Check for
Updates

A Transactional Memory with Automatic Performance Tuning

QINGPING WANG, Lehigh University
SAMEER KULKARNI and JOHN CAVAZQOS, University of Delaware
MICHAEL SPEAR, Lehigh University

A significant obstacle to the acceptance of transactional memory (TM) in real-world parallel programs is
the abundance of substantially different TM algorithms. Each TM algorithm appears well-suited to certain
workload characteristics, but the best choice of algorithm is sensitive to program inputs, available cores, and
program phases. Furthermore, operating system and hardware characteristics can affect which algorithm is
best, with tradeoffs changing across iterations of a single ISA.

This paper introduces methods for constructing policies to dynamically select the most appropriate TM
algorithm based on static and dynamic information. We leverage intraprocedural static analysis to create
a static profile of the application. We also introduce a low-overhead framework for dynamic profiling of a
running transactional application. Armed with these complementary descriptions of a program’s behavior,
we present novel expert adaptivity policies as well as machine learning policies that are trained off-line
using simple microbenchmarks. In our evaluation, we find that both the expert and learned policies provide
better performance than any single TM algorithm across the entire STAMP benchmark suite. In addition,
policies that combine expert and learned policies offer the best combination of performance, maintainability,
and flexibility.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—Par-

allel programming; D.3.3 [Programming Languages]: Language Constructs and Features—Concurrent
programming structures

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Atomicity, serializability, synchronization, dynamic adaptivity, machine
learning

ACM Reference Format:

Wang, Q., Kulkarni, S., Cavazos, J., and Spear, M. 2012. A transactional memory with automatic performance
tuning. ACM Trans. Architec. Code Optim. 8, 4, Article 54 (January 2012), 23 pages.

DOI = 10.1145/2086696.2086733 http:/doi.acm.org/10.1145/2086696.2086733

1. INTRODUCTION

Designers of general-purpose software components must strike an acceptable balance
between maximizing performance in the common case and minimizing pathological
problems in cases that are expected to be rare. As software complexity grows, this task

At Lehigh University, this research was sponsored in part by the National Science Foundation Grant CNS-
1016828. At the University of Delaware, this research was sponsored in part by the DARPA Computer
Science Study Group (CSSG) and National Science Foundation Career Award 0953667.

Author’s addresses: Q. Wang and M. Spear, Computer Science and Engineering Department, Lehigh Univer-
sity; S. Kulkarni and J. Cavazos, Computer and Information Sciences Department, University of Delaware.
Correspondence email: spear@cse.lehigh.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2012 ACM 1544-3566/2012/01- ART54 $10.00

DOI 10.1145/2086696.2086733 http://doi.acm.org/10.1145/2086696.2086733

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2086696.2086733&domain=pdf&date_stamp=2012-01-26

54:2 Q. Wang et al.

grows increasingly challenging. The situation is particularly true for shared memory
parallel programs, where architectural and workload characteristics dramatically
affect the relative merit of various synchronization mechanisms.

In this paper, we focus on Transactional Memory (TM) [Harris et al. 2010]. There are
more than a dozen software TM (STM) algorithms, each of which defines the common
case differently: some are best for linked data structures, some for small operations on
matrices, and others for read-dominated workloads. Some expect a strong language-
level memory model, and some assume hardware will provide low cache miss latency
and fast atomic instructions, such as compare-and-swap (CAS).

From one iteration of an instruction set architecture to the next, hardware charac-
teristics can change. Similarly, multi-chip systems behave differently than single-chip
systems. Even on a fixed platform, behavior can vary due to sensitivity to program
inputs [Hong et al. 2010] or phases of program execution [Shen et al. 2004; Lau et al.
2006]. As heterogeneity increases, the possibility of identifying any single TM algo-
rithm as “best” grows increasingly unlikely.

We propose a comprehensive framework through which a TM runtime system can
automatically tune its performance. In addition to measuring static properties of a
transactional application, we introduce a dynamic profiling framework for TM. By
combining these complementary approaches, we can develop rich descriptions of a
workload without relying on complex analysis.

Armed with this information, we introduce expert heuristics and adaptivity mecha-
nisms based on machine learning (ML). We take as inspiration applications of machine
learning to solve systems problems [Stephenson et al. 2003; Kulkarni et al. 2004;
Pouchet et al. 2008; Yotov et al. 2003]. Previous studies developed novel ML-based
solutions for efficiently selecting compiler optimizations [Cooper et al. 2005; Agakov
et al. 2006; Cavazos and O’Boyle 2006; Fursin et al. 2008], finding the best values for
transformation parameters [Monsifrot et al. 2002; Stephenson and Amarasinghe 2005;
Cavazos and O’Boyle 2005], and choosing the best algorithm to use for a particular
sequential task [Li et al. 2004, 2005], to name a few examples. We extend the concept
of ML-based adaptive runtime systems to apply to parallel programs and show three
distinct ML techniques that can be employed in our general-purpose framework. Using
a combination of static and dynamic information, our system can select among a broad
set of TM algorithms during execution to select the algorithm most likely to maximize
the performance of the in-flight program.

Our adaptive policies outperform any individual algorithm on the STAMP bench-
mark suite [Minh et al. 2008], and offer significant improvement when a strong
language-level memory model is required. Our static analysis allows selection of high-
performance special-purpose algorithms, and our dynamic mechanisms can exploit dif-
ferences in program behavior over time to outperform any single algorithm for almost
all workloads. As an example of the first property, consider Figure 1. The best perform-
ing algorithm is “Nano”, a locking version of the original WSTM [Harris and Fraser
2003]. Nano is unsuitable for general-purpose STM workloads, as it has O(reads?)
overhead, while the other algorithms have O(reads) overhead. However, Nano has
no metadata bottlenecks. For SSCA2’s short transactions, our policies determine that
Nano will provide the best performance.

This paper makes four main contributions:

—We present the first use of ML for runtime STM algorithm selection. Our system
leverages static analysis and dynamic profiling, and considers strong and weak
language-level memory models.

—Our best policies outperform any single algorithm across the entire STAMP
benchmark suite.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:3

14 -e-LSA
n -&-NOrec
12 —-TL2
\ -=TLRW
@ 10 -e-Nano
°
5 K\
bt 8
L}
2 \ TS‘\ __———a
= 4
2 ===
0 T T T T ;
0 2 4 6 8 10 12
Threads

Fig. 1. Performance of the STAMP SSCA2 workload for common STM algorithms. The “Nano” algorithm is
asymptotically worse than every algorithm tested, yet it is often best in workloads with short transactions.

—We identify static and dynamic characteristics (i.e., features) for the task of
choosing the best STM algorithm for each phase of a program, and quantify their
importance.

—Our technique can adapt to new architectures by simply retraining itself at install
time.

Our best strategy tries to use expert knowledge to exploit static features; when that
fails, it employs ML with simple dynamic features, such as cycles in transactions,
cycles between transactions, and reads per transaction. On our test workload suite,
a transparent case-based reasoning system was the best ML classifier, but black-box
ML systems should perform well if they can avoid a few easily-identifiable mistakes.
While almost every STM algorithm was useful in some scenario, choosing among eight
algorithms ensured consistently good performance, suggesting that simple ML, simple
features, and just a handful of STM algorithms should suffice in real-world settings.

The remainder of this paper is organized as follows. Sections 2 and 3 discuss the
basics of STM operation and summarize prior adaptive STM systems. Section 4 in-
troduces the static and dynamic features that we use to characterize workloads, and
Section 5 describes our run-time adaptivity framework. Section 6 describes our expert
and ML-based adaptivity policies. Section 7 presents performance results, Section 8
discusses future research directions, and Section 9 concludes.

2. STM BACKGROUND

To use STM, programmers annotate regions of code that require atomicity. Within these
regions, individual loads and stores to shared memory are instrumented, as are region
boundaries. Typically, the code within these regions runs speculatively: the instrumen-
tation includes some mechanism to detect conflicts between concurrent transactions,
as well as a mechanism to undo the partial effects of a transaction and retry it. The in-
strumentation for individual accesses and transaction boundaries is usually located in
a library. The library provides concurrency control by mapping individual locations in
memory to some form of metadata that enforces a single-writer, multi-reader protocol
for program data. The library also handles conflict detection and rollback.

Below we list some key considerations for designers of STM algorithms.

—If aborts are rare, performing speculative writes in place may outperform buffering
writes for commit-time replay. Note that this option requires transactions to maintain
an “undo log” for reverting modifications in the event of an abort.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:4 Q. Wang et al.

—Some algorithms offer low latency and high scalability when most transactions are
read-only.

—Some workload/STM combinations are prone to performance pathologies and benefit
from algorithms with provable livelock-freedom or fine-grained starvation avoidance
mechanisms.

—The language-level memory model may require transparent “privatization” and “pub-
lication” to transition data between a state in which they are accessed within trans-
actions and a state in which they are accessed nontransactionally. We consider ELA
semantics, in which all forms of privatization are supported, but “racy” publication
patterns are not [Menon et al. 2008].

—Hardware characteristics, such as the availability of vector instructions, the cache
hierarchy, and the cost of CAS and memory fence instructions, affect tradeoffs among
STM algorithms.

We now relate the above considerations to popular STM designs.

Single Mutex. All transactions are protected by a global mutex lock. There may be
write logging to enable self-abort, and if read-only transactions can be statically shown
to be common, a reader-writer lock may be used. I/0 is always safe within a transaction,
and there is no risk of livelock.

Ownership Records. Program data is mapped to a table of ownership records (orecs,
essentially versioned locks) [Harris et al. 2010]. Reads are optimistic: they do not modify
locks, but record lock versions. Writes acquire the lock either on first encounter or at
commit time. Orecs allow for buffered updates or in-place updates with undo logging.
Orec systems typically use some notion of global time (e.g., a shared counter) to reduce
overheads. For workloads dominated by small writer transactions, this can become
a bottleneck. Making an orec-based STM compatible with ELA semantics introduces
significant overhead [Menon et al. 2008].

Signatures. A transaction’s accesses are represented as bit-vectors, or “signatures”,
and conflicts are detected by intersecting signatures. Example algorithms include the
privatization-safe, livelock-free RingSTM [Spear et al. 2008], and the priority-focused
InvalSTM [Gottschlich et al. 2010].

Values. Some STM algorithms log all address/value pairs that have been read. They
can then detect conflicts by checking whether the values at these addresses have
changed [Dalessandro et al. 2010], and use a single lock to serialize writer commits.
These algorithms are livelock-free, and by virtue of maintaining no global metadata,
they tend to have very low single-thread latency. They provide ELA semantics, but the
single lock limits performance when writers are frequent.

Bit and Byte Locks. All of the designs mentioned above use optimistic read mecha-
nisms, where no transaction can identify when it is accessing locations that another
transaction is reading. By maintaining either bitlocks [Ni et al. 2008] or wider byte-
locks [Dice and Shavit 2010], the cost of making transactional reads visible can be kept
low. While reader visibility increases latency and can result in more contention for
metadata, it simplifies conflict detection and resolution, enables ELA semantics, and
simplifies support for advanced features.

Read-Parallel Designs. The eager and lazy TML algorithms are designed for work-
loads with infrequent writers. Latency is extremely low, at the expense of concurrency
when there are writers.

To solidify our motivation for adaptivity, consider a program whose behavior is input-
dependent and that operates in phases, where each phases’ transactions exhibit char-
acteristics for which a different STM algorithm is ideal. Such an application would
suffer from selecting any single STM algorithm for its entire execution, even if the
choice considered the input values and hardware/OS features. As a trivial example of

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:5

12000

9000]

6000

Writer Commits

3000

0 50 100 150 200 250
Time (10K Commits)

Fig. 2. Phases in the STAMP Genome benchmark. Each point on the X axis represents an interval of 10K
commits, with the Y axis showing the number of commits in each interval that were not read-only.

this case, consider Figure 2. There is a distinct read-only phase in the application. An
STM algorithm optimized for read-dominated workloads will be best for much of the
execution, but a poor fit for the other phases.

3. PREVIOUS ADAPTIVE STM SYSTEMS

Past adaptive STM systems focused on preventing performance pathologies, with a few
proposals also considering techniques to maximize performance. We highlight the most
relevant works as follows.

Worst-Case Progress. Many STMs support a “serial-irrevocable” (SI) mode, where one
transaction runs at a time. While SI was proposed as a way to support I/O in transac-
tions that are known not to use self-abort, it can also guarantee progress. In essence,
after a sufficient number of consecutive aborts, a thread may become serial-irrevocable
(or perhaps only serial, if it might self-abort) to be sure that it will commit [Welc et al.
2008; Ni et al. 2008].

Location-Level Adaptivity. An STM can dynamically change the concurrency control
mechanism for individual variables, allowing those involved in frequent conflicts to be
accessed pessimistically [Sonmez et al. 2009]. This improves conflict detection and pre-
vents some pathologies, without requiring pessimism on all accesses. Support requires
overhead on every access to identify the variable’s access mode.

Strong Progress Guarantees. Ni et al. [2008] proposed an orec-based STM that
supports “obstinate” transactions (using visible reads) as well as switches to serial and
serial-irrevocable modes. The system employed a novel indirection-based interface to
prevent overhead while supporting these mechanisms, and avoided global coordination
when switching the mode of a transaction: the instrumentation for any transaction
seamlessly handled the fact of other transactions concurrently operating in other
modes.

Feature Monitoring. ASTM [Marathe et al. 2005] tracked when a workload employed
an uncommon API call (“early release”) to decide whether locations should be locked
on first access or at commit time. The technique increased throughput, but only if early
release could be used.

Re-Parameterizing the STM. Dynamically selecting the number of orecs [Felber et al.
2008] improved scalability by decreasing the likelihood of false conflicts on metadata.
Furthermore, workloads without much concurrency decreased latency by restricting
themselves to a few orecs. An automatic mechanism based on re-execution found the
best number of locks for a workload.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:6 Q. Wang et al.

Phased Execution. PhTM [Lev et al. 2007] switched between hardware and software
modes on a machine with hardware TM support. Ph'TM identified potential reasons
to switch modes, including the presence of transactions that are unsupported by the
hardware, excessive consecutive aborts, and periodic timers. Since its focus was on
hardware/software interaction, PhTM did not consider switching among STM imple-
mentations. Some variants required coordination at the beginning of some transactions,
even when there was no mode switch in progress. This is a potential bottleneck.

Selecting Locks or Transactions. Usui et al. [2009] employed static and dynamic
analysis to identify workloads for which locks outperformed STM, even when multiple
threads were available. Clearly at one thread, the lower latency of a lock-based runtime
is best. Additionally, if transaction latency is too high and the cost of a lock moving
between processors’ caches is low, the concurrency afforded by STM may not be worth
its cost.

Pathology Avoidance. RSTM [Spear 2010] supports adaptivity among different STM
algorithms. The system selects from 10 algorithms to react to bad performance. Deci-
sions are based on likelihood of pathology and precision of conflict detection.

The above systems share the design philosophy that when throughput is unsatisfac-
tory, the underlying TM becomes more pessimistic, according to a simple static sequence
of transitions. Pessimism can take many forms: it can entail the use of commit-time
locking instead of encounter-time locking, the use of coarse locks instead of transac-
tions, the use of software instead of hardware transactions, or the use of visible reads.
The pessimism may endure for only a few transactions, or may cause a permanent
change to the underlying STM algorithm. Furthermore, the pessimism may be local-
ized to one transaction’s behavior, or may result in all transactions switching to a
new STM algorithm. While many of the above mechanisms are robust and effective at
preventing pathology, we found none to be suitable for our goal of maximizing system
performance.

First, most mechanisms rely on the detection of bad performance by monitoring trans-
action aborts: if the consecutive abort count is too high or distinguished aborts occur
(e.g., aborts due to overflow in hardware TM), then it is likely that adaptivity is neces-
sary to restore progress. In the remaining mechanisms, detection of bad performance is
done through analysis of a small feature set: early release in ASTM, transactional ver-
sus nontransactional time in Usui’s system, and whole-program throughput in Felber’s
system. These limited feature sets are amenable to small adaptivity decisions (only
one dimension in each system) or perhaps off-line decisions. We argue that to improve
“already good” performance in a running application, a large feature set, consisting of
both static and dynamic features, is necessary.

Second, the policies guiding transitions among algorithms are rigid. They are typ-
ically represented by a heuristic encoding an expert’s intuition about how to prevent
pathology for a specific STM algorithm. The danger in this approach is that it is not
future-proof: the emergence of new hardware characteristics, new STM algorithms, and
new workload behaviors can introduce situations that the expert did not anticipate. We
argue that this diversity makes the creation of an optimal adaptivity policy intractable.
Our solution is to create a system that can be trained in its deployed environment and
potentially trained differently for each production application. In this manner, the STM
system can automatically tune its performance based on its operating environment and
changing workload characteristics.

4. CHARACTERIZING WORKLOADS

Any system that selects the best STM algorithm for a specific workload must have
some description of the workload behavior that provides a reliable basis for decision
making. As discussed in Section 3, past approaches used a variety of measures to

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:7

Table |. Static Workload Features. Apart from txsites, Values are always, sometimes, Or unknown

S_txsites: Number of distinct source-level transactions

S_nontx_gap: Function calls are made before or after the transaction, in the same lexical
scope

S_trivial: Transactions have no loops, no calls, and < 6 reads and writes

S_writer: Transactions always perform a write

S_mcas_likely: Number of reads equals number of writes, and there are no calls within trans-
actions

S_txcalls: Transactions call functions that use TM

S_nontxcalls: Transactions call functions that do not use TM

S_verylarge: Transactions make at least 1 nontxcall, or at least 2 txcalls

S_costly_aborts: | Transactions make a nontxcall before any transactional reads or writes

approximate the behavior of workloads. Our approach combines information available
through simple static analysis and dynamic measurement.

4.1. Static Features

We assume a standard TM interface: transaction boundaries are function calls, as are
individual loads and stores; multiple transactions may be executed from within a single
lexical scope; and functions that contain transactional instrumentation are marked.
Our analysis counts distinct source-code transactions (S_txsites), approximates the
distance between dynamic instances of these transactions (S_nontx_gap), and measures
the incidence of various function calls within each transaction. A property is marked
always if it holds for all transactions, sometimes if it holds for some transactions, and
unknown otherwise. We do not distinguish between properties that do not hold and those
that our analysis cannot prove to hold. Table I lists the static features we measure.

S_nontx_gap allows estimation of how likely transactions are to overlap. S_trivial,
S_writer, and S_mcas_likely permit selection (or exclusion) of algorithms that apply
to specific behavior patterns. The remaining features estimate the transaction’s size:
we assume that S nontxcalls indicates large units of work for which transactional in-
strumentation would be prohibitively expensive, that multiple S_txcalls indicate data
structure traversals, and that transactions that begin with a large prefix of nontrans-
actional work merit special attention.

We emphasize that these features are easy to measure. More powerful analysis
(e.g., shape analysis to determine the exact type of data structure being analyzed, or
interprocedural analysis) are likely to enable more powerful adaptive policies.

4.2. Dynamic Features

To measure the dynamic behavior of a program, we employ lightweight instrumentation
on every transaction boundary to measure program-wide properties. When additional
information is needed, we use a simple STM (ProfileTM) to sample per-transaction
characteristics.

Boundary Instrumentation. In the commit function of each STM algorithm, we update
per-thread counts of writer and read-only commits. We query these counts when the
workload read-only ratio (D_RORatio) is needed. After every commit we also store the
value of the hardware tick counter, and before a transaction begins, we subtract that
value from the current hardware tick counter and add the difference to a per-thread
accumulator. Dividing by the number of transactions estimates the nontransactional
work (D_NonTxWork) between transactions. In our environment, thread migration and
frequency scaling did not affect the tick counter’s precision.

Per-Transaction Sampling. Measuring dynamic properties of transactions at all times
led to unacceptable overhead (more than 5% slowdown). Since profiling should have no
cost when not in use, we instead use sampling. When a dynamic profile of the workload

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:8 Q. Wang et al.

Table Il. Dynamic Workload Features Measured by ProfileTM

D_TxTime: Cycles between start and end of a transaction; approximated via hardware tick
counter

D_Writes: Number of distinct locations to which a write is performed

D_WAWWrites: | Number of writes to locations that have already been written by the current
transaction

D_ROReads: Number of reads made by a transaction before its first write

D_RAWReads: Number of reads to locations that have already been written by the current
transaction

D_RWReads: Non-RAW reads performed after a transaction’s first write

D_RORatio: Percent of transactions that are read only

D_NonTxWork: | Cycles between transactions within a thread; approximated via hardware tick
counter

D_AllWrites: | Sum of D_Writes and D_-WAWWrites

D_AllReads: Sum of D_ROReads, D . RAWReads, and D_RWReads

is needed, we switch to a custom STM implementation, which we call ProfileTM, and
run several transactions.

In ProfileTM, a fair ticket lock guards all transactions. There is no concurrency, but
profiled transactions are likely to be drawn from multiple threads. Since ProfileTM
transactions are guarded by a ticket lock, they do not need to detect conflicts dur-
ing execution. The removal of conflict detection reduces more latency than dynamic
measurement adds, resulting in less single-thread latency than traditional STM algo-
rithms. We use buffered writes and redo logs, since they simplify the task of counting
the D_WAWWrites and D_RAWReads features discussed below. The features measured by
ProfileTM are listed in Table II. We provide the motivation for each feature in the
following:

—D TxTime. Combining time inside of transactions with the always-measured
D_NonTxWork indicates the frequency of transactions, as well as of the percentage
of execution time attributable to transactions. This enables dynamic selection of
locks instead of transactions.

—D_Writes. In STM algorithms that use per-location metadata (orecs, bitlocks, or byte-
locks), each distinct address written requires a CAS operation, and thus the number
of writes is a good indicator of overall transaction latency.

—D_WAWWrites. In undo-based STM algorithms, these writes are cheaper than D_Writes;
in redo-based STM algorithms, these have the same cost as D_Writes.

—D_ROReads. A transaction often makes several reads before performing its first write.
Most STM algorithms can capitalize on this behavior by offering a special read
instrumentation that does not perform a test for read-after-write consistency. In
redo-based systems, this is particularly effective, since it avoids a search in the write
log.

—D _RAWReads. In redo-based STM algorithms, transactions that have performed a write
begin each read operation by performing a lookup in the write log. When the lookup
succeeds, the read immediately returns, resulting in very low latency.

—D RWReads. In redo-based systems, these reads are most expensive, as they entail
both a lookup in the write log and the overhead of a D_RORead.

In current STM algorithms, read-after-read is not detectable and offers little op-
portunity for decreasing latency. With aggressive compiler support, several additional
optimizations are detectable. The most notable one is when a write-after-read can be
detected by the compiler and transformed into a “read-for-write” operation. In systems
supporting this optimization, a fourth read type would be needed. Similarly, a compiler
might present a decoupled read instrumentation sequence [Harris et al. 2006] or offer

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:9

Off-Line Training During Program Execution
[benchmark | Choose Algorthm
e X X 9 I’. 9 Running Program Yes

N N thread levels Adaptivity

Y Policy

1 (Throughput)
'

'

'

'

I

'

'

' '

- i =
(Static :_ _ Learning Static ' Application
Features) Tool Application f----- Feature
Description Requirements,

Fig. 3. Adaptivity Workflow: Offline training on microbenchmarks produces an executable adaptivity policy.
During program execution, various events (triggers) cause the framework to profile a fixed number of trans-
actions, and then use the policy and profile to select a new algorithm. Algorithm selections also incorporate
STM feature requirements, such as language-level semantics, and the static application profile.

Commit

Instrumented
Transaction

special low-latency transactional reads that use partial sandboxing [Spear et al. 2009].
Little effort would be required to extend ProfileTM to count these accesses.

5. RUNTIME ADAPTIVITY FRAMEWORK

We created the framework described in Figure 3 that can dynamically pick the correct
STM algorithm during program execution using the workload features described in
Section 4.

5.1. OffLine Training Strategy

We perform unsupervised offline training. The trainer is given as input a set of mi-
crobenchmarks, a set of configurations of those microbenchmarks, and a set of STM
algorithms. For each combination, it runs five 5-second experiments and records the
average throughput. It then runs the experiment using ProfileTM in single-thread
mode to gather dynamic characteristics of the workload and performs static analysis
upon the microbenchmark. All data is fed to the ML training policy, which produces an
adaptivity policy. This policy is either executable code or a data file that specifies the
behavior of executable code, depending on the ML system being used.

There are two weaknesses in this approach. Our microbenchmarks (described below)
are all homogeneous workloads with one program phase, which may not be repre-
sentative of real TM workloads. Additionally, their coding style always matches the
pattern:

transaction { tx_function(...) }

This pattern limits our intraprocedural analysis to the S_nontx gap feature. As we
discuss in Section 6, this artifact does not affect our expert adaptivity policies.

5.2. OffLine Training: Workloads

In a production environment, one may tailor training data to the common-case for
the target application. To show generality, we instead train using parameterized mi-
crobenchmarks, and thus measure what should serve as a lower bound on the effective-
ness of our adaptive system. Our training workload consists of various configurations
of the following microbenchmarks.

—Data Structure Traversals. Red-black trees, hash tables, and linked lists, with varying
mixes of insert, lookup, and remove, and varying key ranges are stored in the dataset.
These workloads typically scale well and correspond to the use of TM for creating
concurrent data structures.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:10 Q. Wang et al.

—Pathology Test. This usually causes livelock for eager STMs and starvation for lazy
STMs.

—Overhead Finders. These expose overheads in STM algorithms. Examples include
shared counters, which highlight boundary latency, truly disjoint workloads, which
expose shared metadata bottlenecks, and read-sharing workloads, which emphasize
the cost of visible reads.

—Multiword Atomics. These workloads use TM to perform multiword CAS operations
of varying sizes or to implement read N write 1 operations. We also created a read N
write N operation to show how the order of reads and writes affects throughput.

—Database Simulations. These workloads aim to mirror more complex uses of trans-
actions. In addition to various “forest” workloads (consisting of multiple operations
on a set of red-black trees), we also provide a tree workload where every transaction
performs at least one write.

As appropriate, we varied the nontransactional time between transactions, the number
of locations accessed within a transaction, and the percentage of transactions that were
read-only. In total, this resulted in 213 different microbenchmark configurations, which
we tested at many thread levels.

5.3. When to Trigger Adaptivity

To choose the best STM algorithm for a workload, the adaptivity policy must under-
stand the workload’s behavior. Past work focused on measuring the incidence of API
calls that may never occur in the common case, motivating our use of dynamic pro-
filing to measure characteristics that should apply to all workloads. During program
execution, four events (triggers) activate our adaptivity framework. As in previous
work, we set a threshold for consecutive aborts to rapidly detect pathologies. When a
mutex-based STM is in use, there are no aborts, but long delays when attempting to
begin a transaction may suggest that the algorithm should change. A second threshold
watches this delay. Thread creation and destruction are also triggers, though the work-
loads we test do not exercise this feature. Lastly, we periodically resample a workload
by using thresholds of total commits in the second thread.! The threshold values are
{16°, 161, 162, 162, £ x 16*}, for all £ > 0. All triggers are inexpensive and occur when a
thread holds no locks.

5.4. The Dynamic Profiling Process

When configuring our library during program initialization, the adaptivity policy sets
an initial algorithm, taking as input the required semantics of the application and
whether the application uses self-abort. For the time being, we only select between
Encounter-Time Lock Atomicity (ELA) [Menon et al. 2008] and weak semantics, which
we sometimes refer to as “X” semantics. The policy is also given the application char-
acteristics produced by static analysis.

On every trigger, the library blocks new transactions from starting and waits for all
in-flight transactions to commit or abort. It then switches to ProfileTM and runs N
transactions, one at a time. This ensures forward progress and prevents pathology. An
important consideration is how the system should handle repeated recommendations
of the same algorithm when consecutive aborts are frequent. Some workloads perform
best with an algorithm that admits frequent aborts, and thus forbidding repeat se-
lections is unacceptable. Instead, a repeat selection causes our system to record the

LChoosing the second thread prevents any triggers when an application runs in single-thread mode, with-
out requiring overhead in all threads. For heterogeneous workloads, resampling parameters can be easily
adjusted.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:11

total number of commits and aborts across all threads. On the next trigger, if the same
algorithm is chosen again, then as long as there has been forward progress (e.g., more
commits) under the chosen algorithm, it will remain in use, and the abort threshold
for causing another trigger will be doubled. Commit-based triggers do not change the
abort threshold.

6. ADAPTIVITY POLICIES

The system described in Section 5 allows many mechanisms for creating adaptivity
policies. We envision three approaches: a programmer can create an “expert” adaptive
policy, ignoring the entire left hand side of Figure 3; a completely automated ML system
can generate the policy as the output of off-line training; or some guided process can
be employed, wherein the programmer and learning tool create a policy together.

6.1. Expert Policies

These policies are written by a programmer to satisfy arbitrary requirements. For
example, RSTM (upon which our work is based) provides state machines that avoid
pathology by transitioning the algorithm to successively more pessimistic STM algo-
rithms [Spear 2010].

Our simplest expert policies capture the intuition that the best algorithm depends
on the thread count. We provide three policies, depending on whether ELA semantics
are required or not and whether writers are expected to be frequent.

—ThrX. Assumes weak semantics are acceptable, and uses Mutex at 1 thread and the
LSA algorithm otherwise. When ELA semantics are not required, LSA [Felber et al.
2008] is among the lowest latency and most scalable algorithms, unless contention
is high.

—ThrELAI. Provides ELA semantics, using Mutex at 1 thread and NOrec [Dalessandro
et al. 2010] otherwise. NOrec is among the most scalable STMs that provide ELA
semantics.

—ThrELAZ2. Like ThrELA1, except for > 8 threads, lazy TLRW [Dice and Shavit 2010]
is used. TLRW has fewer bottlenecks than NOrec when writers are frequent.

When static and dynamic profile information is available, expert policies can become
much more nuanced. Observing that many of the static features from Table I can also
be detected via dynamic profiles, we identified several common use cases. When none
of these cases is met, we fall back to ThrX or ThrELA1.

—S _Trivial. All transactions access fewer than 6 locations. If this is known statically,
choose the Nano algorithm; if ELA semantics are required, choose TLRW with lazy
acquire.

—S_MCAS _Likely. If the read and write counts are equal, the transaction is probably
simulating a multiword-CAS. If the gap between transactions is large, use Mutex.
Otherwise, favor an in-place algorithm (LSA or TLRW) appropriate for the required
semantics.

—RO. If read-only transactions comprise more than 90% of all transactions, use TML.

—Large. If all transactions are large, choose NOrec at < 4 threads, since its low latency
for large transactions will outweigh its bottlenecks.

We refer to policies that select an algorithm using this set of rules as ExpertStatic,

ExpertDynamic, or ExpertHybrid, depending on whether the characteristics are iden-
tified using static analysis, dynamic profiling, or both mechanisms.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:12 Q. Wang et al.

6.2. ML-Based Policies

We consider three orthogonal techniques for automatically creating an adaptive policy
through machine learning. These techniques all receive as input the same training
data, but generate fundamentally different policies.

Case-Based Reasoning. In case-based reasoning [Aamodt and Plaza 1994] (CBR), a
system creates a “case base” describing every program behavior that it observed during
training, the environment (e.g., thread count and static features), and the best response
(e.g., STM algorithm with the highest throughput). During program execution, CBR
policies scan the case base for entries with the same number of threads as the workload.
Among these entries, the policy selects the row that is most similar to the average of
the collected transactional profiles and returns the algorithm named by that entry,
which is the peak performer for some microbenchmark configuration.

Our CBR policies use the dynamic features described in Section 4. We consider all
possible combinations as candidate similarity metrics, using a normalized Manhattan
distance. By retaining some metadata in the case base, we can always identify the
training experiment that influenced a CBR decision, which aids in performance tuning.

Neural Networks. In neural networks, training data is treated as k tuples, where
the first field of each tuple is an output (0;), and the remaining fields are a corre-
sponding input vector (I;). Through off-line analysis, the network learns a complex,
high-dimension function that, for each vector I, computes the correct output o;. The
expectation is that if there is some mathematical relationship between program behav-
iors and the corresponding best choice of algorithm, then the network will learn that
relationship and will be able to output the best choice for any new input vector. The
most powerful neural networks are based on augmented topologies [Yao 1999], partic-
ularly the NEAT (Neuro Evolution of Augmenting Topologies) algorithm [Stanley and
Miikkulainen 2002]. We used the open-source ANJI toolkit [Anji Home 2010].

Unlike CBR, NEAT is a black box classifier. We cannot precisely explain why some
input produces some output. This property is both a strength and a weakness: while
we cannot explain cases where NEAT fails to identify seemingly obvious trends, NEAT
has the potential to find relationships that are substantially more complex, nuanced,
and robust than those found by CBR.

Rule Induction. An important benefit of applying ML successfully is a learning
methodology that produces readable heuristics that gives the TM framework devel-
oper insight and confidence in their utility. Rule set induction is powerful learning
methodology that can produce heuristics that are easy understand. Given the same
training data as our CBR and NEAT policies, it produces a set of if-then-else rules.
These rules are human-readable and show precisely what characteristics influenced
the policy’s decision. In large part, they resemble the structure (though not content) of
our expert policies. For rule induction, we used the Ripper system [Cohen 1995].

7. EVALUATION

We built our adaptive policies in the RSTM framework [Spear 2010]. Our work included
the addition of 7 new algorithms to the system. The 17 algorithms we evaluated are
listed in the following. Algorithms marked with a “*” do not provide ELA semantics.

—Mutex: One lock protects all transactions. There is no concurrency, but latency is
minimal.

—TML: A read-parallel STM where whenever a writer starts, all concurrent transac-
tions abort.

—TMLLazy: A variant of TML where read-only transactions abort when a writer
commits.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:13

—LSA*: Ownership records (orecs) are used to detect conflicts, and writes are made
directly to memory. Undo logs are used when a transaction aborts [Felber et al. 2008].

—OrecLazy*: LSA with commit-time locking and redo logs.

—OrecFair*: An extension of OrecLazy that adds starvation avoidance. “Possibly starv-
ing” transactions use visible reads, while others do not.

—OrecELA: An extension to OrecLazy that adds ELA semantics.

—NOrec: An STM based on value-based validation. There is no per-location global
metadata, but transactions block during any writer commit [Dalessandro et al. 2010].

—NOrecPrio: Extends NOrec with a weak form of priority-based starvation avoidance.

—TL2*: A lazy orec-based algorithm [Dice et al. 2006] that achieves low latency by
allowing some aborts that OrecLazy avoids.

—TLRW: Implements visible readers (read locking) via “bytelocks”. Writes are per-
formed in-place, with undo logs [Dice and Shavit 2010].

—TLRWLazy: A variant of TLRW with commit-time locking and redo logs.

—BitEager: Similar to TLRW, but using bitlocks instead of bytelocks.

—BitLazy: A bitlock-based TLRWLazy algorithm.

—RingSTM: To detect conflicts, readers maintain a signature of the addresses they
access and at commit time writers publish a signature of the addresses they mod-
ify [Spear et al. 2008].

—TLI: A variant of InvalSTM [Gottschlich et al. 2010]. Committing writers are re-
sponsible for finding and forcibly aborting in-flight transactions with whom they
conflict.

—Nano: A locking variant of WSTM [Harris and Fraser 2003]. Overhead is quadratic
in the number of reads performed by a transaction, but there are no shared-memory
bottlenecks.

All experiments in this section were performed on an HP z600 with 6GB RAM
and a 2.66GHz Intel Xeon X5650 (Nehalem) processor (6 cores/12 hardware threads).
Code was compiled with g++ version 4.5.1, in 32-bit mode with —O3 optimizations. All
experiments are the average of 3 trials. There was low variance among trials, except
for the Bayes benchmark (see Section 7.4).

We trained 6 versions of our adaptive policies: “ELA” refers to training conducted
using only algorithms that provide ELA semantics, and “X” refers to training on all 17
algorithms (e.g., weak semantics). We also considered three sets of training workloads
from Section 5.2: S1 used data structure traversals, pathology tests, and overhead
finders; S2 used multiword atomics and database simulations; S1+S2 used all training
workloads. This led to 6 Ripper policies, 6 ANJI policies, and 6 x 31 CBR variants in
our initial exploration (recall that with CBR, we must evaluate every combination of
features separately). We set adaptivity triggers at 16 consecutive aborts, after a 2048-
cycle loop spin on lock acquisition, and according to the commit thresholds described in
Section 5.3. On any trigger, we collected a single transaction profile, as initial studies
did not find a significant improvement in sample quality, but did observe noticeable
slowdown in the Labyrinth workload, when collecting multiple profiles. Tuning this
parameter based on S_txsites is future work.

We configured our Expert policies to detect behavior using only static STAMP fea-
tures, only dynamic features, or a combination (static features + dynamic read-only
ratio). We refer to these variants as ExpertStatic, ExpertDynamic, and ExpertHybrid.

7.1. Evaluation Criteria

To evaluate our adaptive policies, we used the STAMP benchmark suite [Minh et al.
2008]. For the 9 recommended configurations,? we tested each of the 17 STM algorithms

2We omitted the “yada” benchmark, since the released code is unstable.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:14 Q. Wang et al.

Table Ill. Harmonic Mean Speedups (Normalized to Oracle Performance) for STAMP with no Semantics
Requirements. Shown Are the Best Single Algorithm (LSA), The Best Expert Policies (ThrX and
ExpertStatic), the Best Ripper Configuration (Trained on S1+S2), and the Best CBR Configuration
(Trained on S1, Similarity Based on Weighted Sum of D_TxTime and D_RORatio)

KMeans Vacation
Bayes | Genome | Intruder | (High) | (Low) | Labyrinth | SSCA2 | (High) | (Low) | All
LSA 0.80 0.90 0.88 0.82 | 0.88 0.99 0.73 0.89 | 0.88 | 0.86
ThrX 0.80 0.94 0.98 0.89 | 0.92 1.00 0.79 0.97 | 0.96 |0.91
ExpertStatic | 0.72 0.95 0.98 0.98 | 0.99 0.96 0.96 0.96 | 0.95 | 0.93
Ripper 0.40 0.84 0.71 0.67 | 0.86 0.83 0.73 0.82 | 0.82 |0.71
CBR 0.70 0.91 0.91 0.78 | 0.87 1.05 0.93 0.99 | 0.99 |0.89

Table IV. STAMP Harmonic Mean Speedups When ELA Semantics are Required. ThrELA2 Replaces ThrX,
and CBR Achieves its Best Performance Using the D_AlIReads Feature

KMeans Vacation
Bayes | Genome | Intruder | (High) | (Low) | Labyrinth | SSCA2 [(High) | (Low) | All
NOrec 0.88 0.91 0.89 0.65 | 0.72 0.99 0.56 0.88 | 0.88 [0.79
ThrELA2 0.92 0.90 0.90 0.72 | 0.73 0.99 0.67 0.86 | 0.88 |0.83
ExpertStatic | 0.76 0.92 0.93 1.00 0.92 0.95 0.90 0.94 0.95 | 0.92
Ripper 0.46 0.90 0.90 0.73 | 0.86 0.83 0.90 0.94 | 0.95 | 0.79
CBR 0.79 0.99 0.91 0.84 | 0.87 0.93 1.05 0.98 | 0.99 |0.92

at1, 2, 4, 8, and 12 threads. Using this information, we created an “oracle” dataset con-
sisting of the best performing STM algorithm for each benchmark at each thread level.
For each adaptivity policy, we tested each benchmark at each thread level and com-
puted its speedup versus the oracle. We scored each policy based on its per-benchmark
harmonic mean speedup as well as its STAMP-wide harmonic mean speedup.

7.2. Performance Summary: Preliminaries

Tables III and IV list the best per-benchmark and STAMP-wide harmonic mean
speedups for each adaptive system. Note that the oracle policy differs between the
two tables, since ELA excludes several algorithms. Quantitative comparisons cannot
be made between tables.

If only one algorithm can be used for all of STAMP, ELA favors NOrec while LSA is
best otherwise. However, for several benchmarks this choice is far from ideal, resulting
in a low 0.79 overall speedup for NOrec, and 0.86 for LSA. For X semantics, only TL2
was close to LSA (0.81); for ELA, TLRW and orec variants were close to NOrec (above
0.73).

The adaptivity policies included in RSTM perform poorly (not shown). These poli-
cies interpret transient high abort rates as pathologies and make permanent decisions
toward fair but low-throughput algorithms. NOrec and LSA outperform the correspond-
ing ELA and X RSTM policies.

Similarly, ANJI performance was unacceptably low. As a black-box classifier, our
only recourse was to alter the training workload suite and re-train. This process never
produced a policy capable of surpassing 0.57 speedup for X semantics and 0.70 for ELA
semantics.

7.3. Outperforming the Oracle

An ideal adaptivity policy should be able to outperform the oracle, i.e., achieve a
speedup > 1. In practice, the incidence of speedup > 1 benefits from four program
characteristics.

(1) The program should have distinct phases. The phases can be statically identifiable,
or correspond to a dynamic property, such as the contents of a worklist [Kulkarni
et al. 2009].

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:15

(2) Each phase must be long enough that the cost of profiling and then switching to a
different algorithm can be offset by an increase in performance.

(3) Each phase must vary in behavior relative to other phases, so that the use of
different algorithms for different phases can result in statistically significant im-
provements in performance.

(4) Ideally, phase boundaries should coincide with behavioral changes that are quickly
detected by our triggers and that are understood by our adaptive policies.

Past work has shown that phases are not always clearly delineated (e.g., in the Lee-TM
routing workload [Ansari et al. 2008] upon which STAMP Labyrinth is based, the
abort rate “creeps” over time). In this case, the first and fourth properties are likely
to be violated. However, the use of periodic profiling can still detect phases, so long
as some other artifact (in Lee-TM/Labyrinth, the number of reads and writes) differs
from one profile collection to the next.

Across all adaptivity policies, we found that at least one of our policies was able
to achieve a consistent speedup of 1.04 or higher across all thread levels on each of
KMeans, Vacation, SSCA2, and Labyrinth. However, these policies did not necessarily
perform well on other workloads, and hence may not be reported in Tables IIT and IV.

Failure to outperform the oracle on Genome was a surprise. Upon further investiga-
tion, we found that some of our policies failed to choose TML when Genome entered the
read-only phase, and others failed to abandon TML when Genome left the read-only
phase. These faults can be addressed either by modifying TML so that departing the
read-only phase causes a high rate of aborts, or else by adding a trigger based on the
number of consecutive read-only or writer commits. Determining which approach is
better should be delayed until there are more transactional workloads.

7.4. Expert Policy Performance

The ThrX and ThrELA policies, which select an algorithm based only on the thread
count, raise performance significantly. For ThrX, this improvement is completely due
to avoiding overhead at 1 thread, as it chooses LSA otherwise. We recommend this
approach without hesitation for any future STM design. However, ThrX still performs
poorly on SSCA2, KMeans, and Bayes.

ThrELA2, which chooses between Mutex, NOrec, and TLRWLazy, is more nuanced.
In choosing TLRWLazy at > 8 threads, it loses performance on Vacation. However,
TLRWLazy scales better than NOrec for small writing transactions, and in the end
this improvement on KMeans and SSCA2 tips the scales in favor of ThrELA2 over
ThrELA1 (which only uses Mutex and NOrec).

It is worth noting that KMeans and SSCA2 transactions match simple patterns
that can be detected statically: the S_mcas_likely and S_trivial patterns, respectively.
The ExpertStatic policy, which has access to the static analysis of each program, can
thus choose Nano for SSCA2 under X semantics (TLRW at > 2 threads under ELA)
and Mutex for KMeans with 2-4 threads. These choices have a striking impact on
overall performance. ELA performance improves from 0.83 to 0.92. Under X semantics,
performance rises from 0.91 to 0.93.

Apart from Bayes, ExpertStatic performance is excellent. While we include Bayes
performance in all of our evaluation, we are generally suspicious of this workload. The
number and size of transactions run by each thread is dependent on the interleaving of
a few transactions executed early in the workload; eager STM algorithms (particularly
with visible reads) seem to cause a bad initial commit order, which can cause an
order of magnitude slowdown. Similarly, a round-robin scheduling of transactions can
occasionally cause a superlinear (> 4x) speedup at 2 threads.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:16 Q. Wang et al.

Lastly, we observe that ExpertStatic outperformed ExpertDynamic (where con-
ditions like S_trivial and S_mcas_ likely are detected statically) and ExpertHybrid
(ExpertStatic + the dynamic read-only ratio). In the latter case, adding read-only ratio
did not affect how we adapted, but added computation during adaptivity. In the former
case, there was a conflict between the accuracy of our profiles and the aggressiveness
of our policies. For example, ExpertDynamic never chooses Nano, because the cost of
choosing Nano incorrectly is significant, and dynamic profiles are an approximation.
This is particularly true for heterogeneous workloads: Bayes, Labyrinth, and KMeans
all have both tiny transactions and large transactions for which Nano is unacceptable.

7.5. Ripper Performance

Our ML policies based on rule induction did not offer a significant advantage over using
a single algorithm or the ThrX/ThrELA policies. Ripper output is human readable, and
there is much room for an expert to fine-tune Ripper output.

Our analysis identified two factors that reduced performance. First, Ripper repeat-
edly chose a bad fallback algorithm: if no rule was invoked, it selected the low-
performance TMLLazy algorithm, where LSA and NOrec would have been better
choices. Second, and more significant, is variance in Ripper’s ability to deduce ranges.
For example, if two training experiments showed that TLRW was best at 2 threads
with 8 D_ROReads and at 2 threads with 12 D_ROReads, Ripper should output a rule of
the form 8 < D_ROReads < 12, but sometimes produces D_ROReads € {8, 12}. The
latter is clearly less general. We are currently investigating quantizing strategies for
the training workloads, so that the framework can specify ranges, rather than relying
on Ripper to learn them.

With these limitations, Ripper’s best “X” policy only reached 0.71 speedup (0.78 with
Bayes excluded), and under ELA semantics, reached as high as 0.79 (0.87 without
Bayes). This is significantly better than ANJI and competitive with ThrELA if we ex-
clude Bayes. With a richer interface between our framework and Ripper (especially
by quantizing profiles within the framework) as well as better static analysis of mi-
crobenchmarks, Ripper performance should improve.

7.6. CBR Performance

We explored all combinations of 5 CBR features and considered all three training
workloads. Given this large search space, we were able to find policies that offered
strong performance on STAMP, even without static profiles. With ELA semantics, the
use of a single feature, the read count of transactions, achieved a 0.92 speedup. This
surpasses all other ELA adaptivity policies. With X semantics, our best performing
policy only reached 0.89. This policy combined D_TxTime and D_NonTxWork, each of which
independently achieved a 0.89 performance.

Table V shows the effectiveness of each individual dynamic feature on each STAMP
benchmark, for both ELA and X semantics. The predictive power of each feature on
a workload is clearly dependent on the set of available algorithms. For example, us-
ing D_AllReads outperforms the oracle on SSCA2. In contrast, time-based metrics
(D_TxTime and D_NonTxTime) provide a better metric for the Labyrinth workload.
We caution the reader against placing too much emphasis on these specific results, as
the interplay between the set of available algorithms and the similarity of training
workloads’ transactions to test workloads’ transactions is very nuanced. Still, there
are clear and logical trends. For example, under X semantics the best performing algo-
rithm often requires a CAS per location written, and we see that D_AllWrites is more
predictive than D_AllReads. Under ELA semantics, the best algorithms either have a
single CAS regardless of the number of writes (NOrec) or have very high overhead on
each read (TLRW and BitLock variants). In these cases, D_AllReads is more predictive.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:17

Table V. Performance of Individual Dynamic Features for CBR Adaptivity Policies on STAMP. Column
Labels of “X” and “E” Correspond to Weak and ELA Semantics, Respectively

D_AllReads | D_RORatio D_TxTime D_NonTxTime | D_AllWrites

Training Data X E X E X E X E X E

Bayes 0.69 | 0.79 | 0.73 | 0.03 | 0.83 | 0.88 | 0.84 0.94 0.65 | 0.81
Genome 0.89 | 099 | 0.83 | 0.67 | 0.93 | 0.82 | 0.93 0.91 0.91 | 0.95
Intruder 095 | 091 | 0.91 | 0.89 | 0.90 | 0.95 | 0.86 0.90 0.85 | 0.95

KMeans (high) | 0.62 | 0.84 | 0.95 | 0.97 | 0.82 | 0.73 | 0.83 0.73 0.83 | 0.73
KMeans (low) 0.71 | 0.87 | 0.94 | 0.96 | 0.80 | 0.75 | 0.84 0.77 0.87 | 0.80
Labyrinth 092 | 093 | 0.84 | 0.62 | 1.05 | 1.06 | 1.04 1.08 1.06 | 0.99
SSCA2 1.06 | 1.05 | 0.89 | 0.90 | 0.92 | 0.74 | 0.89 0.90 0.90 | 0.89
Vacation (high) | 0.98 | 0.98 | 0.96 | 0.68 | 0.90 | 0.95 | 0.88 0.95 0.99 | 0.92
Vacation (low) 0.96 | 099 | 0.96 | 0.73 | 0.94 | 0.97 | 0.93 0.96 0.89 | 0.94
All 0.84 | 092 | 0.88 | 0.18 | 0.89 | 0.86 | 0.89 0.89 0.87 | 0.88

Speedup vs. Oracle

CBR Read (ELA) Ripper (ELA) CBR Time RO (X) Ripper (X)

Fig. 4. Impact of training data. The best-performing CBR policies degrade significantly when trained
improperly.

7.7. Impact of Training Data

In Figure 4, we show the effect that different training data has on the effectiveness of
our best CBR policies and on our Ripper policy. Our CBR policies without exception
performed best when trained only on the S1 training workloads. Ripper, on the other
hand, showed different preferences under ELA and X semantics. Note that in the
training workloads, S1 is drawn from STM microbenchmarks, whereas S2 models
behaviors that we expect of future TM programs.

For CBR, the explanation is simple: S2 contains many entries that, on a per-metric
basis, are indistinguishable to our CBR similarity functions (which simply match pat-
terns). Thus the S2 workloads can cause our policies to reject an otherwise valid choice
of algorithm from S1, due to a similarity collision. In the cases where S2 data led to
a better decision than S1, it was by a small margin, whereas when S2 led to a worse
decision than S1, it was by a large margin.

Ripper does not rely on pattern matching, but analyzes the training data to produce
rules describing how features should influence adaptivity. The rules produced from
the S2 data were typically long (15 different if statements, with 1-4 conditions per
statement), whereas the rules produced from the S1 data were short (5 if statements).
In both cases, Ripper chose the low-performance TMLLazy algorithm when all other
conditions evaluated to false. By leading to generation of more opportunities to pick
something other than TMLLazy, the S2 data set produced better policies.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:18 Q. Wang et al.

Table VI. Ripper Rules for Weak Semantics. Rules were Produced from Static Features, Using Leave-One-Out
Cross Validation on STAMP. “ST” is an Abbreviation for “Sometimes”

Bayes, SSCA2 Genome, KMeans Intruder, Vacation Labyrinth
if (S_costly_aborts == ST) |if (S_costly_aborts == ST) | if (S_costly_aborts == ST) | if (S_txsites >= 15)
return NOrec return NOrec return NOrec return OrecFair
else return LSA else if (S_txsites >= 15) |else if (S_txsites >= 15) |else if (S_txsites >= 10)
return OrecFair return OrecFair return Nano
else return LSA if (S_txsites >= 1 else return LSA
return Nano
else return LSA

Table VII. Ripper Rules for ELA Semantics. Rules were Produced as in Table VI

Bayes Genome, SSCA Intruder, KMeans, Vacation, Labyrinth
if (S_txsites >= 10) return NOrecPrio | if (S_trivial == always)
return BitLazy return BitLazy
else if (S_txsites >=5) else return NOrecPrio
return TLRW
else return NOrecPrio

7.8. Evaluation of Learning Features

By evaluating each combination of features from within the CBR classifier, we gained
a sense for their predictive power. Table V provides a summary. The results illustrate
the importance of dynamic profiling, since D_AllReads, D_AllWrites, and D_TxTime
are features collected by ProfileTM. However, individual features have high variance,
depending on semantics and training data.

As discussed previously, our training harness was not compatible with our static
analysis, since all transactional code was reached via virtual dispatch from within a
single source-level transaction. However even the performance of ExpertStatic (Ta-
bles III and IV) shows the effectiveness of the static features: SSCA2 exhibits the
S_trivial property, KMeans exhibits the S_.mcas_likely property, and Labyrinth ex-
hibits S_costly_aborts.

To gain further insight, we performed leave-one-out cross validation on the STAMP
benchmark suite, by training a Ripper policy for one benchmark using the performance
and static features of the other 6 benchmarks as inputs. Tables VI and VII show the
resulting rules (note that at 1 thread, Mutex is always used). While S_trivial and
S_costly_aborts appear in the Ripper output, emphasis is placed on S_txsites, the
number of source-level transactions. Furthermore, while LSA and NOrecPrio are good
final choices, Nano could be chosen inappropriately. In practice, the policy always
chooses LSA for X semantics, achieving 0.91 speedup. For ELA semantics, the policy
chooses between BitLazy and NOrecPrio, attaining 0.80 speedup.

7.9. Combining ML with Expert Policies

Throughout the conduct of this research, we were tempted to exploit expert knowledge,
rather than allow our ML systems to operate as “black boxes”. Section 7.8 provides an
example of the cost: the inclusion of Nano in our training data resulted in its selection
at inappropriate times. Experts would not expect Nano to be a good choice simply
because there are between 10 and 14 source-level transactions. Experts would expect
Nano to be a good choice only if every source-level transaction within a program phase
is known to be trivial. The reasonable performance of the cross validation Ripper policy
was pure luck, in that Nano was never selected in our experiments.

Special-purpose algorithms like TML and Nano are hard for a general-purpose ML
system to understand. To show a classifier that the algorithms are worthy of consider-
ation, one must train on workloads where the algorithms perform well. This, in turn,

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:19

o 1.200 B il Expert @CBR O Expert+CBRr
f_«? 1.000 — — = -
O 0.800 B
@
> 0.600 - B
3
S 0.400 - B
3
p=s 0.200 B
0000 n T T T T T 1

] (0] = (2] (9] e A c c =

@ € 0} co c=o E < S S¢ <

z S s 8§ §3%3 =€ S §5 §35

o 5] IS =L =< 9 » gL &<

0] = X X s > >

Fig. 5. Combining ExpertStatic with CBR D_TxTime+D_NonTxWork. For ELA semantics, the overall per-
formance increases to 0.95. X semantics (not shown) reaches a 0.93 speedup.

leaves the classifiers free to attribute the success of those algorithms to the wrong
features.

However, these special-purpose algorithms are easy for experts to exploit. Our expert
policies combine two approaches: they first identify a set of easily detectable cases, for
which the expert knows exactly how to achieve peak performance. Two prominent
examples are using TML when the read-only ratio is above 95%, and using Nano when
all transactions are statically known to be extremely small. At some point, the cases
became too hard to specify, and the “best” algorithm for a case became little more than
a guess. At this point, the expert policies adopt a one-size-fits-all approach, by falling
back to ThrX or ThrELA.

In Section 7.7, we showed that our CBR policies performed best when their training
workloads did not exhibit the S_mcas 1ikely and S_trivial features (set S2). Even
with these features in the training set, our CBR policies never achieved 0.95 speedup
or higher for KMeans, SSCA2, or Labyrinth, the STAMP benchmarks that possess
these features. In contrast, our ExpertStatic policy consistently performed well on
these workloads, since the features are easy for an expert to exploit.

We now discuss policies that combine expert knowledge and ML-based learning. In
these policies, the expert specifies cases that they can easily detect, and for which they
know exactly which algorithm to select. When the most profitable cases are exhausted,
the policy employs machine learning. Furthermore, the training set for the ML-based
fallback excludes those cases handled by the expert. Figure 5 shows performance under
ELA semantics when combining expert and ML policies. Overall performance increases
to 0.95. With weak semantics, the policy achieves 0.93 speedup.

On a benchmark-by-benchmark basis, our hybrid policies always matched the best
performance of the sub-policies on which they were based. Thus even though we have
not yet evaluated ML-based policies trained on static profiles, we believe that this
technique of combining expert intuition with an ML-based fallback is likely to pro-
vide the best performance. In particular, we believe the technique of letting the expert
completely specify the use of high-risk, high-reward algorithms is a significant ad-
vancement over previous ML-influenced systems research.

8. FUTURE WORK

Section 7 focused on performance on single chip “Nehalem”-class x86 systems. To fully
demonstrate the generality of a ML system for adaptive TM, further evaluation on
other architectures (both other ISAs and other versions of the x86 ISA) is needed.
We briefly summarize our findings for the STAMP Vacation benchmark on a 1.165

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:20 Q. Wang et al.

Table VIII. Harmonic Mean Speedup (vs. Oracle) of STAMP Vacation on the Niagara2

Low High Low High
Algorithm X ELA X ELA | Algorithm X ELA X ELA
TLRWLazy | 0.75 | 0.8 | 0.76 | 0.83 | NiagTLRWLazy | 0.87 | 0.93 | 0.88 | 0.97
TLRW 0.82 | 0.88 | 0.65 | 0.72 | NiagTLRW 092 | 099 | 0.71 | 0.8
LSA 0.89 | N/A | 0.9 N/A | NiagLSA 0.98 | N/A | 0.99 | N/A
OrecLazy 0.88 | N/A | 0.85 | N/A | NiagOrecLazy 0.99 | N/A | 097 | N/A

GHz, 64-way Sun UltraSPARC T2 with 32 GB of RAM, running Solaris 10. On this
“Niagara2”-class machine, individual cores are very simple (in-order, single issue), but
8-way threaded (using fine-grained hardware multithreading). The L2 cache has low
access times and is shared among all cores, but CAS instructions are slow as they are
implemented out of core at the L2. These characteristics have a noticable effect on
Vacation.

—The “Mutex” STM implementation was the best performer at 1 and 2 threads. On
the x86, Mutex was only best at 1 thread. This observation requires a redesign of
“ThrX” and “ThrELA” policies.

—TLRW always outperforms TLRWLazy for low contention, and TLRWLazy always
outperforms TLRW for high contention workloads. On the x86, TLRWLazy was al-
ways faster.

—The difference in performance between LSA and OrecLazy was much smaller.

—NOrec performed poorly on the Niagara (it was among the best “ELA” performers on
x86).

To evaluate the implications of these observations, we created a few simple “expert”
policies for the Niagara2. In each case, Mutex is used at 1 and 2 threads, and a single
algorithm for all higher thread counts (we tested up to 56 threads, which is the limit
for our version of TLRW). We call these policies NiagLLSA, NiagOrecLazy, NiagTLRW,
and NiagTLRWLazy. Their performance for X and ELA semantics is summarized in
Table VIII.

In these specific cases, it is quite easy for the expert policy to perform extremely
well. Nonetheless, it clearly holds that the expert policy must be architecture-aware.
As future work, we intend to explore whether less dramatic variations in architecture
(e.g., implementations of the same ISA) would result in new tradeoffs, and also the
degree to which expert policies can perform well on the Niagara2 for more challenging
workloads.

Another direction is the exploration of adaptive policies for Hybrid TM (HyTM)
systems [Dalessandro et al. 2011; Riegel et al. 2011]. One of the biggest questions here
relates to detecting when to adapt. In HyTM, aborts due to conflict are more common.
Aborts also occur due to capacity limitations, transient faults (e.g., TLB misses), context
switches, and forbidden instructions. The coarse mechanism of consecutive aborts may
not apply here, and perhaps it will be necessary to learn how to respond to various
abort types. The payoff could be significant, particularly when transactions frequently
overflow the hardware capacity. In such a scenario, a variation of our mechanisms could
improve performance by switching to a pure STM.

In both HyTM and STM, another exciting opportunity lies in the use of low-level
performance counter data as features for training and adapting. Yen recently proposed
a suite of simple TM-specific counters to aid in profiling [Yen 2009]. Both Yen’s counters,
and general hardware performance counters, will likely provide a wealth of information
for characterizing workloads, though not all features are likely to have significant
predictive value. We believe that the relationship between low-level hardware events

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:21

and high-level program behaviors will be easier to explore by using ML techniques
such as those presented in this paper.

There is a question of whether STM algorithms should be “adaptivity-aware”. For
example, one could tune algorithms like Nano and TML, so that they dynamically detect
when they are inappropriate choices and force an adaptation. This technique could also
enable quicker detection of phase changes, especially in workloads like Genome.

Another important direction is to ensure the training data provides good coverage of
the true feature space of TM applications. While we used a variety of microbenchmarks
based on past publications, other options, such as EigenBench [Hong et al. 2010] may
ultimately provide better coverage. There are certainly tradeoffs; for example, Eigen-
Bench does not have a means of distinguishing between “multiword CAS” and “read N
write N” patterns, and its classification of accesses into three contention categories does
not map cleanly to hierarchical data structures, particularly trees. The use of a small
number of targeted microbenchmarks to capture specific behaviors and EigenBench
for a resilient backup training data set, may ultimately be the best choice.

Further afield, while we currently support choosing among variations of a single
algorithm, there is likely to be significant benefit from tuning an STM algorithm using
ML. For example, many algorithms have been proposed and evaluated on single-chip
systems with small core counts. The danger is that certain parameters have been
hard-coded for the development system, which could cause poor performance on next-
generation systems with much higher core counts. We expect that using ML to tune
STM internal parameters, such as backoff and granularity of conflict detection, will
deliver significant performance improvements.

9. CONCLUSIONS

We believe that adaptive synchronization is necessary for high-performance shared
memory programs. To that end, this paper introduces a system for combining static
analysis, low-overhead dynamic profiling, and machine learning. It also presents a set
of simple program characteristics that are suitable for making adaptivity decisions, and
shows that our system can use these features to create TM libraries that automatically
improve their performance. To the best of our knowledge, it is the first ML-based
adaptivity system for synchronizing parallel programs.

Our best performance came from combining expert knowledge with machine learn-
ing. This approach allowed the expert to completely specify how high-risk, high-reward
STM algorithms should be used. It also simplified the task of training ML-based adap-
tivity policies, by removing from the training set cases difficult for the ML algorithms,
but easily handled by the expert.

Our experiences show the power that automatic ML-based adaptivity offers for solv-
ing hard systems problems. The combination of performance, maintainability, and
flexibility in ML systems (which can even be retrained after deployment) make them
an appealing approach for maximizing performance despite the complexity and hetero-
geneity intrinsic to parallel computing.

REFERENCES

AamoDT, A. AND PrAzZA, E. 1994. Case-based reasoning: Foundational issues, methodological variations, and
system approaches. Artif. Intell. Comm. 7, 1, 39-59.

Acakov, F., BoniLLa, E., Cavazos, J., FRANKE, B., FursiN, G., O’BoyLg, M. F. P., THOMSON, J., ToussaINT, M., AND
WriiLiams, C. K. 1. 2006. Using machine learning to focus iterative optimization. In Proceedings of the
International Symposium on Code Generation and Optimization.

Angt Home. 2005-2010. ANJI: Another NEAT Java Implementation. http:/anji.sourceforge.net/.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

54:22 Q. Wang et al.

Ansari, M., KorseLmis, C., Jarvis, K., Luian, M., Kirguam, C., AND WaTson, 1. 2008. Lee-TM: A non-trivial
benchmark for TM. In Proceedings of the International Conference on Algorithms and Architectures for
Parallel Processing.

Cavazos, J. AND O’BoyLE, M. 2005. Automatic tuning of inlining heuristics. In Proceedings of the ACM /IEEE
Conference on Supercomputing.

Cavazos, J. anD O’BoyLg, M. F. P. 2006. Method-specific dynamic compilation using logistic regression. In
Proceedings of the 21st ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications.

CoHEN, W. 1995. Fast effective rule induction. In Proceedings of the 12th International Conference on Machine
Learning.

CooPER, K. D., GrRosuL, A., HARrVEY, T. J., REEVES, S., SUBRAMANIAN, D., TorczoN, L., AND WATERMAN, T. 2005.
ACME: Adaptive compilation made efficient. In Proceedings of the ACM Conference on Languages,
Compilers, and Tools for Embedded Systems.

DALESSANDRO, L., CAROUGE, F., WHITE, S., Lev, Y., Mo1r, M., ScotT, M., AND SPEAR, M. 2011. Hybrid NOrec: A case
study in the effectiveness of best effort hardware transactional memory. In Proceedings of APLOS’ii.

DaLEssaNDRO, L., SPEAR, M. F.; anDp Scott, M. L. 2010. NOrec: Streamlining STM by abolishing ownership
records. In Proceedings of the 15th ACM Symposium on Principles and Practice of Parallel Programming.

Dicg, D., SHALEV, O., aAND SHavIT, N. 2006. Transactional locking II. In Proceedings of the 20th International
Symposium on Distributed Computing.

Dick, D. anD SHavIT, N. 2010. TLRW: Return of the read-write lock. In Proceedings of the 22nd ACM Symposium
on Parallelism in Algorithms and Architectures.

FELBER, P., FETZER, C., AND RIEGEL, T. 2008. Dynamic performance tuning of word-based software trans-
actional memory. In Proceedings of the 13th ACM Symposium on Principles and Practice of Parallel
Programming.

FursiN, G., MiraNDA, C., TEMaMm, O., NamoLARU, M., Yom-Tov, E., ZAks, A., MENDELSON, B., BARNARD, P., ASHTON,
E., Courrors, E., Bopin, F., BoniLLa, E., THoMSON, J., LEATHER, H., WiLLIAMS, C., AND O’BoyLE, M. 2008.
MILEPOST GCC: Machine learning based research compiler. In Proceedings of the GCC Developers’
Summit.

GOTTSCHLICH, J., VACHHARAJANI, M., AND SIEK, J. 2010. An efficient software transactional memory using
commit-time invalidation. In Proceedings of the International Symposium on Code Generation and
Optimization.

Harris, T. anD FraSER, K. 2003. Language support for lightweight transactions. In Proceedings of the 18th
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications.

Hagrris, T., LARUs, dJ., AND Raswar, R. 2010. Transactional memory. 2nd Ed. Synthesis Lectures on Computer
Architecture. Morgan & Claypool.

Hagrris, T., PLEsko, M., SHINAR, A., AND TarpITI, D. 2006. Optimizing memory transactions. In Proceedings of
the 27th ACM Conference on Programming Language Design and Implementation.

Hong, S., OcunteBi, T., CASPER, dJ., BRonson, N., Kozyrakis, C., AND OLUKOTUN, K. 2010. Eigenbench: A simple
exploration tool for orthogonal TM characteristics. In Proceedings of the IEEE International Symposium
on Workload Characterization.

Kurkarnt, M., BurtscHER, M., INKULY, R., PiNcaLl, K., AND CascavaL, C. 2009. How much parallelism is there
in irregular applications? In Proceedings of the 14th ACM PPoPP.

Kurkarnt, P., HiNgs, S., HisgRr, J., WHALLEY, D., DAVIDSON, dJ., AND JoNES, D. 2004. Fast searches for effective
optimization phase sequences. In Proceedings of the 25th ACM Conference on Programming Language
Design and Implementation.

Lau, J., PERELMAN, E., AND CALDER, B. 2006. Selecting software phase markers with code structure analysis.
In Proceedings of the International Symposium on Code Generation and Optimization.

Lev, Y., Moir, M., anD NussBauM, D. 2007. PhTM: Phased transactional memory. In Proceedings of the 2nd
ACM SIGPLAN Workshop on Transactional Computing.

L1, X., GARzARAN, M. J., aND Papua, D. 2004. A dynamically tuned sorting library. In Proceedings of the
International Symposium on Code Generation and Optimization.

L1, X., GARzARAN, M. J., AND Pabua, D. 2005. Optimizing sorting with genetic algorithms. In Proceedings of the
International Symposium on Code Generation and Optimization.

MARATHE, V. J., ScHERER III, W. N., aND Scott, M. L. 2005. Adaptive software transactional memory. In
Proceedings of the 19th International Symposium on Distributed Computing.

MEenNoN, V., BALENSIEFER, S., SHPEISMAN, T., ApL-TaBataBa1, A.-R., Hupson, R., Saua, B., anp WEeLc, A. 2008.
Practical weak-atomicity semantics for Java STM. In Proceedings of the 20th ACM Symposium on
Parallelism in Algorithms and Architectures.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

A Transactional Memory with Automatic Performance Tuning 54:23

Mg, C. C., CHUNG, J., Kozyrakis, C., AND OLUKOTUN, K. 2008. STAMP: Stanford transactional applications for
multi-processing. In Proceedings of the IEEE International Symposium on Workload Characterization.

Monstrror, A., Bopiy, F., aND Quintou, R. 2002. A machine learning approach to automatic production of com-
piler heuristics. In Proceedings of the 10th International Conference on Artificial Intelligence: Methodol-
ogy, Systems, and Applications.

N1, Y., WELc, A., ApL-TaBaTaBal, A.-R., BacH, M., Berkowits, S., CowniE, J., GeEva, R., KozHukow, S.,
NaRAYANASWAMY, R., OLIVIER, J., PREIS, S., SaHA, B., TaL, A., anp Tian, X. 2008. Design and implemen-
tation of transactional constructs for C/C++. In Proceedings of the 23rd ACM Conference on Object
Oriented Programming, Systems, Languages, and Applications.

PoucHer, L.-N., Bastour, C., CoHEN, A., AND Cavazos, J. 2008. Iterative optimization in the polyhedral model:
Part I, multidimensional time. In Proceedings of the 29th ACM Conference on Programming Language
Design and Implementation.

RIEGEL, T., MARLIER, P., Nowack, M., FELBER, P., AND FETZER, C. 2011. Optimizing hybrid transactional memory:
The importance of nonspeculative operations. In Proceedings of the 23rd ACM Symposium on Parallelism
in Algorithms and Architectures.

SHEN, X., ZHONG, Y., AND Ding, C. 2004. Locality phase prediction. In Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Operating Systems.

SonmEez, N., Harris, T., CristaL, A., Unsar, O. S., aND VALErO, M. 2009. Taking the heat off transactions:
Dynamic selection of pessimistic concurrency control. In Proceedings of the 23rd International Parallel
and Distributed Processing Symposium.

SpEAR, M. 2010. Lightweight, robust adaptivity for software transactional memory. In Proceedings of the
22nd ACM Symposium on Parallelism in Algorithms and Architectures.

SpEAR, M. F., MicHaeL, M. M., Scott, M. L., anD Wu, P. 2009. Reducing memory ordering overheads in
software transactional memory. In Proceedings of the International Symposium on Code Generation and
Optimization.

SpEAR, M. F., MicHAEL, M. M., AND voN Praun, C. 2008. RingSTM: Scalable transactions with a single atomic
instruction. In Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures.

StaNLEY, K. AND MIIKKULAINEN, R. 2002. Evolving neural networks through augmenting topologies. Evolution-
ary Comput. 10, 2, 99-127.

STEPHENSON, M. AND AMARASINGHE, S. 2005. Predicting unroll factors using supervised classification. In Pro-
ceedings of the International Symposium on Code Generation and Optimization.

STEPHENSON, M., AMARASINGHE, S., MARTIN, M., AND O’REILLY, U.-M. 2003. Meta optimization: Improving com-
piler heuristics with machine learning. In Proceedings of the 24th ACM Conference on Programming
Language Design and Implementation.

Usur, T., SMarAGDAKIS, Y., BEHRENDS, R., AND Evans, J. 2009. Adaptive locks: Combining transactions and locks
for efficient concurrency. In Proceedings of the 18th International Conference on Parallel Architecture
and Compilation Techniques.

WELC, A., SaHA, B., AND ApL-TaABATABAIL, A.-R. 2008. Irrevocable transactions and their applications. In Pro-
ceedings of the 20th ACM Symposium on Parallelism in Algorithms and Architectures.

Yao, X. 1999. Evolving artificial neural networks. Proceedings IEEE. 87, 9, 1423-1447.
YEN, L. 2009. Signatures in transactional memory systems. Ph.D. thesis, University of Wisconsin, Madison.

Yorov, K., L1, X., REN, G., CiBuLsKis, M., DEJoNG, G., GARZARAN, M., Papua, D., PiNncaLl, K., StopcHILL, P., AND
Wru, P. 2003. A comparison of empirical and model-driven optimization. In Proceedings of the 24th ACM
Conference on Programming Language Design and Implementation.

Received July 2011; revised October 2011; accepted November 2011

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 54, Publication date: January 2012.

