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Information diffusion and virus propagation are fundamental processes taking place in networks.
While it is often possible to directly observe when nodes become infected with a virus or adopt
the information, observing individual transmissions (i.e., who infects whom, or who influences
whom) is typically very difficult. Furthermore, in many applications, the underlying network over
which the diffusions and propagations spread is actually unobserved. We tackle these challenges by
developing a method for tracing paths of diffusion and influence through networks and inferring
the networks over which contagions propagate. Given the times when nodes adopt pieces of
information or become infected, we identify the optimal network that best explains the observed
infection times. Since the optimization problem is NP-hard to solve exactly, we develop an efficient
approximation algorithm that scales to large datasets and finds provably near-optimal networks.

We demonstrate the effectiveness of our approach by tracing information diffusion in a set of
170 million blogs and news articles over a one year period to infer how information flows through
the online media space. We find that the diffusion network of news for the top 1,000 media sites
and blogs tends to have a core-periphery structure with a small set of core media sites that diffuse
information to the rest of the Web. These sites tend to have stable circles of influence with more
general news media sites acting as connectors between them.

Categories and Subject Descriptors: H.D@fabase Managemerjt Database applicationsBata mining

General Terms: Algorithms, Experimentation
Additional Key Words and Phrases: Networks of diffusion, Information cascades, Blogs, News
media, Meme-tracking, Social networks

1. INTRODUCTION

The dissemination of information, cascading behaviofudibn and spreading of ideas,
innovation, information, influence, viruses and diseasesubiquitous in social and in-
formation networks. Such processes play a fundamentaimadettings that include the
spread of technological innovations [Rogers 1995; StravagSoule 1998], word of mouth
effects in marketing [Domingos and Richardson 2001; Kenizé. 003; Leskovec et al.
2006], the spread of news and opinions [Adar et al. 2004; Getial. 2004; Leskovec
et al. 2007; Leskovec et al. 2009; Liben-Nowell and Kleirgh2008], collective problem-
solving [Kearns et al. 2006], the spread of infectious dissgAnderson and May 2002;
Bailey 1975; Hethcote 2000] and sampling methods for hidgepulations [Goodman
1961; Heckathorn 1997].

In order to study network diffusion there are two fundamékchallenges one has to ad-
dress. First, to be able to track cascading processes tpking in a network, one needs to

Preliminary version of this work appeared in proceedinghefl6th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD '10), 2010. Algiwin implementation and the data are available
athtt p: //snap. st anf ord. edu/ neti nf/

ACM Transactions on Knowledge Discovery from Data, Vol. \§.W, Month 20YY, Pages 1-AP.


http://arxiv.org/abs/1006.0234v3

2 . Gomez-Rodriguez, Leskovec and Krause.

identify thecontagion(i.e., the idea, information, virus, disease) that is actualhgagding
and propagating over the edges of the network. Moreoverhasdhen to identify a way
to successfully trace the contagion as it is diffusing tiglothe network. For example,
when tracing information diffusion, it is a non-trivial tato automatically and on a large
scale identify the phrases or “memes” that are spreadingigirthe Web [Leskovec et al.
2009].

Second, we usually think of diffusion as a process that takese on anetwork where
the contagion propagates over the edges of the underlyitwgprie from node to node
like an epidemic. However, the network over which propametitake place is usually
unknowrandunobservedCommonly, we only observe the times when particular nodés g
“infected” but wedo notobservavhoinfected them. In case of information propagation, as
bloggers discover new information, they write about it withexplicitly citing the source.
Thus, we only observe the time when a blog gets “infectedinformation but not where
it got infected from. Similarly, in virus propagation, wesssve people getting sick without
usually knowing who infected them. And, in a viral markets®iting, we observe people
purchasing products or adopting particular behaviorsautlexplicitly knowing who was
the influencer that caused the adoption or the purchase.

These challenges are especially pronounced in informdtfeursion on the Web, where
there have been relatively few large scale studies of inébion propagation in large net-
works [Adar and Adamic 2005; Leskovec et al. 2006; Leskoved.€2007; Liben-Nowell
and Kleinberg 2008]. In order to study paths of diffusion onetworks, one essentially
requires to have complete information about who influendesw as a single missing link
in a sequence of propagations can lead to wrong infereneeli{@ et al. 2011]. Even if
one collects near complete large scale diffusion dataaitnsn-trivial task to identify tex-
tual fragments that propagate relatively intact throughileb without human supervision.
And even then the question of how information diffuses tigtothe network still remains.
Thus, the questions are, what is the network over which tfegrimation propagates on the
Web? What is the global structure of such a network? How desnmeedia sites and blogs
interact? Which roles do different sites play in the difarsprocess and how influential
are they?

Our approach to inferring networks of diffusion and influence. We address the above
guestions by positing that there is some underlying unknoetwork over which infor-
mation, viruses or influence propagate. We assume that ttherlying network is static
and does not change over time. We then observe the times vduas iget infected by or
decide to adopt a particular contagion (a particular piéasformation, product or a virus)
but we do not observe where they got infected from. Thus, &hecontagion, we only
observe times when nodes got infected, and we are thensteerim determining the paths
the diffusion took through the unobserved network. Our go#d reconstruct the network
over which contagions propagate. Figure 1 gives an example.

Edges in such networks of influence and diffusion have varioterpretations. In virus
or disease propagation, edges can be interpreted as wddsnfhom. In information
propagation, edges are who-adopts-information-fromswhowho-listens-to-whom. In a
viral marketing setting, edges can be understood as whaeimfes-whom.

The main premise of our work is that by observing many difieomntagions spreading
among the nodes, we can infer the edges of the underlyinggedipn network. If node
tends to get infected soon after nogdéor many different contagions, then we can expect
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(a) True networkG™*

e 3
A l,' '

/ »'/ *.

.< ~~~~~ .-\__A: ’
.4.}

(c) Inferred network using NETINF algorithm

Fig. 1. Diffusion network inference problefihere is an unknown network (a) over which
contagions propagate. We are given a collection of nodetioietimes and aim to recover
the network in figure (a). Using a baseline heuristic (se¢i@ed) we recover network
(b) and using the proposedeNINF algorithm we recover network (c). Red edges denote
mistakes. The baseline makes many mistakes il NF almost perfectly recovers the
network.

an edge(u, v) to be present in the network. By exploring correlations ideafection
times, we aim to recover the unobserved diffusion network.
The concept of set of contagions over a network is illusttateFigure 2. As a conta-
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Network G*
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Fig. 2. The underlying true network over which contagiongag is illustrated on the top.
Each subsequent layer depicts a cascade created by th&datiff a particular contagion.
For each cascade, nodes in gray are the “infected” node$armtlyes denote the direction
in which the contagion propagated. Now, given only the nadection times in each
cascade we aim to infer the connectivity of the underlyinigvoek G*.

gion spreads over the underlying network it creates a ticalsd cascade Nodes of the
cascade are the nodes of the network that got infected byothtagion and edges of the
cascade represent edges of the network over which the ¢ontagtually spread. On the
top of Figure 2, the underlying true network over which cgidas spread is illustrated.
Each subsequent layer depicts a cascade created by a lgartiontagion. A priori, we
do not know the connectivity of the underlying true netwonkdaur aim is to infer this
connectivity using the infection times of nodes in many edss.

We develop NTINF, a scalable algorithm for inferring networks of diffusiomdainflu-
ence. We first formulate a generative probabilistic modéiaf, on a fixed hypothetical
network, contagions spread as directed trees & node infects many other nodes) through
the network. Since we only observe times when nodes gettadethere are many possi-
ble ways of the contagion could have propagated throughéheank that are consistent
with the observed data. In order to infer the network we hawansider all possible ways
of the contagion spreading through the network. Thus, nedraputation of the model
takes exponential time since there is a combinatoriallydarumber of propagation trees.
We show that, perhaps surprisingly, computations overdhiger-exponential set of trees
can be performed in polynomial (cubic) time. However, unslech model, the network
inference problem is still intractable. Thus, we introdactactable approximation, and
show that the objective function can be both efficiently categ and efficiently optimized.
By exploiting a diminishing returns property of the problese prove that BTINF infers
near-optimal networks. We also speed-upTi\NF by exploiting the local structure of the
objective function and by using lazy evaluations [Leskoseal. 2007].

In a broader context, our work here is related to the netwiwdctire learning of proba-
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bilistic directed graphical models [Friedman et al. 1998td@dr et al. 2003] where heuris-
tic greedy hill-climbing or stochastic search that botleofio performance guarantees are
usually used in practice. In contrast, our work here praviderovel formulation and a
tractablepolynomial time algorithm for inferring directed networtagether with an ap-
proximation guarantee that ensures the inferred netwoilkbavof near-optimal quality.

Our results on synthetic datasets show that we can reliafdy an underlying propaga-
tion and influence network, regardless of the overall nétvgtnucture. Validation on real
and synthetic datasets shows thaNNF outperforms a baseline heuristic by an order of
magnitude and correctly discovers more than 90% of the eddyesapply our algorithm
to a real Web information propagation dataset of 170 milbbog and news articles over
a one year period. Our results show that online news projgagagtworks tend to have a
core-periphery structure with a small set of core blog avdsmaedia websites that diffuse
information to the rest of the Web, news media websites terdiffuse the news faster
than blogs and blogs keep discussing about news longer tiamenhedia websites.

Inferring how information or viruses propagate over netgois crucial for a better
understanding of diffusion in networks. By modeling theusture of the propagation
network, we can gain insight into positions and roles vaginades play in the diffusion
process and assess the range of influence of nodes in therketwo

The rest of the paper is organized as follows. Section 2 istéeMo the statement of the
problem, the formulation of the model and the optimizatiooigbem. In section 3, an effi-
cient reformulation of the optimization problem is proposeand its solution is presented.
Experimental evaluation using synthetic and MemeTrack¢a dre shown in section 4.
We conclude with related work in section 5 and discussioruofresults in section 6.

2. DIFFUSION NETWORK INFERENCE PROBLEM

We next formally describe the problem where contagionsggage over an unknown static
directed network and create cascades. For each cascadeser®limesvhennodes
got infected but notvho infected them. The goal then is to infer the unknown network
over which contagions originally propagated. In an infotiova diffusion setting, each
contagion corresponds to a different piece of informatiuat spreads over the network
and all we observe are the times when particular nodes adioptmentioned particular
information. The task then is to infer the network where adied edg€u,v) carries
the semantics that nodetends to get influenced by node(i.e., mentions or adopts the
information after node: does so as well).

2.1 Problem statement

Given a hidden directed network*, we observe multiple contagions spreading over it.
As the contagior: propagates over the network, it leaves a trace, a cascattes fiorm
of a set of tripleq(u, v, t,,)., which means that contagienreached node at timet, by
spreading from node (i.e., by propagating over the edge, v)). We denote the fact that
the cascade initially starts from some active no@s timet,, as(, v, t,)..

Now, we only get to observe the timig when contagior: reached node but nothow
it reached the node, i.e., we only know that got infected by one of its neighbors in
the network but do not know who's neighbors are and who of them infected Thus,
instead of observing the triplds, v, t,). that fully specify the trace of the contagien
through the network, we only get to observe péirst, ). that describe the timg, when
nodev got infected by the contagion Now, given such data about node infection times
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for many different contagions, we aim to recover the unolesedirected network™, i.e.,
the network over which the contagions originally spread.

We use the ternhit timet,, to refer to the time when a cascade created by a contagion
hits (infects, causes the adoption by) a particular nad@ practice, many contagions do
not hit all the nodes of the network. Simply, if a contagiotsfall the nodes this means it
will infect every node of the network. In real-life most cades created by contagions are
relatively small. Thus, if a node is not hit by a cascade, then we $gt= co. Then, the
observed data about a cascade specified by the vectar. = [t1, ..., t,] of hit times,
wheren is the number of nodes i@*, andt; is the time when nodégot infected by the
contagiore (¢; = oo if ¢ did not get infected by).

Our goal now is to infer the network™. In order to solve this problem we first define
the probabilistic model of how contagions spread over ttgesdf the network. We first
specify the contagion transmission mod&(u, v) that describes how likely is that node
u spreads the contagiarto nodev. Based on the model we then describe the probability
P(c|T) that the contagion propagated in a particular cascade tree paftesn (Vr, Er),
where tre€l” simply specifies which nodes infected which other noées, (see Figure 2).
Last, we define?(c|G), which is the probability that cascadeccurs in a networks. And
then, under this model, we show how to estimate a (near-ymaxilikelihood network?,

i.e., the networkG that (approximately) maximizes the probability of cassadeccurring
in it.

2.2 Cascade Transmission Model

We start by formulating the probabilistic model of how cagitans diffuse over the net-
work. We build on the Independent Cascade Model [Kempe @0&I3] which posits that
an infected node infects each of its neighbors in the netwbkdependently at random
with some small chosen probability. This model implicitlysames that every nodein
the cascade is infected by at most one node That is, it only matters when the first
neighbor ofv infects it and all infections that come afterwards have npanot. Note that
v can have multiple of its neighbors infected but only one hiea actually activates.
Thus, the structure of a cascade created by the diffusionmfgionc is fully described
by a directed tre&’, that is contained in the directed gra@hi.e., since the contagion can
only spread over the edges@fand each node can only be infected by at most one other
node, the pattern in which the contagion propagated is aatmdea subgraph aff. Refer
to Figure 2 for an illustration of a network and a set of cassacteated by contagions
diffusing over it.

Probability of an individual transmission. The Independent Contagion Model only im-
plicitly models time through the epochs of the propagative.thus formulate a variant of
the model that preserves the tree structure of cascadedsanitheorporates the notion of
time.

We think of our model of how a contagion transmits franto v in two steps. When a
new nodeu gets infected it gets a chance to transmit the contagiondio efits currently
uninfected neighbora independently with some small probability If the contagion is
transmitted we then samptlee incubation timg.e., how long afterw got infectedw will
get a chance to infect its (at that time uninfected) neighbd®tote that cascades in this
model are necessarily trees since nadmly gets to infect neighbors that have not yet
been infected.
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Symbol Description

G(V,E) Directed graph with node® and edged” over which contagions spread
B8 Probability that contagion propagates over an edgé of

«a Incubation time model parameter (refer to Eq. 1)

E. Setofe-edgesENE: =andEUE. =V x V

c Contagion that spreads over

tu Time when node; got hit (infected) by a particular cascade

te Set of node hit times in cascadet.[i] = oo if node: did not participate irc
Ayw Time difference between the node hit timgs— ¢., in a particular cascade
C ={(c,tc)} | Setof contagions and corresponding hit timese., the observed data
Te(G) Set of all possible propagation trees of cascada graphG

T(Vr, ET) Cascade propagation tréE,c 7.(G)

Vr Node set ofl", Vi = {i | i € Vandt,[i] < oo}

Er Edge setofl’, Er C EU E;

Table I. Table of symbols.

First, we define the probability’.(u, v) that a nodeu spreads the cascade to a node
v, i.e,, a nodeu influences/infects/transmits contagiomo a nodev. Formally, P.(u,v)
specifies the conditional probability of observing cascagpreading fromu to v.

Consider a pair of nodes andv, connected by a directed edge, v) and the corre-
sponding hit timegu, t,,). and(v, t,).. Since the contagion can only propagate forward
in time, if nodeu got infected after node (¢, > ¢,) thenP.(u,v) = 0, i.e,, nodes can
not influence nodes from the past. On the other hang, (i ¢,) we make no assumptions
about the properties and shapefdfu, v). To build some intuition, we can think that the
probability of propagatiorP.(u,v) between a pair of nodasandwv is decreasing in the
difference of their infection times,e., the farther apart in time the two nodes get infected
the less likely they are to infect one another.

However, we note that our approach allows for the contagamsmission mode?. (u, v)
to be arbitrarily complicated as it can also depend on thegmntees of the contagionas
well as the properties of the nodes and edges. For exampkbe disease propagation
scenario, node attributes could include information atloetindividual’s socio-economic
status, commute patterns, disease history and so on, amwiit@gion properties would
include the strength and the type of the virus. This allowggfeat flexibility in the cas-
cade transmission models as the probability of infectiquetiels on the parameters of the
disease and properties of the nodes.

Purely for simplicity, in the rest of the paper we assume thmpkest and most intuitive
model where the probability of transmission depends onlthertime difference between
the node hit times\,, , = ¢, — t,. We consider two different models for the incubation
time distributionA,, ,,, an exponential and a power-law model, each with parameter

Pu(t,0) = Po(Auy) o e 5% andPu(u, v) = Po(Ayy) ALQ.

Both the power-law and exponential waiting time models Hasen argued for in the
literature [Barabasi 2005; Leskovec et al. 2007; Malmgzeal. 2008]. In the end, our
algorithm does not depend on the particular choice of theliation time distribution and
more complicated non-monotonic and multimodal functioas easily be chosen [Crane
and Sornette 2008; Wallinga and Teunis 2004; Gomez-Roezigt al. 2011]. Also, we
interpretco + A, , = o0, i.e, if t, = oo, thent,, = co with probability1. Note that the

1)

ACM Transactions on Knowledge Discovery from Data, Vol. \4.N, Month 20YY.



8 . Gomez-Rodriguez, Leskovec and Krause.

parametery can potentially be different for each edge in the network.

Considering the above model in a generative sense, we cak tiét the cascade
reaches node at timet,,, and we now need to generate the titpavhenu spreads the
cascade to node. As cascades generally do not infect all the nodes of thearkjwe
need to explicitly model the probability that the cascadgst With probability(1 — ),
the cascade stops, and never reachahust, = oo. With probability 8, the cascade
transmits over the edge, v), and the hit time,, is set tot,, + A, whereA,, ,, is the
incubation time that passed between the hit timgeandt,.

Likelihood of a cascade spreading in a given tree patterT’. Next we calculate the
likelihood P(c|T) that contagiore in a graphG propagated in a particular tree pattern
T(Vr, Er) under some assumptions. This means we want to assess tlabilitpibhat a
cascade with hit timest. propagated in a particular tree pattdrn

Due to our modeling assumption that cascades are treeskéidiod is simply:

P(C|T) = H ﬂPc(uav) H (1 _B)v (2)
(u,v)EET weVry,(u,x)EE\ET
whereEr is the edge set aridy is the vertex set of tre€. Note thatl/ is the set of nodes
that got infected by, i.e., Vi C V and contains elemeniof t. wheret.(i) < co. The
above expression has an intuitive explanation. Since theacke spread in tree pattéfi
the contagion successfully propagated along those edgek.afong the edges where the
contagion did not spread, the cascade had to stop. Here swmasndependence between
edges to simplify the problem. Despite this simplificatiae, later show empirically that
NETINF works well in practice
Moreover,P(c|T) can be rewritten as:

P(|T) =81 =8)" [ Pelu,v), 3
(u,v)EET
whereq = |Er| = |Vr| — 1 is the number of edges ifi and counts the edges over which
the contagion successfully propagated. Similarlgounts the number of edges that did
not activate and failed to transmit the contagion: ZueVT Aoyt (1) — q, @anddyy: (u) is
the out-degree of nodein graphG.

We conclude with an observation that will come very handgrlaExamining Eq. 3 we
notice that the first part of the equation before the prodiget does not depend on the
edge setr but only on the vertex sét of the treeT’. This means that the first part is
constant for all tree§” with the same vertex séfr but possibly different edge setsr.
For example, this means that for a fix€dand ¢ maximizing P(c|T") with respect tal’
(i.e, finding the most probable tree), does not depend on the dguoduct of Eq. 2. This
means that when optimizing, one only needs to focus on thepfiesluct where the edges
of the tre€Tl” simply specify how the cascade spredds, every node in the cascade gets
influenced by exactly one node, that is, its parent.

Cascade likelihood.We just defined the likelihoo# (¢|T') that a single contagionprop-
agates in a particular tree pattéfin Now, our aim is to comput®(c|G), the probability
that a cascadeoccurs in a graplis. Note that we observe only the node infection times
while the exact propagation trée (who-infected-whom) is unknown. In general, over a
given graphG there may be multiple different propagation trdethat are consistent with
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Fig. 3. Different propagation treés of cascade: that are all consistent with observed node hit times (t, =
1,tc = 2,t, = 3,te = 4). In each case, wider edges compose the tree, while thingesseate the rest of the
edges of the network'.

the observed data. For example, Figure 3 shows three diffeascade propagation paths
(treesT’) that are all consistent with the observed data: (t, = 1,t. = 2,t, = 3,t. = 4)

So, we need to combine the probabilities of individual pgadéon trees into a probabil-
ity of a cascade. We achieve this by considering all possible propagatieedt’ that are
supported by network, i.e., all possible ways in which cascadeould have spread over
G:

P(cG)= Y P(T)P(T|G), (4)
TeT (@)
wherec is a cascade arffi.(G) is the set of all the directed connected spanning trees on a
subgraph of7 induced by the nodes that got hit by cascad®lote that even though the
sum ranges over all possible spanning tr€es 7.(G), in caseT is inconsistent with the
observed data, theR(c|T) = 0.
Assuming that all trees are a priori equally likelye( P(T'|G) = 1/|7.(G)|) and using
the observation from Equation 3 we obtain:

P(c|G) x Z H P.(u,v) (5)
TeT(G) (u,w)EET

Basically, the grapld defines the skeleton over which the cascades can propaghte an
T defines a particular possible propagation tree. There maydrey possible trees that
explaina single cascade (see Fig. 3), and since we do not know in vgadicular tree
pattern the cascade really propagated, we need to condligiersaible propagation trees
T in 7.(G). Thus, the sum over is a sum over all directed spanning trees of the graph
induced by the vertices that got hit by the cascade

We just computed the probability of a single cascad®curring inG, and we now
define the probability of a set of cascadé®ccurring inG simply as:

P(C|G) = [] P(clG), (6)
ceC
where we again assume conditional independence betweeasdessgiven the graph.

2.3 Estimating the network that maximizes the cascade likelihood

Now that once we have formulated the cascade transmissiafelmae now state the
diffusion network inference problenmvhere the goal is to find that solves the following
optimization problem:
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ProBLEM 1. Given a set of node infection times for a set of cascades € C, a
propagation probability parametef and an incubation time distributiof..(u, v), find the
networkG such that:

G = argmax P(C|Q), (7)
IG|<k
where the maximization is over all directed graghi®f at mostk edges, and?(C|G) is
defined by equations 6, 4 and 2.

We include the constraint on the number of edge&isimply because we seek for a
sparse solution, since real graphs are sparse. We disowse bboose: in further sections
of the paper.

The above optimization problem seems wildly intractabeeValuate Eq. (6), we need
to compute Eq. (4) for each cascadée., the sum over all possible spanning tr@esThe
number of trees can be super-exponential in the siz€ blit perhaps surprisingly, this
super-exponential sum can be performed in time polynomitié number. of nodes in
the graph’, by applying Kirchhoff’s matrix tree theorem [Knuth 1968]:

THEOREM 1 [TUTTE 1948]. If we construct a matrix4 such thata; ; = >, wy,; if

i =janda;; = —w;; if i # jandif A, , is the matrix created by removing any raw
and columny from A, then
(1" det(Azy) = > ] wis (8)
TeA (i,5)eT

whereT is each directed spanning tree in

In our case, we seb; ; to be simplyP.(i,j) and we compute the product of the de-
terminants of C'| matrices, one for each cascade, which is exactly Eq. 4. Matestnce
edges(s, j) wheret; > t; have weight O (i.e., they are not present), given a fixed ciesca
¢, the collection of edges with positive weight forms a diegtdcyclic graph (DAG). A
DAG with a time-ordered labeling of its nodes has an uppangular connectivity matrix.
Thus, the matrix4,, , of Theorem 1 is, by construction, upper triangular. Fortalyathe
determinant of an upper triangular matrix is simply the prcidf the elements of its diag-
onal. This means that instead of using super-exponential tive are now able to evaluate
Eqg. 6 intime(|C| - |V|?) (the time required to buildl, , and compute the determinant for
each of thgC'| cascades).

However, this does not completely solve our problem for t@asons: First, while
cuadratic time is a drastic improvement over a super-expitadecomputation, it is still
too expensive for the large graphs that we want to consig®o181, we can use the above
result only to evaluate the quality ofparticular graphG, while our goal is to find the best
graphG. To do this, we would need to search oaéirgraphsG to find the best one. Again,
as there is a super-exponential number of graphs, this ipragtical. To circumvent this
one could propose some ad hoc search heuristics, likelmibang. However, due to the
combinatorial nature of the likelihood function, such aqeadure would likely be prone
to local maxima. We leave the question of efficient maxiniarabf Eq. 4 whereP(c|G)
considers all possible propagation trees as an interesgiag problem.
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3. ALTERNATIVE FORMULATION AND THE NETINF ALGORITHM

The diffusion network inference problem defined in the psagisection does not seem to
allow for an efficient solution. We now propose an alterreafrmulation of the problem
that is tractable both to compute and also to optimize.

3.1 An alternative formulation

We use the same tree cascade formation model as in the psesacotion. However, we
compute an approximation of the likelihood of a single cdschy considering only the
most likely tree instead of all possible propagation tréaf. show that this approximate
likelihood is tractable to compute. Moreover, we also dexds algorithm that provably
finds networks with near optimal approximate likelihoodthe remainder of this section,
we informally write likelihood and log-likelihood even thgh they are approximations.
However, all approximations are clearly indicated.

First we introduce the concept efedges to account for the fact that nodes may get
infected for reasons other than the network influence. Famgte, in online media, not all
the information propagates via the network, as some is aisbgd onto the network by the
mass media [Katz and Lazarsfeld 1955; Watts and Dodds 20f7{reus a disconnected
cascade can be created. Similarly, in viral marketing, a@emay purchase a product
due to the influence of peersd, network effect) or for some other reasang, seing a
commercial on TV) [Leskovec et al. 2006].

Modeling external influence vias-edges.To account for such phenomenawhen a cascade
“jumps” across the network we can think of creating an addai noder that represents an
external influencand can infecanyother node: with small probability. We then connect
the external influence nodeto every other node with anc-edge. And then every node
can get infected by the external sourcwith a very small probability. For example, in
case of information diffusion in the blogosphere, such aenodould model the effect of
blogs getting infected by the mainstream media.

However, if we were to adopt this approach and insert an imadit external influence
nodex into our data, we would also need to infer the edges pointingbr, which would
make our problem even harder. Thus, in order to capture fhetedf external influence,
we introduce a concept efedge. If there is not a network edge between a noaled a
node; in the network, we add asredge and then nodecan infect nodg with a small
probabilitye. Even though adding-edges makes our gragha clique (.e., the union of
network edges angtedges creates a clique), thedges play the role of external influence
node.

Thus, we now think of graptr as a fully connected graph of two disjoint sets of edges,
the network edge séf and thes-edge sefe.,i.e, ENE. =0andEUE. =V x V.

Now, any cascade propagation tfEeés a combination of network andedges. As we
model the external influence via tlheedges, the probability of a cascadeccurring in
treeT (i.e. the analog of Eq. 2) can now be computed as:

Per)y= T ] Pi(u.v), (9)

ueVr veV
where we compute the transmission probabiffyu, v) as follows:
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(a) GraphG on five vertices and four network (b) Cascade propagation tred’ =
edges (solid edges}-edges shown as dashed {(a,b), (b,c), (b,d)}
lines.

Fig. 4. (a) Graphts: Network edges® are shown as solid, andedges are shown as dashed lines. (b) Propagation
treeT = {(a, b), (b, ¢), (b, d)}. Four types of edges are labeled: (i) network edges thatrméted the contagion
(solid bold), (ii) e-edges that transmitted the contagion (dashed bold) néiijvork edges that failed to transmit
the contagion (solid), and (iy-edges that failed to transmit the contagion (dashed).

BP.(t, —t,) ift, <t,and(u,v) € ErNE (u,v) is network edge

eP.(t, —t,) ift, <t,and(u,v) € ErNE. (u,v)isc-edge
Plu,v)=<K1-p if t, = oo and(u,v) € E\Erp v is not infected, network edge

1—¢ if t, = coand(u,v) € E.\Er v is not infecteds-edge

0 else (.e., t, > ty,).

Note that above we distinguish four type of edges: netwodea@dges that participated
in the diffusion of the contagion and network anedges that did not participate in the
diffusion.

Figure 4 further illustrates this concept. First, Figura)&hows an example of a graph
G on five nodes and four network edg®s(solid lines), and any other possible edge is
the e-edge (dashed lines). Then, Figure 4(b) shows an examplepob@agation tree
T = {(a,b), (b,c),(b,d)} in graphG. We only show the edges that play a role in Eqg. 9
and label them with four different types: (a) network eddes transmitted the contagion,
(b) e-edges that transmitted the contagion, (c) network edgasfédiled to transmit the
contagion, and (d)-edges that failed to transmit the contagion.

We can now rewrite the cascade likelihoB¢c|T') as combination of products of edge-
types and the product over the edge incubation times:

P(c|T) = Bre’ (1-p) (1—2) [[ Pelv,w) (10)
(u,v)EET

~ Bre? (1—eyt [ Pelv,u), (11)
(u,v)EET
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whereg is the number of network edgesTnh(type (a) edges in Fig. 4(b)); is the number
of e-edges inT, s is the number of network edges that did not transmit ani the
number ofs-edges that did not transmit. Note that the above approiamé valid since
real networks are sparse and cascades are generally snthlieaces’ > s. Thus, even
thoughg >> « we expeci1 — 3)* to be of about same order of magnitude as- <)*.
The formulation in Equation 11 has several benefits. Duedarttroduction ok-edges
the likelihoodP(¢|T) is always positive. For example, even if we consider gr@phith
no edgespP(c|T) is still well defined as we can explain the tr€evia the diffusion over
thee-edges. A second benefit that will become very useful latdrasthe likelihood now
becomes monotonic in the network edge&:0fThis means that adding an edgeddi.e.,
convertings-edge into a network edge) only increases the likelihood.

Considering only the most likely propagation tree. So far we introduced the concept
of e-edges to model the external influence or diffusion that gexous to the network,
and introduce an approximation to treat all edges that dighadicipate in the diffusion as
e-edges.

Now we consider the last approximation, where instead o$iciamning all possible cas-
cade propagation tred3 we only consider the most likely cascade propagation ffees

rie)=1] >, Pn) = e P(c|T). (12)
c€C TeT.(G) ceC

Thus now we aim to solve the network inference problem by figdi graphG that
maximizes Equation 12, whei®(c|T') is defined in Equation 11.

This formulation simplifies the original network inferengeblem by considering the
most likely (bes) propagation tred” per cascade instead of considering all possible
propagation trees for each cascade Although in some cases we expect the likelihood of
c with respect to the true tré€ to be much higher than that with respect to any competing
treeT” and thus the probability mass will be concentrated gtthere might be some
cases in which the probability mass does not concentratenerparticular T. However,
we run extensive experiments on small networks with difiestructures in which both
the original network inference problem and the alterndtiveulation can be solved using
exhaustive search. Our experimental results looked reaitylar and the results were
indistinguishable. Therefore, we consider our approxiomatb work well in practice.

For convenience, we work with the log-likelihoddg P(c|T) rather than likelihood
P(c|T). Moreover, instead of directly maximizing the log-likedibd we equivalently max-
imize the following objective function that defines the irapement of log-likelihood for
cascade occurring in graplG overc occurring in an empty grapR (i.e., graph with only
e-edges and no network edges):

F.(G) = log P(c|T) log P(c|T). 13
(@) e log (cT) ~ plnax log (cT) (13)

Maximizing Equation (12) is equivalent to maximizing thdldaing log-likelihood

function:
G) =Y F.(G). (14)

ceC
We now expand Eg. (13) and obtain an instance sihglified diffusion network infer-
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ence problem

G= argmngc(G) = Tén%f(c:) | Z we(i,7), (15)
ceC (i,7)EET

wherew,(i, j) = log P.(i, j) — log e is @ non-negative weight which can be interpreted as

the improvement in log-likelihood of edde, j) under the most likely propagation trée

in G. Note that by the approximation in Equation 11 one can igtlogecontribution of

edges that did not participate in a particular caseadehe contribution of these edges is

constantj.e., independent of the particular shape that propagatioritiages. Thisis due

to the fact that each spanning trEef G with node sel/’r has|Vr| — 1 (network anck-)

edges that participated in the cascade, and all remainiggsestopped the cascade from

spreading. The number of non-spreading edges dependsrotiig aode sé butnotthe

edge sefor. Thus, the tred” that maximizes”(c|T') also maximize$ _; . c g, we(i, j).

SinceT' is a tree that maximizes the sum of the edge weights this nteahghe most
likely propagation tred” is simply themaximum weight directed spanning treenodes
Vr, where each edge, j) has weightv. (i, j), andF.(G) is simply the sum of the weights
of edges irr".

We also observe that since edgésj) wheret; > ¢, have weight Oi(e., such edges are
not present) then the outgoing edges of any nodaly point forward in timej.e., a node
can not infect already infected nodes. Thus for a fixed cascatthe collection of edges
with positive weight forms a directeatyclicgraph (DAG).

Now we use the fact that the collection of edges with positregghts forms a directed
acyclic graph by observing that the maximum weight diresfgahning tree of a DAG can
be computed efficiently:

PropPOSITION 1. InaDAGD(V, E, w) with vertex set” and nonnegative edge weights
w, the maximum weight directed spanning tree can be found dgsihg, for each node,
an incoming edgéu, v) with maximum weight(u, v).

PROOFE The score

S(T)= Y wiij)=Y w(Parr(i),i)

(i.g)ET iev

of atreeT is the sum of the incoming edge weightéParr (i), ) for each node, where
Parp(i) is the parent of nodein T' (and the root is handled appropriately). Now,
mj&}xS(T) = max Z w(i,j) = . max_w(Parr(i),1).

Parr (i
(i.0)€T iev Parr®

Latter equality follows from the fact that sin€g is a DAG, the maximization can be
done independently for each node without creating any sycle

This proposition is a special case of the more general maxispanning tree (MST)
problem in directed graphs [Edmonds 1967]. The importacitfiaw is that we can find
the best propagation tré@ in time O(|Vr|D;, ), i.e., linear in the number of edges and
the maximum in-degreB;,, = max,cv, d;,(u) by simply selecting an incoming edge of
highest weight for each nodee V. Algorithm 1 provides the pseudocode to efficiently
compute the maximum weight directed spanning tree of a DAG.
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Algorithm 1 Maximum weight directed spanning tree of a DAG
Require: Weighted directed acyclic grapgh(V, E, w)
T+ {}
forall i € V do
Pary(i) = argmax; w(j, )
T+ TU{(Parr(i),7)}
return 7'

Putting it all together we have shown how to efficiently eedduthe log-likelihood
Fco(G) of a graphGG. To find the most likely tre& for a single cascade takéX |V |D;,,),
and this has to be done for a total|6f| cascades. Interestingly, this is independent of the
size of graplG and only depends on the amount of observed daagize and the number
of cascades).

3.2 The NETINF algorithm for efficient maximization of Fc(G)
Now we aim to find graphG that maximizes the log-likelihood'«(G). First we no-

tice that by constructiod’-(K) = 0, i.e, the empty graph has score 0. Moreover, we
observe that the objective functidi; is non-negative and monotonic. This means that
Fo(G) < Fo(G') for graphs7(V, E) andG’ (V, E’), whereE C E’. Hence adding more
edges ta~ does not decrease the solution quality, and thus the coengtaph maximizes
F=. Monotonicity can be shown by observing that, as edges atecath, c-edges are
converted to network edges, and therefore the weight of i@y(aind therefore the value
of the maximum spanning tree) can only increase. Howewvecgesieal-world social and
information networks are usually sparse, we are interastatferring asparsegraphG,

that only contains some small numbeof edges. Thus we aim to solve:

PROBLEM 2. Given the infection times of a set of cascadggrobability of propaga-
tion 8 and the incubation time distributioR. (4, j), find G that maximizes:
G* = argmax Fo(G), (16)
|G|<k
where the maximization is over all graptisof at mostk edges, and'(G) is defined by
Egs. 14 and 15.

Naively searching over alt edge graphs would take time exponentiakinwhich is
intractable. Moreover, finding the optimal solution to E&6) is NP-hard, so we cannot
expect to find the optimal solution:

THEOREM 2. The network inference problem defined by equafid) is NP-hard.

PROOF By reduction from the MAXk-COVER problem [Khuller et al. 1999]. In
MAX- k-COVER, we are given a finite sé¥’, |IW| = n and a collection of subsets
S1,...,58, € W. The function

Fye(A) = | Uiea Sif

counts the number of elementsidf covered by sets indexed by. Our goal is to pick a
collection of i subsetsA maximizing ;. We will produce a collection of. cascades
C over a graphG such thatmax|g|<i Fo(G) = max|4<, Farc(A). GraphG will be
defined over the set of vertic®s= {1,...,m} U {r}, i.e, there is one vertex for each set
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S; and one extra vertex. For each element € W we define a cascade which has time
stamp0 associated with all nodesc V' such thats € S;, time stampl for noder andoco
for all remaining nodes.

Furthermore, we can choose the transmission model suchwtfiatr) = 1 whenever
s € S; andw.(i',7") = 0 for all remaining edgesi’, ), by choosing the parameters
« and g appropriately. Since a directed spanning tree over a gfapan contain at most
one edge incoming to node its weight will bel if G contains any edge from a node
to r wheres € S;, and0 otherwise. Thus, a graph of at mostk edges corresponds to a
feasible solutiom; to MAX- k-COVER where we pick set$; whenever edgé, r) € G,
and each solutiom! to MAX-k-COVER corresponds to a feasible soluti@n, of (16).
Furthermore, by constructiofy,;c (Ag) = Fo(G). Thus, if we had an efficient algorithm
for deciding whether there exists a gragh|G| < k such thatf'o(G) > ¢, we could use
the algorithm to decide whether there exists a solutido MAX- k-COVER with value at
leaste. O

While finding the optimal solution is hard, we now show thatsatisfiesubmodularity
a natural diminishing returns property. The submodulgmityperty allows us to efficiently
find aprovably near-optimasolution to this otherwise NP-hard optimization problem.

A set functionF : 2V — R that maps subsets of a finite $&tto the real numbers is
submodulaif for A C B C W ands € W \ B, it holds that

F(AU{s}) — F(A) > F(BU {s}) — F(B).

This simply says adding to the setA increases the score more than addirig setB
(A C B).

Now we are ready to show the following result that enablesouint a near optimal
networkG:

THEOREM 3. Let V' be a set of nodes, and be a collection of cascades hitting the
nodesV. ThenF¢(G) is a submodular functiod : 2 — R defined over subsets
W CV x V of directed edges.

PROOF Fix a cascade, graphsG C G’ and an edge = (r, s) not contained in’.
We will show thatF.(G U {e}) — F.(G) > F.(G' U{e}) — F.(G'). Since nonnega-
tive linear combinations of submodular functions are suthatar, the functionFo (G) =
> ccc Fe(G) is submodular as well. Let; ; be the weight of edgg, j) in G U {e}, and
w; ; be the weight irG" U {e}. As argued before, the maximum weight directed spanning
tree for DAGs is obtained by assigning to each node the inegradge with maximum
weight. Let(s, s) be the edge incoming atof maximum weight in, and(¢’, s) the max-
imum weight incoming edge i6”. SinceG C G’ it holds thatw; , < w/, . Furthermore,
wy,s = w). ,. Hence, '

F (G U{(r,s)}) — Fe(G) = max(w; s, Wy s) — W; s
2 ma’X(wz{',sa

= F.(G'"U{(r,s)}) — F.(G"),

/ /
wr,s) - wi’,s

proving submodularity of.. O

Maximizing submodular functions in general is NP-hard [Kéwet al. 1999]. A com-
monly used heuristic is thgreedy algorithmwhich starts with an empty grapki, and
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iteratively, in step, adds the edge; which maximizes the marginal gain:

e; = argmax Fo(Gi—1 U{e}) — Fo(Gi-1). a7)
e€G\G,—1
The algorithm stops once it has selectegtiges, and returns the solutiGn= {e1,...,er}.

The stopping criterid,e., value ofk, can be based on some threshold of the marginal gain,
of the number of estimated edges or another more sophéesticeuristic.

In our context we can think about the greedy algorithm adistapn an empty graph
K with no network edges. In each iterationthe algorithm adds t6: the edgee; that
currently improves the most the value of the log-likelihoofinother way to view the
greedy algorithm is that it starts on a fully connected graplwhere all the edges are
e-edges. Then adding an edge to grapborresponds to that edge changing the type from
e-edge to a network edge. Thus our algorithm iteratively sxapdges to network edges
until £ network edges have been swappieel,(inserted into the networ).

Guarantees on the solution quality. Considering the NP-hardness of the problem, we
might expect the greedy algorithm to perform arbitrarilylb&lowever, we will see that
this is not the case. A fundamental result of Nemhauser §Naimhauser et al. 1978]
proves that for monotonic submodular functions, the(eeturned by the greedy algo-
rithm obtains at least a constant fraction(df— 1/e) ~ 63% of the optimal value achiev-
able usingk edges.

Moreover, we can acquire a tigbhlinedata-dependent bound on the solution quality:

THEOREM 4 [LESKOVEC ET AL. 2007]. For a graph @, and each edge ¢ G, let
de = Fo(G U {e}) — Fo(G). Letey, ... ep be the sequence with in decreasing order,
whereB is the total number of edges with marginal gain greater thaimhen,

k

Theorem 4 computes how far a givér{obtained byanyalgorithm) is from the unknown
NP-hard to find optimum.

Speeding-up the NETINF algorithm. To make the algorithm scale to networks with thou-
sands of nodes we speed-up the algorithm by several ordenagritude by considering
two following two improvements:

Localized updatetet C; be the subset of cascades that go through the hgee cascades
in which node is infected). Then consider that in some stethegreedy algorithnselects
the network edgéy, ) with marginal gaind; ;, and now we have to update the optimal
tree of each cascade. We make a simple observation thatgatidimetwork edgéj, 7)
may only change the optimal trees of the cascades in th€;satd thus we only need to
revisit (and potentially update) the trees of cascad€s;inSince cascades are locak(,
each cascade hits only a relatively small subset of the m&jwihis localized updating
procedure speeds up the algorithm considerably.

Lazy evaluationit can be used to drastically reduce the number of evaluatibmarginal
gainsFc(GU{e}) — Fo(G) [Leskovec et al. 2007]. This procedure relies on the submod-
ularity of Fo. The key idea behind lazy evaluations is the following. Saggd7, ..., Gx
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is the sequence of graphs produced during iterations ofrémedy algorithm. Now let us
consider the marginal gain

A (G;) = Fo(GiU{e}) — Fe(G;)

of adding some edgeto any of these graphs. Due to the submodularityefit holds
thatA.(G;) > A.(G;) whenevel < j. Thus, the marginal gains efcan only monoton-
ically decrease over the course of the greedy algorithms fr@ans that elements which
achieve very little marginal gain at iteratiecannot suddenly produce large marginal gain
at subsequentiterations. This insight can be exploited &iytaining a priority queue data
structure over the edges and their respective marginasgéineach iteration, the greedy
algorithm retrieves the highest weight (priority) edgenc®i its value may have decreased
from previous iterations, it recomputes its marginal beénéfithe marginal gain remains
the same after recomputation, it has to be the edge with kigharginal gain, and the
greedy algorithm will pick it. If it decreases, one reinsdtie edge with its new weight
into the priority queue and continues. Formal details areligde-code can be found in
[Leskovec et al. 2007].

As we will show later, these two improvements decrease theine by several orders
of magnitude withno lossin the solution quality. We call the algorithm that implenten
the greedy algorithm on this alternative formulation witle sbove speedups theeN NF
algorithm (Algorithm 2). In addition, MTINF nicely lends itself to parallelization as like-
lihoods of individual cascades and likelihood improvensesftindividual new edges can
simply be computed independently. This allows us to to ®eklen bigger networks in
shorter amounts of time.

A space and runtime complexity analysis cf NNF depends heavily of the structure of
the network, and therefore it is necessary to make strongrgsttons on the structure. Due
to this, it is out of the scope of the paper to include a forneahplexity analysis. Instead,
we include an empirical runtime analysis in the followingtsen.

4. EXPERIMENTAL EVALUATION

In this section we proceed with the experimental evaluatibour proposed NTINF al-
gorithm for inferring network of diffusion. We analyze therformance of lTINF on
synthetic and real networks. We show that our algorithmaguer§ surprisingly well, out-
performs a heuristic baseline and correctly discovers rtttma 90% of the edges of a
typical diffusion network.

4.1 Experiments on synthetic data

The goal of the experiments on synthetic data is to undets$taw the underlying network
structure and the propagation model (exponential and ptavéraffect the performance of
our algorithm. The second goal is to evaluate the effectrapification we had to make

in order to arrive to an efficient network inference algarith Namely, we assume the
contagion propagates in a tree pattériii.e., exactly £ edges caused the propagation),
consider only the most likely tréE (Eqg. 12), and treat non-propagating network edges as
e-edges (Eq. 11).

In general, in all our experiments we proceed as follows: Yéegasen a true diffusion
networkG*, and then we simulate the propagation of a set of contagiowsr the network
G*. Diffusion of each contagion creates a cascade and for emciade, we record the node
hit timest,,. Then, given these node hit times, we aim to recover the m&t@o6 using
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Algorithm 2 The NeTINF Algorithm
Require: Cascades and hit timé&s = {(c, t.)}, number of edges
G+ K
forall ¢ € C'do
T, + dag_tree(c) {Find most likely tree (Algorithm 1)
while |G| < k do
forall (j,7) ¢ G do
0 =0 {Marginal improvement of adding edd¢ 7) to G}
Mj,i — 0
forall c:t; <t;incdo
Letw.(m,n) be the weight ofm,n) in GU {(j,4)}
if we(4,7) > we.(Parr,(i),i) then
6j,i e 6j,i + wc(j, Z) — wc(PCLTTC (’L), ’L)
Mj,i — Mj,i U {C}
(%, %) < argmax(j iyec\g 9j,i
G GU{(i")}
forall ¢ € M- ;« do
Pary, (i*) + j*

return G;
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Fig. 5. Number of cascades per edge and cascade sizes foest Fore network I, 024 nodes,1, 477 edges)
with forward burning probability).20, backward burning probabilit9.17 and exponential incubation time model
with parameterx = 1 and propagation probabilitg = 0.5. The cascade size distribution follows a power-law.
We found the power-law coefficient using maximum likelihcestimation (MLE).

the NETINF algorithm. For example, Figure 1(a) shows a graphof 20 nodes and 23
directed edges. Using the exponential incubation time mreou®5 = 0.2 we generated4
cascades. Now given the node infection times, we aim to ex@@V. A baseline method
(b) (described below) performed poorly whileeENINF (c) recoveredz* almost perfectly
by making only two errors (red edges).

Experimental setup. Our experimental methodology is composed of the followitegs:

(1) Ground truth graple™
(2) Cascade generation: Probability of propagatipand the incubation time model with
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parametety.
(3) Number of cascades

(1) Ground truth graphG*: We consider two models of directed real-world networks to
generateG*, namely, the Forest Fire model [Leskovec et al. 2005] andKifumecker
Graphs model [Leskovec and Faloutsos 2007]. For Kronedlagts, we consider three
sets of parameters that produce networks with a very difteglobal network structure: a
random graph [Erdés and Rényi 1960] (Kronecker paranmgrix [0.5,0.5; 0.5, 0.5]), a
core-periphery network [Leskovec et al. 2008} 962, 0.535; 0.535, 0.107]) and a network
with hierarchical community structure [Clauset et al. 2008.962,0.107; 0.107, 0.962]).
The Forest Fire generates networks with power-law degr&eitalitions that follow the
densification power law [Barabasi and Albert 1999; Leskasteal. 2007].

(2) Cascade propagationWWe then simulate cascades 6Yi using the generative model
defined in Section 2.1. For the simulation we need to choasénttubation time model
(i.e., power-law or exponential and parametgr We also need to fix the parametgrthat
controls probability of a cascade propagating over an elgaitively, oo controls how fast
the cascade spreadse(, how long the incubation times are), whjfecontrols the size of
the cascades. Largemeans cascades will likely be large, while smalinakes most of
the edges fail to transmit the contagion which results inlksimfgctions.

(3) Number of cascadentuitively, the more data our algorithm gets the more aatrly

it should inferG*. To quantify the amount of data (number of different cassade define
E; to be the set of edges that participate in at léastscades. This meaits is a set of
edges that transmitted at leasbntagions. It is important to note that if an edge&5fdid
not participate in any cascadee(, it never transmitted a contagion) then there is no trace
of it in our data and thus we have no chance to infer it. In oyeexnents we choose the
minimal amount of datai.e., [ = 1) so that we at least in principle could infer the true
networkG*. Thus, we generate as many cascades as needed to have, dhsgtcontains

a fractionf of all the edges of the true netwogk*. In all our experiments we pick cascade
starting nodes uniformly at random and generate enougladasaso that 99% of the edges
in G* participate in at least one cascade, 99% of the edges are includedin.

Table Il shows experimental values of number of cascadedeh#’; cover different
percentages of the edges. To have a closer look at the casizadkstribution, for a Forest
Fire network on 1,024 nodes and 1,477 edges, we generaté8iea8cades. The majority
of edges took part in 4 to 12 cascades and the cascade sidbutish follows a power
law (Figure 5(b)). The average and median number of casqaefesdge are 9.1 and 8,
respectively (Figure 5(a)).

Baseline method. To infer a diffusion network’, we consider the a simple baseline
heuristic where we compute the score of each edge and thkrkmdges with highest
score.

More precisely, for eachossibleedge(u, v) of G, we computev(u,v) = > .~ Pe(u, v),
i.e,, overall how likely were the cascadess C' to propagate over the edge, v). Then
we simply pick thek edgegu, v) with the highest score (u, v) to obtain(. For example,
Figure 1(b) shows the results of the baseline method on d gnagh.

Solution quality. We evaluate the performance of the NNF algorithm in two different
ways. First, we are interested in how successfalrMF is at optimizing the objective
function F-(G) that is NP-hard to optimize exactly. Using the online boun@heorem 4,
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Type of network f |C| r BEP AUC
0.5 388 2,898 0.393 0.29
0.9 2,017 14,027 0.75 0.67
Forest Fire 0.95 2,717 19,418 0.82 0.74
0.99 4,038 28,663 0.92 0.86
0.5 289 1,341 0.37 0.30
0.9 1,209 5,502 0.81 0.80
Hierarchical Kronecker 0.95 1,972 9,391 0.90 0.90
0.99 5,078 25,643 0.98 0.98
0.5 140 1,392 0.31 0.23
0.9 884 9,498 0.84 0.80
Core-periphery Kronecker 0.95 1,506 14,125 0.93 0.91
0.99 3,110 30,453 0.98 0.96
0.5 200 1,324 0.34 0.26
09 1,303 7,707 0.84 0.83
Flat Kronecker 0.95 1,704 9,749 0.89 0.88
0.99 3,652 21,153 0.97 0.97

Table Il. Performance of synthetic data. Break-even P@fR) and Receiver Operating Characteristic (AUC)
when we generated the minimum numbel@f cascades so thgtfraction of edges participated in at least one
cascade$E;| > f|E|. These/C| cascades generated the totat @fdge transmissionse., average cascade size
is r/|C|. All networks have 1,024 nodes and 1,446 edges. We use tlmmenfal incubation time model with
parametery = 1, and in each case we set the probabijitguch that- /|C'| is neither too small nor too large€.,

B € (0.1,0.6)).

we can assess at most how far from the unknown optimal #= N solution is in terms
of the log-likelihood score. Second, we also evaluate thg&INF based on accuraciye.,
what fraction of edges af* NETINF managed to infer correctly.

Figure 6(a) plots the value of the log-likelihood improverh& (&) as a function of
the number of edges i&v. In red we plot the value achieved byeNINF and in green
the upper bound using Theorem 4. The plot shows that the wdltiee unknown optimal
solution (that is NP-hard to compute exactly) is somewhete/ben the red and the green
curve. Notice that the band between two curves, the optimélthe NETINF curve, is
narrow. For example, at 2,000 edgeinNETINF finds the solution that is least 97% of
the optimal graph. Moreover, also notice a strong dimimighieturn effect. The value of
the objective function flattens out after about 1,000 edddss means that, in practice,
very sparse solutions (almost tree-like diffusion gra@isgady achieve very high values
of the objective function close to the optimal.

Accuracy of NETINF. We also evaluate our approach by studying how many edges in-
ferred by NETINF are actually present in the true netwark. We measure the precision
and recall of our method. For every valuefofl < k < n(n — 1)) we generaté;, onk
edges by using NTINF or the baseline method. We then compute precision (whiah fra
tion of edges inG3, is also present*) and recall (which fraction of edges 6f* appears
in G). For smallk, we expect low recall and high precision as we select the fiyes
that we are the most confident in. Asncreases, precision will generally start to drop but
the recall will increase.

Figure 7 shows the precision-recall curves &MINF and the baseline method on three
different Kronecker graphs (random, hierarchical comrtyustructure and core-periphery
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Fig. 6. Score achieved by 8YINF in comparison with the online upper bound from Theorem 4. ractice
NETINF finds networks that are at 97% of NP-hard to compute optimal.

structure) with 1024 nodes and two incubation time modehe dascades were generated
with an exponential incubation time model with= 1, or a power law incubation time
model witha = 2 and a value of low enough to avoid generating too large cascades (in
all cases, we pick a value gfe (0.1, 0.6)). For each network we generated between 2,000
and 4,000 cascades so that 99% of the edgé¥ gfarticipated in at least one cascade. We
chose cascade starting points uniformly at random.
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Fig. 7. Precision and recall for three 1024 node KroneckerForest Fire network net-
works with exponential (Exp) and power law (PL) incubationg¢ model. The plots are
generated by sweeping over valueg:pthat controls the sparsity of the solution.
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Fig. 8. Performance of NTINF as a function of the amount of cascade data. The units in Beeésxare normal-
ized. z = 1 means that the total number of transmission events usebidaxperiment was equal to the number
of edges inG*. On average NTINF requires about two propagation events per edge of the atigigtwork in
order to reliably recover the true network structure.

First, we focus on Figures 7(a), 7(b) and 7(c) where we usexpenential incubation
time model on different Kronecker graphs. Notice that theeline method achieves the
break-even poiftbetween 0.4 and 0.5 on all three networks. On the other hantl,N¥
performs much better with the break-even point of 0.99 othadle datasets.

We view this as a particularly strong result as we were egfigcareful not to generate
too many cascades since more cascades mean more evidémeakha the problem easier.
Thus, using a very small number of cascades, where everyaddgeparticipates in only
a few cascades, we can almost perfectly recover the undgrtjiffusion networkG*.
Second important point to notice is that the performance BfINF seems to be strong
regardless of the structure of the netwark. This means that ETINF works reliably
regardless of the particular structure of the network ofoltdontagions propagated (refer
to Table I1).

Similarly, Figures 7(d), 7(e) and 7(f) show the performaonehe same three networks
but using the power law incubation time model. The perforceasf the baseline now dra-
matically drops. This is likely due to the fact that the vada of power-law (and heavy
tailed distributions in general) is much larger than thearare of an exponential distribu-
tion. Thus the diffusion network inference problem is muelder in this case. As the
baseline pays high price due to the increase in variancethétbreak-even point dropping
below0.1 the performance of ETINF remains stable with the break even point in the high
90s.

We also examine the results on the Forest Fire network (Bggafg) and 7(h)). Again,
the performance of the baseline is very low whileNINF achieves the break-even point

1The point at which recall is equal to precision.
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at around 0.90.

Generally, the performance on the Forest Fire network id folier than on the Kro-
necker graphs. However, it is important to note that whigsthnetworks have very differ-
ent global network structure (from hierarchical, randooals free to core periphery) the
performance of BTINF is remarkably stable and does not seem to depend on the struc-
ture of the network we are trying to infer or the particulgseyof cascade incubation time
model.

Finally, in all the experiments, we observe a sharp drop @tigion for high values of
recall (near). This happens because the greedy algorithm starts to elealyes with low
marginal gains that may be false edges, increasing the biliipéo make mistakes.

Performance vs. cascade coveragentuitively, the larger the number of cascades that
spread over a particular edge the easier it is to identifpit.one hand if the edge never
transmitted then we can not identify it, and the more timgmiticipated in the transmis-
sion of a contagion the easier should the edge be to identify.

In our experiments so far, we generated a relatively smatibver of cascades. Next, we
examine how the performance oENINF depends on the amount of available cascade data.
This is important because in many real world situations thi @f only a few different
cascades is available.

Figure 8 plots the break-even point oERINF as a function of the available cascade
data measured in the number of contagion transmission ®wer all cascades. The
total number of contagion transmission events is simplystima of cascade sizes. Thus,
x = 1 means that the total number of transmission events usedhéoexperiment was
equal to the number of edges@#. Notice that as the amount of cascade data increases
the performance of BITINF also increases. Overall we notice thatNINF requires a
total number of transmission events to be about 2 times timebeu of edges IrG* to
successfully recover most of the edge&:t

Moreover, the plot shows the performance for differentgalof edge transmission prob-
ability 5. As noted before, big values of produce larger cascades. Interestingly, when
cascades are small (small NETINF needs less data to infer the network than when cas-
cades are larger. This occurs because the larger a casbhadapte difficult is to infer
the parent of each node, since we have more potential pdogrgach the node to choose
from. For example, whed = 0.1 NETINF needs abou2|E| transmission events, while
wheng = 0.5 it needs twice as much data (abdli’| transmissions) to obtain the break
even point 00.9.

Stopping criterion. In practice one does not know how long to run the algorithm and
how many edges to insert into the netwdtk Given the results from Figure 6, we found
the following heuristic to give good results. We run the INF algorithm for k steps
wherek is chosen such that the objective function is “close” to tippar boundj.e.,
Fe(G) > x - OPT, where OPT is obtained using the online bound. In prastie use
values ofz in range0.8-0.9. That means that in each iteratién OPT is computed by
evaluating the right hand side expression of the equatidmaorem 4, wheré is simply

the iteration number. Therefore, OPT is computed onlind,thas the stopping condition

is also updated online.

Scalability. Figure 9 shows the average computation time per edge adddtefdlETINF
algorithm implemented with lazy evaluation and localizediate. We use a hierarchical
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Fig. 9. Average time per edge added by our algorithm impleéetewith lazy evaluation (LE) and localized
update (LU).

Kronecker network and an exponential incubation time medt#l o = 1 andg = 0.5.
Localized update speeds up the algorithm for an order of ihadg(45<) and lazy eval-
uation further gives a factor of 6 improvement. Thus, oJerve¢ achieve two orders of
magnitude speed up (280, withoutanyloss in solution quality.

In practice the M TINF algorithm can easily be used to infer networks of 10,000 sode
in a matter of hours.

Performance vs. incubation time noise.In our experiments so far, we have assumed
that the incubation time values between infections arenoistyand that we have access to
the true distribution from which the incubation times arawdn. However, real data may
violate any of these two assumptions.

We study the performance ofENINF (break-even point) as a function of the noise of
the waiting time between infections. Thus, we add Gaussiserto the waiting times
between infections in the cascade generation process.

Figure 10 plots the performance ofeNINF (break-even point) as a function of the
amount of Gaussian noise added to the incubation times batinéctions for both an ex-
ponential incubation time model witlh = 1, and a power law incubation time model with
« = 2. The break-even point degrades with noise but once a higiewdInoise is reached,
an additional increment in the amount of noise does not diegrather the performance of
NETINF. Interestingly, the break-even point value for high valaksoise is very similar
to the break-even point achieved later in a real dataseti{€sgyl3(a) and 13(b)).

Performance vs. infections by the external sourceln all our experiments so far, we
have assumed that we have accesotopletecascade datage., we are able to observe all
the nodes taking part in each cascade. Thereby, exceptedirshnode of a cascade, we
do not have any “jumps” or missing nodes in the cascade asdadp across the network.
Even though techniques for coping with missing data in imfation cascades have recently
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Fig. 10. Break-even point of BIrINF as a function of the amount of additive Gaussian noise inrthekiation
time.

been investigated [Sadikov et al. 2011], we evaluatgINF against both scenarios.

First, we consider the case where a random fraction of eastada is missing. This
means that we first generate a set of cascades, but then colgneode infection times
of f-fraction of nodes. We first generate enough cascades sovithetut counting the
missing nodes in the cascades, we still have that 99% of thesedG* participate in at
least one cascade. Then we randomly deliete §et infection times to infinity)-fraction
of nodes in each cascade.

Figure 11(a) plots the performance oENNF (break-even point) as a function of the
percentage of missing nodes in each cascade. Naturallpettfiermance drops with the
amount of missing data. However, we also note that the affanissing nodes can be mit-
igated by an appropriate choice of the parametdasically, highee makes propagation
via e-edges more likely and thus by giving a cascade a greateicehtarmpropagate over
thee-edges NTINF can implicitly account for the missing data.

Second, we also consider the case where the contagion dospmead through the
network via diffusion but rather due to the influence of aneexal source. Thus, the
contagion does not really spread over the edges of the netwbrather appears almost at
random at various nodes of the network.

Figure 11(b) plots the performance oENNF (break-even point) as a function of the
percentage of nodes that are infected by an external soordéfierent values of. In our
framework, we model the influence due to the external souittethe c-edges. Note that
appropriately setting can appropriately account for the exogenous infectionsateanot
the result of the network diffusion but due to the externfilience. The higher the value
of ¢, the stronger the influence of the external souree, we assume a greater number
of missing nodes or number of nodes that are infected by arredtsource. Thus, the
break-even is more robust for higher values of
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4.2 Experiments on real data

Dataset description. We use more tham72 million news articles and blog posts from
million online sources over a period of one year from Sep&mb2008 till August 31
200¢. Based on this raw data, we use two different methodologi&rate information on

2Data available alt t p: / / menet racker . or g andht t p: / / snap. st anf or d. edu/ net i nf
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Fig. 12. Hyperlink-based cascades versus meme-basedieasda hyper-link cascades,
if post j linked to postk, we consider this as a contagion transmission event witpdise
creation time as the corresponding infection time. In MeraeKer cascades, we follow
the spread of a short textual phrase and use post creaties &iminfection times.

the Web and then create two different datasets:
(1) Blog hyperlink cascades datasatle use hyperlinks between blog posts to trace the
flow of information [Leskovec et al. 2007]. When a blog pubés a piece of information
and uses hyper-links to refer to other posts published bgrdilogs we consider this as
events of information transmission. A cascadgarts when a blog publishes a pésand
the information propagates recursively to other blogs Iepthinking to the original post
or one of the other posts from which we can trace a chain of tipjs all the way to the
original postP . By following the chains of hyperlinks in the reverse difentwe identify
hyperlink cascades [Leskovec et al. 2007]. A cascade isdbinposed of the time-stamps
of the hyperlink/post creation times.
(1) MemeTracker dataseWe use the MemeTracker [Leskovec et al. 2009] methodology
to extract more than 343 million short textual phrases (liiee, the plumber” or “lipstick
on a pig”). Out of these, 8 million distinct phrases appeanede than 10 times, with the
cumulative number of mentions of over 150 million. We clustee phrases to aggregate
different textual variants of the same phrase [Leskovet 089]. We then consider each
phrase cluster as a separate caseadsince all documents are time stamped, a cascade
¢ is simply a set of time-stamps when blogs first mentioned gghra So, we observe
the times when blogs mention particular phrases but not evttexy copied or obtained
the phrases from. We consider the largest 5,000 cascadesséptiusters) and for each
website we record the time when they first mention a phrageiparticular phrase cluster.
Note that cascades in general do not spread over all the witésh our methodology can
successfully handle.

Figure 12 further illustrates the concept of hyper-link &teimeTracker cascades.

Accuracy on real data. As there is not ground truth network for both datasets, weluse
following way to create the ground truth netwa® . We create a network where there is
a directed edgéu, v) between a pair of nodesandv if a post on site. linked to a post on
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Fig. 14. Small part of a news media (red) and blog (blue) ditio network. We use the
blog hyperlink cascades dataseg., hyperlinks between blog and news media posts to
trace the flow of information.

sitev. To construct the network we take the top 500 sites in ternmsiofber of hyperlinks
they create/receive. We represent each site as a nagé amd connect a pair of nodes if
a post in first site linked to a post in the second site. Thigegse produces a ground truth
networkG* with 500 nodes and 4,000 edges.

First, we use the blog hyperlink cascades dataset to inéenétwork and evaluate
how many edges KITINF got right. Figure 13(a) shows the performance &T\NF and
the baseline. Notice that the baseline method achieveg#ad&{even point of 0.34, while
our method performs better with a break-even point of 0.4doat a 30% improvement.

NETINF is basically performing a link-prediction task based ontytemporal linking
information. The assumption in this experiment is thatssgeefer to create links to sites
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Fig. 15. Small part of a news media (red) and blog (blue) difio network. We use
the MemeTracker datasdte., textual phrases from MemeTracker to trace the flow of
information.

that recently mentioned information while completely igng the authority of the site.
Given such assumption is not satisfied in real-life, we a@rsihe break even point of 0.44
a good result.

Now, we consider an even harder problem, where we use the Marker dataset to
infer G*. In this experiment, we only observe times when sites margarticular textual
phrases and the task is to infer the hyperlink structure @futiderlying web graph. Fig-
ure 13(b) shows the performance oENNF and the baseline. The baseline method has
a break-even point of 0.17 andeNINF achieves a break-even point of 0.28, more than a
50% improvement

To have a fair comparison with the synthetic cases, notiigiie exponential incubation
time model is a simplistic assumption for our real dataset,METINF can potentially gain
additional accuracy by choosing a more realistic inculpetiime model.

Solution quality. Similarly as with synthetic data, in Figure 6(b) we inveatgythe value

of the objective function and compare it to the online bouhthtice that the bound is
almost as tight as in the case of synthetic networks, findiegsblution that is least 84%
of optimal and both curves are similar in shape to the syittltzeise value. Again, as in
the synthetic case, the value of the objective functionlquittattens out which means that
one needs a relatively few number of edges to capture molseahformation flow on the

Web.
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In the remainder of the section, we use the top 1,000 media aitd blogs with the
largest number of documents.

Visualization of diffusion networks. We examine the structure of the inferred diffusion
networks using both datasets: the blog hyperlink cascaaeset and the MemeTracker
dataset.

Figure 14 shows the largest connected component of thesdifiunetwork afterl 00
edges have been chosen using the first datasetysing hyperlinks to track the flow of
information. The size of the nodes is proportional to the hanof articles on the site and
the width of the edge is proportional to the probability ofiuence,i.e., stronger edges
have higher width. The strength of an edge across all casdadgmply defined as the
marginal gain given by adding the edge in the greedy algoritand this is proportional
to the probability of influence). Since news media articlrgly use hyperlinks to refer to
one another, the network is somewhat biased towards wels fidge nodes). There are
several interesting patterns to observe.

First, notice that three main clusters emerge: on the lgft sif the network we can
see blogs and news media sites related to politics, at thetog, we have blogs devoted
to gossip, celebrity news or entertainment and on the rigition, we can distinguish
blogs and news media sites that deal with technological nekesHuffington Post and
Political Carnival play the central role on the politicatlsiof the network, mainstream
media sites like Washington Post, Guardian and the prafieakblog Salon.com play the
role of connectors between the different parts of the ndtwdhe celebrity gossip part of
the network is dominated by the blog Gawker and technologysrgather around blogs
Gizmodo and Engadget, with CNet and TechChuck establighingonnection to the rest
of the network.

Figure 15 shows the largest connected component of thesdifiunetwork aftei300
edges have been chosen using the second methodo&gysing short textual phrases to
track the flow of information. In this case, the network isdgid towards news media sites
due to its higher volume of information.

Insights into the diffusion on the web. The inferred diffusion networks also allow for
analysis of the global structure of information propagatim the Web. For this analysis,
we use the MemeTracker dataset and analyze the structutes dfferred information
diffusion network.

First, Figure 16(a) shows the distribution of the influenu#eix. The influence index is
defined as the number of reachable nodes fuohy traversing edges of the inferred diffu-
sion network (while respecting edge directions). Nevédetbe we are also interested in the
distance fromw to its reachable nodes, i.e. nodes at shorter distancesaaedifely to be
infected byw. Thus, we slightly modify the definition of influence indexide ", 1/d..,
where we sum over all the reachable nodes froandd,,,, is the distance betweenand
u. Notice that we have two types of nodes. There is a small sebdés that can reach
many other nodes, which means they either directly or intliygropagate information to
them. On the other side we have a large number of sites thyageninfluenced but do not
influence many other sites. This hints at a core periphengstre of the diffusion network
with a small set of sites directly or indirectly spreading thformation in the rest of the
network.

Figure 16(b) investigates the number of links in the infémetwork that point between
different types of sites. Here we split the sites into maigesin media and blogs. Notice
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Fig. 16. (a) Distribution of node influence index. Most notiese very low influence (they
act as sinks). (b) Number and strength of edges betweendfiffenedia types. Edges of
news media influencing blogs are the strongest. (c) Medme tag on edges of different

type.

that most of the links point from news media to blogs, whicisstinat most of the time
information propagates from the mainstream media to blofsen notice how at first
many media-to-media links are chosen but in later iteratitne increase of these links
starts to slow down. This means that media-to-media linkd te be the strongest and
NETINF picks them early. The opposite seems to occur in case oftoldieg links where
relatively few are chosen first but later the algorithm pioksre of them. Lastly, links
capturing the influence of blogs on mainstream media areatest and weakest. This
suggests that most information travels from mass mediactgsbl

Last, Figure 16(c) shows the median time difference betwsamions of different types
of sites. For every edge of the inferred diffusion networle, @ompute the median time
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needed for the information to spread from the source to tlsérggion node. Again, we

distinguish the mainstream media sites and blogs. Notiaertiedia sites are quick to
infect one another or even to get infected from blogs. Howewegs tend to be much
slower in propagating information. It takes a relativelgdaime for them to get “infected”

with information regardless whether the information corfnes the mainstream media or
the blogosphere.

Finally, we have observed that the insights into diffusiortlee web using the inferred
network are very similar to insights obtained by simply takihe hyperlink network. How-
ever, our aim here is to show that (i) although the quanigatsults are modest in terms
of precision and recall, the qualitative insights makessegand that (ii) it is surprising
that using simply timestamps of links, we are able to drawstimae qualitative insights as
using the hyperlink network

5. FURTHER RELATED WORK

There are several lines of work we build upon. Although tHferimation diffusion in on-
line settings has received considerable attention [Grull.e2004; Kumar et al. 2004;
Adar and Adamic 2005; Leskovec et al. 2006; Leskovec et &1620eskovec et al. 2007;
Liben-Nowell and Kleinberg 2008], only a few studies wer&eab study the actual shapes
of cascades [Leskovec et al. 2007; Liben-Nowell and Kleigi2®08; Ghosh and Lerman
2011; Romero et al. 2011; Ver Steeg et al. 2011]. The probleimferring links of dif-
fusion was first studied by Adar and Adamic [Adar and Adami6Z0who formulated it
as a supervised classification problem and used SuppomMeeichines combined with
rich textual features to predict the occurrence of indiaidinks. Although rich textual
features are used, links are predicted independently arglttieir approach is similar to
our baseline method in the sense that it picks a thresheld{yperplane in case of SVMs)
and predicts individually the most probable links.

The work most closely related to our approaclgNONIE [Myers and Leskovec 2010]
and NETRATE [Gomez-Rodriguez et al. 2011], also uses a generative piltdiec model
for the problem of inferring a latent social network fromfdgion (cascades) data. How-
ever, @NNIE and NETRATE use convex programming to solve the network inference
problem. @NNIE includes &, -like penalty term that controls sparsity whileeRRATE
provides a unique sparse solution by allowing differenhsgraission rates across edges.
For each edgéi, j), CONNIE infers a prior probabilitys; ; and NETRATE infers a trans-
mission ratey; ;. Both algorithms are computationally more expensive thamINF. In
our work, we assume that all edges of the network have the saimeprobability (5)
and transmission ratey]. From this point of view, we think the comparison betweea th
algorithms is unfair since BITRATE and CONNIE have more degrees of freedom

Network structure learning has been considered for edtigndihe dependency struc-
ture of probabilistic graphical models [Friedman and Ko#2803; Friedman et al. 1999].
However, there are fundamental differences between ouoapp and graphical models
structure learning. (a) we learning directed networks Baytes netws are DAGs (b) undi-
rected graphical model structure learning makes no assomgdbout the network but they
learn undirected and we learn directed networks

First, our work makes no assumption about the network siracive allow cycles, re-
ciprocal edges) and are thus able to learn general direeteebrks. In directed graphical
models, reciprocal edges and cycles are not allowed, aridfdreed network is a directed
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acyclic graph (DAG). In undirected graphical models, thane typically no assumptions
about the network structure, but the inferred network isitgatied. Second, Bayesian net-
work structure inference methods are generally heurigic@aches without any approxi-
mation guarantees. Network structure learning has also bssd for estimating epidemi-
ological networks [Wallinga and Teunis 2004] and for estingprobabilistic relational
models [Getoor et al. 2003]. In both cases, the problem imditated in a probabilistic
framework. However, since the problem is intractable, istiargreedy hill-climbing or
stochastic search that offer no performance guarantee wgeraly used in practice. In
contrast, our work provides a novel formulation antleectablesolution together with an
approximation guarantee.

Our work relates to static sparse graph estimation usinghiral Lasso methods [Wain-
wright et al. 2006; Schmidt et al. 2007; Friedman et al. 2008nshausen and Buehlmann
2006], unsupervised structure network inference usingeédenethods [Lippert et al. 2009],
mutual information relevance network inference [Butte &uwithane 2000], inference of
influence probabilities [Goyal et al. 2010], and extensiortime evolving graphical mod-
els [Ahmed and Xing 2009; Ghahramani 1998; Song et al. 2009%.work is also related
to a link prediction problem [Jansen et al. 2003; Taskar e2@03; Liben-Nowell and
Kleinberg 2003; Backstrom and Leskovec 2011; Vert and Yasha@005] but differentin
a sense that this line of work assumes that part of the netiw@lkeady visible to us.

Last, althoughlsubmodularfunction maximization has been previously considered for
sensor placement [Leskovec et al. 2007] and finding influsrineviral marketing [Kempe
et al. 2003], to the best of our knowledge, the present wortkésfirst that considers
submodular function maximization in the context of netwsitkicture learning.

6. CONCLUSIONS

We have investigated the problem of tracing paths of diffusand influence. We for-
malized the problem and developed a scalable algorithat|NF, to infer networks of
influence and diffusion. First, we defined a generative motieascades and showed that
choosing the best set @& edges maximizing the likelihood of the data is NP-hard. By
exploiting the submodularity of our objective function, developed MTINF, an efficient
algorithm for inferring a near-optimal set &f directed edges. By exploiting localized
updates and lazy evaluation, our algorithm is able to scalety large real data sets.

We evaluated our algorithm on synthetic cascades sampaddur generative model,
and showed that KITINF is able to accurately recover the underlying network frorela r
atively small number of samples. In our experiments;TNNF drastically outperformed a
naive maximum weight baseline heuristic.

Most importantly, our algorithm allows us to study propestiof real networks. We
evaluated MTINF on a large real data set of memes propagating across newgesebs
and blogs. We found that the inferred network exhibits a -g@ephery structure with
mass media influencing most of the blogosphere. Clustelisssfrelated to similar topics
emerge (politics, gossip, technology, etc.), and a fevg sitiéh social capital interconnect
these clusters allowing a potential diffusion of infornesatamong sites in different clusters.

There are several interesting directions for future workréHwe only used time differ-
ence to infer edges and thus it would be interesting to atitimre informative features
(e.g., textual content of postings etc.) to more accurastymate the influence probabil-
ities. Moreover, our work considers static propagationvoeks, however real influence
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networks are dynamic and thus it would be interesting toxréles assumption. Last, there
are many other domains where our methodology could be usefatring interaction net-
works in systems biology (protein-protein and gene intgoacnetworks), neuroscience
(inferring physical connections between neurons) andespidlogy.

We believe that our results provide a promising step towartderstanding complex
processes on networks based on partial observations.
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