
The Need for Richer Refactoring Usage Data

Mohsen Vakilian Nicholas Chen Stas Negara Balaji Ambresh Rajkumar
Roshanak Zilouchian Moghaddam Ralph E. Johnson

University of Illinois at Urbana-Champaign
{mvakili2, nchen, snegara2, rajkuma1, rzilouc2, rjohnson}@illinois.edu

Abstract
Even though modern Integrated Development Environments
(IDEs) support many refactorings, studies suggest that auto-
mated refactorings are used infrequently, and few developers
use anything beyond Rename and Extract refactorings. Lit-
tle is known about why automated refactorings are seldom
used. We present a list of challenging questions whose an-
swers are crucial for understanding the usability issues of
refactoring tools. This paper argues that the existing data
sources—Eclipse UDC, Eclipse refactoring histories, ver-
sion control histories, etc.—are inadequate for answering
these questions. Finally, we introduce our tools to collect
richer usage data that will enable us to answer some of the
open research questions about the usability of refactoring
tools. Findings from our data will foster the design of the
next generation of refactoring tools.

Categories and Subject Descriptors D.2.6 [Software En-
gineering]: Programming Environments; D.2.0 [Software
Engineering]: General

General Terms Experimentation, Human Factors, Mea-
surement

Keywords Usability, Refactoring, Automated Refactoring
Tools, User Study

1. Introduction
Refactoring is a kind of program transformation that im-
proves the internal design of a program without changing
its external behavior. Opdyke identified several recurring
refactorings two decades ago [13]. Today, software devel-
opment processes such as Extreme Programming (XP) pre-
scribe refactoring and modern Integrated Development En-
vironments (IDEs) support many refactorings. Automated

Copyright is held by the author/owner(s).
This paper was published in the Proceedings of the Workshop on Evaluation and
Usability of Programming Languages and Tools (PLATEAU) at the ACM Onward!
and SPLASH Conferences. October, 2011. Portland, Oregon, USA.

tools have been designed to simplify the task of applying
common refactorings [15]. However, recent studies suggest
that developers are not taking full advantage of these tools
and Rename and Extract refactorings constitute most uses of
automated refactorings [8, 12].

Why do not developers use the automated refactorings
more? Perhaps programmers just need more training in the
tools, the tools implement the wrong refactorings, or most
of the refactorings are not done frequently enough to justify
their automation. Is the problem that the tools have poor user
interfaces? Perhaps they are based on a flawed understanding
of how developers use these tools in their workflows.

The answers to these questions have deep implications for
designers as they develop new refactoring tools. Answering
questions about the usability of refactoring tools is difficult
because they span many different aspects of the design of
the tools. In this paper, we argue that more detailed data
than what are currently available are required to answer
these questions. We anticipate that some of the questions
cannot be fully answered by solely relying on the usage
data. Therefore, we need to interview programmers to better
understand their perception of the refactoring tools and the
problems that they find with these tools. Richer refactoring
usage data will also enable us to ask more specific questions
during the interviews and get more accurate answers.

Almost all we know about the usability of refactoring
tools comes from the studies based on a few coarse-grained
and inconsistent sets of data (See Section 2). There is a large
amount of coarse-grained data, but, only a small amount
of fine-grained data from a few developers on the usage
of refactoring tools. These data sets are inconsistent and
difficult to correlate because they capture different data over
different time intervals from different developers. Others
have reported some interesting statistics on the usage of
refactoring tools based on these data [12]. However, we need
to study more aspects of automated refactorings such as their
configurations, previews, and failures to discover the major
usability problems of automated refactorings.

The limitations of the existing data have motivated us
to develop our own usage data collectors, CodingSpectator
and CodingTracker [1], for capturing richer data about high-
level refactorings and low-level code edits. We will combine

mailto:mvakili2@illinois.edu
mailto:nchen@illinois.edu
mailto:snegara2@illinois.edu
mailto:rajkuma1@illinois.edu
mailto:rzilouc2@illinois.edu
mailto:rjohnson@illinois.edu


the data of these two data collectors and our interviews with
developers to answer many open research questions about
the usability of refactoring tools (See Section 3).

In this paper, we first give an overview of the existing
data on the usage of refactoring tools (See Section 2). Then,
we discuss some of the current findings about the usability
of refactoring tools and present several new open research
questions (See Section 3). Answers to these questions will
give us a better understanding of the major usability prob-
lems of mainstream refactoring tools. However, we show
that the existing data sets are not sufficient to answer these
research questsions. So, we will present our technique for
collecting richer and more consistent data about automated
and manual refactorings (See Section 4). Our richer usage
data and interviews will make it possible to answer some of
the open questions that are vital to design the next genera-
tion of refactoring tools that better align with how developers
work (See Section 6).

2. Limitations of Existing Data
Other researchers have analyzed multiple sets of data to
study the usability of refactoring tools. The generalizability
and number of conclusions that can be drawn by these stud-
ies depend on the quality and quantity of these data sets. This
section discusses the strengths and weaknesses of each set of
refactoring usage data that others have studied to understand
the usability properties of refactoring tools.

2.1 Mylyn Monitor
Mylyn Monitor was the first usage data collector tool for
Eclipse [8]. It captured data about the use of various features
and plug-ins of Eclipse. Mylyn monitor captured the interac-
tion history of each user. The interaction history included the
time of invoking commands and changes to views, perspec-
tives, and editor selections. A subset of the interaction his-
tory captured information about the refactoring commands.
Mylyn Monitor collected data from 41 developers. Since its
focus was not refactorings, it did not collect detailed infor-
mation about how programmers interacted with automated
refactorings, e.g. the configurations of automated refactor-
ings.

2.2 Aggregated Eclipse Usage Data
Most releases of Eclipse come with a plug-in called the
Eclipse Usage Data Collector (UDC) [2]. The intent of
UDC is to help the developers of Eclipse better understand
how the users utilize different features of it. UDC records
various events including the usage of all perspectives, views,
and commands in Eclipse. It also records invocations of
refactorings as commands, and captures the ID and the time
of invocation of every command locally. Then, it regularly
uploads the collected data to the Eclipse foundation servers,
if the user agrees to share his or her data.

The Eclipse foundation aggregates and publishes the data
every year. The aggregated data reports the total number

of invocations of each command by all users during every
month. UDC has been in operation since April 2008. So
far, the Eclipse foundation has published the aggregated
data until January 2010. Figure 1 shows a sample of the
aggregated Eclipse usage data publicly available on the UDC
website.

Since UDC is pre-installed in most releases of Eclipse
and captures coarse-grained data that do not contain sen-
sitive information, many users agree to submit their data.
On average, UDC has received data from 168,100 users per
month. Even though not all users of UDC use Eclipse for
Java programming, a significant fraction of them invoke Java
specific commands.

The UDC data record what automated refactorings get in-
voked. However, they do not contain more detailed informa-
tion about how an automated refactoring is performed, e.g.
how the user has configured the tool. In addition, there is no
one-to-one mapping between the IDs of the commands of the
UDC data and the refactoring IDs. For instance, the UDC
data do not distinguish the Rename Local Variable refac-
toring from the Rename Method refactoring. The UDC data
distinguish the six variants of the Extract refactoring but not
the ten, four and three variants of the Rename, Move and
Inline refactorings, respectively. The impacts of these refac-
torings depend on the program elements on which they are
invoked. For example, the impact of renaming a local vari-
able is limited to a method while renaming a method could
affect multiple files. Since the impacts of these refactorings
are different, the users might use them differently. Therefore,
it is useful to differentiate the refactorings performed on dif-
ferent kinds of program elements to study how programmers
use such refactorings.

2.3 Time-stamped Eclipse Usage Data
The Eclipse UDC plug-in captures the time of invocation
of every command locally [2]. So far, the Eclipse founda-
tion has published the time-stamped usage data from January
2009 until August 2010. The UDC set of data with times-
tamps reports the exact time rather than the year and month
of invocation of every command. The time-stamped usage
data make it possible to study the refactoring activities in a
small window of time. Figure 2 shows a sample of the time-
stamped Eclipse usage data from our own local system.

2.4 Eclipse Refactoring Histories
Eclipse logs completed refactorings locally. The intent of
this kind of log is to replay the refactorings. Eclipse rep-
resents every refactoring operation as a refactoring descrip-
tor. Refactoring descriptors make it possible to decouple the
back-end refactoring engine from the front-end user inter-
face of refactoring tools. A refactoring descriptor contains
enough information to replay the refactoring on the same
source code. In addition to the ID and the time of invoca-
tion, a refactoring descriptor stores all the parameters and
configurations provided on the user interface of the refactor-



1 yearmonth ,command ,bundleId ,bundleVersion ,executeCount ,userCount
2 200901 , org.eclipse.jdt.ui.edit.text.java.inline ,org.eclipse.jdt.ui ,3.4.0. v20080603 -2000 ,68 ,38
3 200901 , org.eclipse.jdt.ui.edit.text.java.extract.local.variable ,org.eclipse.jdt.ui ,3.4.0. v20080603 -2000 ,1252 ,436
4 ...

Figure 1. Sample of the data collected in aggregated Eclipse usage data

1 what ,kind ,bundleId ,bundleVersion ,description ,time
2 executed ,command ,org.eclipse.jdt.ui ,3.7.0.201107172337 ,"org.eclipse.jdt.ui.edit.text.java.inline" ,1312611465324
3 opened ,editor ,org.eclipse.jdt.ui ,3.7.0.201107172337 ,"org.eclipse.jdt.ui.CompilationUnitEditor" ,1312611648385
4 ...

Figure 2. Sample of the data collected in the time-stamped Eclipse usage data

1 <?xml version="1.0" encoding="UTF -8"?>
2 <session version="1.0">
3 <refactoring comment="Extract method ’private static
4 void print()’ from ’MyClass.main()’ to ’MyClass ’
5 - Original project: ’MyClass ’
6 - Method name: ’print ’
7 - Destination type: ’MyClass ’
8 - Declared visibility: ’private ’"
9 comments="false" destination="0" exceptions="false"

10 description="Extract method ’print ’" flags="786434"
11 id="org.eclipse.jdt.ui.extract.method"
12 input="/src <{ MyClass.java" name="print"
13 replace="false" selection="68 37" visibility="2"
14 stamp="1313173552362" version="1.0"/>
15 ...
16 </session >

Figure 3. Sample of the data collected in Eclipse refactor-
ing histories

ing tool. Figure 3 shows a sample of the data collected in the
Eclipse refactoring histories.

When the user performs an automated refactoring, Eclipse
creates a refactoring descriptor and logs it in its local refac-
toring history. If the user undoes the automated refactoring
later, Eclipse will remove the corresponding refactoring de-
scriptor from the refactoring history.

The Eclipse refactoring histories are more detailed than
the UDC data, but these two data sets are not consistent (See
Sections 2.2, 2.3). The UDC data capture every refactoring
command that is initiated, while refactoring histories only
capture the refactorings that have been completed and have
not been later undone.

Since the Eclipse refactoring histories have been designed
to replay refactorings, they do not capture information about
the failures of automated refactorings and the error messages
that they report. However, a better understanding of the
failures of refactoring tools might lead to improvements in
the usability of such tools [10].

Although the Eclipse refactoring histories are richer than
UDC data, there has been no systematic mechanism for col-
lecting the Eclipse refactoring histories to a central reposi-
tory, and few refactoring histories are available. Robbes has
reported on the usage of refactoring tools by himself and an-
other developer [14]. Four developers who primarily main-
tain the automated refactorings of Eclipse have shared their

refactoring histories with several researchers. Additionally,
eight developers of the Eclipse Mylyn project used to check
their refactoring histories in their CVS repository. Nonethe-
less, Eclipse started to capture some of the refactorings only
in the middle of the data collection from these develop-
ers [12]. As a result, the refactoring histories of these 12
developers are incomplete because the data about some of
the early automated refactorings are missing.

2.5 Version Control Histories
Version control systems contain the source code of many
open source projects. Several researchers have studied the
histories of version control systems for refactoring activ-
ities [6, 7, 12, 17]. Finding the refactorings between two
versions of the source code requires sampling, metrics, and
heuristics. The following are some of the disadvantages of
relying on the version control histories for studying refactor-
ings:

1. Developers may not commit all their refactorings to ver-
sion control systems.

2. Sometimes, there are different ways to refactor one ver-
sion of the code to another. In such cases, it is often chal-
lenging to determine which sequence of refactorings have
led to a particular version of the source code.

3. Most of the time, it is almost impossible to tell whether
a refactoring has been performed manually or through a
tool by just comparing two snapshots of the source code.
Therefore, some have tried to match the version con-
trol commits with Eclipse refactoring histories to distin-
guish the automated and manual refactorings [12]. How-
ever, few developers have made their refactoring histories
available (See Section 2.4).

3. Research Questions
Others have raised interesting research questions about the
usability of refactoring tools and discussed differenet meth-
ods for studying the use of such tools [8, 11]. This section
categorizes and discusses these research questions and intro-
duces a few new ones. We briefly discuss the existing work
and possible implications of answers to each set of ques-



tions. These open questions require richer data about the us-
age of refactoring tools beyond what are currently available.
However, even our richer usage data will not be sufficient
to answer all of our questions. For example, we may not
capture enough data about automated refactorings that pro-
grammers rarely use. Therefore, we will conduct interviews
and combine quantitative and qualitative approaches to gain
deeper insight [5]. Table 1 lists the different categories from
this section and summarizes whether existing data sources
can be used to answer the questions.

3.1 Manual and Automated Refactorings
Manual refactorings are believed to be error-prone and auto-
mated refactorings are supposed to help developers perform
refactorings quickly and correctly [16]. Nonetheless, a study
of the Eclipse refactoring histories and version control histo-
ries of two Eclipse development teams suggested that auto-
mated refactorings are underused, that is, developers opt to
perform most refactorings manually despite the availability
of automated support. Prior research has also suggested that
programmers intersperse refactorings with other edits [12].

Answers to the following questions will provide a bet-
ter understanding of how programmers combine automated
refactorings with manual changes and the characteristics of
automated refactorings that are underused. This understand-
ing may have implications for designing tools that are used
more frequently and better match the workflow of program-
mers.

1. How do programmers intersperse refactorings with other
kinds of program changes?

2. How common are simple and complex automated refac-
torings?

3. How frequent are refactorings?

4. Are automated refactorings underused?

5. How often are different refactorings performed with and
without tools?

Eclipse refactoring and version control histories cannot
be used to answer the above questions reliably (See Sections
2.4 and 2.5). We need to collect data from more develop-
ers about the fine-grained edits, and not just coarse-grained
commits of version control systems. Capturing fine-grained
edits also allows us to find out how the use of automated
refactorings differ for intermediate refactorings and the fi-
nal refactorings found in consecutive snapshots of a version
control system.

3.2 Awareness
A survey conducted on a few developers suggested that
developers do not use some automated refactorings because
they are unaware of the tools [12]. Our interviews with four
students of the software engineering course at the University
of Illinois corroborate this observation. Even though the

students had received training on several refactorings they
were unaware of the automated support for many others.
More quantitative and qualitative data are required to answer
the following questions:

1. What refactorings do developers frequently underuse be-
cause of their unawareness?

2. How do developers become aware of certain automated
refactorings?

Not all questions about the awareness of automated refac-
torings can be answered based on the usage data. We can
capture data only about automated refactorings that pro-
grammers are aware of. More interviews with developers are
required to better understand the effect of awareness on the
use of automated refactorings.

3.3 Methods of Invocation
There are different ways to invoke a refactoring operation. A
programmer may invoke the refactoring by selecting a pro-
gram element in the editor or a structured view. Also, the
programmer could use the Quick Assist feature of Eclipse to
get a list of applicable refactorings on the current selection.
Quick Assist narrows down the decision space of program-
mers by proposing only a subset of refactorings applicable to
the current context. Other methods of invoking refactorings
have also been proposed [9]. However, little is known about
the impact of each invocation method on the use of auto-
mated refactorings [8]. It is not clear if programmers prefer
to invoke refactorings from within editors or graphical rep-
resentations of code. Also, we do not know if light-weight
methods of invocations such as Quick Assist influence pro-
grammers to use automated refactorings more often.

Some automated refactorings operate on specific program
elements and are unavailable on others. Others have ob-
served that it is sometimes tricky to select a valid piece of
code for invoking the Extract Method refactoring [10]. How-
ever, it is still unclear how prevalent the selection problems
are for all automated refactorings. Based on these observa-
tions, we find it essential to seek answers to the following
questions in order to invent better ways of invoking the au-
tomated refactorings:

1. What refactorings are more difficult to invoke? What
refactorings programmers fail to invoke because of wrong
input selections?

2. How do developers prefer to select the input program el-
ements of automated refactorings? Do they prefer textual
or structural selections?

3. How often do developers use the Quick Assist feature of
Eclipse to invoke automated refactorings? Do program-
mers use the autoamted refactorings supported by Quick
Assist more often?



Research Aspects Mylyn
Monitor

UDC Data Refactoring
Histories

Refactoring and Version
Control HistoriesAggregated Time-stamped

Manual and automated refactorings
(Section 3.1)

o o o o o

Awareness (Section 3.2) o o o o o

Methods of invocation (Section 3.3) o 6 o 6 6

Configuration of automated refactor-
ings (Section 3.4)

6 6 6 o 6

Previewing the outcomes of auto-
mated refactorings (Section 3.5)

6 6 6 6 6

Exceptional cases (Section 3.6) 6 6 6 6 6

Cancellations and undos (Section 3.7) o 6 o 6 6

Table 1. Can we use the existing data sources to help answer our research questions?f(Yes);o(Partially);6(No)

3.4 Configuration of Automated Refactorings
Most automated refactorings are configurable. For instance,
the wizard of the Extract Method refactoring in Eclipse pro-
vides options to configure the access modifier, declared ex-
ceptions, and comment of the new method. Knowing what
options developers frequently set and ignore helps tool de-
signers streamline the user interface.

Others have analyzed the Eclipse refactoring histories
(See Section 2.4) of two development teams to understand
how often these developers have changed the default con-
figurations of their tools [12]. These results have raised the
following new set of questions that cannot be answered us-
ing any of the existing sets of refactoring usage data (See
Section 2).

1. Do programmers manually change the outcomes of au-
tomated refactorings? Do these changes indicate any op-
tions that are missing from the user interfaces of auto-
mated refactorings?

2. Under what circumstances do developers change the de-
fault options of their tools? Can the automated refactor-
ings suggest better default options based on the recent
developers’ activities in the IDE?

3. How long do developers spend on configuring various au-
tomated refactorings? Are long configuration times indi-
cators of usability problems?

3.5 Previewing the Outcomes of Automated
Refactorings

Most automated refactorings offer the option of previewing
their proposed changes. Typically, for each file that will be
affected by the refactoring, the preview dialog shows two

versions: the one before applying the refactoring and the one
after.

One developer raised concerns about the usability of the
preview dialog in a survey [12]. None of the existing data
sets contain data about previews of refactorings and we
do not know of any empirical research on this aspect of
refactoring tools. We collect data about the preview actions
of developers to answer the following questions (See Section
4):

1. How often do programmers preview automated refactor-
ings?

2. What refactorings are programmers more likely to pre-
view?

3.6 Exceptional Cases
Automated refactorings try to guarantee that their changes
will be behavior-preserving. If the tool detects that a partic-
ular use of it may change the observed behavior of the pro-
gram, it reports some error messages to the developer. The
automated refactorings of Eclipse rate the severity levels of
their messages as information, warning, error, and fatal er-
ror. Eclipse prevents the user from continuing an automated
refactoring only if it has found a fatal error.

Others have observed that the Extract Method refactor-
ing of Eclipse communicates error messages to its user
poorly [10]. By collecting more data about the error mes-
sages reported by automated refactorings (See Section 4),
we will be able to answer interesting questions about the
usability of many refactorings including the following:

1. What automated refactorings present error messages
more frequently?

2. What are the most frequent error messages about?



3. How do error messages affect the developer’s future uses
of the tool?

3.7 Cancellations and Undos
Others have found undo and erase events to be indicators
of usability problems in creation oriented applications like
Google SketchUp [3, 4]. Similarly, we hypothesize that can-
cellations and undos of automated refactorings may be in-
dicators of usability problem. However, none of the exist-
ing data sets capture such events and we are unaware of
any research study on such refactoring actions. Collecting
data about cancellations and undos of automated refactoring
refactorings could shed light on the following questions:

1. What are the most highly canceled and undone automated
refactorings?

2. Does the number of cancellations and undos correlate
with other indicators of complexity such as complicated
error messages, change impact of the refactoring, and
the amount of time spent on configuring the automated
refactoring?

3. Do the error messages of automated refactorings influ-
ence developers to cancel or undo their refactorings?

4. CodingSpectator and CodingTracker
To address the limitations of existing data sources (Sec-
tion 2) and to answer the open research questions about
the usability of refactoring tools (Section 3), we have de-
veloped our own minimally intrusive usage data collection
tools: CodingSpectator and CodingTracker. Both tools mod-
ify Eclipse to capture more data. So far, 26 developers have
been using our data collectors in real-world settings. Based
on the feedback from our participants, we have iteratively
improved the user experience and data collection capabili-
ties of CodingSpectator and CodingTracker so that they do
not slow down or crash Eclipse or interfere with developers’
work.

The following is a sample of the data that CodingSpecta-
tor collects about refactorings:

1. Whether the refactoring was performed, canceled or un-
available

2. The kind of refactoring (Rename Local Variable, Move
Static Method, Extract Method, etc.)

3. When the refactoring was invoked

4. The kind of selection that was made to invoke the refac-
toring (textual or structural)

5. The selected source code element

6. Whether the refactoring was invoked using Quick Assist

7. How long the user spent on each step of the refactoring
(configuration, preview, error message comprehension)

8. How the user has configured the refactoring

9. Any problems reported by the refactoring tool

CodingTracker captures fine-grained edit operations down
to the level of an insertion or deletion of a character in the
Java editors of Eclipse. It captures the edits so precisely that
it can later replay them to show the code changes in action.
In addition, CodingTracker collects other data including the
undone refactorings and commits to version control systems.

CodingSpectator and CodingTracker gather consistent
data that we will combine for our future analyses. Our rich
sets of usage data and interviews allow us to answer all the
open research questions we presented in Section 3. However,
capturing rich usage data from real programming environ-
ments brings challenges because it raises privacy issues and
makes it difficult to recruit participants.

5. Related Work
Murphy et al.’s study of 74 developers using the Java tools
in Eclipse [8] stimulated research in this area. Their study
was the first to report the usage frequencies of automated
refactorings. Our study will extend their work by collecting
more data to explain the reported usage patterns. For exam-
ple, we collect the selections used to invoke the automated
refactorings in order to find the potential problems in invok-
ing automated refactorings.

Murphy-Hill et al. then analyzed the existing data from
Murphy et al., the Eclipse foundation [2] and two other data
sources to study how developers refactor [12]. Their work
was the first to suggest that programmers underuse auto-
mated refactorings. They also surveyed five developers to
get some insight about why developers may not use auto-
mated refactorings. Our work builds on theirs and collects
richer quantitative and qualitative data to better understand
why programmers underuse automated refactorings. For ex-
ample, we collect data about failures of automated refactor-
ings to sutdy how they affect the user experience.

In another study, Murphy-Hill et al. instructed several
participants to apply the Extract Method refactoring on sev-
eral open source projects. They observed that their partici-
pants had difficulty in selecting the right pieces of code to
extract. Based on this observation, they proposed improve-
ments to the user interface of automated refactorings [10].
Our study extends theirs by detecting problems in invok-
ing refactorings and comprehending error messages in real-
world environments for many more refactorings.

Mealy et al. developed a collection of usability require-
ments for refactoring tools based on existing general usabil-
ity standards. Our work complements theirs by collecting us-
age data that may reveal some of the usability problems of
refactoring tools.

Akers et al. instrumented Google SketchUp [3], a 3-D
modeling application, and recorded invocations of undo and
erase events [4]. They were able to identify several usability
problems by analyzing the undo and erase events. Their
work exemplifies the potential of monitoring for identifying



usability problems. Inspired by their work, we are collecting
detailed information about the usage of refactorings such
as undoing, cancellation, termination, and unavailability to
identify potential usability problems.

6. Future Work
We have been actively recruiting developers to use our data
collectors and send us data. We plan to analyze the collected
data to identify interesting patterns in the usage of refactor-
ing tools and answer some of the open research questions on
the usability of these tools. Also, we plan to interview some
of our participants to get a better insight about the specific
usage patterns. Finally, we will use our usage data and in-
terviews to derive design implications for building the next
generation of developer-oriented refactoring tools.

References
[1] CodingSpectator and CodingTracker. http:

//codingspectator.cs.illinois.edu.

[2] Eclipse Usage Data. http://www.eclipse.org/epp/

usagedata.

[3] Google SketchUp. http://sketchup.google.com.

[4] D. Akers, M. Simpson, R. Jeffries, and T. Winograd. Undo
and Erase Events as Indicators of Usability Problems. In
Proceedings of the 27th International Conference on Human
Factors in Computing Systems, CHI ’09, pages 659–668, New
York, NY, USA, 2009. ACM.

[5] J. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. Sage Publications, 2009.

[6] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding Refac-
torings via Change Metrics. In Proceedings of the 15th ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA ’00, pages 166–
177, New York, NY, USA, 2000. ACM.

[7] M. Kim, D. Cai, and S. Kim. An Empirical Investigation into
the Role of API-level Refactorings during Software Evolution.
In Proceeding of the 33rd International Conference on Soft-
ware Engineering, ICSE ’11, pages 151–160, New York, NY,
USA, 2011. ACM.

[8] G. C. Murphy, M. Kersten, and L. Findlater. How Are Java
Software Developers Using the Eclipse IDE? IEEE Software,
23:76–83, July 2006.

[9] E. Murphy-Hill, M. Ayazifar, N. Carolina, and A. P. Black.
Restructuring Software with Gestures. In Visual Langauges
and Human-Centric Computing, 2011.

[10] E. Murphy-Hill and A. P. Black. Breaking the Barriers to
Successful Refactoring: Observations and Tools for Extract
Method. In Proceedings of the 30th International Conference
on Software Engineering, ICSE ’08, pages 421–430, New
York, NY, USA, 2008. ACM.

[11] E. Murphy-Hill, C. Parnin, and A. P. Black. How We Refac-
tor, and How We Know It. In Proceedings of the 31st Interna-
tional Conference on Software Engineering, ICSE ’09, pages
287–297, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

[12] E. Murphy-Hill, C. Parnin, and A. P. Black. How We Refac-
tor, and How We Know It. IEEE Transactions on Software
Engineering, 99(PrePrints), 2011.

[13] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, Champaign, IL, USA, 1992. UMI Order No.
GAX93-05645.

[14] R. Robbes. Mining a Change-Based Software Repository. In
Proceedings of the Fourth International Workshop on Mining
Software Repositories, MSR ’07, page 15, Washington, DC,
USA, 2007. IEEE Computer Society.

[15] D. Roberts, J. Brant, and R. Johnson. A Refactoring Tool for
Smalltalk. Theory and Practice of Object Systems, 3:253–263,
October 1997.

[16] P. Weißgerber, S. Diehl, and C. Görg. Mining Refactorings
in ARGOUML. In Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR ’06, pages
175–176, New York, NY, USA, 2006. ACM.

[17] Z. Xing and E. Stroulia. Refactoring Practice: How it is
and How it Should be Supported - An Eclipse Case Study.
In Proceedings of the 22nd IEEE International Conference
on Software Maintenance, pages 458–468, Washington, DC,
USA, 2006. IEEE Computer Society.

http://codingspectator.cs.illinois.edu
http://codingspectator.cs.illinois.edu
http://www.eclipse.org/epp/usagedata
http://www.eclipse.org/epp/usagedata
http://sketchup.google.com

	Introduction
	Limitations of Existing Data
	Mylyn Monitor
	Aggregated Eclipse Usage Data
	Time-stamped Eclipse Usage Data
	Eclipse Refactoring Histories
	Version Control Histories

	Research Questions
	Manual and Automated Refactorings
	Awareness
	Methods of Invocation
	Configuration of Automated Refactorings
	Previewing the Outcomes of Automated Refactorings
	Exceptional Cases
	Cancellations and Undos

	CodingSpectator and CodingTracker
	Related Work
	Future Work

