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Abstract

We present a construction of subspace codes along with an efficient algorithm for list decoding
from both insertions and deletions, handling an information-theoretically maximum fraction of
these with polynomially small rate. Our construction is based on a variant of the folded Reed-
Solomon codes in the world of linearized polynomials, and the algorithm is inspired by the
recent linear-algebraic approach to list decoding [4]. Ours is the first list decoding algorithm for
subspace codes that can handle deletions; even one deletion can totally distort the structure of
the basis of a subspace and is thus challenging to handle. When there are only insertions, we also
present results for list decoding subspace codes that are the linearized analog of Reed-Solomon
codes (proposed in [15, 8], and closely related to the Gabidulin codes for rank-metric), obtaining
some improvements over similar results in [10].
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1 Introduction

This paper addresses the problem of list-decoding subspace codes. A subspace code is a collection C
of subspaces of Fn

q . Here, we concern ourselves with constant-dimension codes, where each subspace
has some dimension ℓ < n. In this case, we can define the rate of C as R(C) = log |C| /nℓ, where
qnℓ is (approximately) the number of ℓ-dimensional subspaces of Fn

q . The distance of two subspaces
U, V will be dim(U) + dim(V ) − 2 dim(U ∩ V ), which can be thought of as the information each
“adds” to the other.

Subspace codes were introduced by [15] as so-called linear authentication codes, which can be
used for distributed authentication. In [8], the authors show that subspace codes can also be applied
to the problem of handling errors in network coding.

Subspace codes and network coding. In linear network coding, messages are sent from sources
to sinks through a flow network. Intermediate nodes transmit linear combinations of all received
messages. It is well known that network coding can outperform routing in some networks, and
an important result in network coding is that using random linear combinations performs well.
However, standard approaches to random coding are vulnerable to errors in transmission; a single
corrupt packet can affect all other messages.

To make random coding more robust to errors, [8] initiates a study of codes which can be
applied at sources before transmission. As a convenient abstraction for designing relevant codes,
they introduce the operator channel for subspace codes.

The operator channel, defined formally in Definition 2, models the effect of a random network
code in the prescence of errors. The input and output alphabets are subspaces over Fq, reflecting
the fact that random linear combinations of messages preserves only their span. In transmission,
two kinds of errors may occur: insertions, thought of as an injected packet, and deletions, thought
of as a lost packet. 1

In (uniquely) decoding for this channel, we ask that a message be recovered as long as the
received subspace is not too far from the message subspace, with distance measured as before.
Therefore, by sending a basis for the message subspace through the network, a good code for the
operator channel can be combined with random network coding to allow information transmission
even if the network is faulty.

Kötter-Kschischang codes. In addition to proving a version of the singleton bound for subspace
codes, [8] gives an explicit family of codes which nearly achieves this bound. As in [10], we will
refer to these codes as KK codes. This construction, like traditional Reed-Solomon codes, sends
the evaluations of polynomials. A key difference is that the message polynomials are linearized.

More specifically, the KK code encodes a linearized polynomial f by the span of {
(

ai, f(ai)
)

|
i ∈ [ℓ]} for linearly independent a1, . . . , aℓ. This can be thought of as a “basis independent” version
of Gabidulin’s construction of maximum rank-distance codes ([1]), in which codewords are matrices
in F

ℓ×m
q whose ith row is f(ai) in some fixed basis.
As in the case of Gabidulin codes ([9, 12]), the authors of [8] show that a variant of the Welch-

Berlekamp algorithm for decoding Reed-Solomon codes can be used to decode KK codes up to half
the minimum distance.

Subspace codes and rank-metric codes. The connection between KK codes and Gabidulin’s
construction is not a coincidence: in [13], a general “lifting” method for constructing subspace codes

1Insertions and deletions are referred to as errors and erasures, respectively, in [8]; we have renamed them to
clarify the kinds of changes introduced.

1



from rank-metric codes is given. The decoding problem for subspace codes can then be interpreted
as a (modified) decoding problem for rank-metric codes.

In general, this decoding problem, which uses side information, seems to be more difficult than
the standard decoding problem. Further, to our knowledge, analogous results to [13] are not known
for the list decoding setting. In this paper, we will only consider subspace codes.

List decoding subspace codes. Because unique decoding may fail if errors occur beyond half
the minimum distance of the code, it is natural to ask whether one can list decode beyond this
radius. We formally define list decoding for this setting in Definition 3; informally, the goal is to
find all message subspaces “near” the received subspace. Natural extensions of Reed-Solomon list
decoding to KK codes has not been successful, so we and others focus on designing new codes.

We now describe previous work toward list decoding subspace codes, and give an informal
description of our results.

1.1 Previous work

Towards the goal of list decoding subspace codes, Mahdavifar and Vardy [10] considered a (non-
linear) variant of the KK codes, drawing inspiration from a variant of Reed-Solomon codes defined
by Parvaresh and Vardy [11], and gave a list decoding algorithm for these codes. However, for
fundamental reasons, the algorithm could only handle insertions. To illustrate the basic challenge
posed by deletions, note that although the input subspace V is transmitted using bases, any special
structure used to generate a basis for V may be lost with even one deletion. For example, if {αi}

ℓ
i=1

is a basis for V , the received space U = 〈α1+αi〉i>1 which arises from one deletion and no insertions
no longer contains any of the original αi. This is one of the challenges in designing codes for this
model. Also, if the code is linear, then decoding from insertions alone can be done by simply solving
a linear system (see Remark 3 for a related point on the limitation of linear codes in terms of list
size).

The parameter trade-offs obtained by [10] are a bit complicated to describe, but the main
trade-off is that they can handle t = τℓ insertions for an insertion “fraction” τ < L with list-size
L and rate R ≪ 1/L2. They also present a variant of KK codes which they can list decode from a

s+ 1−
(

qs+1−1
q−1

)

(1 + ℓ/m)R insertion fraction with list size qs and rate R < 1/qs (where q grows

with the parameter ℓ).

1.2 Our contributions

We initiate a study of list decoding subspace codes from a combination of both insertions and
deletions. We first understand the trade-offs that might be possible in this setting, by analyzing
the list decoding of random subspace codes. This result shows that up to ρℓ deletions can be handled
for any ρ < 1 when the list size is a large enough constant L and the “fraction” of insertions τ = t/ℓ
is less than (approximately) L(1− ρ) (see Theorem 1 for the formal statement).

Our main result is a construction of subspace codes and a list decoding algorithm for it that
can handle a combination of both insertions and deletions. Furthermore, we can decode under
similar constraints on the number of insertions and deletions as our random coding result, though
our rate is polynomially small (and the list size a much larger constant). Formally, for any integer
s ≥ 1, we can list decode from an insertion fraction τ and deletion fraction ρ with list size qs−1

provided τ + sρ < s(1 − o(1)) (formal statement in Theorem 5). One might draw a parallel of

2



this to the situation after the early results on list decoding, for instance the Goldreich-Levin list
decoding algorithm for Hadamard codes [3] and Sudan’s algorithm for list decoding Reed-Solomon
codes [14], which were able to correct from a maximal fraction of errors (approaching 1/2 for binary
codes and 1 for codes over large alphabets) but had sub-optimal rate.

Our code construction is the counterpart of folded Reed-Solomon codes, which were shown to
achieve the optimal rate vs. error-correction radius trade-off for (conventional) list decoding [5], in
the world of linearized polynomials. Accordingly, we call the codes linearized folded Reed-Solomon
codes. The decoding algorithm is linear-algebraic, and inspired by the recent approach for list
decoding folded Reed-Solomon and derivative codes [4, 7].

We also show how the ideas of our decoding algorithm can be applied to other codes in the
case that no deletions have occurred. We show in this setting that a restricted version of KK
codes (where the coefficients of the message polynomial are taken from the base field Fq) can be
list-decoded from a s+ 1− (s+ 1)(1 + ℓ)R insertion fraction with list size qs.

We then address the same variant of KK codes defined in [10] and show that it can be list-
decoded from a s+1−(s+1)(1+ℓ/m)R insertion fraction with list size qs. In addition to improving
on the parameters shown in [10], we are able to handle a wider range of rates.

1.3 Comparison with previous work

One drawback for both the codes presented in [10] and the codes described here is that the message
coefficients are always taken from the base field Fq (whereas the Gabidulin and KK codes use
coefficients from the full field Fqm). This leads loss of a factor of m in the rate for the restricted
KK codes and our folded code. The paper [10] is able to reverse the loss in rate, but at the cost of
not being able to correct deletions. In both cases, taking codewords from the full field Fqm leads
to an increase in the (provable) list size bound.

The paper [10] is able to increase the rate up to a small constant by choosing special bases from
a larger field, effectively allowing the dimension of the transmitted space to decrease by a factor
of m. However, as noted before, this means that even one deletion can compromise the decoding
procedure. Although our rate is smaller, we are able to handle deletions and a comparable number
of insertions.

2 Preliminaries

For a vector space W , let P(W ) denote the set of all subspaces of W , and Pℓ(W ) the set of all
ℓ-dimensional subspaces of W .

2.1 Rate of a subspace code

The rate of a subspace code is defined to capture the amount of information conveyed by a code-
word as a fraction of the amount of information conveyed by an arbitrary ℓ-dimensional subspace.
Formally,

Definition 1 (Rate of a subspace code). The rate R(C) ∈ [0, 1] of a subspace code C ⊆ Pℓ(F
n
q ) is

defined as

R(C) =
logq |C|

nℓ
.
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2.2 The operator channel

We recall the definition of the operator channel from [8].

Definition 2. An operator channel C associated with the ambient space W is a channel with input
and output alphabet P(W ). The channel input V and output U are related by

U = Hk(V ) + E,

where k = dim(U ∩ V ), E is an error subspace (wlog E may be taken such that E ∩ V = {0}), and
Hk(V ) is an operator returning an arbitrary k-dimensional subspace of V .2

In transforming V to U , we say the operator channel commits r = dim(V ) − k deletions and
t = dim(E) insertions.

3 Existential bounds for the operator channel

We first formally define the notion of list decoding from insertions and deletions on the (adversarial)
operator channel.

Definition 3 (List decodability). A subspace code C ⊆ Pℓ(W ) is said to be (t, r, L)-list decodable
(or list decodable from t insertions and r deletions with list size L), if for every subspace T ∈ P(W ),
the number of subspaces U ∈ C such that T = Hp(U) + E for some subspace E and integer p
satisfying

dim(E) ≤ t, E ∩ U = {0} and ℓ− p ≤ r

is at most L.
We will say that any such subspace U differs from T by at most t insertions and r deletions.
The problem of list decoding from (up to) t insertions and r deletions consists of finding the list

of all such subspaces U , given the input “received” subspace T .

We now present the random coding argument showing the existence of good list-decodable sub-
space codes. This gives us the benchmark for the error tolerance of our later explicit constructions.

Theorem 1. For every L ≥ 1, for all large enough integers n, ℓ with ℓ ≤ n/2, a random subspace
code C ⊆ Pℓ(F

n
q ) of rate R (obtained by picking qRnℓ subspaces uniformly and independently at

random), is (t, r, L)-list decodable with high probability provided

t

ℓ
+ (L+ 1)

r

ℓ
< L− (L+ 1)R .

(The ratios t/ℓ and r/ℓ are the fraction of insertions and deletions, respectively.)

Proof. Fix a subspace T of dimension d, where ℓ− r ≤ d ≤ ℓ+ t (the range of dimensions possible
when there are up to t insertions and r deletions). Fix a subset S of (L+ 1) codewords from the
random code C. The probability that each subspace in S differs from T by at most t insertions and
r deletions is at most

t
∑

t′=0

r
∑

r′=0

(qd)ℓ−r′q(ℓ−n)(ℓ−r′) ≤ O(tr)qdℓ+ℓ2q−n(ℓ−r) .

2In this work, we use the worst-case error model; in a probabilistic model, Hk would be a stochastic operator.
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Further this event is independent for different codewords in S by the random choice of C. By a
union bound over all choices of T and S, the probability that C fails to be (t, r, L)-list decodable is
at most

qRnℓ(L+1)qn(ℓ+t)
(

qO((ℓ+t)2)q−n(ℓ−r)
)L+1

.

For large enough n, this quantity is q−Ω(n) provided R(L+1)+(ℓ+t) < (ℓ−r)(L+1), or equivalently
if t

ℓ
+ (L+ 1) r

ℓ
< L− (L+ 1)R.3

4 Linearized folded RS codes and their list decoding

4.1 Preliminaries

Set Fq a finite field. Fqm will be an extension field of Fq, which we will consider as a vector space
over Fq.

For a nonnegative integer i, write X [i] = Xqi . The map X 7→ X [i] satisfies the following
properties.

• (X [i])[j] = X [i+j] ∀i, j.

• For α ∈ Fq, α
[i] = α ∀i.

Definition 4. A linearized polynomial over Fqm is a polynomial f of the form

f(X) =
k

∑

i=0

fiX
[i],

where fi ∈ Fqm. The integer k is the q-degree of f .

By the properties stated above, a linearized polynomial over Fqm is Fq-linear. Further, given
two linearized polynomials f1, f2 of q-degree k1, k2, respectively, the composition f1(f2(X)) has
q-degree k1 + k2.

4.2 Code definition

Our message consists of k ≤ ℓ symbols (f0, . . . , fk−1) over Fq, which we will consider as a linearized

polynomial f(X) =
∑k−1

i=0 fiX
[i]. (Note that the original KK code took message coefficients over

Fqm.)

Let γ generate a normal basis for Fqm (that is, the set {1, γ, γ[1], . . . , γ[m−1]} forms a basis).

Definition 5 (Linearized FRS codes). Let αi ∈ Fqm for i = 1, . . . , ℓ be linearly independent over
Fq. Our code encodes f ∈ Fq[X] by

V = 〈{(αi, f(γαi), f(γ
[1]αi), . . . , f(γ

[s−1]αi)}
ℓ
i=1〉

for some parameter s.
We will refer to this as the linearized folded Reed-Solomon code lFRSℓ,m,s

{αi}
.

Remark 1. The rate of this code is k
ℓ(ℓ+ms) <

1
ms

.

3A more careful argument should improve the requirement slightly to t

ℓ
+L

r

ℓ
< L−(L+1)R, though for simplicity

we have not pursued this here.
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4.3 List decoding algorithm

Suppose that t insertions and r deletions have occured, so a space U of dimension ℓ + t − r is
received. Give the received subspace a basis {(yi0, yi1, . . . , yis)}

ℓ+t−r
i=1 .

Now we can interpolate a polynomial Q(X,Y1, . . . , Ys) of the form

Q(X,Y1, . . . , Ys) = A0(X) +A1(Y1) + · · · +As(Ys) (1)

with A0 of q-degree at most D + k − 1 and A1, . . . , As of q-degree at most D (D to be set later),
all linearized polynomials.

We will require
Q(yi0, yi1, . . . , yis) = 0 i = 1, . . . , ℓ+ t− r (2)

Lemma 2. For D + 1 > (ℓ+t−r)−k+1
s+1 , a (nonzero) polynomial Q of the form (1) exists.

Proof. The interpolation conditions (2) define a homogeneous linear system in the coefficients of
Q, and there are ℓ+ t− r conditions.

The number of monomials in Q is (D + 1)(s+ 1) + k − 1, so when D + 1 > (ℓ+t−r)−k+1
s+1 , this is

at least ℓ+ t− r and a nonzero solution exists.

Therefore, fix D =
⌊

(ℓ+t−r)−k+1
s+1

⌋

.

Lemma 3. Let f be a codeword differing from the received word by r deletions. Then if ℓ − r >
D + k − 1, Q(X, f(γX), . . . , f(γ[s−1]X)) = 0.

Proof. Let {(xi0, xi1, . . . , xis)}
ℓ−r
i=1 be a basis for V ∩ U . Then by definition of V , for every i and

every j > 1, xij = f(γ[j−1]xi0). By linearity of Q, we also have Q(xi0, xi1, . . . , xis) = 0 for every i.
Note the xi0 are linearly independent: This follows directly from the linearity of f .
Consider the (univariate) linearized polynomial Q̂(X) = Q(X, f(γX), . . . , f(γ[s−1]X)), which

has q-degree at most D + k − 1. It is a standard fact that a nonzero linearized polynomial of
q-degree d has at most d linearly independent roots. Since Q̂(xi0) = 0 for 1 ≤ i ≤ ℓ − r, and the
xi0 are linearly independent, if ℓ− r > D + k − 1, then Q̂(X) = 0.

By Lemma 3 and the above choice of D, we have Q(X, f(γX), . . . , f(γ[s−1]X)) = 0 if

ℓ− r >

⌊

(ℓ+ t− r)− k + 1

s+ 1

⌋

+ k − 1 . (3)

The condition (3) is met if
t < s(ℓ− r − k + 1).

The algebraic condition Q(X, f(γX), . . . , f(γ[s−1]X)) = 0 forms a homogeneous linear system
in the coefficients f0, . . . , fk−1 of f .

Suppose that for some i > 0 we fix the values of f0, . . . , fi−1. Then we can determine fi from
the algebraic expression for the coefficient of X [i], which must be zero. That is,

0 = Q(X, f(γX), . . . , f(γ[s−1]X))

=
∑

i

a0iX
[i] +

∑

i

a1i[f(γX)][i] + · · ·+
∑

i

asi[f(γ
[s−1]X)][i]

=
∑

i

a0iX
[i] +

∑

i





i
∑

j=0

a1jf
[j]
(i−j)



 (γX)[i] + · · ·+
∑

i





i
∑

j=0

asjf
[j]
(i−j)



 (γ[s−1]X)[i]
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so for each i,

a0i +

s
∑

j=1

aj0γ
[i+j−1]fi +

s
∑

j=1

∑

j′<i

γ[i+j−1]aj(i−j′)f
[i−j′]
j′ = 0

In particular, for fixed f0, . . . , fi−1, fi is uniquely determined unless

g(X) := a10X + a20X
[1] + · · ·+ as0X

[s−1]

has a zero at γ[i].

Lemma 4. We may assume g(X) 6= 0.

Proof. Let j∗ be the smallest value such that aij∗ 6= 0 for some 0 ≤ i ≤ s. If aij∗ = 0 for all i > 0,
the coefficient of X in Q̂(X) is a0j∗ , which must be zero, a contradiction. Thus we can assume
aij∗ 6= 0 for some i > 0.

If j∗ = 0, we are done. Otherwise, consider the polynomial Qj∗ defined by

Qj∗(X,Y1, . . . , Ys) =
∑

i

a
[m−j∗]
0i X [i−j∗] +

∑

i

a
[m−j∗]
1i Y

[i−j∗]
1 + · · ·+

∑

i

a
[m−j∗]
si Y [i−j∗]

s .

Since (Qj∗)
[j∗] = Q, if Q̂(X) = 0, Qj∗(X, f(γX), . . . , f(γ[s−1]X)) = 0, so we may replace Q by

Qj∗, giving g(X) 6= 0.

Since k ≤ m and the γ[i] are chosen to be linearly independent for 0 ≤ i < m, g(γ[i]) can be
zero for at most s− 1 values of i < m, yielding a final list size of qs−1.

Remark 2. When the coefficients fj are taken from Fq, f
[i]
j = fj for each i, and so in particular,

each coefficient fj is a linear combination of f0, . . . , fj−1.

In summary, we have our main result:

Theorem 5 (Main). For every s, the code lFRSℓ,m,s

{αi}
satisfies the property that for every received

subspace U ∈ P(Fqℓ+sm), an affine subspace S ⊆ Fq[X] of dimension at most s− 1 can be found in
polynomial time which contains every f ∈ Fq[X] of degree less than k whose encoding differs from
U by t insertions and r erasures provided

t < s(ℓ− r − k + 1) . (4)

The condition (4) can be rewritten as t + sr < s(ℓ − k + 1) ≈ sℓ(1 − Rms), which can be
compared with the existential bound of Theorem 1. Our list-size bound is higher: it is ≈ qs rather
than s, but this is inherent given the linearity of our code (see below Remark). More crucially, our
rate has to be polynomially small instead of constant.

Remark 3. A worst-case list size of the form qn for some n > 0 is unavoidable outside the unique
decoding radius. To see this, consider the case r = 0 of no erasures. Then if g1, . . . , gn+1 are linearly
independent (as coefficient vectors) and agree with the received subspace, any combination

∑

λigi
with

∑

λi = 1 also agrees with the received subspace, giving a list size of qn.
Note that this difficulty is inherent in any code whose encoding is a linear function of the

message coordinates while allowing large linear subspaces of messages. One way to avoid this large
list size is to instead draw the message coordinates from a so-called subspace-evasive subset of (Fq)

k,
as described in [4]. This paper shows the existence of a subset of size qk(1−ǫ) which intersects with
any s-dimensional subspace in at most O(s/ǫ) points. In particular, we then guarantee a list size
which is linear in the parameters, for a small cut in rate.
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Remark 4. The analysis of this section also holds if f is taken from Fqm [X], giving us a rate
improvement; however, the final list size will be qm(s−1), which is non-polynomial when the code
has constant rate. By applying the list-size reduction methods of [4] based on subspace-evasive
sets, we can reduce the final list-size to a polynomial, but pruning the list of candidates may take
super-polynomial time.

5 Removing the folding requirement

In this section, we show how to improve the rate of our code by removing the folding requirement
and working only with a restricted KK code; however, we are not able to recover from deletions
with this code. We will require that the message f is taken over Fq, and that the evaluation points
αi each generate normal bases for Fm

q .

We will send the ℓ-dimensional subspace generated by {(αi, f(αi))}
ℓ
i=1. The ambient space is

〈α1, . . . , αℓ〉 ⊗ F of dimension ℓ+m.

The receiver selects γ ∈ Fqm which generates a normal basis for Fqm. This will correspond to
the (explicitly transmitted) parameter γ in the previous section.

We will need the following lemma.

Lemma 6. Let α, y ∈ Fqm such that α generates a normal basis. Then there is exactly one linearized
polynomial f ∈ Fq[X] of q-degree at most m− 1 with f(α) = y.

Proof. As α generates a normal basis, there is a unique decomposition y =
∑m−1

i=0 uiα
[i] for ui ∈ Fq.

In particular, f(α) = y if and only if f(X) =
∑m−1

i=0 uiX
[i].

Suppose that no deletions have occurred, and fix an index i. Let Wi be the projection of the
received subspace on 〈(αi,Fqm)〉. Pick a basis for Wi of the form {(αi, yij)}

dimWi

j=1 (note that this is
possible when there are no deletions).

By Lemma 6, for each j, let fij ∈ Fq[X] be the unique linearized polynomial of degree at most
m− 1 with fij(αi) = yij.

Lemma 7. If (αi, f(αi)) ∈ Wi, then

(αi, f(γαi), . . . , f(γ
[s−1]αi)) ∈ span{(αi, fij(γαi), . . . , fij(γ

[s−1]αi))}
dimWi

j=1 .

Proof. If (αi, f(αi)) ∈ Wi, then for some (unknown) λj ∈ Fq, (αi, f(αi)) =
∑dimWi

i=1 λj · (αi, yij).

In particular, f(αi) =
∑dimWi

i=1 λiyij =
∑dimWi

i=1 λjfij(αi).

Thus the polynomial f̂(X) :=
∑dimWi

i=1 λjfij(X) ∈ Fq[X] satisfies f̂(αi) = f(αi). By Lemma 6,
this polynomial is unique, and so

f(X) =

dimWi
∑

i=1

λjfij(X).

Therefore, for every d, f(γ[d]αi) =
∑dimWi

i=1 λjfij(γ
[d]αi). Thus

(αi, f(γαi), . . . , f(γ
[s−1]αi)) =

dimWi
∑

j=1

λj(αi, fij(γαi), . . . , fij(γ
[s−1]αi))

and the lemma follows.
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For each i, we have produced a subspace containing the vector

(αi, f(γαi), f(γ
[1]αi), . . . , f(γ

[s−1]αi)).

In particular, we may now apply the decoding algorithm of Section 4. Therefore, we have

Theorem 8. The restricted KK code which encodes k symbols over Fq by an ℓ-dimensional subspace
can be list-decoded with list size qs−1 from t insertions provided

t < s(ℓ− k + 1).

Remark 5. When s = 1, we would apply the results of Section 4 directly, and this algorithm
reduces to the algorithm of [8] for uniquely decoding KK codes.

6 Improving the decoding radius

In this section, we show that the variant of KK codes proposed in [10] can also be list-decoded in
our setting, with improved parameters. Although we cannot handle deletions, this code can achieve
constant rate. Let us first recall the code.

For a chosen parameter ℓ dividing q − 1, the equation xℓ = 1 has ℓ distinct solutions e1 =
1, e2, . . . , eℓ in Fq. Let β ∈ Fqml generate a normal basis for Fqmℓ . Then for i = 1, 2, . . . , ℓ, define

αi = β + eiβ
[m] + e2i β

[2m] + · · · + eℓ−1
i β[m(ℓ−1)].

The following algebraic facts about this construction are established in [10]:

• The set {α
[j]
i | 1 ≤ i ≤ ℓ, 0 ≤ j ≤ m − 1} is a basis for Fqmℓ . In particular, the elements of

the set are linearly independent.

• If f is a linearized polynomial with coefficients from Fq, then for every i, f(αi)/αi ∈ Fqm.

For f a linearized polynomial over Fq, let v1 = (α1, f(α1)) and vi = (αi, f(αi)/αi) for i > 1.
Then the encoding of f will be the span of the vi’s. By the previous properties, this encoding lies
in the ambient space W = 〈α1, . . . , αℓ〉 ⊕ Fqm of dimension ℓ+m.

Suppose the encoding of f has been transmitted and a subspace U of dimension ℓ+t is received,
differing by t insertions and no deletions. The decoder will fix γ ∈ Fqmℓ which generates a normal
basis for Fqmℓ .

As before, for each αi, we may project U onto an associated subspace Wi. Then we can give a
basis for each Wi as {(αi, yij/αi)}

dimWi

j=1 for i > 1 and as {(α1, y1j}
dimW1

j=1 for i = 1.
The following is proved as Lemma 31 in [10]:

Lemma 9. For each i, j, yij can be uniquely written as a linear combination of αi, α
[1]
i , . . . , α

[m−1]
i

over Fq.

This is the analogue of Lemma 6 for this setting, so as before we may define fij(X) to be the
unique linearized polynomial of degree at most m− 1 with fij(αi) = yij.

Then as in Lemma 7, for every i, we can find a subspace containing (αi, f(γαi), . . . , f(γ
[mℓ−1]αi)).

That is,

(αi, f(γαi), . . . , f(γ
[mℓ−1]αi)) ∈ span{(αi, fij(γαi), . . . , fij(γ

[mℓ−1]αi))}
dimWi

j=1 . (5)

The following lemma is proved in Appendix A.
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Lemma 10. For 0 ≤ n < m and any 1 ≤ s < mℓ,
(

α
[n]
i , f(γα

[n]
i ), . . . , f(γ[s−1]α

[n]
i )

)

∈ span
{(

α
[n]
i , fij(γ

[mℓ−n]αi)
[n], . . . , fij(γ

[mℓ−n+s−1]αi)
[n]
)}

.

We would then like to interpolate a nonzero polynomial Q(X,Y1, . . . , Ys) of the form

Q(X,Y1, . . . , Ys) = A0(X) +A1(Y1) + · · · +As(Ys)

subject to the conditions

Q(α
[n]
i , fij(γ

[mℓ−n]αi)
[n], . . . , fij(γ

[mℓ−n+s−1]αi)
[n]) = 0 1 ≤ i ≤ ℓ, 1 ≤ j ≤ dimWi, 0 ≤ n < m.

The number of conditions is m(ℓ+t), and the number of degrees of freedom for our interpolation
is (D + 1)(s + 1) + k − 1. Therefore, in order to guarantee the existence of a nonzero Q, we will

require that D + 1 > m(ℓ+t)−k+1
s+1 , which we will satisfy by taking D = ⌊m(ℓ+t)−k+1

s+1 ⌋.

Then by the interpolation conditions, Q
(

α
[j]
i , f(γα

[j]
i ), . . . , f(γ[s−1]α

[j]
i )

)

= 0 for 1 ≤ i ≤ ℓ and

0 ≤ j < m. Since the α
[j]
i are all linearly independent, the polynomial

Q̂(X) = Q
(

X, f(γX), . . . , f(γ[s−1]X)
)

is zero whenever

mℓ >

⌊

m(ℓ+ t)− k + 1

s+ 1

⌋

+ k − 1,

or when

t < sℓ− s

(

k − 1

m

)

.

We can then solve the linear system as before for a list size of qs−1.

Remark 6 (Comparison with the parallel result in [10]). The decoding algorithm for this code
in [10] is based on “manufacturing” the evaluations of f(f(X)) (and higher order compositions
of f with itself) at the αi’s based on the received subspace. Our approach is to manufacture the
evaluations of the shifted polynomials f(γ[i]X) for i = 0, 1, . . . , s − 1 at the αi’s. The advantage
of our approach is that the q-degree of f(γ[i]X) is the same as that of f(X) whereas composition
increases the q-degree.

This increase in q-degree in the case of [10] restricts the parameters so that the rate R satisfies
R < 1/qs. We have no such restrictions (aside from the natural ones imposed by the requirement
k ≤ ℓm). Thus our decoding algorithm works for a wider range of rates.

Moreover, the list-decoding condition in [10] in order to achieve a list size of qs is

t < sℓ+ ℓ−

(

qs+1 − 1

q − 1

)(

k − 1

m

)

,

compared to our condition of

t < sℓ+ ℓ− (s + 1)

(

k − 1

m

)

.

Note that s should be thought of as constant, in order to allow for pruning of the qs-sized list
in polynomial time. Since the analysis required ℓ to divide q − 1, q must grow with the parameter
ℓ.
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7 Open questions

There are several open questions raised by our work, with some of the central ones being:

• Can one list-decode subspace codes in the presence of deletions with constant rate?

• In particular, can the KK code be list-decoded? Note that the results so far only handle a
subcode of the KK code (where the coefficients are restricted to belong to the base field Fq).

• Can one prove a Johnson bound for list decoding subspace codes on the operator channel?
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A Proof of Lemma 10

Let us recall the lemma for easy reference.

Lemma 10. For 0 ≤ n < m and any 1 ≤ s < mℓ,

(

α
[n]
i , f(γα

[n]
i ), . . . , f(γ[s−1]α

[n]
i )

)

∈ span
{(

α
[n]
i , fij(γ

[mℓ−n]αi)
[n], . . . , fij(γ

[mℓ−n+s−1]αi)
[n]
)}

.

Proof. For f ∈ Fq[X], f(X [i]) = f(X)[i]. In particular, f(γ[j]α
[n]
i ) =

(

f(γ[mℓ+j−n]αi)
)[n]

.
By (5), there exist λj ∈ Fq such that

(αi, f(γαi), . . . , f(γ
[mℓ−1]αi)) =

dimWi
∑

j=1

λj ·
(

αi, fij(γαi), . . . , fij(γ
[mℓ−1]αi)

)

.

Then for 1 ≤ n < m, and any a < mℓ,

dimWi
∑

j=1

λifij(γ
[ml−n+a]αi)

[n] =





dimWi
∑

j=1

λifij(γ
[mℓ−n+a]αi)





[n]

=
(

f(γ[mℓ−n+a]αi)
)[n]

= f(γ[mℓ+a]α
[n]
i ) = f(γ[a]α

[n]
i ).

Therefore

(

α
[n]
i , f(γα

[n]
i ), . . . , f(γ[s−1]α

[n]
i )

)

=

dimWi
∑

j=1

λj

(

α
[n]
i , fij(γ

[mℓ−n]αi)
[n], . . . , fij(γ

[mℓ−n+s−1]αi)
[n]
)

,

as desired.

12


	1 Introduction
	1.1 Previous work
	1.2 Our contributions
	1.3 Comparison with previous work

	2 Preliminaries
	2.1 Rate of a subspace code
	2.2 The operator channel

	3 Existential bounds for the operator channel
	4 Linearized folded RS codes and their list decoding
	4.1 Preliminaries
	4.2 Code definition
	4.3 List decoding algorithm

	5 Removing the folding requirement
	6 Improving the decoding radius
	7 Open questions
	A Proof of Lemma ??

