,
464.h264ref, 465.tonto, 471.omnetpp, 481.wrf, 482.sphinx, 483.xalancbmk

ML 401.bzip2, 410.bwaves, 433.milc, 437.leslie3d, 445.gobmk, 473.astar
MH 450.soplex, 459.GemsFDTD, 463.libquantum
H 429.mcf, 470.lbm

Table IV. Multiprogrammed Workloads

Workload WBPKI Benchmarks
Light1 1.22 cactusADM, hmmer, perlbench, sjeng
Light2 1.95 bzip2, bwaves, zeusmp, xalancbmk

Medium1 6.00 astar, cactusADM, GemsFDTD, libquantum
Medium2 5.45 astar, leslie3d, soplex, GemsFDTD
Medium3 5.19 astar, bzip2, GemsFDTD, libquantum
Medium4 5.33 bzip2, leslie3d, libquantum, soplex
Medium5 6.64 bzip2, bwaves, GemsFDTD, libquantum
Medium6 8.67 mcf, soplex, xalancbmk, zeusmp
Medium7 9.62 leslie3d, mcf, soplex, xalancbmk
Medium8 7.09 GemsFDTD, lbm, soplex, xalancbmk
Medium9 7.86 bwaves, mcf, xalancbmk, zeusmp

High1 19.86 cactusADM, mcf(2), omnetpp
High2 22.38 gobmk, mcf(2), xalancbmk
High3 19.36 mcf(2), omnetpp, xalancbmk
High4 13.09 lbm, mcf, omnetpp, xalancbmk

window. We also evaluate our schemes on 2-, 8-, and 16-core systems. The L3 cache size
(associativity) is proportional to the number of cores. For example, an 8-core system
has a 64-way 32MB L3 cache. Table II shows the major parameters in the default
configuration. We use the permutation-based page interleaving scheme [Zhang et al.
2000] as the address mapping scheme for phase change main memory. Assuming there
are 2q write queues, the lower order q bits of the L3 tag and the lower order q bits of
the L3 cache set index are used as the input to a q-bit bitwise XOR logic to generate
the write queue index. This interleaving scheme requires negligible area overhead
compared to E-UMON and WCP, which dominate in total overhead (see Section 6.8).

Benchmarks. We use the SPEC CPU2006 benchmarks for evaluation. In Table III, we
characterize the benchmarks in terms of writebacks. Based on writebacks per 1K in-
structions (WBPKI), we classified the benchmarks into four types: Heavy (H), Medium-
Heavy (MH), Medium-Light (ML), and Light (L). From this classification, we create 15
workloads as described in Table IV. We also list the WBPKI for each workload for the
baseline scheme (UCP). Light, Medium, and Heavy workloads represent the amount of
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Fig. 4. Weighted speedup (a) and throughput (b) of UCP (WCP with w = 0), WCP with weights 5 and 20
and WCP with dynamic weight adjustment (WCP DYN).

writebacks generated by the workloads. Although we only evaluate multiprogrammed
workloads, we expect multithreaded workloads to have similar results as the multipro-
grammed workloads (see Section 3.5).

Each benchmark was run in Simics. Simulation for a quad-core system is continued
until each benchmark executes at least 2 billion instructions. If one benchmark finishes
its 2 billion instructions before the other benchmarks finish, it is restarted so that the
four benchmarks continue competing for the shared L3 cache.

Evaluation Metrics. We use three performance metrics for multi-core systems:
weighted speedup, throughput and fairness, which are defined as follows.

Weighted Speedup =
∑ (

IPCi
/

IPCSingle
i

)
(5)

Throughput =
∑

IPCi (6)

Fairness = N
/ ∑ (

IPCSingle
i

/
IPCi

)
, (7)

where IPCi is the IPC of the ith application when it executes with other applications,
and IPCSingle

i is the IPC of the same application when it executes alone. The weighted
speedup metric indicates reduction in execution time. The throughput of the system
is indicated by the sum of the IPCs. The fairness metric is the harmonic mean of
normalized IPCs [Kun Luo, Gummaraju, and Franklin 2001]. We also evaluate the
impact of the proposed schemes on PCM lifetime and energy consumption.

6. EVALUATION RESULTS AND ANALYSIS

To understand the effectiveness of our schemes, we compare to the state-of-the-art LLC
partitioning policy, UCP [Qureshi and Patt 2006]. Sensitivity studies on PCM write
latency, number of PCM banks, write queue length and epoch length are included.

6.1. Dynamic Weight Adjustment for WCP

Figure 4 shows the weighted speedup and throughput of WCP with different partition-
ing weights. The bar labeled “average” is the average result of all 15 workloads. Note
that WCP with w = 0 is identical to UCP. The results clearly show that there is no
universal static weight for different workloads. From the weighted speedup perspec-
tive, there are four workloads that favor a static weight of 5, four benefit from a weight
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Fig. 5. Average occupancy of write queues when there are congested write queue(s).

of 20, and seven workloads perform similarly with a weight of 5 or 20. WCP DYN
(WCP with dynamic weight adjustment) outperforms UCP, WCP 5 and WCP 20 for all
but two workloads. On average, WCP 5 improves throughput by 9%, WCP 20 improves
throughput by 6%, and WCP DYN improves throughput by 11%, compared to UCP. For
Medium9, the dynamic weight adjustment policy outperforms the best static weight by
more than 10%. This is because WCP DYN adapts to different workloads and different
execution phases of the same workload. This illustrates the importance of adjusting
partitioning weight based on the urgency of reducing writebacks. For the remainder of
the paper, WCP by default means WCP DYN.

6.2. Unbalanced Write Queues

Figure 5 shows the average occupancy of all write queues when one write queue be-
comes congested. The instantaneous occupancy of a write queue is defined as the ratio
of the number of pending requests to its capacity. Each time a write queue becomes
full, the instantaneous occupancy of the write queues are averaged. The average in-
stantaneous occupancy of write queues are then averaged over time. The result shows
that the distribution of writebacks among write queues is highly skewed without write
queue balancing. On average, when one write queue is full, the other write queues are
underutilized (with occupancy less than 0.4) for UCP and WCP. When applying WQB,
all write queues are evenly utilized. WQB helps both UCP and WCP to reduce the
chances of filling up write queues.

6.3. PCM Lifetime

Figure 6(a) shows the writebacks per 1K instructions (WBPKI) of LRU, UCP, WCP,
UCP+WQB and WCP+WQB. We include the evaluation of LRU to estimate the ad-
vantages of the partitioned caches (e.g., UCP and WCP) over non-partitioned caches
(e.g., LRU). UCP increases the WBPKI by an average of 7% over LRU. As an extreme
example, for High1, UCP incurs 110% more writebacks than LRU. This result happens
because UCP tries to minimize the total number of misses at the cost of possibly gener-
ating more writebacks. Unlike UCP, WCP takes into account information of both misses
and writebacks and reduces the total number of misses and writebacks. For eight out
of the fifteen workloads, WCP reduces WBPKI by at least 25% over UCP. For Medium9,
WCP achieves a reduction of 78% on WBPKI over UCP. Intuitively, for workloads with
few writebacks, WCP is not very effective in reducing writebacks. Assuming that a
perfect wear-leveling scheme is applied, the reduction in writebacks directly translates
into a prolonging of PCM lifetime. As a result, on average, WCP improves lifetime by
almost 100% compared to UCP.

6.4. Energy Consumption

Figure 6(b) shows the energy consumption of UCP, WCP, UCP+WQB, and WCP+WQB
normalized to LRU. Overall, LRU and UCP have similar energy consumption. WCP
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Fig. 6. Impact on (a) PCM lifetime, and (b) energy consumption.

saves energy by minimizing writebacks (i.e., PCM writes) over both LRU and UCP. WCP
reduces the energy for eight of the fifteen workloads by reducing PCM writes which
are energy hungry. For High1, WCP reduces the energy consumption by 36%. WQB
saves energy for eight workloads, and increases energy consumption marginally for
three workloads. It is noticable that UCP+WQB can also reduce energy consumption.
The reason is that applications with many writebacks stall less frequently, and get
a relatively larger cache quota when WQB is applied. The writebacks generated by
these applications are reduced as a result of a larger cache partition. On average,
WCP, UCP+WQB, and WCP+WQB reduce energy by 14%, 7% and 14% over UCP,
respectively.

6.5. Performance

Figure 7(a) shows the weighted speedup for different policies. On average, UCP
outperforms LRU by 18% in terms of weighted speedup. For Light1 and Medium1,
however, UCP reduces performance marginally compared to LRU. This result happens
because UCP changes the cache partition configurations once every epoch (5 million
cycles [Qureshi and Patt 2006]) and, therefore, it cannot respond to the phase changes
that occur at a finer granularity. LRU, on the other hand, naturally responds to such
a fine-grained phase change. WCP improves weighted speedup by more than 20% for
seven out of the fifteen workloads over UCP. For Medium9, WCP outperforms UCP
by 66%. The benefits of using WQB are as follows. By distributing writebacks evenly
among write queues, WQB benefits the weighted speedup in spite of the cache parti-
tioning policy. When UCP is used to partition the cache, WQB improves the weighted
speedup by 12% on average. When WCP is applied as the cache partitioning policy,
WQB result in an average improvement of 10% in weighted speedup.

Figure 7(b) compares the throughput of the proposed schemes to LRU and UCP.
UCP achieves an average of 21% throughput improvement over LRU. WCP further
improves the throughput over UCP by 11%. For nine out of the fifteen workloads,
WCP improves the throughput by more than 10% over UCP. WCP can improve the
IPC of some applications without hurting others. Examples of such workloads are
Light1, Light2, Medium2, and Medium6. WCP can also improve the throughput by
increasing the IPCs of some applications significantly while marginally reducing the
IPCs of others. Examples include Medium6, Medium7, Medium9, High3, and High4.
WCP+WQB improves the throughput by 21% on average over UCP.
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Fig. 7. Impact on performance: (a) weighted speedup, (b) throughput, and (c) fairness.

Cache partitioning and replacement policies might improve the performance of some
applications by severely penalizing others. The harmonic mean of the normalized IPCs
considers both fairness and performance [Kun Luo, Gummaraju, and Franklin 2001].
Figure 7(c) shows the performance of LRU, UCP, WCP, UCP+WQB, and WCP+WQB in
terms of fairness. LRU has an average fairness metric value of 0.32, UCP of 0.36, WCP
of 0.5, UCP+WQB of 0.45, and WCP+WQB of 0.56. On average, WCP+WQB improves
the fairness metric by 14% compared to UCP.

6.6. Sensitivity Study

To analyze the benefit of our schemes under different system configurations, this section
describes a study of sensitivity to PCM write latency, number of banks per channel,
write queue size, and the epoch length. We show only the results for throughput for
brevity. The trends for weighted speedup, fairness, lifetime, and energy are similar.

We vary the write latency of PCM devices to analyze the impact of our schemes. The
PCM read latency is unchanged (i.e., 200 cycles). The PCM write latency is varied from
1000 cycles (5x read latency) to 6000 cycles (30x read latency). Figure 8(a) shows the
throughput of UCP, WCP, UCP+WQB, and WCP+WQB as the write latency varies. It
only shows the average throughput among 15 workloads. The improvement in through-
put decreases as PCM writes become faster. This is expected as the importance of using
writeback information is proportional to the write latency, which is the penalty of in-
curring a writeback when PCM bandwith is saturated. The throughput improvement
of WCP+WQB is 3% when the write latency is 1000 cycles, 14% for 2000 cycles, 21%
for 4000 cycles and 21% for 6000 cycles.

Our baseline configuration assumes each PCM channel has 8 banks. Figure 8(b)
shows the throughput impact as the number of banks per channel is varied from 4 to
32. All policies benefit from more banks per channel, as the number of write queues is
increased. The effectiveness of our schemes reduces as the number of banks increases
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(a) Sensitivity to PCM write latency (b) Sensitivity to number of banks per channel

(c) Sensitivity to write queue size (d) Sensitivity to number of cores (scalability)

Fig. 8. Sensitivity of WCP and WQB to (a) PCM write latency, (b) number of banks per channel, (c) write
queue size, and (d) number of cores.

because more banks can naturally reduce the likelihood of congested write queues. On
average, WCP+WQB improves throughput by 22%, 21%, 16%, and 10% for 4, 8, 16,
and 32 banks per channel, respectively.

The baseline contains a 32-entry write queue for each PCM bank. Figure 8(c) shows
the throughput for UCP, WCP, UCP+WQB, and WCP+WQB as the write queue length
is varied from 16 to 128. All policies benefit very little when the write queue size
increases, and the improvement of WCP+WQB over UCP varies slightly for various
write queue sizes. The average throughput improvement of WCP+WQB compared to
UCP is 23%, 21%, 20% and 19% for 16-, 32-, 64-, and 128-entry write queues.

We also have a sensitivity study on epoch length by varying it from 1 million to
10 million cycles. The results are similar for different epoch lengths. The average
throughput improvement of WCP+WQB compared to UCP is 22%, 21%, 21%, and 22%
for 1, 2, 5, and 10 million cycles epoch length, respectively (graphs are not included
for brevity).

6.7. Scalability

To understand the scalability of our schemes, we evaluate WCP and WQB for a large
number of workloads on 2-, 4-, 8-, and 16-core systems with a shared L3 cache of
size 8MB, 16MB, 32MB, and 64MB respectively. For each CMP configuration, we
use 35 randomly generated workloads. WCP uses the lookahead algorithm [Qureshi
and Patt 2006] when scaled to systems with more than 4 cores. Figure 8(d) shows
the summarized throughput among all workloads. On average, WCP+WQB improves
throughput for 2-, 4-, 8-, and 16-core systems by 18%, 21%, 20%, and 19% over UCP,
respectively.

The lifetime scalability results are similar to throughput scalability. On average,
WCP+WQB reduces the WBPKI for 2-, 4-, 8-, and 16-core systems by 46%, 49%, 49%,
and 47% over UCP, respectively (the graphs are not included for brevity). These results
show that our techniques are scalable.
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Table V. Storage Overhead for a Quad-Core System

Storage
Component Description Overhead
Shadow tag array per core 32 sets, 32 entries per set, each entry (V 1b, D 1b, TAG 21b,

LRU 5b, WAD 5b)
4224 B

HIT counters per core 32 counters, 4B for each counter 128 B
AWB counters per core 32 counters, 4B for each counter 128 B
E-UMON per core shadow tag array, HIT counters, AWB counters 4480 B
Total E-UMON overhead 4 E-UMONs 17920 B
WRQ congestion time 4 B
Average WRQ occupancy 2 PCM channels, 8 WRQs per channel, 4B for each WRQ 64 B
Sampled WRQ occupancy 2 PCM channels, 8 WRQs per channel, 4B for each WRQ 64 B
Total MMON overhead 132 B
WCP 2048 sets, 32 tag entries per set, 2b core id in each tag entry 16384 B
Overall overhead 34436 B

6.8. Hardware Overhead

E-UMON and WCP are the two largest sources of hardware overhead in our scheme.
Table V details the storage overhead of E-UMON, MMON, and WCP, assuming a 40-
bit physical address space. Recall that our design of E-UMON only samples 32 sets.
For the baseline quad-core configuration with 16MB shared LLC, our schemes require
0.2% storage overhead. None of the structures or operations required by WCP are on
the critical path for cache hits. WQB introduces negligible latency overhead to cache
replacement.

7. RELATED WORK

7.1. Phase Change Main Memory Systems

PCM has been proposed as a candidate for main memory systems by many re-
searchers [Ferreira et al. 2010b; Lee et al. 2009; Qureshi et al. 2009a; Zhou et al.
2009; Zhang and Li 2009]. Lee et al. [2009] successfully mitigate the negative impacts
of PCM’s long latencies, high energy, and finite endurance by using area-neutral buffer
organizations and applying partial writes technique. Qureshi et al. [2009a] propose a
hybrid architecture that uses a DRAM cache to filter accesses to PCM. Such an anchi-
tecture has the latency benefits of DRAM and the capacity and scalability benefits of
PCM. Ferreira et al. [2010b] study the page partitioning in the DRAM cache to reduce
the amount of data written back to PCM. Zhou et al. [2009] propose PCM as a di-
rect replacement for DRAM in main memory without buffer organization. Zhang et al.
[2000] present a hybrid PCM/DRAM memory architecture that uses a small DRAM
as write buffer. OS-level paging scheme is applied to improve PCM write performance
and lifetime. Among these architectures, the one proposed in Qureshi et al. [2009a] is
the closest to the architecture that we study in the paper.

There is a lot of research that aims at mitigating the undesirable PCM characteris-
tics. As mentioned above, buffer organizations [Ferreira et al. 2010b; Lee et al. 2009;
Qureshi et al. 2009a; Zhang and Li 2009] are effective to hide the impacts of slow
PCM writes (compared to DRAM). Write cancellation and write pausing [Qureshi et al.
2010] improves the performance of PCM reads by delaying the extremely slow write
operations.

There are two ways to extend PCM lifetime: write minimization and wear-leveling.
Write minimization techniques reduce the number of writes to PCM. Lazy Write Line
Level Write-back, Page level Bypass [Qureshi et al. 2009] are applied in the buffer
organization to reduce writes to PCM. Partial Writes [Lee et al. 2009] reduces PCM
writes by tracking cache modifications and writing only dirty lines. Redundant Bit-
write Removal [Zhou et al. 2009] programs a bit only when the new data bit differs
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from the old one. N-Flip-Write [Cho and Lee 2009] further reduces the write traffic to
PCM by introducing a bit that indicates whether the associated data is stored negated
or not, thereby reducing the number of bit updates.

Wear-leveling techniques strive to distribute write traffic among different cells uni-
formly. Row-Shifting and Segment swapping [Zhou et al. 2009] balances writes across
each row and among segments, and Start-Gap [Qureshi et al. 2009b] tries to balance
writes across the entire memory. Ferreira et al. [2010a] propose a swap-based algo-
rithm for wear-leveling. Dong et al. [2011] take into account the endurance variation
effect, and balances the wear rates instead of wear traffic of cells across the memory.

Our work is orthogonal to the above mentioned techniques as we investigate the
effecient utilization of the cache for multi-core systems with PCM main memory, which
has not been studied yet. Our techniques differ from past work as our approaches use
writeback information, which has not been previously studied.

7.2. Cache Partition and Replacement

Improving cache performance is essential for CMPs with shared caches. Cache par-
titioning is a popular way to manage the shard cache among applications. Suh
et al. [2004] propose dynamic partitioning to manage the shared cache among com-
peting applications. The cache utility of each application is monitored by counting the
number of cache hits to each LRU recency position. Based on the utility information,
Suh et al. [2004] partition the cache to achive high overall utility. Qureshi and Patt
[2006] extend this idea by separating the utility monitoring circuits for different cores
so that the utility information for one application is not polluted by others. A circuit
tracks the utility information for the cores and is used to make partitioning decisions
to achieve low cache miss rate and high performance. All misses are treated equally.
Moreto et al. [2011] differentiate misses based on their impacts on performance. Clus-
tered misses share the penalty as they can be served in parallel, while isolated misses
have a greater impact on performance. They propose a dynamic cache partitioning
scheme that is aware of such information. Most of the studies of cache partitioning are
evaluated by simulations. Lin et al. [2008] design and implement an OS-based cache
partitioning mechanism on multicore processors which enables the evaluation of cache
partitioning schemes on real machines. Recently, a power-aware cache partitioning
scheme is proposed in Kotera et al. [2011] to achieve good performance and low power.

There is limited study on cache replacement for PCM main memory systems. Ferreira
et al. [2010b] propose a clean-preferred page replacement algorithm named N-Chance
for the DRAM cache in a PCM main memory system. N-Chance gives preference to evict
clean pages, which reduces writebacks to PCM by coalescing writes in the DRAM cache.

Qureshi and Patt [2006] and Ferreira et al. [2010a] are the most related studies to
this paper. Our work differs from them by taking the writebacks into consideration,
as well as making replacement decisions based on additional information about the
congestion of the write queues.

8. CONCLUSION

Traditional cache partitioning and replacement do not consider writebacks, which we
show to be important to achieve high throughput for phase change main memory sys-
tems. Towards that end, this paper describes an efficient mechanism to monitor and
gather information about writebacks. We propose two writeback-aware cache man-
agement policies that require low hardware overhead. Writeback-Aware Cache Parti-
tioning (WCP) divides the cache among competing applications such that the number
of misses and writebacks are reduced. Write Queue Balancing (WQB) replacement
spreads writeback traffic among write queues. Evaluation results show that, on av-
erage, WCP and WQB improve throughput by 21%, reduce PCM writes by 49%, and
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save energy by 14% over a state-of-the-art cache partitioning scheme (UCP). We also
show that our schemes are beneficial to a range of multi-core systems and improve the
throughput of a 2-, 4-, 8-, and 16-core system by 18%, 21%, 20%, and 19%, respectively.
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