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Abstract

In this paper we study the implementation challenge in atratisinterdependent values
model and an arbitrary objective function. We design a meishathat allows for approximate
optimal implementation ofnsensitiveobjective functions in ex-post Nash equilibrium. If,
furthermore, values are private then the same mechanigimaisgy proof. We cast our results
onto two specific models: pricing and facility location. Timechanism we design is optimal
up to an additive factor of the order of magnitude of one olrersquare root of the number of
agents and involves no utility transfers.

Underlying our mechanism is a lottery between two auxiliavgchanisms — with high
probability we actuate a mechanism that reduces playerseimie on the choice of the social
alternative, while choosing the optimal outcome with higblqability. This is where the recent
notion of differential privacyis employed. With the complementary probability we actuate
mechanism that is typically far from optimal but is incertsompatible. The joint mechanism
inherits the desired properties from both.
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1 Introduction

Mechanism design deals with the implementation of desiutdomes in a multi-agent system with
asymmetric information. The outcome of a mechanism may beca for a good, an allocation
of goods to the agents, the decision on a provision of a pyaax, locating public facilities,
etc. The quality of the outcome is measured by some objeftiivetion. In many instances the
literature is concerned with the sum of the agents’ valuatitor an outcome, but the objective
function can take many other forms, such as the revenue dliea sean auction setting, the social
inequality in a market setting and more. The reader is refetw Mas-Colell, Whinston and Green
[19] for a broader introduction. The holy grail of the mecisam design challenge is to design
mechanisms which exhibit dominant strategies for the plyand furthermore, once players play
their dominant strategies the outcome of the mechanisntic@a with maximizing the objective
function. Broadly speaking, this challenge is equivalendé¢signing optimal direct mechanisms
that are truthful.

As it turns out, such powerful mechanisms do not exist in ggneThe famous Gibbard-
Satterthwaite theorem (Gibbafd [14] and Satterthwait®) f@ls us that for non-restricted settings
any non-trivial truthful mechanism is dictatorial. Howemé we restrict attention to the objective
function that is simply the sum of the agents’ valuationgntlthis problem can be overcome
by introducing monetary payments. Indeed, in such casesdiebrated Vickrey-Clarke-Groves
mechanisms, discovered by Vickreéy [37] and generalizedlbyk€ [8] and Groves [16], guarantee
that being truthful is a dominant strategy and the outconogisnal. Unfortunately, Roberts [26]
showed that a similar mechanism cannot be obtained for othjective functions. This cul-de-sac
induced researchers to ‘lower the bar’ for mechanism de$dye possibility for lowering the bar
is to replace the solution concept with a weaker one and a laogy of literature on Bayes-Nash
implementation has developed (the reader is referred toGtdsll et al. [19] for further reading).

Another direction is that of approximate implementationewehthe quest replaces accurate
implementation with approximate implementation, whilegimg the approximation inaccuracy
as low as possible. The latter research agenda turned oestftaitfiul and yielded many positive
results. A sequence of papers\rtual implementationinitiated by Matsushima [20] and Abreu
and Senl[[R2], provides general conditions for approximafgémentation where the approximation
inaccuracy in a fixed model can be made arbitrarily small. li@nather hand, the recent literature
emerging from thalgorithmicmechanism design community looks at approximation inazas
which are a function of theizeof the model (measured, e.g., the number of agents).

Interestingly, nogeneraltechniques are known for designing mechanisms that areo=ippr
mately optimal for arbitrary social welfare functions. Tendonstrate this consider the facility
location problem, where a social planner needs to locateedanilities, based on agents’ reports
of their own location. This problem has received extensitengéion recently, yet small changes in
the model result in different techniques which seem tigtailpred to the specific model assump-
tions (see Alon et al[|5], Procaccia and Tennenhaltz [28]\&ang et al.[[38]).
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Another line of research, initiated by Moulin [23], is that mechanism desigrithout money
Moulin, and later Schummer and Vohia [32] 33], charactdrizmctions that are truthfully im-
plementable without payments and studied domains in whachdictatorial functions can be im-
plemented. More recently, Procaccia and Tennenholtz [@Blied a relaxation of this notion —
approximatanechanism design without money.

Our work presents a general methodology for designing aqopiattely optimal mechanisms
for a broad range of models, including the facility locatproblem. A feature of our constructions
is that the resulting mechanisms do not involve monetansftes.

1.1 Our Contribution

We introduce an abstract mechanism design model wheresalgame interdependent values and
provide a generic technique for approximate implementatiban arbitrary objective function.
More precisely, we bound the worst case difference betwsenptimal outcome (‘first best’) and

the expected outcome of our generic mechanisrﬁ)by/@), wheren is the population size. In

addition, our generic construction does not involve wtilransfer.

Our construction combines two very different random me@mas:

e With high probability we deploy a mechanism that choosesasatternatives with a prob-
ability that is proportional to (the exponent of) the out@of the objective function, as-
suming players are truthful. This mechanism exhibits twpontant properties. First, agents
have small influence on the outcome of the mechanism and goesty have little influence
on their own utility. As a result all strategies, includimgthfulness, are-dominant. Second,
under the assumption that players are truthful, alteraativhich are nearly optimal are most
likely to be chosen. The concrete construction we use fdltve Exponential Mechanism
presented by McSherry and Talwar [22].

¢ With vanishing probability we deploy a mechanism which isigaed with the goal of elic-
iting agents’ private information, while ignoring the objie function.

Our technique is developed for settings where the agers’spaces as well as the set of social
alternatives are finite. In more concrete settings, howexartechniques extend to ‘large’ type
sets. We demonstrate our results in two specific settingsF4gility location problems, where
the social planner is tasked with the optimal locationkofacilities in the most efficient way. In
this setting we focus on minimizing the social cost whichhe sum of agents’ distances from
the nearest facility. (2) The digital goods pricing modehere a monopolist needs to determine
the price for a digital good (goods with zero marginal costdmduction) in order to maximize
revenue.



Another contribution of our work is an extension of the clealssocial choice model. In
the classical model agents’ utilities are expressed as etitumof the private information and
a social alternative, a modeling that abstracts away theeis$ how agents exploit the social
choice made. We explicitly model this by extending the staddnodel by an additional stage,
following the choice of the social alternative, where ageiake an action to exploit the social
alternative and determine their utility (hereinafter tBan’). We motivate this extension to the
standard model with the following examples: (1) In a Fagiliocation problem agents react to the
mechanism’s outcome by choosing one of the facilities (elgpose which school to attend). (2) A
Monopolist posts a price based on agents input. Agents bgagither buying the good or not. (3)
In an exchange economy agents react to the price vectorddiew the outcome of the invisible
hand mechanism) by demanding specific bundles. (4) In aggblbd problem, where a set of
substitutable goods is supplied, each agent must choodavweite good. (5) Finally, consider
a network design problem, where each agent must choose tinét pall use along the network
created by the society. These examples demonstrate thegmee of ‘reactions’ in a typical design
problenﬂ With this addendum to the model one can enrich the notion cdéeh@nism; in addition
to determining a social choice the mechanism can alsocetig set of reactions available to an
agent. For example, in the context of school location, tiraéplanner can choose where to build
new schools and, in addition, impose the specific schoojasdito each student. We refer to this
aspect of mechanisms asposition

We demonstrate the notion of imposition with the followitigstrative example:

Example 1 In time of depression the government proposes to subsioii@e etraining programs.
There are three possible programs from which the governmerdt choose two due to budget
constraints. Once a pair of programs is chosen each agetidsated to her favorite program. For
simplicity, assume each candidate for retraining has actpreference over the three programs,
with utilities equall, 2 and3. Assume the government wants to maximize the social weliject

to its budget constraint. A naive approach in which the gowggnt chooses the pair that maximizes
the overall grade is clearly manipulable (there may be sgfiwhere an agent will falsely down-
grade his 2nd choice to the third place in order to ensure Ingt hoice makes it). An alternative
methodology is for the government to choose a pair randowtigre the probability assigned to
each pair is an increasing function of its induced welfakee(specific nature of the function will be
made clear in the sequel). In addition, with a vanishing padoitity, a random pair will be chosen
and in that case each agent will assigned her preferred @ogaccording to her announcement.

It turns out that this scheme is not manipulable and agergthaal strategy is to report truth-
fully. If the population is large enough then the probalyitif choosing the truly optimal pair can
be made arbitrarily close to one.

IFormally, the introduction of reactions only generalizZas tmodel. In fact, if we assume that the set of reactions
is a singleton then we are back to the classical model. Aatuitly, it could be argued that reactions can be modeled
as part of the set social alternativés,For the analysis and mechanism we propose the distincitween the sef
and the reactions is important.



1.2 Related Work

Virtual implementation. The most closely related body of work is the literature omttwal im-
plementation’ with incomplete information, derived frorarker work on virtual implementation
with complete information which was initiated by Matsushif20] and Abreu and Sehnl[2]. A
social choice function igirtually implementabléf for any e > 0 there exists a mechanism which
equilibria result in outcomes thatapproximate the function. Results due to Abreu and Mat-
sushimal[[l], Duggar [9] and Serrano and Vohrd [34, 35] pmvidcessary and sufficient condi-
tions for functions to be virtually implementable in vargoenvironments with private information.
A common thread throughout the results on virtual impleragon under incomplete information
is the incentive compatibility requirement over the sodhbice function, in addition to some
form of type diversity. Compared with our contribution tHeosie mentioned work provides posi-
tive results in environments with small populations, wiasre/e require large populations in order
to have a meaningful approximation. On the other hand, thegiso concepts we focus on are
ex-post Nash equilibrium, undominated strategies, amct sivminance (for the private values set-
ting), compared with iterated deletion of dominated sti&® or Bayes-Nash equilibria, provided
in the above mentioned papers. In addition, the virtual @n@ntation results apply to functions
that are incentive compatible from the outset, whereaseminmique applies to arbitrary objective
functions. In both cases the mechanisms proposed do natedgansfers but do require some
kind of type diversity.

Influence and Approximate Efficiency. The basic driving force underlying our construction
is ensuring that each agent has a vanishing influence on tiseroa of the mechanism as the
population grows. In the limit, if players are non-influetithen they might as well be truthful.
This idea is not new and has been used by various authorsuimpmmechanisms that approximate
efficient outcomes when the population of players is largem& examples of work that hinge
on a similar principle for large, yet finite populations, &winkels [36] who studies auctions,
Satterthwaite and Williams [30] and Rustichini, Satterditer and Williams([28] who study double
auctions, and Al-Najjar and Smorodinsky [4] who study anhexge market. The same principle
is even more enhanced in models with a continuum of playdisreveach agent has no influence
on the joint outcome (e.g., Roberts and Postlewaite [27] sthdy an exchange economy). The
mechanisms provided in these papers are designed for nEmg@the sum of agents’ valuations,
and provide no value for alternative objective functionscéntrast, our results hold a for a wide
range of objective functions and are generic in nature.réstengly, a similar argument, hinging
on players’ lack of influence, is instrumental to show inédincy in large population models (for
example, Mailath and Postlewaite [18] demonstrate ‘fidag’ in the context of public goods,
which eventually leads to inefficiency).

A formal statement of ‘influence’ in an abstract setting appén Levine and Pesendorfer [17]

and Al-Najjar and SmorodinskY [3]. Beyond the formalizatiof influence these works provide
bounds on aggregate measures of influence such as the auaftagace or on the number of
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influential agents. McLean and Postlewaltel [21] introdueeriotion of informational smallness,
formalizing settings where one player’s information isgmsficant with respect to the aggregated
information.

Differential Privacy. The notion ofdifferential privacy recently introduced by Dwork, McSh-
erry, Nissim and Smith [12], captures a measure of (lack afjapy by the impact of a single
agent’s input on the outcome of a joint computation. A smalbact suggests that the agent’s
privacy cannot be significantly jeopardized. In the limitan agent has no impact then nothing
can be learned about the agent from the outcome of the cotigput®ore accurately, differential
privacy stipulates that the influence of any contributorite tomputation is bounded in a very
strict sense: any change in the input contributed by an iddal translates to at most a near-one
multiplicative factor in the probability distribution ovéhe set of outcomés.

The scope of computations that were shown to be computediifegetitially private manner
has grown significantly since the introduction of the con@eql the reader is referred to Dwork
[11] for a recent survey.

McSherry and Talwar [22] establish an inspiring connechetween differential privacy and
mechanism design, where differential privacy is used abfto constructing efficient mecha-
nisms. They observe that participants (players) that dmr# private information te-differentially
private computations have limited influence on the outcofmée computation, and hence have
a limited incentive to lie, even if their utility is deriveddm the joint outcome. Consequently,
truth-telling is approximately dominant in mechanismg #na& e-differentially private, regardless
of the agent utility function§. McSherry and Talwar introduce the exponential mechanisia as
generice-differentially private mechanism. In addition, they shthat whenever agents are truth-
ful the exponential mechanism chooses a social alternativeh almost optimizes the objective
function. They go on and demonstrate the power of this maeshaim the context of Unlimited
Supply Auctions, Attribute Auctions, and Constrained jorgc

The contribution of McSherry and Talwar leaves much to bé&reésn terms of mechanism de-
sign: (1) Itis not clear how to set the valuecofLower values ot imply higher compatibility with
incentives, on the one hand, but deteriorate the approlamedsults on the other hand. The model
and results of McSherry and Talwar do not provide a framevarinalyzing these countervailing
forces. (2) Truth telling isapproximatelydominant, but, in fact, in the mechanisms they design
all strategies are approximately dominant, which suggestdtrt telling may have no intrin-
sic advantage over any other strategy in their mechanisir-y@hermore, one can demonstrate
that misreporting one’s private information can actuatiyrdnate other strategies, truth-telling in-
cluded. To make things worse, such dominant strategies eaalytb inferior results for the social
planner. This is demonstrated in Examgle 2, in the conteriafopoly pricing.

2The measure of ‘impact’ underlying differential privacytise analog of ‘influence’ a-la Levine and Pesendor-
fer [17] and Al-Najjar and Smorodinsky|[3] in a non-Bayesfeamework, with worst-case considerations.
3Schummer([311] also studies approximately dominant stiese the context of exchange economies.
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Facility Location. One of the concrete examples we investigate is the optinsatilan of facil-
ities. The facility location problem has already been tadkh the context of approximate mech-
anism design without money, and turned out to lead to intiegeshallenges. While the single
facility location problem exhibits preferences that aregte-peaked and can be solved optimally
by selecting the median declaration, the 2-facility praiterns out to be non-trivial. Most recently
Wang et al[[38] introduce a randomizée(multiplicative) approximation truthful mechanism for
the 2 facility location problem. The techniques introduced hgrevide much better approxima-
tions - in particular we provide an additié&»'/3) approximation to the average optimal distance
between the agents and the facilifes.

Following our formalization ofeactionsand ofimpositionand its applicability to facility lo-
cation, Fotakis and Tzamds [13] provide ‘imposing’ versiar previously known mechanisms to
improve implementation accuracy. They provide constantipligative approximation or loga-
rithmic multiplicative approximation, albeit with fullymposing mechanisms.

Non discriminatory Pricing of Digital Goods. Another concrete setting where we demonstrate
our generic results is a pricing application, where a mofispsgets a single price for goods with
zero marginal costs (“digital goods”) in order to maximieyenues. We consider environments
where the potential buyers hawgerdependent valuatiorfer the good. Pricing mechanisms for
theprivate valuegase have been studied by Goldberg €t al [15] and Balcan'&t ditjey consider
settings where agents’ valuation are not necessarilyicesdrto a finite set and achie@(ﬁ)-
implementation (where is the population size). Whereas our mechanism providesitasibound

it is limited to settings with finitely many possible priceblowever, it is derived from general
principles and therefore more robust. In addition, our naeetm is applicable beyond the private
values’ setting.

2 Model

2.1 The Environment

Let V denote a set ofi agents,S denotes dinite set of social alternatives ariid, i = 1,...,n,

is a finite type space for agent We denote by’ = xI ,T; the set of type tuples and write
T_; = x4} with generic element_;. Agenti’s type,t; € T, is her private information. Let
R; be the set of reactions availableitoTypically, once a social alternative,c S, is determined
agents choose a reactione R;. The utility of an agent is therefore a function of the vector of

“The notatiorO(n~!) is used to denote convergence to zero at ah‘-‘éﬁé. Compared withO(n 1) which denotes
convergence to zero at a rate



types, the chosen social alternative and the chosen rea€mally,u; : 7' x S x R; — [0, 1]ﬁ
Atuple (7,5, R,u), whereR = x! | R; andu = (uy,...,u,), is called arenvironment We will
user;(t, s) to denote an arbitrary optimal reaction for agéfite., ;(t, s) is an arbitrary function
which image is in the setrgmax . u;(t, s,7;)).

We say that an agent hpsvate reactionsf her optimal reaction of depends only only on her
type and the social alternative. Formally, agemas private reactions@rgmax, . u;((t;,t—:), s, 7;) =
argmax, . ui((t;,t";), s,r;), forall s, i,¢;,t_; andt’ ;. To emphasize that(t, s) does not depend
ont_; we will use in this case the notatief(t;, s) to denote an arbitrary optimal reaction for agent
7. We say that an agent hpsivate valuesf she has private reactions and furthermore her utility
depends only on her type, social alternative and reacti®ni((t;,t_;), s, r;) = u;((¢;,t;), s,74)
for all s,i,t;,t_; andt’ .. In this case we will use the notatian(¢;, s, r;) to denote the agent’s
utility, to emphasize that it does not dependton In the more general setting, where the utility
u; and the optimal reactionn may depend on_;, we say that agents haugerdependent values

An environment is1on-trivial if for any pair of types there exists a social alternativevitnich
the optimal reactions are distinct. Formaly, ¢; # ¢, € T, andt_; there exists; € S, denoted
s(ti, t;,t_;), such thaargmax cp u;((t;,t_;), s,7;) N argmax, . wi((f;,t-;),s,r;) = 0. We say
thats(t;,1;,t_;) separatesetweent; andt; at¢_;. A set of social alternativesy ¢ S is called
separatingf for anyi andt; # ¢; andt_;, there exists som€t;, &, t;) € S that separates between
t; andt; att_;.

2.2 The Objective Function

A social planner, not knowing the vector of types, wants taimée an arbitrarypbjective function
(sometimes termesbcial welfare functiopn ' : 7' x S — [0, 1]ﬁ We focus our attention on a class
of functions for which individual agents have a diminishingpact, as the population size grows:

Definition 1 (Sensitivity) The objective functiof’ : T'x S — [0, 1] is d-sensitivef Vi, t; # £;,t_;
ands € S, |F((t;,t—;),s) — F((f;,t;),s)| < £, wheren is the population sizB.

Note that this definition refers to unilateral changes incumtements, while keeping the social
alternative fixed. In particulaf-sensitivity does not exclude the possibility of a radidahiege in

SUtilities are assumed to be bounded in the unit intervals Thivithout loss of generality, as long as there is some
uniform bound on the utility.

8In fact, one can consider objective functions of the fdfmT x S x R — [0, 1]. Our results go through if for any
t ands and any:; andr_; the functionsF'(¢, s, (r—;,-)) : R; — [0,1] andw,(¢,s,-) : R; — [0, 1] are co-monotonic.
In words, as long as the objective function’s outcome (wgakicreases whenever a change in reaction increases an
agent’s utility.

" In the definition of sensitivity one can replace the constamtith a functiond = d(n) that depends on the
population size. Our go through for the more general caserapdslim,, @ =0.
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the optimal social alternative as a result of unilateraliggons, which, in turn, can radically
change the utility of the player. Thus, this definition is eut the context of the influence of an
agent on her own utility.

One commonly used objective function whichlisensitive is the average utility,

i uz(ta S, Ti(tv S))
o .

F(t,s):Z

Note that ai-sensitive function eliminates situations where any sraglent has an overwhelming
impact on the value of the objective function, for a fixed abalternatives. In fact, if an objective
function is notd-sensitive, for anyl, then in a large population this function could be suscégptib
to minor faults in the system (e.g., noisy communicatiomcieds

2.3 Mechanisms

Denote byRr,; = 2%\ {)} the set of all subsets dt;, except for the empty set, and Bt= x;R;.

A (direct) mechanism randomly chooses, for any vector ofiispa social alternative, and for
each agent a subset of available reactions. Formally:

Definition 2 (Mechanism) A (direct)mechanisnis a functionM : T"— A(S x R).

In addition, the mechanism discloses the vector of agentsdancements, and agents can use
this information to choose a reactifin.

We denote byl (t) the marginal distribution of\/(¢) on S and byM;(t) the marginal dis-
tribution onR;. We say that the mechanisid is non-imposingf A;(t)(R;) = 1. That is, the
probability assigned to the grand set of reactions is onealfa andt € 7. Put differently, the
mechanism never restricts the set of available reactibhs e-imposingif M;(t)(R;) > 1 — ¢ for
all i andt € T'. In words, with probability exceeding— ¢ the mechanism imposes no restrictions.

2.4 Strategies and Solution Concepts

A mechanism induces the following game with incomplete finfation. In the first phase agents
announce their types simultaneously to the mechanism. Tiemechanism chooses a social

8An example of a function that is natsensitive, for anyl, is the following: setf’ = 1 (F = 0) if there is an
even number of agents which utility exceeds some threshaldlze social alternative id (B), andF = 0 (F' = 1)
otherwise.

%If, however, all agents have private reactions then thisrinfition is useless to the agents and we do not require
such a public disclosure of the agents’ announcements.
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alternative and a subset of reactions for each agent. Inetensl stage of the game each agent,
knowing the strategy tuple of all agents, the vector of amced types, the social alternative and
her available set of reactions, must choose one such reactiet W; : T; — T; denote the
announcement of agentgiven his type and letV’ = (W;)’,. Upon the announcement of the
social alternatives, the vector of opponents’ announcemeints,and a subset of reactionB; C
R;, the rational agent will choose an arbitrary optimal reagti;((¢;, W-1(t_;)), s, R;), where
W_‘} (t_;) denotes the pre-image Bf_; at the vector of announcemerits

Thus, given a mechanism and a vector of announcement fusctid’; )" ,, the agents’ reac-
tion are uniquely defined. Therefore, we can vigW,)""_, as the agents’ strategies, without an
explicit reference to the choice of reactions. Given a veatdypes,t, and a strategy tuplé’, the
mechanism\/ induces a probability distributior/ (17 (¢)) over the set of social alternatives and
reaction tuples. The expected utility 9fat a vector of types, is Eyw ) ui(t, s,;), wherer; is
short-writing for the optimal reaction, which itself is @etnined by)/ andlV. In fact, hereinafter
we suppress the reference to the reactions in our notatimhsvete Ey ) u;(t, s) instead of

Enviowyui(t, s,7;).

A strategylV; is dominantor the mechanismy/ if for any vector of types € 7', any alternative
strategylV; of i and any strategy profild’_; of :'s opponents

Enrwie. w0 Wilts ) 2 By e vy Uit 8)- (1)

In words,V; is a strategy that maximizes the expected payofffof any vector of types and
any strategy used by her opponents. If for:ahe strategyV;(¢;) = t; is dominant then\/ is
calledtruthful (or strategyproo)‘

A strategyl¥V; is strictly dominantf it is dominant and furthermore whenevif(t;) # W (t;)
then a strong inequality holds in Equatidh (1)W(¢;) = ¢, is strictly dominant for alk then M
is strictly truthful.

A strategylV; is dominatedor the mechanisnV/ if there exists an alternative stratey, such
that for any vector of types € T, and any strategy profilé’_; of i's opponents, the following
holds: E(w, ). w_st_o)ti(t; s) < EM((WL_@Z_)W%(M)))ui(t, s), with a strong inequality holding
for at least one type vector

Finally, a strategy tuplél” is anex-post Nash Equilibriuntf for all 2 and¢ € 7" and for any
ex-post Nash equilibrium thel is ex-post Nash truthful

Owe slightly abuse notation asf:il (t—;) may not be a singleton but a subset of type vectors, in whisk tze
optimal reaction is not well defined. More accurate notatiarst involve considering another primitive to the model
- the prior belief ofi overT_;. With such a prior;((¢;, Wjil (t-:)), s, R;) denotes the reaction iR; that maximizes
the expected utility with respect to the prior belief, cdiutial on the subsét’ ! (t_;).

INote we do not require a strong inequality to hold on any imsta
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2.5 Implementation

Given a vector of typeg, the expected value of the objective functidn,at the strategy tuplg”
is EM(W(t)) [F(t, S)]

Definition 3 (B-implementation) We say that the mechanisid S-implementsF in (strictly)
dominant strategigegor 5 > 0, if for any (strictly) dominant strategy tuplél’, for anyt € T,
EM(W(t))[F(tv S)] > maxsESF(tv S) - 6

A mechanismV/ g-implementsF’ in an ex-post Nash equilibriunf for some ex-post Nash
equilibrium strategy tuplell/, for anyt € T', Eyow ) [F (L, 5)] > mazsesF(t,s) — f.

A mechanism\/ g-implementsF in undominated strategiéfor any tuple of strategiedy/,
that are not dominated and for anye 7', Eyiw @) [F(t, )] > mazsesF (t,s) — f.

Main Theorem (informal statement): For anyd-sensitive function/” and1 > 5 > 0 there
exists a numben, and a mechanism/ which s-implementsF' in an ex-post Nash equilibrium,
whenever the population has more thanagents. If, in addition, reactions are private thien
pB-implementsF in strictly dominant strategies.

3 A Framework of Approximate Implementation

In this section we present a general scheme for implemeatirigyary objective functions in large

societies. The convergence rate we demonstrate is of anafraegnitude of; / @ Our scheme
involves a lottery between two mechanisms: (1) Exponential Mechanispa non-imposing
differentially-private mechanism that randomly selectoaial alternatives. The probability of
choosings is proportional to (a exponent of) the value it inducesfgrand (2) TheCommitment
Mechanismwhere imposition is used to commit agents to take a reathi@ncomplies with their
announced type.

3.1 The Exponential Mechanism and Differential Privacy

Consider the following non-imposing mechanism, which wierréo as theExponential Mecha-
nism originally introduced by McSherry and Talwar [22]:

6neF(t,s)

neF(t,5) "
> ses €F®d)
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The Exponential mechanism has two notable properties, ashae below: It provides-
differential privacy, i.e., for all it is insensitive to a change . And, it chooses that almost
maximizesF'(t, s).

We follow Dwork et al [12] and define:
Definition 4 [e-differential privacy] A mechanism\/, providese-differential privacyif it is non-

imposing and for any € S, anyair of type vectors, ¢ € T, which differ only on a single
coordinate, M (t)(s) < e - M(f)(s)

In words, a mechanism preservedifferential privacy if, for any vector of announcemerasjni-
lateral deviation changes the probabilities assignedy®aaial choices € S by a (multiplicative)
factor ofe€, which approaches ase approaches zefd.

Lemma 1 (McSherry and Talwar [22]) If F is d-sensitive then\/zi(t) preserves:-differential
privacy.
The proof is simple, and is provided for completeness:

Proof: Lett andt be or two type vectors that differ on a single coordinate.rloe anys € S,
F(t,s)— L < F(i,s) < F(t,s)+ <, hence,

neF (t,s) neF (t,s)
e 2d e 2d
€ nekF (t,3) nekF (t,3)
M2 (t)(s) _ 2sese < Dsese — ¢
= /7 - neF (i,s — ne s)—2a - :
Mz (t)(s) o) ot 7]
nel (i,5) 4
— 54 ne(F(,5)+ )
2sese 2 Seese M

QED

The appeal of mechanisms that providdifferential privacy is that they induce near indiffer-
ence among all strategies, in the following sense:

Lemma 2 If M is non-imposing and providesdifferential privacy, for some < 1, then for any
agenti, any type tuple, any strategy tuplél’, and any alternative strategy foy IV; the following
holds:

|EM(W(t)) [U’Z(t’ S>] - EJ\/[(WZ'(ti),Wfi(tfi)) [U‘Z(t7 8)” < 2e.

12For non discrete sets of alternatives the definition requhat%g;g; <ef VS C 8.
13The motivation underlying this definition efdifferential privacy is that if a single agent’s input to atdbase
changes then a query on that database would result in fdisomnally) similar results. This, in return, suggests iha

is difficult to learn new information about the agent from theery, thus preserving her privacy.

11



The proof is simple, and is provided for completeness:

Proof: Let W and W be two strategy vectors that differ thiéh coordinate. Then for every
teT,se S, rpe Randu; : T x S x R; — [0,1] we have

Exwaylui(t, )] = ) MW ())(s) - wlt,s)

seS

< Y et M(Wilti), Weit—i))(s) - uilt, s)

ses
€

= € By w_qyluilt, s)];

where the inequality follows sinc&/ providese-differential privacy, and:; is non-negative. A
similar analysis gives

By w_a_ipla(ts s)] < e Exrw ) lualt, )]

k3

Hence we get:

(eE - ]‘) ’ EM(WL(tL),sz(tfz))[ul(t7 S)]
e —1,

Enow ) luilt, s)] — EM(WL-(ti)W,i(m))[“i(tv s)] <
<

where the last inequality holds becauseeturns a values if0, 1]. Similarly,

Eyvrwienwe_plti(t, $)] = Exow ey luilt, s)] < e — 1.

To conclude the lemma, note that — 1) < 2efor 0 <e < 1.
QED

McSherry and Talwar [22] note in particular that in the cabgrivate values truthfulness is
2e-dominant, which is an immediate corollary of Lemma 2. Thegbine this with the following
observation to conclude that exponential mechanisms appabely implementt’ in e- dominant
strategies:

Lemma 3 (McSherry and Talwar [22]) Let ' : 7" x S — [0, 1] be an arbitraryd-sensitive

objective function and > . Then for anyt, By gy (8 8)] > max, F(t,s) - 4 n <%>

Proof: Letd = 2¢1n (”;‘j') Asn > %ﬁ we conclude thain <"§'j‘> > lne > 0 and, in
particular,d > 0.

12



Fix a vector of typest and denote bys = {5 € S : F(t,$) < max, F(t,s) — §}. For any
s € S the following holds:

nekF(t,3) ne(maxg F(t,s)—46)

€ (& 2d [ 2d ne
- N e
M2d (t) <S> - neF (t,s) S ne maxg F(t,s) =e
Zs’eS e 2d e 2d

Therefore M (t)(S) = 3, M3 (t)(8) < |S|e~5° < |S|e~22°. Which, in turn, implies:

F(t,s)] > (max F(t,s) — 6)(1 — |S|e”2a°) > max F(t,s) — 6 — |S|e” 2.

M2d()[ <

Substituting fory we get that

B, waﬁn>nmeaﬁ)—3§1("¢ﬂ)—gi

M2d (t) s ne 2d ne

In addition,n > << which impliesin ("E's‘> > ln(e) = 1, and hence? < 24| ("g'j‘)

sl 2d
d nelS|
(t,9)] = max, F(t,s) = 21 ("55)

Plugging this into the previous inequality yield§,
as desired.

2d (t

QED

Note thatlim,, . 2 1n (”g'j‘) = 0 whenever the parametedse and | S| are held fixed

Therefore, the exponential mechanism is almost optima farge and truthful population.

Remark: There are other mechanisms which exhibit similar properttethose of the Expo-
nential Mechanism, namely ‘almost indifference’ and ‘appmate optimality’. The literature on
differential privacy is rich in techniques for establisimechanisms with such properties. Some
techniques for converting computations irtdifferentially private computations without jeopar-
dizing the accuracy too much are the addition of noise catidat to global sensitivity by Dwork et
al. [12], the addition of noise calibrated to smooth sevisitand the sample and aggregate frame-
work by Nissim et al.[[24]. The reader is further referredhe tecent survey of Dwork [11]. Any
of these mechanisms can replace the exponential mechamitm fiollowing analysis.

14This limit also approaches zeraodfe, |S| depend om, as long asl/¢ is sublinear im and|S| is subexponential
inn.

13



3.2 The Commitment Mechanism

We now consider an imposing mechanism that choesesS randomly, while ignoring agents’
announcements. Oneeas chosen the mechanism restricts the allowable reactari$d those that
are optimal assuming all agents are truthful. Formally,ig chosen according to the probability
distributionP, let A" denote the following mechanism:

Mg (t)(s) = P(s) and M (t)(ri(t,s))|s) = 1.
Players do not influence the choicesah A/* and so they are (weakly) better off being truthful.
We define thegapof the environmenty = ¢(7', S, A, u), as:

v=g(T,S, Au) = thr;lbllntﬂ I?Eabx (w;i(t, s,ri(t,s)) — ui(t, s, (b, t_4),s))) .

In words,~ is a lower bound for the loss incurred by misreporting in cafsan adversarial
choice ofs € S. In non-trivial environments > 0. We say the a distributio® is separatingf
there exists a separating set- S such thatP(5) > 0 for all 5§ € S. In this case we also say that
M?T is a separating mechanism. In particulardet min,_z P(s). Clearly one can choose such

thatp > ﬁ The following is straightforward:

ses

Lemma 4 If the environmentT’, S, A, u) is non-trivial and P is a separating distribution ove$
theanZ’ # ti, t_;,

Ene s lwi(t, s, ri(t, 8))] = Ene, e lwilt, s,75((bi, t=), 5))] +py .

If, in addition, reactions are private, then for anyb; # ¢;, t_;, andb_;:

Ene g, ppluwi(t, s,7i(ts, 5))] = Ene g, oo [wi(t, s, 7i(bs, 5))] + pry.

Proof: For any pairb; # t; and for anys € S wu;(t, s, ri(t;,s)) > wi(t, s, (b, s)). In
addition, there exists some = s(t;,b;), satisfyingP(s) > p, for which w;(¢, $,7;(t;,8)) >
u;(t, 5,7;(b;, 5))4. Therefore, foranyi, b; # t; € T; and foranyt_;, Eyr, 4 )[uilt, s,74(t, s))] >
Ene i oluilt, s,mi((bs, 1), s))] + py , as claimed.

Recall that if reactions are private theit, s) = r;(t;, s), namely the optimal reaction of an
agent, given some social alternatiyedepends only on the agent’s type. Therefore we derive the
result for private reactions by replacing(¢;,t_;), s) with r;(¢;, s) on the left hand side of the last
inequality andr; ((b;,t_;), s) with r;(b;, s) on the right hand side.

QED

The following is an immediate corollary:

14



Corollary 1 If the environmentT’, S, A, u) is non-trivial andP is a separating distribution over
S then

1. Truthfulness is an ex-post Nash equilibrium\of .

2. If agenti has private reactions then truthfulness is a strictly daaminstrategy for in M*.

An alternative natural imposing mechanism is that of a ramdactator, where a random agent
is chosen to dictate the social outcome. Similarly, ageriisbe truthful in such a mechanism.
However, the loss from misreporting can only be boundedvbélp I, whereas the commitment

mechanism gives a lower boundgf > ﬁ which is independent of the population size.

3.3 A Generic and Nearly Optimal Mechanism

Fix a non-trivial environmentT’, S, A, u) with a gapy, separating se$, a d-sensitive objective
function F and a separating commitment mechanidiff;, with p = min__z P(s).

SetM((t) = (1 — q)Mza(t) + gMP(t).

Theorem 1 If gpy > 2¢ then the mechanism_{; is ex-post Nash truthful. Furthermore, if agents
have private reactions theh/, is strictly truthful.

Proof: Follows immediately from Lemmals| 2 (sBt(¢;) = ¢; ) and [4.
QED

Set the parameters of the mechanisff() as follows:

o c=4/2% /In (—"ﬁ;f').
2

®qg==.
and consider populations of size > ng, wheren, is the minimal integer satisfying, >

8d 1S 4e%d ng 8d
max{m In ( 2d ) ’:fwls\} andln(no) Z

Lemma5 If n > ng then

15



1.q:§—fy<1.

2. e < pr.
2ed
3. n> 51
Proof: Part (1): ity > ity > 2— which impliesn > id In(n). In addition,n > ng >

¥ (”';‘f') Thereforen > 44 ln< i ') M n(n) = 4 1n (p—g'g‘”) = (py)? > 21 (”@‘3'").
Taking the square root and substltutlng ¢an the right hand side yieldsy > 2¢ and the claim

follows.

Part (2) follows directly from part (1)

Part (3):n > ng > 424 > ded /5 2| additionn > 424 > 24 \hich

pyISI = pvlS[? Vd|S]| pylS| pyls|
T M|SIn : " e
implies1 < In (T) Combining these two inequalities we gey‘n > Vi fin(PEY 5|

Multiplying both sides by/n implies n > Vo Ms‘n T =55

QED

Using these parameters we 8é{t) = M((t). Our main result is:

Theorem 2 (Main Theorem) The mechanisnM(t) is ex-post Nash truthful and, in addition,

it 6 mn In ("m‘s'> implementsF’ in ex-post Nash equilibrium, fat > n,. If agents have

private reactions the mechanism is strictly truthful an@/ﬁ In ("’”“”) implementsF' in
strictly dominant strategies.

Recall that for ex-post Nash implementation we only needhimasthat one ex-post Nash
equilibrium yields the desired outcome.

Proof: Given the choice of parameterandq then, Theorernl1 guarantees tM(t) is ex-post

Nash truthful (and truthful whenever reactions are privaiderefore, it is sufficient to show that
for any type vectot,

np7|S|
E F(t > m XF t,s) —
J\/[(t)( ( 3)) a 3 6\/p7n\/

16



Note that ag” is positive,E,» ) [F(t,s)] > 0 and so
EqplF(ts)] = (1 —qE, 5, F(ts)]

By part (3) of Lemmakb we are guaranteed that the conditiorhersize of of the population of
Lemmad 3 holds and so we can apply Leniha 3 to conclude that:

BuolFt.8)] 2 (1 g) (maxFles) — 20 ("5 ) ).

ne

We substitute; with If—fy and recall thainax, F'(t,s) < 1. In addition, part (1) of Lemmal5
asserts that- < 1. Therefore

2¢ _4d. - (nelS]| 2% 4d . (npy|S|
By (8] > msx F() = 22 = 20 (2500 ) = maseP(e.0) = 25— 0 (2251

where the last inequality is based on the faet py, which is guaranteed by part (2) of Lemida 5.

Substituting: for \/”Zj\/@ we conclude that
Eyy[F(t,5)] = max F(¢, s) _2\/ \/ ”P7|5| _4\/ \/ np'y|S|
pm pyn

and the result follows.

QED

One particular case of interest is the commitment mechadiEm whereU is the uniform
distribution over the seft:

Corollary 2 Letn, be the minimal mteger satisfying, > max{gd‘s' In () . ‘ﬁs‘f} and

%. Then the mechanlsnMU 6,/d's \/In ’2‘} |mplementsF in ex-post Nash equilib-

rium, for all n > ny. If agents have private reactions the mechanigffi(t) 6 d‘s =L /In (52)-
implementd” in strictly dominant strategies.

ln(no

Proof: P = U implies that the minimal probability i = % Plugging this into Theoref 2
gives the result.

QED

Holding the parameters of the environmént, | S| fixed the approximation inaccuracy of our
mechanism converges to zero at a rat df‘%

In summary, by concatenating the exponential mechanismerevtiuthfulness is-dominant
with the commitment mechanism we obtain a strictly trutmi@chanism. In fact, this would hold
true for any mechanism where truthfulness-lominant not only the exponential mechanism.

17



4 Applications

We now turn to demonstrate the generic results in two coe@gplications.

4.1 Monopolist Pricing

A monopolist producing digital goods, for which the mardioast of production is zero, faces a
set of indistinguishable buyers. Each buyer has a unit ddmath a valuation in the unit inter-

val. Agents are arranged in (mutually exclusive) cohorts e valuations of cohort members
are correlated. Each agent receives a private signal andaheation is uniquely determined by
the signals of all her cohort members. The monopolist wamtset a uniform price in order to

maximize her average revenue per {er.

Assume there aré/ - D agents, with agents labeléd, d) (the d* agent in then' cohort).
Agent (n, d) receives a signaK)} € R and we denote a cohort’s vector of signals ¥y =
{X7}2_,. We assume that the valuation of an agéfit, is uniquely determined by the signals of
her cohort members;" = V'(X™).

We assume that each agent’s signal is informative in theestivas)*(X") > V/(X") when-
everX™ > X" (in each coordinate a weak inequality holds and for at leastaf the coordinates
a strong inequality holds). That is, whenever an individusinal increases the valuation of each
of her cohort members increases.

Let R, 4y = {'Buy’, ‘Not buy’} be the set of reactions for ageint d).

The utility of (n, d), given the vector of signal& = {X"}¥ | = {{X7}2 1N  andthe price
p, IS
. Vd"(X") —p if T(n,d) = ‘Buy’,
Unad(Xo Py ) = { 0 if (.. = ‘Not buy’.

We assume that all valuations are restricted to the unitvateprices are restricted to some
finite grid S = S, = {0, =, 2,..., 1} (hence|S| = m + 1), and X takes on only finitely many
values. We assume the price grid is fine enough so that fovemyéctorsX™ > X" there exists
some pricep € S such thatE(V"|X") > p+ 2 > p > E(V"|X™). Therefore for vector of
announcements there exists a maximal price for which optiezation is Buy. For that price, if
an agent announces a lower value then the best reaction WelN@dt Buy, which will yield a loss

of % at least. Similarly, there exists the lowest price for whilsh optimal reaction is Not Buy.

15To make this more concrete one can think of the challengeicihgra fire insurance policy to apartment owners.
Each apartment building is a cohort that shares the sameandkonce the risk is determined (via aggregation of
agents’ signals) each agent has a private valuation fontheance.
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Announcing a higher value will result in the optimal reantlmeing Buy, which yields a loss cinf
at least. We conclude that the gapyis= L.

The monopolist wants to maximiz&(t,p) = %5 - [{(n,d) : V;/(X") > p}|, the average
revenue per buyer. Note that a unilateral change in the typa@agent may change at most the
buying behavior of thé) members in her cohort, resulting in a change of at nﬁé);:tg N—% in the
average revenue. As the population siz&/i® we conclude that’ is D-sensitive.

Let M,, be a mechanism as in Corolldry 2, where a Uniform Commitmesutranism is used:

Corollary 3 For any D there exists somé&/, such that for allN > N, the mechanism\/,,
O( %2 In(X))-implements” in ex-post Nash equilibrium.

The literature on optimal pricing in this setting has so fan@entrated on the private values
case and has provided better approximations. For examplieaB et al.[[7], using sampling
techniques from Machine Learning, provide a mechanism (ﬂ(ajﬁ)-implements the maximal
revenue without any restrictions to a grid.

A Multi Parameter Extension: In the above setting we assumed a simple single-parameeer ty
space. However, the technique provided does not hinge en limiparticular, it extends to more
complex settings where agents have a multi-parameter fypees More concretely, consider a
monopolist that produces types of digital goods, each with zero marginal cost for piciichn.
There are/V buyers, where each buyer assigns a value, in some boundedalnto each subset
of the G goods (agents want at most a singe unit of each good). The pobsibsetsG prices,
one for each good, and once prices are set each agent cha®sgsitmal bundle. The challenge
of the monopolist is to maximize the average revenue perrbuyethis model types are suffi-
ciently diverse. In fact, for any two types there exists &@nector that yields different optimal
consumptions. Therefore, the scheme we provide applieagusell to this setting.

4.2 Facility Location

Consider a population of agents located on the unit interval. An agent’s locationrigape
information and a social planner needs to locatesimilar facilities in order to minimize the
average distance agents travel to the nearest fﬁlwye assume each agent wants to minimize
her distance to the facility that services her. In partigutas entails that values (and reactions) are
private. We furthermore assume that agent and facilitytiona are all restricted to a fixed finite

18For expositional reasons we restricting attention to thiéinterval and to the average travel distance. Similar
results can be obtained for other sets ifh dRd other metrics, such as distance squared.
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grid on the unit interval, = L(m) = {0, X, 2 ... 1}. Using the notation of previous sections,

’m’ m’

letT; = L, S = L™, and letR, = L. The utility of agenti is

uilts, s.r) = 4 1l i €s,
i\liy S, 7)) = —1 otherwise.

Hence,r;(b;, s) is the facility closest to the locations of the facility srclosest tay;. Let F'(t, s) =
L3 ui(ty, s, (1, s)) be the social utility function, which is-sensitive (i.e.d = 1).

First, consider the uniform commitment mechaniaf#, which is based on the uniform dis-
tribution oversS for the commitment mechanism. Now consider the mechandi&m-,, based on
the uniform commitment mechanism, as in Corolldry 2

Corollary 4 3n, such thatvn > n, the mechanism/;oc: GN/M« /In (5%)- implements

the optimal location in strictly dominant strategies.

Proof: Note thaty = X, |S| = (m + 1)¥ and the proof follows immediately from Theoréin 2.

m’

QED

Now consider an alternative commitment mechanism. ConsidedistributionP, overS =
L¥, which chooses uniformly among all the following altermas - placing one facility in location
% and the remainingd — 1 facilities in Iocation%, wherej = 0, ..., m — 1. Note that for any,
any pairb; # t; is separated by at least one alternative in this set. Fontaghanisnp = % Now

consider the mechanisi; -, based on the commitment mechanisvy:

Corollary 5 3ng such thatvn > ng Moo S /n <"(";nt21)K)-implements the optimal location

in strictly dominant strategies.

Proof: In analogy to the proof of Theorelm 2, setting- ﬁ/ﬁ In <”(m+1)K) andg = 2em?.

2m?

QED

For both mechanisms the approximation error convergestoate rate proportional to//n
as society grows. In addition, the approximation error dhbtnechanisms grows as the grid size,
m, grows. However in the second mechanism approximatiomrided#es at a substantially slower
rate.
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5 Large Type Sets

The arguments underlying the generic approximate optimathanism for a finite number of

social alternatives do not generally extend to models whegetype set is large. However, in

concrete models, where additional structure is assumeti, @u extension may be possible. We
demonstrate this in the facility location problem introdden the previous section.

As before, we assume that each player is located on the ueitval and that her location
is private information. Formally, séf = [0, 1]. A mechanism must (randomly) decide on the
location of K facilities in the unit interval. LetS = [0, 1] and consider the standard Borel
algebra which we denot8. The objective of the designer is to minimize the averagadce a
player must travel to a facility. Formally, the designerkse® minimizeF (¢, s) = %Zle |t; —
ri(t:, s)|, wherer;(¢;, s) denotes the facility iz that is closest to;.

~ We use a continuous version of theponential Mechanismvhere the probability of any event
S € Sis given by:
B fg enEF(t,s)dS

=5 ___"vyied.
fS encF(t,s)ds €

M<(£)(S)

We say that a mechanisi providese-differential privacy if% < ¢f VS e S and for any

pair of type tuplest andt, that differ on a single entry. McSherry and Talwarl[22] prdhe
following (which is analogous to lemmid 1):

Lemma 6 (McSherry and Talwar [22]) If F is d-sensitive then\/zi(t) preserves:-differential
privacy.

The proof is identical to that of Lemnia 1 and is therefore tadit

5.1 The approximation accuracy of the Exponential Mechanis

The solution concept we pursue in this section is deletiatoofinated strategies. In fact, what we
show in the sequel is that being truthful dominates sigmtigamis-reporting one’s type. Thus,
deletion of dominated strategies implies that agents résatrategies that are ‘almost’ truthful.

Consequently, we turn to study the approximation accurddyne Exponential Mechanism
whenever agents slightly mis-report their types. We begindnsidering truthful agents.

To state the next lemma we introduce the following notatfeor.0 < o < 1letS, = S,(t) =

{5 €S :F(t35) > max, F(t,s) —a}, andS, = S,(t) = S\ S,. Let u denote the uniform
probability oversS.
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Lemma 7 (McSherry and Talwar [22]) If o > 22 1n <%St)s)> thenE [F(t,s)] > max, F(t,s)—

M2 (t)
3a.
We include the proof for completeness.

Proof: Note first that

neF(t 3)

M1 (t)(S2a) _ Jspu© > 48

M2 (t)(Sy) < _ _
D) = AEOG) e
ne(maxs F(t,s)—2a) _ _
7 e 2d dg Cnen NEX
S fSQQ — — e %4 _M(S2a> S e 2d ’
fSa e 2d ds M(Soz) M(Sa)

where the first inequality follows from/si(¢)(S,) < 1, the second inequality follows from the
definition of Sy, and S, and the third inequality follows from(S,,) < 1. Hence, we get that

—nea

M?7(t) returnss € S, with probability at least — <z > 1 — 5. Hence,
(0]
EJ\/[ﬁ(t) [F(t S)] (mgixF(t 8) - 20&)(1 - W) > m;ixF(t, S) — 3a.

QED

This result enables us to prove the following:

Corollary 6 E

M5 (1) [F(t,s)] > max, F(t,s) — & In (e + (ne)<+1).

Proof: Fix a tuple of players’ locations € 7™ and lets denote the alternative i that
minimizesF (¢, s). For anya > 0, if 5§ € [0, 1]¥ satisfiesnaxy, |3, — sx| < a thens € S,,. To see
this note that

1 n
F(t,S/) = EZui(ti,s',n(ti,S'))
i=1

IN

1 n
— iti7 lvitia
3 Dol ()

% 3 (uilts, s,7i(ts, 8)) + @)

i=1
< F(t,s)+a.
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Therefore, whenever < 0.5, u(S,) > o.

Seta = Z1n (e + (ne)X*'). We argue thatr > 2 1n (%@fﬂ) which implies that we

can apply Lemmal7. To see this recall thatx, F'(¢,s) < 1, and using our bound on(S,,) it
suffices to show thatne)* ! > 1/a%*!, which indeed is the case as> 1/ne. By Lemma¥
E\s o[F (¢ s)] 2 max, F(t,s) — S 1n (e + (ne)* 1), as required.

QED

We now turn to analyze the case where agents misreport dugition.

Lemma 8

o |F(bit_i,s) — F(ti, t_,s)| < £]t; — b;|; and

o |F(b,s)— F(t,s)| < max;|t; — bl

Proof: To derive the first part note that

—u;(biy s,ri(biys)) = |by —ri(bi,s)| < by —rits, s)| = |bi — ti + ti — 7i(ti, )]
< b =t [t = ritis )| = [bs — ti] — uiti, s, 74t 8)),

and (by a similar analysis)u;(t;, s, ri(t;, s)) < |bi—t;|—u;(b;, s, 7:(b;, s)). Hence,
u,(tl, S, ’l"i(ti, S))| < |bz — tz| and we get that

u;i(bs, s, 7:(bi, 5))—
1 1

|F(bi7t—i7 S) - F(tivt—iv 8)‘ = _|ul<bzu Suri(bh S)) - u2<tzv S7ri(ti7 8))‘ S _‘tl - b2|
n n

The second part follows by iteratively applying the firsttgar » times.

QED
Lemma9 If |b; —t;| < fforall i then| max, F'(t,s) — max, F'(b, s)| < f5.

Proof: Lets, € argmax{F(t,s)} ands, € argmax{F'(b,s)}. Using triangle inequality,
|t; — b;| + |b; — 7i(bi, sp)| > |t: — ri(bs, sp)|, @and noting thatt; — r;(b;, sp)| > [t; — ri(ts, sp)| We
get that

‘tz — bz‘ -+ ‘bl - T’i(bi, Sb>| 2 |t2 — Ti(ti, Sb)‘.
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HEIICG,
n tz 7 7 T'i\0s, Sp n 1 i\li; 9b s 9Ob y Ot )+

i=1 i=1
Noting that >~ | —|b; — r;(b;, s)| = F (b, 5,) we get that

n

F(b )~ Flt,5) <+ 3|t~ b < 5. @)

i=1

A similar argument yields
F(t7 St) - F(b7 Sb) < ﬁ (3)

Combining inequalities]2 arid 3 we conclude that

| max F'(t,s) — max F'(b,s)| = |F(t,s;) — F(b,sp)| < 5,

S

as claimed.

QED

Lemma 10 If |b,—t;| < GforallithenE, ¢  [F(t,s)] > max, F(t,s)—28—21n (e + (ne)* )

(0) |

Proof: For any finite set of locations C [0, 1], traveling fromt; to the point closest to in s
is not longer than a taking a detour Wia and then traveling from; to the point closest té; in s,
i.e., tz — ’f’i(ti, $)| S |tl — b,| + |bz — ’l"i(bi, S)| Therefore,

1 n
Eyps o [F(t:9)] > Eyps ) [F (b, 5)] = — Do lti=bil = Eyys ) [F(b,9)] = B.
i=1

By Corollary(8,

6
Eusol,)] 2 mc (b 5) = 2o e+ () ).

By Lemma9,
max F'(b, s) > max F(t,s) — (.

Combining all three inequalities above gives:

E

6
e |F(t > F(t.s) =28 — —1 K+1
M2(b)[ ( 75)] = mgix ( 73) B e Il(e—l— (ne) ),

as claimed.

QED
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5.2 Deviations from truthfulness in the Exponential Mecharmsm

We bound the potential gain of an agent locatet] atho reports;:

Lemma 11 Using the Exponential Mechanism for the facility locatianlgem, ife < 1 then for
anyi, anyb;, t; € T and anyt_, € T_;,

E [wi(ts, s,mi(t;,8))] — E [wi(ts, s,mi(t;, 8))] < 2€lt; — b;l.

M%(bivt*i) M%(ti,t,i)

Proof: By LemmaB| F(b;, t_;,s) — F(t;, t_;, s)| < L|t;—b;|. Plugging this into the definition
of the Exponential Mechanism we get:

E s o luiltis s, rilti, s)] = /esui(tusﬂ’i(tus)) dM 2 (b, ;) (s)
S F(bit—i.9)

= U; ti,S,’f’i t;, s e 7 ds
[ lticsnies) (R TEr

e%(F(ti,tfi,S)"r—‘tzn i)

< it s, 15,8 — ds
N /sesu ( ot ( ))f 6%6<F(ti,t7i75’)—\ znb1‘> d

/
s'eS S

ettt / wi(ti, s,7i(ti, 8)) d M2 (ti,t3)(s)
ses

eg‘ti_b”EM% (ti,t—s) [wi(ti, 5,7 (ti; )],

The proof is completed by noting that is— b;| < 1 ande < 1, et < 1 4 2¢|t; — b;|.

QED

5.3 A commitment mechanism

Consider a commitment mechanism induced by the followirggrihution P over the setS =
[0, 1]%: First, choose a uniformly a random integére {1,2,3,...,m}, where the parameten
will be set below. Next choose a numBérrandomly and uniformly, from the intervl, 2% — 1].

Now let s be the alternative where one facility is Iocatedz%’atand the other — 1 facilities at

Y+1
2X -

_ L i2
Lemma 12 If [b; — t;| > 270"V then Eyrq, o ylwi(ti, $)] > Eyrro s luilts, s)] 4+ L,
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Proof: We first consider the cage < t;—2~("~Y. AssumeX andY are chosen such thgt <

bl < 2 and X% € [b;, %54, As a result the facility assigned towhenever she announdigs
is Iocated atQ— However, if she announces her true locatignshe is assigned a facility located

at% Consequentlwi(ti, S, Ti(ti, S)) > Ui(ti, S, Ti(bi, S)) + 2LX > Ui(ti, S, Ti(bi, S)) -+ @ In
words, for the specific choice of andY” misreporting one’s type leads to a loss exceeé—’iﬁ&).

The probability of choosing the unigué satlsfylng2x < b' < 2 >x Is1/m. Conditional on

this event, the probability of choosirg satisfying- € [b;, bs ” t]is {ti=b) ‘b . Since the mechanism
is imposing, then for an arbitrary choice &fandY misreportlng is not profitable. Therefore, the

. . . .12
expected loss from misreporting excedf%g—'.

The proof of the complementary cagg> t;+2- (™1 uses similar arguments and is omitted.

QED

5.4 Implementation in undominated strategies

As inthe generic construction, I8¢ (¢) = (1—q) M= (t)+qM* (t). Note that whenevegr'tig_%‘2 >
2¢|t; — b;| being truthful dominates any announcement satisfiing ¢;| > 2-(™~1. In particular,
this holds whenevey > 16em2™.

Sete = 2/3 VK +1,m = [log <W;(Lﬁ>1 andqg = 16em2™ and denote b;MLocg = M;
for this choice of parameters.

Theorem 3 There exist3y = ng(K) such thatM;ocs 22 Vl/, In n-implementst’ in undomi-
nated strategies for alb > n,.

Proof: We first observe that as there exists= n,(K) such thaty < 1 for all n > n, and
hence the mechanism is well defined. This also implies thaadent: reportingd; such that
b; — t;] > 27V is dominated by reporting. Similarly, there exists,, = n,(K) such that
a = 2Z1n(e+ (ne)®™) < 0.5 for all n > n, as required in the proof of Corollafy 6. Finally,
there exists;, = n;(K) such thatn < Inn for all n > n,. In the following we will assume that
n > max(ng, Na, M)

There are two sources for the additive error f6f oc:

1. The commitment mechanism introduces an additive errat ofiosty = 8¢m2™. Noting

that2™ < 2. —2Z— and substituting for we get thay < $122 < 2Ky,
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2. The exponential mechanism introduces an additive efrgr8— + 2 In (e + (ne)* )
(see Lemm&10). Note thdt In (e + (ne)<+1) < “E+ 1y (¢ 4 ne) and substituting for,

ne

we get that there exists; = n,(K) such that for all. > n, this additive error is bounded
by 32— + 253 Inn. In addition2™~! = 1. 2™ > %6\/[?;% which implies that the
error is bounded by - SYELL 1y p - SVEFL Yy gy — SO0VEFLYy

ni/3 nl/3 nl/3

Settingny = max(ng, na, nm, n1), We get that for alh > n, the total additive error is bounded

by
2vVK +1 30vVK +1 32VK +1
1711'171/ 711171/:711'171/.
nl/3 nl/3 nl/3
QED

6 Discussion

The mechanisms proposed in this paper are based on twaspHladifferentially private mecha-
nism on the one hand and an imposing mechanism on the othér matine following we discuss
the importance of each of these pillars for the results abtiiIn addition, we discuss some of the
limitations of our results.

6.1 Is differential privacy sufficient?

McSherry and Talwar [22] observed that differential privas sufficient to yield approximate
implementation irc-dominant strategies. However, as we show below, diffeakeptivacy does
not generally imply implementation with a stronger solatamncept.

Our example is a pricing mechanism that utilizes the expoalemechanism and hence yields
ane-dominant implementation that (assuming parties act tullif) well approximates the optimal
revenue. However, there are dominant strategies in the @eatimat involve mis-representation
and lead to a significantly inferior revenue.

Example 2 Consider a monopolist producing an unlimited supply digi@od who faces buy-
ers, each having a unit demand at a valuation that is either+ . or 1 + p where0 < u < 0.5.
The monopolist cannot distinguish among buyers and isicéstt to choosing a price in the set
{0.5,1}. Assume the monopolist is interested in maximizing theagearevenue per buy@r.The
optimal outcome for the auctioneer is hence

OPT

() = maX,e(o.5,1}(s - [{i:t; > S}|)
n

"We consider the average revenue per buyer as the objectietidn, instead of the total revenue, in order to
comply with the requirement that the value of the objectiuaction is restricted to the unit interval.
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If the monopolist uses the appropriate exponential medmrthen it is--dominant for agents
to announce their valuation truthfully, resulting in an alst optimal revenue. However, one should
note that the probability that the exponential mechanisthalhioose the lower of the two prices
increases with the number buyers that announéeHence, itisdlominant for buyers to announce
0.5. This may lead to inferior results. In particular, whenewadragents value the good atbut
announcd).5 the mechanism will choose the prig¢é with high probability, leading to an average
revenue of).5 per buyer, which is half the optimal revenue per buyer.

6.2 Is imposition sufficient?

It is tempting to think that our notion of imposition triviaés the result, i.e., that, regardless of
the usage of a differentially-private mechanism, the gbib force agents to react sub-optimally,
according to their announced types, already inflicts sefficdisutility that would deter untruthful
announcements. The next example demonstrates that suckeamposition is generally insuffi-
cient. Intuitively, the reason is that for inducing boththriwiness and efficiency, one needs a strong
bound on an agent’s benefit from mis-reporting: the utilityni mis-reporting should be smaller
from the disutility from being committed to a sub-optimahcgion.

Example 3 Consider a digital goods pricing problem withagents, where the valuation of each
agent is either% or 1 + u, and the possible prices alfgeandl. In this example the optimal price
is 1 whenever there exists an agent of type p, p < 0.5.

Consider the following mechanism: with high probabilityniplements the optimal price and
with a low probability it uses an imposing mechanism. No# the strategy to always announce a
valuation of% is a Nash equilibrium. This announcement is clearly optiihah agent’s valuation
is indeed%. If an agent’s valuation, on the other hand,lis+ ., then complying with this strategy
will result in a utility that is almostl, whereas deviating to truthful announcement will resul&in
price of1 with high probability, hence a utility oi.

Therefore, the monopolist's average revenue from a buyarvs'vays%. This is substantially
inferior to the optimal outcome, which could be as highlasshenever all agents are of the high

type.

The Nash equilibrium from examplé 3 survives even if we mpttie mechanism to be fully
imposing (i.e, it always imposes the optimal reaction). §,ithe above mentioned sub-optimality
holds.

We believe that the notion of imposition is natural in manitisgs, and that to some extent
imposition is alreadymplicitly integrated into the mechanism design literature. In faot,raech-
anism that is not ex-post individually rational imposesdtgcome on the players: it imposes
participation and ignores the possibility players havewalk away’ once the results are known.
Moreover, models that involve transfers treat these as seghoeactions: once the social choice
and transfers are determined, players must comply (contsigation and auction payments as an
example).
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6.3 Model Limitations

There are three overarching limitations to the techniqueoresent: (1) The generic mechanism
only works for objective functions which are not sensiti{2) We consider settings where the
reaction set of agents is rich enough, such that any pairpgfstgan be separated by the optimal
reaction on at least one social alternative; and (3) Thedfitiee set of social alternatives cannot
grow too fast as the set of agents grows. We discuss these.belo

6.3.1 Low sensitivity of the objective function

Many objective functions of interest are actually insemeiend comply with our requirements.
Revenue in the setting of digital goods, and social welfaee, (sum of agents’ valuations) are
typical examples. We note that although we focused our tateon social functions whose sen-
sitivity is constant (independent @}, one can apply Theoref 2 also in the case whiered(n)

as long a™ — 0 asn — oo.

There are, however, important settings where the objetitivetion is sensitive and hence our
techniques cannot be applied. An important example is thesv@nue maximization in a single
unit auction — it is easy to come up with extreme settings @lerhange in a type of a single agent
can drastically change the revenue outcome. Consider,tleegcase where all agents value the
good at zero, resulting in a maximal revenue of zero. A uaikdtchange in the valuation of any
single agent from zero to one will change the maximal revdrara zero to one as well.

However, even in this case the domain of type profiles (vadngbrofiles) that demonstrate
sensitivity is quite small — for instance, if agents valaas are taken uniformly frorf0, 1] then
although the worst-case sensitivity of the maximal revasue the 'typical’ sensitivity would be
of order1/n. In this case, the work of Nissim et al. [24] may turn to be &gtile, as it yields
differentially private mechanisms where the deviatiomfrihe maximum depends on alocal notion
of sensitivity calledsmooth sensitivityWe leave the examination of this approach to future work.

6.3.2 Rich reaction set

The second limitation is the requirement that agents’ readets are sufficiently rich. In fact,
what we need for the results to hold is that for any pair of $yplan agent there exists some social
alternative for which the set of optimal reactions for thetftype is disjoint of the set of optimal
reactions for the second type. For example, in an auctiamgetve require that for each pair of
agents’ valuations the auctioneer can propose a price battone type will buy the good, while
the other will refuse.
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6.3.3 Small number of social alternatives

The approximation accuracy we achieve in Theokém 2 is ptmpa to , /“‘(’;% Note that

p > 1/|S|. A naive use of the theorem yields accurde{|.S|Inn/n), yielding meaningful ap-
proximation as long as5| (as a function of:) grows slower tham/ In n.

As we have demonstrated in sectibng 4.2, one can sometirsigm@ecommitment mechanism
realizing a much biggep, ideally independent ofS|. If that is the case, then Theorém 2 yields

approximation errof)(y/ 250 " allowing the number of social alternatives to be as highras a

exponential function of the number of agents. For lar§ethe approximation error may not
vanish asu increases. Two interesting examples for such settings atehimg problems, where
each social alternative specifies the list of pairs, andimnit auctions where the number of goods
is half the number of bidders.

6.4 Alternative mechanisms

The framework we presented combines a differentially peivaechanism with an imposing one.
Our general results refer to a ‘universal’ constructionmimposing mechanism (the uniform one),
yet the specific examples we analyze demonstrate that imgposeéchanisms that are tailor made
to the specific setting can improve upon the results.

Similarly, it is not imperative to use the Exponential meuken as the first component, and
other differentially-private mechanisms may be adequdtefact, the literature on differential
privacy provides various alternatives that may outperfdingn Exponential mechanism, given a
specific context. Some examples can be found in Dwork et 2], {&here the mechanism has a
noisy component that is calibrated to global sensitivityiroNissim et al. [24] where a similar
noisy component is calibrated to smooth sensitivity. Tlietavork also uses random sampling to
achieve similar properties. To learn more the reader isnedeo the recent survey of Dwork [11].
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