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Abstract

In this paper we study the implementation challenge in an abstract interdependent values
model and an arbitrary objective function. We design a mechanism that allows for approximate
optimal implementation ofinsensitiveobjective functions in ex-post Nash equilibrium. If,
furthermore, values are private then the same mechanism is strategy proof. We cast our results
onto two specific models: pricing and facility location. Themechanism we design is optimal
up to an additive factor of the order of magnitude of one over the square root of the number of
agents and involves no utility transfers.

Underlying our mechanism is a lottery between two auxiliarymechanisms — with high
probability we actuate a mechanism that reduces players influence on the choice of the social
alternative, while choosing the optimal outcome with high probability. This is where the recent
notion ofdifferential privacyis employed. With the complementary probability we actuatea
mechanism that is typically far from optimal but is incentive compatible. The joint mechanism
inherits the desired properties from both.
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1 Introduction

Mechanism design deals with the implementation of desired outcomes in a multi-agent system with
asymmetric information. The outcome of a mechanism may be a price for a good, an allocation
of goods to the agents, the decision on a provision of a publicgood, locating public facilities,
etc. The quality of the outcome is measured by some objectivefunction. In many instances the
literature is concerned with the sum of the agents’ valuations for an outcome, but the objective
function can take many other forms, such as the revenue of a seller in an auction setting, the social
inequality in a market setting and more. The reader is referred to Mas-Colell, Whinston and Green
[19] for a broader introduction. The holy grail of the mechanism design challenge is to design
mechanisms which exhibit dominant strategies for the players, and furthermore, once players play
their dominant strategies the outcome of the mechanism coincides with maximizing the objective
function. Broadly speaking, this challenge is equivalent to designing optimal direct mechanisms
that are truthful.

As it turns out, such powerful mechanisms do not exist in general. The famous Gibbard-
Satterthwaite theorem (Gibbard [14] and Satterthwaite [29]) tells us that for non-restricted settings
any non-trivial truthful mechanism is dictatorial. However, if we restrict attention to the objective
function that is simply the sum of the agents’ valuations, then this problem can be overcome
by introducing monetary payments. Indeed, in such cases thecelebrated Vickrey-Clarke-Groves
mechanisms, discovered by Vickrey [37] and generalized by Clarke [8] and Groves [16], guarantee
that being truthful is a dominant strategy and the outcome isoptimal. Unfortunately, Roberts [26]
showed that a similar mechanism cannot be obtained for otherobjective functions. This cul-de-sac
induced researchers to ‘lower the bar’ for mechanism design. One possibility for lowering the bar
is to replace the solution concept with a weaker one and a large body of literature on Bayes-Nash
implementation has developed (the reader is referred to Mas-Colell et al. [19] for further reading).

Another direction is that of approximate implementation where the quest replaces accurate
implementation with approximate implementation, while keeping the approximation inaccuracy
as low as possible. The latter research agenda turned out to be fruitful and yielded many positive
results. A sequence of papers onvirtual implementation, initiated by Matsushima [20] and Abreu
and Sen [2], provides general conditions for approximate implementation where the approximation
inaccuracy in a fixed model can be made arbitrarily small. On the other hand, the recent literature
emerging from thealgorithmicmechanism design community looks at approximation inaccuracies
which are a function of thesizeof the model (measured, e.g., the number of agents).

Interestingly, nogeneral techniques are known for designing mechanisms that are approxi-
mately optimal for arbitrary social welfare functions. To demonstrate this consider the facility
location problem, where a social planner needs to locate some facilities, based on agents’ reports
of their own location. This problem has received extensive attention recently, yet small changes in
the model result in different techniques which seem tightlytailored to the specific model assump-
tions (see Alon et al. [5], Procaccia and Tennenholtz [25] and Wang et al. [38]).
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Another line of research, initiated by Moulin [23], is that on mechanism designwithout money.
Moulin, and later Schummer and Vohra [32, 33], characterized functions that are truthfully im-
plementable without payments and studied domains in which non-dictatorial functions can be im-
plemented. More recently, Procaccia and Tennenholtz [25] studied a relaxation of this notion –
approximatemechanism design without money.

Our work presents a general methodology for designing approximately optimal mechanisms
for a broad range of models, including the facility locationproblem. A feature of our constructions
is that the resulting mechanisms do not involve monetary transfers.

1.1 Our Contribution

We introduce an abstract mechanism design model where agents have interdependent values and
provide a generic technique for approximate implementation of an arbitrary objective function.
More precisely, we bound the worst case difference between the optimal outcome (‘first best’) and

the expected outcome of our generic mechanism byO(
√

lnn
n
), wheren is the population size. In

addition, our generic construction does not involve utility transfer.

Our construction combines two very different random mechanisms:

• With high probability we deploy a mechanism that chooses social alternatives with a prob-
ability that is proportional to (the exponent of) the outcome of the objective function, as-
suming players are truthful. This mechanism exhibits two important properties. First, agents
have small influence on the outcome of the mechanism and consequently have little influence
on their own utility. As a result all strategies, including truthfulness, areǫ-dominant. Second,
under the assumption that players are truthful, alternatives which are nearly optimal are most
likely to be chosen. The concrete construction we use follows the Exponential Mechanism
presented by McSherry and Talwar [22].

• With vanishing probability we deploy a mechanism which is designed with the goal of elic-
iting agents’ private information, while ignoring the objective function.

Our technique is developed for settings where the agents’ type spaces as well as the set of social
alternatives are finite. In more concrete settings, however, our techniques extend to ‘large’ type
sets. We demonstrate our results in two specific settings: (1) Facility location problems, where
the social planner is tasked with the optimal location ofK facilities in the most efficient way. In
this setting we focus on minimizing the social cost which is the sum of agents’ distances from
the nearest facility. (2) The digital goods pricing model, where a monopolist needs to determine
the price for a digital good (goods with zero marginal cost for production) in order to maximize
revenue.
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Another contribution of our work is an extension of the classical social choice model. In
the classical model agents’ utilities are expressed as a function of the private information and
a social alternative, a modeling that abstracts away the issue of how agents exploit the social
choice made. We explicitly model this by extending the standard model by an additional stage,
following the choice of the social alternative, where agents take an action to exploit the social
alternative and determine their utility (hereinafter ‘reaction’). We motivate this extension to the
standard model with the following examples: (1) In a Facility Location problem agents react to the
mechanism’s outcome by choosing one of the facilities (e.g., choose which school to attend). (2) A
Monopolist posts a price based on agents input. Agents reactby either buying the good or not. (3)
In an exchange economy agents react to the price vector (viewed as the outcome of the invisible
hand mechanism) by demanding specific bundles. (4) In a public good problem, where a set of
substitutable goods is supplied, each agent must choose herfavorite good. (5) Finally, consider
a network design problem, where each agent must choose the path it will use along the network
created by the society. These examples demonstrate the prevalence of ‘reactions’ in a typical design
problem.1 With this addendum to the model one can enrich the notion of a mechanism; in addition
to determining a social choice the mechanism can also restrict the set of reactions available to an
agent. For example, in the context of school location, the central planner can choose where to build
new schools and, in addition, impose the specific school assigned to each student. We refer to this
aspect of mechanisms asimposition.

We demonstrate the notion of imposition with the following illustrative example:

Example 1 In time of depression the government proposes to subsidize some retraining programs.
There are three possible programs from which the governmentmust choose two due to budget
constraints. Once a pair of programs is chosen each agent is allocated to her favorite program. For
simplicity, assume each candidate for retraining has a strict preference over the three programs,
with utilities equal1, 2 and3. Assume the government wants to maximize the social welfaresubject
to its budget constraint. A naive approach in which the government chooses the pair that maximizes
the overall grade is clearly manipulable (there may be settings where an agent will falsely down-
grade his 2nd choice to the third place in order to ensure his first choice makes it). An alternative
methodology is for the government to choose a pair randomly,where the probability assigned to
each pair is an increasing function of its induced welfare (the specific nature of the function will be
made clear in the sequel). In addition, with a vanishing probability, a random pair will be chosen
and in that case each agent will assigned her preferred program according to her announcement.

It turns out that this scheme is not manipulable and agents’ optimal strategy is to report truth-
fully. If the population is large enough then the probability of choosing the truly optimal pair can
be made arbitrarily close to one.

1Formally, the introduction of reactions only generalizes the model. In fact, if we assume that the set of reactions
is a singleton then we are back to the classical model. Additionally, it could be argued that reactions can be modeled
as part of the set social alternatives,S. For the analysis and mechanism we propose the distinction between the setS
and the reactions is important.
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1.2 Related Work

Virtual implementation. The most closely related body of work is the literature on ‘virtual im-
plementation’ with incomplete information, derived from earlier work on virtual implementation
with complete information which was initiated by Matsushima [20] and Abreu and Sen [2]. A
social choice function isvirtually implementableif for any ǫ > 0 there exists a mechanism which
equilibria result in outcomes thatǫ-approximate the function. Results due to Abreu and Mat-
sushima [1], Duggan [9] and Serrano and Vohra [34, 35] provide necessary and sufficient condi-
tions for functions to be virtually implementable in various environments with private information.
A common thread throughout the results on virtual implementation under incomplete information
is the incentive compatibility requirement over the socialchoice function, in addition to some
form of type diversity. Compared with our contribution the above mentioned work provides posi-
tive results in environments with small populations, whereas we require large populations in order
to have a meaningful approximation. On the other hand, the solution concepts we focus on are
ex-post Nash equilibrium, undominated strategies, and strict dominance (for the private values set-
ting), compared with iterated deletion of dominated strategies or Bayes-Nash equilibria, provided
in the above mentioned papers. In addition, the virtual implementation results apply to functions
that are incentive compatible from the outset, whereas our technique applies to arbitrary objective
functions. In both cases the mechanisms proposed do not require transfers but do require some
kind of type diversity.

Influence and Approximate Efficiency. The basic driving force underlying our construction
is ensuring that each agent has a vanishing influence on the outcome of the mechanism as the
population grows. In the limit, if players are non-influential, then they might as well be truthful.
This idea is not new and has been used by various authors to provide mechanisms that approximate
efficient outcomes when the population of players is large. Some examples of work that hinge
on a similar principle for large, yet finite populations, areSwinkels [36] who studies auctions,
Satterthwaite and Williams [30] and Rustichini, Satterthwaite and Williams [28] who study double
auctions, and Al-Najjar and Smorodinsky [4] who study an exchange market. The same principle
is even more enhanced in models with a continuum of players, where each agent has no influence
on the joint outcome (e.g., Roberts and Postlewaite [27] whostudy an exchange economy). The
mechanisms provided in these papers are designed for maximizing the sum of agents’ valuations,
and provide no value for alternative objective functions. In contrast, our results hold a for a wide
range of objective functions and are generic in nature. Interestingly, a similar argument, hinging
on players’ lack of influence, is instrumental to show inefficiency in large population models (for
example, Mailath and Postlewaite [18] demonstrate ‘free-riding’ in the context of public goods,
which eventually leads to inefficiency).

A formal statement of ‘influence’ in an abstract setting appears in Levine and Pesendorfer [17]
and Al-Najjar and Smorodinsky [3]. Beyond the formalization of influence these works provide
bounds on aggregate measures of influence such as the averageinfluence or on the number of
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influential agents. McLean and Postlewaite [21] introduce the notion of informational smallness,
formalizing settings where one player’s information is insignificant with respect to the aggregated
information.

Differential Privacy. The notion ofdifferential privacy, recently introduced by Dwork, McSh-
erry, Nissim and Smith [12], captures a measure of (lack of) privacy by the impact of a single
agent’s input on the outcome of a joint computation. A small impact suggests that the agent’s
privacy cannot be significantly jeopardized. In the limit, if an agent has no impact then nothing
can be learned about the agent from the outcome of the computation. More accurately, differential
privacy stipulates that the influence of any contributor to the computation is bounded in a very
strict sense: any change in the input contributed by an individual translates to at most a near-one
multiplicative factor in the probability distribution over the set of outcomes.2

The scope of computations that were shown to be computed in a differentially private manner
has grown significantly since the introduction of the concept and the reader is referred to Dwork
[11] for a recent survey.

McSherry and Talwar [22] establish an inspiring connectionbetween differential privacy and
mechanism design, where differential privacy is used as a tool for constructing efficient mecha-
nisms. They observe that participants (players) that contribute private information toǫ-differentially
private computations have limited influence on the outcome of the computation, and hence have
a limited incentive to lie, even if their utility is derived from the joint outcome. Consequently,
truth-telling is approximately dominant in mechanisms that areǫ-differentially private, regardless
of the agent utility functions.3 McSherry and Talwar introduce the exponential mechanism asa
genericǫ-differentially private mechanism. In addition, they showthat whenever agents are truth-
ful the exponential mechanism chooses a social alternativewhich almost optimizes the objective
function. They go on and demonstrate the power of this mechanism in the context of Unlimited
Supply Auctions, Attribute Auctions, and Constrained pricing.

The contribution of McSherry and Talwar leaves much to be desired in terms of mechanism de-
sign: (1) It is not clear how to set the value ofǫ. Lower values ofǫ imply higher compatibility with
incentives, on the one hand, but deteriorate the approximation results on the other hand. The model
and results of McSherry and Talwar do not provide a frameworkfor analyzing these countervailing
forces. (2) Truth telling isapproximatelydominant, but, in fact, in the mechanisms they design
all strategies are approximately dominant, which suggests that truth telling may have no intrin-
sic advantage over any other strategy in their mechanism. (3) Furthermore, one can demonstrate
that misreporting one’s private information can actually dominate other strategies, truth-telling in-
cluded. To make things worse, such dominant strategies may lead to inferior results for the social
planner. This is demonstrated in Example 2, in the context ofmonopoly pricing.

2The measure of ‘impact’ underlying differential privacy isthe analog of ‘influence’ a-la Levine and Pesendor-
fer [17] and Al-Najjar and Smorodinsky [3] in a non-Bayesianframework, with worst-case considerations.

3Schummer [31] also studies approximately dominant strategies, in the context of exchange economies.
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Facility Location. One of the concrete examples we investigate is the optimal location of facil-
ities. The facility location problem has already been tackled in the context of approximate mech-
anism design without money, and turned out to lead to interesting challenges. While the single
facility location problem exhibits preferences that are single-peaked and can be solved optimally
by selecting the median declaration, the 2-facility problem turns out to be non-trivial. Most recently
Wang et al [38] introduce a randomized4-(multiplicative) approximation truthful mechanism for
the2 facility location problem. The techniques introduced hereprovide much better approxima-
tions - in particular we provide an additivẽO(n−1/3) approximation to the average optimal distance
between the agents and the facilities.4

Following our formalization ofreactionsand ofimpositionand its applicability to facility lo-
cation, Fotakis and Tzamos [13] provide ‘imposing’ versions of previously known mechanisms to
improve implementation accuracy. They provide constant multiplicative approximation or loga-
rithmic multiplicative approximation, albeit with fully imposing mechanisms.

Non discriminatory Pricing of Digital Goods. Another concrete setting where we demonstrate
our generic results is a pricing application, where a monopolist sets a single price for goods with
zero marginal costs (“digital goods”) in order to maximize revenues. We consider environments
where the potential buyers haveinterdependent valuationsfor the good. Pricing mechanisms for
theprivate valuescase have been studied by Goldberg et al [15] and Balcan et al [7]. They consider
settings where agents’ valuation are not necessarily restricted to a finite set and achieveO( 1√

n
)-

implementation (wheren is the population size). Whereas our mechanism provides a similar bound
it is limited to settings with finitely many possible prices.However, it is derived from general
principles and therefore more robust. In addition, our mechanism is applicable beyond the private
values’ setting.

2 Model

2.1 The Environment

Let N denote a set ofn agents,S denotes afinite set of social alternatives andTi, i = 1, . . . , n,
is a finite type space for agenti. We denote byT = ×n

i=1Ti the set of type tuples and write
T−i = ×j 6=iTj with generic elementt−i. Agent i’s type, ti ∈ Ti, is her private information. Let
Ri be the set of reactions available toi. Typically, once a social alternative,s ∈ S, is determined
agents choose a reactionri ∈ Ri. The utility of an agenti is therefore a function of the vector of

4The notationÕ(n−1) is used to denote convergence to zero at a rateln(n)
n

. Compared withO(n−1) which denotes
convergence to zero at a rate1

n
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types, the chosen social alternative and the chosen reaction. Formally,ui : T × S × Ri → [0, 1].5

A tuple (T, S, R, u), whereR = ×n
i=1Ri andu = (u1, . . . , un), is called anenvironment. We will

useri(t, s) to denote an arbitrary optimal reaction for agenti (i.e., ri(t, s) is an arbitrary function
which image is in the setargmaxri∈Ri

ui(t, s, ri)).

We say that an agent hasprivate reactionsif her optimal reaction ofi depends only only on her
type and the social alternative. Formally, agenti has private reactions ifargmaxri∈Ri

ui((ti, t−i), s, ri) =
argmaxri∈Ri

ui((ti, t
′
−i), s, ri), for all s, i, ti, t−i andt′−i. To emphasize thatri(t, s) does not depend

on t−i we will use in this case the notationri(ti, s) to denote an arbitrary optimal reaction for agent
i. We say that an agent hasprivate valuesif she has private reactions and furthermore her utility
depends only on her type, social alternative and reaction, i.e.,ui((ti, t−i), s, ri) = ui((ti, t

′
−i), s, ri)

for all s, i, ti, t−i and t′−i. In this case we will use the notationui(ti, s, ri) to denote the agent’s
utility, to emphasize that it does not depend ont−i. In the more general setting, where the utility
ui and the optimal reactionri may depend ont−i, we say that agents haveinterdependent values.

An environment isnon-trivial if for any pair of types there exists a social alternative forwhich
the optimal reactions are distinct. Formally,∀i, ti 6= t̂i ∈ Ti andt−i there existss ∈ S, denoted
s(ti, t̂i, t−i), such thatargmaxri∈Ri

ui((ti, t−i), s, ri) ∩ argmaxri∈Ri
ui((t̂i, t−i), s, ri) = ∅. We say

that s(ti, t̂i, t−i) separatesbetweenti and t̂i at t−i. A set of social alternatives,̃S ⊂ S is called
separatingif for any i andti 6= t̂i andt−i, there exists somes(ti, t̂i, t−i) ∈ S̃ that separates between
ti andt̂i at t−i.

2.2 The Objective Function

A social planner, not knowing the vector of types, wants to maximize an arbitraryobjective function
(sometimes termedsocial welfare function),F : T ×S → [0, 1].6 We focus our attention on a class
of functions for which individual agents have a diminishingimpact, as the population size grows:

Definition 1 (Sensitivity) The objective functionF : T×S → [0, 1] isd-sensitiveif ∀i, ti 6= t̂i, t−i

ands ∈ S, |F ((ti, t−i), s)− F ((t̂i, t−i), s)| ≤ d
n
, wheren is the population size.7

Note that this definition refers to unilateral changes in announcements, while keeping the social
alternative fixed. In particulard-sensitivity does not exclude the possibility of a radical change in

5Utilities are assumed to be bounded in the unit interval. This is without loss of generality, as long as there is some
uniform bound on the utility.

6In fact, one can consider objective functions of the formF : T ×S×R → [0, 1]. Our results go through if for any
t ands and anyi andr−i the functionsF (t, s, (r−i, ·)) : Ri → [0, 1] andui(t, s, ·) : Ri → [0, 1] are co-monotonic.
In words, as long as the objective function’s outcome (weakly) increases whenever a change in reaction increases an
agent’s utility.

7 In the definition of sensitivity one can replace the constantd with a functiond = d(n) that depends on the
population size. Our go through for the more general case as long aslimn→∞

d(n)
n

= 0.
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the optimal social alternative as a result of unilateral deviations, which, in turn, can radically
change the utility of the player. Thus, this definition is mute in the context of the influence of an
agent on her own utility.

One commonly used objective function which is1-sensitive is the average utility,

F (t, s) =

∑

i ui(t, s, ri(t, s))

n
.

Note that ad-sensitive function eliminates situations where any single agent has an overwhelming
impact on the value of the objective function, for a fixed social alternatives. In fact, if an objective
function is notd-sensitive, for anyd, then in a large population this function could be susceptible
to minor faults in the system (e.g., noisy communication channels).8

2.3 Mechanisms

Denote byRi = 2Ri \ {∅} the set of all subsets ofRi, except for the empty set, and letR = ×iRi.

A (direct) mechanism randomly chooses, for any vector of inputst a social alternative, and for
each agenti a subset of available reactions. Formally:

Definition 2 (Mechanism) A (direct)mechanismis a functionM : T → ∆(S ×R).

In addition, the mechanism discloses the vector of agents’ announcements, and agents can use
this information to choose a reaction.9

We denote byMS(t) the marginal distribution ofM(t) on S and byMi(t) the marginal dis-
tribution onRi. We say that the mechanismM is non-imposingif Mi(t)(Ri) = 1. That is, the
probability assigned to the grand set of reactions is one, for all i andt ∈ T . Put differently, the
mechanism never restricts the set of available reactions.M is ǫ-imposingif Mi(t)(Ri) ≥ 1− ǫ for
all i andt ∈ T . In words, with probability exceeding1− ǫ the mechanism imposes no restrictions.

2.4 Strategies and Solution Concepts

A mechanism induces the following game with incomplete information. In the first phase agents
announce their types simultaneously to the mechanism. Thenthe mechanism chooses a social

8An example of a function that is notd-sensitive, for anyd, is the following: setF = 1 (F = 0) if there is an
even number of agents which utility exceeds some threshold and the social alternative isA (B), andF = 0 (F = 1)
otherwise.

9If, however, all agents have private reactions then this information is useless to the agents and we do not require
such a public disclosure of the agents’ announcements.
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alternative and a subset of reactions for each agent. In the second stage of the game each agent,
knowing the strategy tuple of all agents, the vector of announced types, the social alternative and
her available set of reactions, must choose one such reaction. Let Wi : Ti → Ti denote the
announcement of agenti, given his type and letW = (Wi)

n
i=1. Upon the announcement of the

social alternatives, the vector of opponents’ announcements,t−i and a subset of reactions,R̂i ⊂
Ri, the rational agent will choose an arbitrary optimal reaction, ri((ti,W

−1
−i (t−i)), s, R̂i), where

W−1
−i (t−i) denotes the pre-image ofW−i at the vector of announcementst−i.10

Thus, given a mechanism and a vector of announcement functions,(Wi)
n
i=1, the agents’ reac-

tion are uniquely defined. Therefore, we can view(Wi)
n
i=1 as the agents’ strategies, without an

explicit reference to the choice of reactions. Given a vector of types,t, and a strategy tupleW , the
mechanismM induces a probability distribution,M(W (t)) over the set of social alternatives and
reaction tuples. The expected utility ofi, at a vector of typest, isEM(W (t))ui(t, s, ri), whereri is
short-writing for the optimal reaction, which itself is determined byM andW . In fact, hereinafter
we suppress the reference to the reactions in our notations and writeEM(W (t))ui(t, s) instead of
EM(W (t))ui(t, s, ri).

A strategyWi isdominantfor the mechanismM if for any vector of typest ∈ T , any alternative
strategyŴi of i and any strategy profilēW−i of i’s opponents

EM((Wi(ti),W̄−i(t−i)))ui(t, s) ≥ EM((Ŵi(ti),W̄−i(t−i)))
ui(t, s). (1)

In words,Wi is a strategy that maximizes the expected payoff ofi for any vector of types and
any strategy used by her opponents. If for alli the strategyWi(ti) = ti is dominant thenM is
calledtruthful (or strategyproof).11

A strategyWi is strictly dominantif it is dominant and furthermore wheneverW (ti) 6= Ŵ (ti)
then a strong inequality holds in Equation (1). IfWi(ti) = ti is strictly dominant for alli thenM
is strictly truthful.

A strategyWi is dominatedfor the mechanismM if there exists an alternative strategyŴi, such
that for any vector of typest ∈ T , and any strategy profilēW−i of i’s opponents, the following
holds:EM((Wi(ti),W̄−i(t−i)))ui(t, s) ≤ EM((Ŵi(ti),W̄−i(t−i)))

ui(t, s), with a strong inequality holding
for at least one type vectort.

Finally, a strategy tupleW is anex-post Nash Equilibriumif for all i andt ∈ T and for any
strategyŴi of playeri, EM(W (t))ui(t, s) ≥ EM((Ŵi(ti),W−i(t−i)))

ui(t, s). If {Wi(ti) = ti}ni=1 is an
ex-post Nash equilibrium thenM is ex-post Nash truthful.

10We slightly abuse notation asW−1
−i

(t−i) may not be a singleton but a subset of type vectors, in which case the
optimal reaction is not well defined. More accurate notationmust involve considering another primitive to the model
- the prior belief ofi overT−i. With such a priorri((ti,W

−1
−i

(t−i)), s, Ri) denotes the reaction in̂Ri that maximizes
the expected utility with respect to the prior belief, conditional on the subsetW−1

−i
(t−i).

11Note we do not require a strong inequality to hold on any instance.
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2.5 Implementation

Given a vector of types,t, the expected value of the objective function,F , at the strategy tupleW
isEM(W (t))[F (t, s)].

Definition 3 (β-implementation) We say that the mechanismM β-implementsF in (strictly)
dominant strategies, for β > 0, if for any (strictly) dominant strategy tuple,W , for any t ∈ T ,
EM(W (t))[F (t, s)] ≥ maxs∈SF (t, s)− β.

A mechanismM β-implementsF in an ex-post Nash equilibriumif for some ex-post Nash
equilibrium strategy tuple,W , for anyt ∈ T , EM(W (t))[F (t, s)] ≥ maxs∈SF (t, s)− β.

A mechanismM β-implementsF in undominated strategiesif for any tuple of strategies,W ,
that are not dominated and for anyt ∈ T , EM(W (t))[F (t, s)] ≥ maxs∈SF (t, s)− β.

Main Theorem (informal statement): For anyd-sensitive functionF and1 > β > 0 there
exists a numbern0 and a mechanismM which β-implementsF in an ex-post Nash equilibrium,
whenever the population has more thann0 agents. If, in addition, reactions are private thenM
β-implementsF in strictly dominant strategies.

3 A Framework of Approximate Implementation

In this section we present a general scheme for implementingarbitrary objective functions in large

societies. The convergence rate we demonstrate is of an order of magnitude of
√

ln(n)
n

. Our scheme
involves a lottery between two mechanisms: (1) TheExponential Mechanism, a non-imposing
differentially-private mechanism that randomly selects asocial alternative,s. The probability of
choosings is proportional to (a exponent of) the value it induces onF ; and (2) TheCommitment
Mechanism, where imposition is used to commit agents to take a reactionthat complies with their
announced type.

3.1 The Exponential Mechanism and Differential Privacy

Consider the following non-imposing mechanism, which we refer to as theExponential Mecha-
nism, originally introduced by McSherry and Talwar [22]:

M ǫ(t)(s) =
enǫF (t,s)

∑

s̄∈S e
nǫF (t,s̄)

.

10



The Exponential mechanism has two notable properties, as weshow below: It providesǫ-
differential privacy, i.e., for alli it is insensitive to a change inti. And, it choosess that almost
maximizesF (t, s).

We follow Dwork et al [12] and define:

Definition 4 [ǫ-differential privacy] A mechanism,M , providesǫ-differential privacyif it is non-
imposing and for anys ∈ S, any pair of type vectorst, t̂ ∈ T , which differ only on a single
coordinate,M(t)(s) ≤ eǫ ·M(t̂)(s).12

In words, a mechanism preservesǫ-differential privacy if, for any vector of announcements,a uni-
lateral deviation changes the probabilities assigned to any social choices ∈ S by a (multiplicative)
factor ofeǫ, which approaches1 asǫ approaches zero.13

Lemma 1 (McSherry and Talwar [22]) If F is d-sensitive thenM
ǫ
2d (t) preservesǫ-differential

privacy.

The proof is simple, and is provided for completeness:

Proof: Let t andt̂ be or two type vectors that differ on a single coordinate. Then for anys ∈ S,
F (t, s)− d

n
≤ F (t̂, s) ≤ F (t, s) + d

n
, hence,

M
ǫ
2d (t)(s)

M
ǫ
2d (t̂)(s)

=

e
nǫF (t,s)

2d

∑

s̄∈S e
nǫF (t,s̄)

2d

e
nǫF (t̂,s)

2d

∑

s̄∈S e
nǫF (t̂,s̄)

2d

≤
e
nǫF (t,s)

2d

∑

s̄∈S e
nǫF (t,s̄)

2d

e
nǫ(F (t,s)− d

n )

2d

∑

s̄∈S e
nǫ(F (t,s̄)+ d

n )

2d

= eǫ.

QED

The appeal of mechanisms that provideǫ-differential privacy is that they induce near indiffer-
ence among all strategies, in the following sense:

Lemma 2 If M is non-imposing and providesǫ-differential privacy, for someǫ < 1, then for any
agenti, any type tuplet, any strategy tupleW , and any alternative strategy fori, Ŵi the following
holds:

|EM(W (t))[ui(t, s)]− EM(Ŵi(ti),W−i(t−i))
[ui(t, s)]| < 2ǫ.

12For non discrete sets of alternatives the definition requires thatM(t)(Ŝ)

M(t̂)(Ŝ)
≤ eǫ ∀Ŝ ⊂ S.

13The motivation underlying this definition ofǫ-differential privacy is that if a single agent’s input to a database
changes then a query on that database would result in (distributionally) similar results. This, in return, suggests that it
is difficult to learn new information about the agent from thequery, thus preserving her privacy.

11



The proof is simple, and is provided for completeness:

Proof: Let W andŴ be two strategy vectors that differ thei’th coordinate. Then for every
t ∈ T , s ∈ S, ri ∈ Ri andui : T × S × Ri → [0, 1] we have

EM(W (t))[ui(t, s)] =
∑

s∈S
M(W (t))(s) · ui(t, s)

≤
∑

s∈S
eǫ ·M(Ŵi(ti),W−i(t−i))(s) · ui(t, s)

= eǫ ·EŴi(ti),W−i(t−i))
[ui(t, s)],

where the inequality follows sinceM providesǫ-differential privacy, andui is non-negative. A
similar analysis gives

EŴi(ti),W−i(t−i))
[ui(t, s)] ≤ eǫ · EM(W (t))[ui(t, s)].

Hence we get:

EM(W (t))[ui(t, s)]−EM(Ŵi(ti),W−i(t−i))
[ui(t, s)] ≤ (eǫ − 1) · EM(Ŵi(ti),W−i(t−i))

[ui(t, s)]

≤ eǫ − 1,

where the last inequality holds becauseui returns a values in[0, 1]. Similarly,

EM(Ŵi(ti),W−i(t−i))
[ui(t, s)]− EM(W (t))[ui(t, s)] ≤ eǫ − 1.

To conclude the lemma, note that(eǫ − 1) ≤ 2ǫ for 0 ≤ ǫ ≤ 1.

QED

McSherry and Talwar [22] note in particular that in the case of private values truthfulness is
2ǫ-dominant, which is an immediate corollary of Lemma 2. They combine this with the following
observation to conclude that exponential mechanisms approximately implementF in ǫ- dominant
strategies:

Lemma 3 (McSherry and Talwar [22]) Let F : T n × S → [0, 1] be an arbitraryd-sensitive

objective function andn > e2d
ǫ|S| . Then for anyt, E

M
ǫ
2d (t)

[F (t, s)] ≥ maxs F (t, s)− 4d
nǫ
ln
(

nǫ|S|
2d

)

.

Proof: Let δ = 2d
nǫ
ln
(

nǫ|S|
2d

)

. As n > e2d
ǫ|S| we conclude thatln

(

nǫ|S|
2d

)

> ln e > 0 and, in

particular,δ > 0.

12



Fix a vector of types,t and denote bŷS = {ŝ ∈ S : F (t, ŝ) < maxs F (t, s) − δ}. For any
ŝ ∈ Ŝ the following holds:

M
ǫ
2d (t)(ŝ) =

e
nǫF (t,ŝ)

2d

∑

s′∈S e
nǫF (t,s′)

2d

≤ e
nǫ(maxs F (t,s)−δ)

2d

e
nǫmaxs F (t,s)

2d

= e−
nǫ
2d

δ.

Therefore,M
ǫ
2d (t)(Ŝ) =

∑

ŝ∈Ŝ M
ǫ
2d (t)(ŝ) ≤ |Ŝ|e−nǫ

2d
δ ≤ |S|e−nǫ

2d
δ. Which, in turn, implies:

E
M

ǫ
2d (t)

[F (t, s)] ≥ (max
s

F (t, s)− δ)(1− |S|e−nǫ
2d

δ) ≥ max
s

F (t, s)− δ − |S|e−nǫ
2d

δ.

Substituting forδ we get that

E
M

ǫ
2d (t)

[F (t, s)] ≥ max
s

F (t, s)− 2d

nǫ
ln

(

nǫ|S|
2d

)

− 2d

nǫ
.

In addition,n > e2d
ǫ|S| which impliesln

(

nǫ|S|
2d

)

> ln(e) = 1, and hence2d
nǫ

≤ 2d
nǫ
ln
(

nǫ|S|
2d

)

.

Plugging this into the previous inequality yieldsE
M

ǫ
2d (t)

[F (t, s)] ≥ maxs F (t, s) − 4d
nǫ
ln
(

nǫ|S|
2d

)

as desired.

QED

Note thatlimn→∞
4d
nǫ
ln
(

nǫ|S|
2d

)

= 0 whenever the parametersd, ǫ and |S| are held fixed.14

Therefore, the exponential mechanism is almost optimal fora large and truthful population.

Remark: There are other mechanisms which exhibit similar properties to those of the Expo-
nential Mechanism, namely ‘almost indifference’ and ‘approximate optimality’. The literature on
differential privacy is rich in techniques for establishing mechanisms with such properties. Some
techniques for converting computations intoǫ-differentially private computations without jeopar-
dizing the accuracy too much are the addition of noise calibrated to global sensitivity by Dwork et
al. [12], the addition of noise calibrated to smooth sensitivity and the sample and aggregate frame-
work by Nissim et al. [24]. The reader is further referred to the recent survey of Dwork [11]. Any
of these mechanisms can replace the exponential mechanism in the following analysis.

14This limit also approaches zero ifd, ǫ, |S| depend onn, as long asd/ǫ is sublinear inn and|S| is subexponential
in n.
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3.2 The Commitment Mechanism

We now consider an imposing mechanism that choosess ∈ S randomly, while ignoring agents’
announcements. Onces is chosen the mechanism restricts the allowable reactions for i to those that
are optimal assuming all agents are truthful. Formally, ifs is chosen according to the probability
distributionP , letMP denote the following mechanism:

MP
S (t)(s) = P (s) and MP

i (t)(ri(t, s))|s) = 1.

Players do not influence the choice ofs in MP and so they are (weakly) better off being truthful.

We define thegapof the environment,γ = g(T, S, A, u), as:

γ = g(T, S, A, u) = min
i,ti 6=bi,t−i

max
s∈S

(ui(t, s, ri(t, s))− ui(t, s, ri((bi, t−i), s))) .

In words,γ is a lower bound for the loss incurred by misreporting in caseof an adversarial
choice ofs ∈ S. In non-trivial environmentsγ > 0. We say the a distributionP is separatingif
there exists a separating setS̃ ⊂ S such thatP (s̃) > 0 for all s̃ ∈ S̃. In this case we also say that
MP is a separating mechanism. In particular letp̃ = mins∈S̃ P (s). Clearly one can chooseP such
that p̃ ≥ 1

|S| . The following is straightforward:

Lemma 4 If the environment(T, S, A, u) is non-trivial andP is a separating distribution overS
then∀bi 6= ti, t−i,

EMP (ti,t−i)[ui(t, s, ri(t, s))] ≥ EMP (bi,t−i)[ui(t, s, ri((bi, t−i), s))] + p̃γ .

If, in addition, reactions are private, then for anyi, bi 6= ti, t−i andb−i:

EMP (ti,b−i)[ui(t, s, ri(ti, s))] ≥ EMP (bi,b−i)[ui(t, s, ri(bi, s))] + p̃γ.

Proof: For any pairbi 6= ti and for anys ∈ S ui(t, s, ri(ti, s)) ≥ ui(t, s, ri(bi, s)). In
addition, there exists somês = s(ti, bi), satisfyingP (ŝ) ≥ p̃, for which ui(t, ŝ, ri(ti, ŝ)) ≥
ui(t, ŝ, ri(bi, ŝ))+γ. Therefore, for anyi, bi 6= ti ∈ Ti and for anyt−i,EMP (ti,t−i)[ui(t, s, ri(t, s))] ≥
EMP (bi,t−i)[ui(t, s, ri((bi, t−i), s))] + p̃γ , as claimed.

Recall that if reactions are private thenri(t, s) = ri(ti, s), namely the optimal reaction of an
agent, given some social alternatives, depends only on the agent’s type. Therefore we derive the
result for private reactions by replacingri((ti, t−i), s) with ri(ti, s) on the left hand side of the last
inequality andri((bi, t−i), s) with ri(bi, s) on the right hand side.

QED

The following is an immediate corollary:
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Corollary 1 If the environment(T, S, A, u) is non-trivial andP is a separating distribution over
S then

1. Truthfulness is an ex-post Nash equilibrium ofMP .

2. If agenti has private reactions then truthfulness is a strictly dominant strategy fori in MP .

An alternative natural imposing mechanism is that of a random dictator, where a random agent
is chosen to dictate the social outcome. Similarly, agents will be truthful in such a mechanism.
However, the loss from misreporting can only be bounded below by γ

n
, whereas the commitment

mechanism gives a lower bound ofγp̃ ≥ γ
|S| , which is independent of the population size.

3.3 A Generic and Nearly Optimal Mechanism

Fix a non-trivial environment(T, S, A, u) with a gapγ, separating set̃S, a d-sensitive objective
functionF and a separating commitment mechanism,MP , with p̃ = mins∈S̃ P (s).

SetM̄ ǫ
q (t) = (1− q)M

ǫ
2d (t) + qMP (t).

Theorem 1 If qp̃γ ≥ 2ǫ then the mechanism̄M ǫ
q is ex-post Nash truthful. Furthermore, if agents

have private reactions then̄M ǫ
q is strictly truthful.

Proof: Follows immediately from Lemmas 2 (setW (ti) = ti ) and 4.

QED

Set the parameters of the mechanism̄M ǫ
q (t) as follows:

• ǫ =
√

p̃γd
n

√

ln
(

np̃γ|S|
2d

)

.

• q = 2ǫ
p̃γ

.

and consider populations of sizen > n0, wheren0 is the minimal integer satisfyingn0 ≥
max{ 8d

p̃γ
ln
(

p̃γ|S|
2d

)

, 4e2d
p̃γ|S|} and n0

ln(n0)
> 8d

p̃γ
.

Lemma 5 If n > n0 then
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1. q = 2ǫ
p̃γ

< 1.

2. ǫ < p̃γ.

3. n > 2ed
ǫ|S| .

Proof: Part (1): n
ln(n)

> n0

ln(n0)
≥ 8d

p̃γ
which impliesn > 8d

p̃γ
ln(n). In addition,n > n0 >

8d
p̃γ

ln
(

p̃γ|S|
2d

)

. Thereforen > 4d
p̃γ

ln
(

p̃γ|S|
2d

)

+ 4d
p̃γ

ln(n) = 4d
p̃γ

ln
(

p̃γ|S|n
2d

)

=⇒ (p̃γ)2 > 4p̃γd
n

ln
(

p̃γ|S|n
2d

)

.

Taking the square root and substituting forǫ on the right hand side yields̃pγ > 2ǫ and the claim
follows.

Part (2) follows directly from part (1)

Part (3):n > n0 ≥ 4e2d
p̃γ|S| ≥ 4e2d

p̃γ|S|2 =⇒ √
n > 2ed√

p̃γd|S| . In additionn > 4e2d
p̃γ|S| >

2de
p̃γ|S| which

implies 1 < ln
(

p̃γ|S|n
2d

)

. Combining these two inequalities we get:
√
n > 2ed

√
p̃γd

√

ln( p̃γ|S|n
2d )|S|

.

Multiplying both sides by
√
n implies n > 2ed

√
n

√
p̃γd

√

ln( p̃γ|S|n
2d )|S|

= 2ed
ǫ|S| .

QED

Using these parameters we setM̂(t) = M̄ ǫ
q (t). Our main result is:

Theorem 2 (Main Theorem) The mechanismM̂(t) is ex-post Nash truthful and, in addition,

it 6
√

d
p̃γn

√

ln
(

np̃γ|S|
2d

)

-implementsF in ex-post Nash equilibrium, forn > n0. If agents have

private reactions the mechanism is strictly truthful and6
√

d
p̃γn

√

ln
(

np̃γ|S|
2d

)

-implementsF in

strictly dominant strategies.

Recall that for ex-post Nash implementation we only need to show that one ex-post Nash
equilibrium yields the desired outcome.

Proof: Given the choice of parametersǫ andq then, Theorem 1 guarantees thatM̂(t) is ex-post
Nash truthful (and truthful whenever reactions are private). Therefore, it is sufficient to show that
for any type vectort,

EM̂(t)(F (t, s)) ≥ max
s

F (t, s)− 6

√

d

p̃γn

√

ln

(

np̃γ|S|
2d

)

.
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Note that asF is positive,EMP (t)[F (t, s)] ≥ 0 and so

EM̂(t)[F (t, s)] ≥ (1− q)E
M

ǫ
2d (t)

[F (t, s)].

By part (3) of Lemma 5 we are guaranteed that the condition on the size of of the population of
Lemma 3 holds and so we can apply Lemma 3 to conclude that:

EM̂(t)[F (t, s)] ≥ (1− q)

(

max
s

F (t, s)− 4d

nǫ
ln

(

nǫ|S|
2d

))

.

We substituteq with 2ǫ
p̃γ

and recall thatmaxs F (t, s) ≤ 1. In addition, part (1) of Lemma 5
asserts that2ǫ

p̃γ
< 1. Therefore

EM̂(t)[F (t, s)] ≥ max
s

F (t, s)− 2ǫ

p̃γ
− 4d

nǫ
ln

(

nǫ|S|
2d

)

≥ max
s

F (t, s)− 2ǫ

p̃γ
− 4d

nǫ
ln

(

np̃γ|S|
2d

)

,

where the last inequality is based on the factǫ < p̃γ, which is guaranteed by part (2) of Lemma 5.

Substitutingǫ for
√

p̃γd
n

√

ln
(

np̃γ|S|
2d

)

we conclude that

EM̂(t)[F (t, s)] ≥ max
s

F (t, s)− 2

√

d

p̃γn

√

ln

(

np̃γ|S|
2d

)

− 4

√

d

p̃γn

√

ln

(

np̃γ|S|
2d

)

and the result follows.

QED

One particular case of interest is the commitment mechanismMU , whereU is the uniform
distribution over the setS:

Corollary 2 Letn0 be the minimal integer satisfyingn0 ≥ max{8d̃|S|
γ

ln
(

γ
2d

)

, 4e2d
γ|S| } and n0

ln(n0)
>

8d|S|
γ

. Then the mechanism̂MU (t) 6
√

d|S|
γn

√

ln
(

nγ
2d

)

-implementsF , in ex-post Nash equilib-

rium, for all n > n0. If agents have private reactions the mechanismM̂U (t) 6
√

d|S|
γn

√

ln
(

nγ
2d

)

-

implementsF in strictly dominant strategies.

Proof: P = U implies that the minimal probability is̃p = 1
|S| . Plugging this into Theorem 2

gives the result.

QED

Holding the parameters of the environmentd, γ, |S| fixed the approximation inaccuracy of our

mechanism converges to zero at a rate of
√

ln(n)
n

.

In summary, by concatenating the exponential mechanism, where truthfulness isǫ-dominant
with the commitment mechanism we obtain a strictly truthfulmechanism. In fact, this would hold
true for any mechanism where truthfulness isǫ-dominant not only the exponential mechanism.
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4 Applications

We now turn to demonstrate the generic results in two concrete applications.

4.1 Monopolist Pricing

A monopolist producing digital goods, for which the marginal cost of production is zero, faces a
set of indistinguishable buyers. Each buyer has a unit demand with a valuation in the unit inter-
val. Agents are arranged in (mutually exclusive) cohorts and the valuations of cohort members
are correlated. Each agent receives a private signal and hervaluation is uniquely determined by
the signals of all her cohort members. The monopolist wants to set a uniform price in order to
maximize her average revenue per user.15

Assume there areN · D agents, with agents labeled(n, d) (the dth agent in thenth cohort).
Agent (n, d) receives a signalXn

d ∈ IR and we denote a cohort’s vector of signals byXn =
{Xn

d }Dd=1. We assume that the valuation of an agent,V n
d , is uniquely determined by the signals of

her cohort members;V n
d = V n

d (X
n).

We assume that each agent’s signal is informative in the sense thatV n
d (X

n) > V n
d (X̂

n) when-
everXn > X̂n (in each coordinate a weak inequality holds and for at least one of the coordinates
a strong inequality holds). That is, whenever an individual’s signal increases the valuation of each
of her cohort members increases.

Let R(n,d) = {‘Buy’ , ‘Not buy’} be the set of reactions for agent(n, d).

The utility of (n, d), given the vector of signalsX = {Xn}Nn=1 = {{Xn
d }Dd=1}Nn=1, and the price

p, is

u(n,d)(X, p, r(n,d)) =

{

V n
d (X

n)− p if r(n,d) = ‘Buy’,
0 if r(n,d) = ‘Not buy’.

We assume that all valuations are restricted to the unit interval, prices are restricted to some
finite gridS = Sm = {0, 1

m
, 2
m
, . . . , 1} (hence,|S| = m + 1), andXn

d takes on only finitely many
values. We assume the price grid is fine enough so that for any two vectorsXn > X̂n there exists
some pricep ∈ S such thatE(V n|Xn) > p + 2

m
> p > E(V n|X̂n). Therefore for vector of

announcements there exists a maximal price for which optimal reaction is Buy. For that price, if
an agent announces a lower value then the best reaction wouldbe Not Buy, which will yield a loss
of 1

m
at least. Similarly, there exists the lowest price for whichthe optimal reaction is Not Buy.

15To make this more concrete one can think of the challenge of pricing a fire insurance policy to apartment owners.
Each apartment building is a cohort that shares the same riskand once the risk is determined (via aggregation of
agents’ signals) each agent has a private valuation for the insurance.
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Announcing a higher value will result in the optimal reaction being Buy, which yields a loss of1
m

at least. We conclude that the gap isγ = 1
m

.

The monopolist wants to maximizeF (t, p) = p
ND

· |{(n, d) : V n
d (X

n) > p}|, the average
revenue per buyer. Note that a unilateral change in the type of one agent may change at most the
buying behavior of theD members in her cohort, resulting in a change of at mostpD

ND
≤ D

ND
in the

average revenue. As the population size isND we conclude thatF isD-sensitive.

LetMdg be a mechanism as in Corollary 2, where a Uniform Commitment mechanism is used:

Corollary 3 For any D there exists someN0 such that for allN > N0 the mechanismMdg

O(
√

m2

N
ln(N

m
))-implementsF in ex-post Nash equilibrium.

The literature on optimal pricing in this setting has so far concentrated on the private values
case and has provided better approximations. For example, Balcan et al. [7], using sampling
techniques from Machine Learning, provide a mechanism thatO( 1√

n
)-implements the maximal

revenue without any restrictions to a grid.

A Multi Parameter Extension: In the above setting we assumed a simple single-parameter type
space. However, the technique provided does not hinge on this. In particular, it extends to more
complex settings where agents have a multi-parameter type space. More concretely, consider a
monopolist that producesG types of digital goods, each with zero marginal cost for production.
There areN buyers, where each buyer assigns a value, in some bounded interval, to each subset
of theG goods (agents want at most a singe unit of each good). The monopolist setsG prices,
one for each good, and once prices are set each agent chooses his optimal bundle. The challenge
of the monopolist is to maximize the average revenue per buyer. In this model types are suffi-
ciently diverse. In fact, for any two types there exists a price vector that yields different optimal
consumptions. Therefore, the scheme we provide applies just as well to this setting.

4.2 Facility Location

Consider a population ofn agents located on the unit interval. An agent’s location is private
information and a social planner needs to locateK similar facilities in order to minimize the
average distance agents travel to the nearest facility.16 We assume each agent wants to minimize
her distance to the facility that services her. In particular, this entails that values (and reactions) are
private. We furthermore assume that agent and facility locations are all restricted to a fixed finite

16For expositional reasons we restricting attention to the unit interval and to the average travel distance. Similar
results can be obtained for other sets in IR2 and other metrics, such as distance squared.
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grid on the unit interval,L = L(m) = {0, 1
m
, 2
m
, . . . , 1}. Using the notation of previous sections,

let Ti = L, S = LK , and letRi = L. The utility of agenti is

ui(ti, s, ri) =

{

−|ti − ri| if ri ∈ s,
−1 otherwise.

Hence,ri(bi, s) is the facility closest to the locations of the facility ins closest tobi. LetF (t, s) =
1
n

∑n
i=1 ui(ti, s, ri(ti, s)) be the social utility function, which is1-sensitive (i.e.,d = 1).

First, consider the uniform commitment mechanism̂MU , which is based on the uniform dis-
tribution overS for the commitment mechanism. Now consider the mechanismM̂LOC1, based on
the uniform commitment mechanism, as in Corollary 2

Corollary 4 ∃n0 such that∀n > n0 the mechanism̂MLOC1 6
√

m(m+1)K

n

√

ln
(

n
2m

)

- implements

the optimal location in strictly dominant strategies.

Proof: Note thatγ = 1
m

, |S| = (m+ 1)K and the proof follows immediately from Theorem 2.

QED

Now consider an alternative commitment mechanism. Consider the distributionP , overS =
LK , which chooses uniformly among all the following alternatives - placing one facility in location
j
m

and the remainingK − 1 facilities in locationj+1
m

, wherej = 0, . . . , m− 1. Note that for anyi,
any pairbi 6= ti is separated by at least one alternative in this set. For thismechanism̃p = 1

m
. Now

consider the mechanism̂MLOC2, based on the commitment mechanism,MP :

Corollary 5 ∃n0 such that∀n > n0 M̂LOC2
6m√
n

√

ln
(

n(m+1)K

2m2

)

-implements the optimal location

in strictly dominant strategies.

Proof: In analogy to the proof of Theorem 2, settingǫ = 1
m
√
n

√

ln
(

n(m+1)K

2m2

)

andq = 2ǫm2.

QED

For both mechanisms the approximation error converges to zero at a rate proportional to1/
√
n

as society grows. In addition, the approximation error of both mechanisms grows as the grid size,
m, grows. However in the second mechanism approximation deteriorates at a substantially slower
rate.
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5 Large Type Sets

The arguments underlying the generic approximate optimal mechanism for a finite number of
social alternatives do not generally extend to models wherethe type set is large. However, in
concrete models, where additional structure is assumed, such an extension may be possible. We
demonstrate this in the facility location problem introduced in the previous section.

As before, we assume that each player is located on the unit interval and that her location
is private information. Formally, setT = [0, 1]. A mechanism must (randomly) decide on the
location ofK facilities in the unit interval. LetS = [0, 1]K and consider the standard Borelσ-
algebra which we denoteS. The objective of the designer is to minimize the average distance a
player must travel to a facility. Formally, the designer seeks to minimizeF (t, s) = 1

n

∑n
i=1 |ti −

ri(ti, s)|, whereri(ti, s) denotes the facility ins that is closest toti.

We use a continuous version of theExponential Mechanism, where the probability of any event
Ŝ ∈ S is given by:

M ǫ(t)(Ŝ) =

∫

Ŝ
enǫF (t,s)ds

∫

S
enǫF (t,s)ds

∀Ŝ ∈ S.

We say that a mechanismM providesǫ-differential privacy if M(t)(Ŝ)

M(t̂)(Ŝ)
≤ eǫ ∀Ŝ ∈ S and for any

pair of type tuples,t and t̂, that differ on a single entry. McSherry and Talwar [22] prove the
following (which is analogous to lemma 1):

Lemma 6 (McSherry and Talwar [22]) If F is d-sensitive thenM
ǫ
2d (t) preservesǫ-differential

privacy.

The proof is identical to that of Lemma 1 and is therefore omitted.

5.1 The approximation accuracy of the Exponential Mechanism

The solution concept we pursue in this section is deletion ofdominated strategies. In fact, what we
show in the sequel is that being truthful dominates significantly mis-reporting one’s type. Thus,
deletion of dominated strategies implies that agents resort to strategies that are ‘almost’ truthful.

Consequently, we turn to study the approximation accuracy of the Exponential Mechanism
whenever agents slightly mis-report their types. We begin by considering truthful agents.

To state the next lemma we introduce the following notation.For0 ≤ α ≤ 1 let Sα = Sα(t) =
{s̄ ∈ S : F (t, s̄) ≥ maxs F (t, s) − α}, andS̄α = S̄α(t) = S \ Sα. Let µ denote the uniform
probability overS.
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Lemma 7 (McSherry and Talwar [22]) If α ≥ 2d
nǫ
ln
(

maxs F (t,s)
αµ(Sα)

)

thenE
M

ǫ
2d (t)

[F (t, s)] ≥maxs F (t, s)−
3α.

We include the proof for completeness.

Proof: Note first that

M
ǫ
2d (t)(S̄2α) ≤ M

ǫ
2d (t)(S̄2α)

M
ǫ
2d (t)(Sα)

=

∫

S̄2α
e

nǫF (t,s̄)
2d ds̄

∫

Sα
e

nǫF (t,s̄)
2d ds̄

≤
∫

S̄2α
e

nǫ(maxs F (t,s)−2α)
2d ds̄

∫

Sα
e

nǫ(maxs F (t,s)−α)
2d ds̄

= e
−nǫα
2d · µ(S̄2α)

µ(Sα)
≤ e

−nǫα
2d

µ(Sα)
,

where the first inequality follows fromM
ǫ
2d (t)(Sα) ≤ 1, the second inequality follows from the

definition of S̄2α andSα, and the third inequality follows fromµ(S̄2α) ≤ 1. Hence, we get that

M
ǫ
2d (t) returnss ∈ S2α with probability at least1− e

−nǫα
2d

µ(Sα)
≥ 1− α

maxs F (t,s)
. Hence,

E
M

ǫ
2d (t)

[F (t, s)] ≥ (max
s

F (t, s)− 2α)(1− α

maxs F (t, s)
) ≥ max

s
F (t, s)− 3α.

QED

This result enables us to prove the following:

Corollary 6 E
M

ǫ
2 (t)

[F (t, s)] ≥ maxs F (t, s)− 6
nǫ
ln
(

e+ (nǫ)K+1
)

.

Proof: Fix a tuple of players’ locationst ∈ T n and lets denote the alternative inS that
minimizesF (t, s). For anyα > 0, if ŝ ∈ [0, 1]K satisfiesmaxk |ŝk − sk| < α thenŝ ∈ Sα. To see
this note that

F (t, s′) =
1

n

n
∑

i=1

ui(ti, s
′, ri(ti, s

′))

≤ 1

n

n
∑

i=1

ui(ti, s
′, ri(ti, s))

≤ 1

n

n
∑

i=1

(ui(ti, s, ri(ti, s)) + α)

≤ F (t, s′) + α.
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Therefore, wheneverα ≤ 0.5, µ(Sα) ≥ αK .

Setα = 2
nǫ
ln
(

e + (nǫ)K+1
)

. We argue thatα ≥ 2
nǫ
ln
(

maxs F (t,s)
αµ(Sα)

)

which implies that we

can apply Lemma 7. To see this recall thatmaxs F (t, s) ≤ 1, and using our bound onµ(Sα) it
suffices to show that(nǫ)K+1 ≥ 1/αK+1, which indeed is the case asα ≥ 1/nǫ. By Lemma 7
E

M
ǫ
2 (t)

[F (t, s)] ≥ maxs F (t, s)− 6
nǫ
ln
(

e + (nǫ)K+1
)

, as required.

QED

We now turn to analyze the case where agents misreport their location.

Lemma 8

• |F (bi, t−i, s)− F (ti, t−i, s)| ≤ 1
n
|ti − bi|; and

• |F (b, s)− F (t, s)| ≤ maxi|ti − bi|.

Proof: To derive the first part note that

−ui(bi, s, ri(bi, s)) = |bi − ri(bi, s)| ≤ |bi − ri(ti, s)| = |bi − ti + ti − ri(ti, s)|
≤ |bi − ti|+ |ti − ri(ti, s)| = |bi − ti| − ui(ti, s, ri(ti, s)),

and (by a similar analysis)−ui(ti, s, ri(ti, s)) ≤ |bi−ti|−ui(bi, s, ri(bi, s)). Hence,|ui(bi, s, ri(bi, s))−
ui(ti, s, ri(ti, s))| ≤ |bi − ti| and we get that

|F (bi, t−i, s)− F (ti, t−i, s)| =
1

n
|ui(bi, s, ri(bi, s))− ui(ti, s, ri(ti, s))| ≤

1

n
|ti − bi|.

The second part follows by iteratively applying the first part for n times.

QED

Lemma 9 If |bi − ti| ≤ β for all i then|maxs F (t, s)−maxs F (b, s)| ≤ β.

Proof: Let st ∈ argmaxs{F (t, s)} and sb ∈ argmaxs{F (b, s)}. Using triangle inequality,
|ti − bi| + |bi − ri(bi, sb)| ≥ |ti − ri(bi, sb)|, and noting that|ti − ri(bi, sb)| ≥ |ti − ri(ti, sb)| we
get that

|ti − bi|+ |bi − ri(bi, sb)| ≥ |ti − ri(ti, sb)|.
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Hence,

1

n

n
∑

i=1

− (|ti − bi|+ |bi − ri(bi, sb)|) ≤
1

n

n
∑

i=1

−|ti − ri(ti, sb)| = F (t, sb) ≤ F (t, st).

Noting that1
n

∑n
i=1−|bi − ri(bi, sb)| = F (b, sb) we get that

F (b, sb)− F (t, st) ≤
1

n

n
∑

i=1

|ti − bi| ≤ β. (2)

A similar argument yields
F (t, st)− F (b, sb) ≤ β. (3)

Combining inequalities 2 and 3 we conclude that

|max
s

F (t, s)−max
s

F (b, s)| = |F (t, st)− F (b, sb)| ≤ β,

as claimed.

QED

Lemma 10 If |bi−ti| ≤ β for all i thenE
M

ǫ
2 (b)

[F (t, s)] ≥ maxs F (t, s)−2β− 6
nǫ
ln
(

e + (nǫ)K+1
)

Proof: For any finite set of locationss ⊂ [0, 1], traveling fromti to the point closest toti in s
is not longer than a taking a detour viabi, and then traveling frombi to the point closest tobi in s,
i.e., |ti − ri(ti, s)| ≤ |ti − bi|+ |bi − ri(bi, s)|. Therefore,

E
M

ǫ
2 (b)

[F (t, s)] ≥ E
M

ǫ
2 (b)

[F (b, s)]− 1

n

n
∑

i=1

|ti − bi| ≥ E
M

ǫ
2 (b)

[F (b, s)]− β.

By Corollary 6,

E
M

ǫ
2 (b)

[F (b, s)] ≥ max
s

F (b, s)− 6

nǫ
ln
(

e+ (nǫ)K+1
)

.

By Lemma 9,
max

s
F (b, s) ≥ max

s
F (t, s)− β.

Combining all three inequalities above gives:

E
M

ǫ
2 (b)

[F (t, s)] ≥ max
s

F (t, s)− 2β − 6

nǫ
ln
(

e + (nǫ)K+1
)

,

as claimed.

QED
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5.2 Deviations from truthfulness in the Exponential Mechanism

We bound the potential gain of an agent located atti who reportsbi:

Lemma 11 Using the Exponential Mechanism for the facility location problem, ifǫ ≤ 1 then for
anyi, anybi, ti ∈ Ti and anyt−i ∈ T−i,

E
M

ǫ
2 (bi,t−i)

[ui(ti, s, ri(ti, s))]− E
M

ǫ
2 (ti,t−i)

[ui(ti, s, ri(ti, s))] ≤ 2ǫ|ti − bi|.

Proof: By Lemma 8,|F (bi, t−i, s)−F (ti, t−i, s)| ≤ 1
n
|ti− bi|. Plugging this into the definition

of the Exponential Mechanism we get:

E
M

ǫ
2 (bi,t−i)

[ui(ti, s, ri(ti, s)] =

∫

s∈S
ui(ti, s, ri(ti, s)) dM

ǫ
2 (bi, t−i)(s)

=

∫

s∈S
ui(ti, s, ri(ti, s))

e
nǫ
2
F (bi,t−i,s)

∫

s′∈S e
nǫ
2
F (bi,t−i,s′) ds′

ds

≤
∫

s∈S
ui(ti, s, ri(ti, s))

e
nǫ
2

(

F (ti,t−i,s)+
|ti−bi|

n

)

∫

s′∈S e
nǫ
2

(

F (ti,t−i,s′)− |ti−bi|

n

)

ds′
ds

= eǫ|ti−bi|
∫

s∈S
ui(ti, s, ri(ti, s)) dM

ǫ
2 (ti, t−i)(s)

= eǫ|ti−bi|E
M

ǫ
2 (ti,t−i)

[ui(ti, s, ri(ti, s)],

The proof is completed by noting that as|ti − bi| ≤ 1 andǫ < 1, eǫ|ti−bi| ≤ 1 + 2ǫ|ti − bi|.

QED

5.3 A commitment mechanism

Consider a commitment mechanism induced by the following distributionP over the setS =
[0, 1]K : First, choose a uniformly a random integerX ∈ {1, 2, 3, . . . , m̄}, where the parameter̄m
will be set below. Next choose a numberY , randomly and uniformly, from the interval[0, 2X − 1].
Now let s be the alternative where one facility is located atY

2X
and the otherK − 1 facilities at

Y+1
2X

.

Lemma 12 If |bi − ti| ≥ 2−(m̄−1) then EMP (ti,t−i)[ui(ti, s)] ≥ EMP (bi,t−i)[ui(ti, s)] +
|ti−bi|2

8m̄
.
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Proof: We first consider the casebi ≤ ti−2−(m̄−1). AssumeX andY are chosen such that1
2X

<
|ti−bi|

2
≤ 2

2X
and Y

2X
∈ [bi,

bi+ti
2

]. As a result the facility assigned toi, whenever she announcesbi
is located atY

2X
. However, if she announces her true location,ti, she is assigned a facility located

at Y+1
2X

. Consequently,ui(ti, s, ri(ti, s)) ≥ ui(ti, s, ri(bi, s)) +
1
2X

≥ ui(ti, s, ri(bi, s)) +
(ti−bi)

4
. In

words, for the specific choice ofX andY misreporting one’s type leads to a loss exceeding(ti−bi)
4

.

The probability of choosing the uniqueX satisfying 1
2X

< |ti−bi|
2

≤ 2
2X

is 1/m̄. Conditional on

this event, the probability of choosingY satisfying Y
2X

∈ [bi,
bi+ti
2

] is (ti−bi)
2

. Since the mechanism
is imposing, then for an arbitrary choice ofX andY misreporting is not profitable. Therefore, the
expected loss from misreporting exceeds|ti−bi|2

8m̄
.

The proof of the complementary case,bi ≥ ti+2−(m̄−1), uses similar arguments and is omitted.

QED

5.4 Implementation in undominated strategies

As in the generic construction, let̄M ǫ
q (t) = (1−q)M

ǫ
2 (t)+qMP (t). Note that wheneverq |ti−bi|2

8m̄
≥

2ǫ|ti− bi| being truthful dominates any announcement satisfying|bi− ti| ≥ 2−(m̄−1). In particular,
this holds wheneverq ≥ 16ǫm̄2m̄.

Setǫ = 1
n2/3

√
K + 1, m̄ = ⌈log

(

n1/3

6
√
K+1 lnn

)

⌉, andq = 16ǫm̄2m̄ and denote byM̂LOC3 = M̄ ǫ
q

for this choice of parameters.

Theorem 3 There existsn0 = n0(K) such thatM̂LOC3
32

√
K+1

n1/3 lnn-implementsF in undomi-
nated strategies for alln > n0.

Proof: We first observe that as there existsnq = nq(K) such thatq < 1 for all n > nq and
hence the mechanism is well defined. This also implies that for agenti reportingbi such that
|bi − ti| ≥ 2−(m̄−1) is dominated by reportingti. Similarly, there existsnα = nα(K) such that
α = 2

nǫ
ln
(

e+ (nǫ)K+1
)

≤ 0.5 for all n > nα as required in the proof of Corollary 6. Finally,
there existsnm̄ = nm̄(K) such thatm̄ ≤ lnn for all n > nm̄. In the following we will assume that
n > max(nq, nα, nm̄).

There are two sources for the additive error forM̂LOC3:

1. The commitment mechanism introduces an additive error ofat mostq = 8ǫm̄2m̄. Noting
that2m̄ ≤ 2 · n1/3

6
√
K+1 lnn

and substituting forǫ we get thatq ≤ 8
3

lnn
n1/3 ≤ 2

√
K+1

n1/3 lnn.
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2. The exponential mechanism introduces an additive error of 2
2−(m̄−1) +

6
nǫ
ln
(

e+ (nǫ)K+1
)

(see Lemma 10). Note that6
nǫ
ln
(

e+ (nǫ)K+1
)

≤ 6(K+1)
nǫ

ln (e+ nǫ) and substituting forǫ,
we get that there existsn1 = n1(K) such that for alln > n1 this additive error is bounded
by 2

2−(m̄−1) +
6
√
K+1

n1/3 lnn. In addition2m̄−1 = 1
2
· 2m̄ ≥ 1

2
n1/3

6
√
K+1 lnn

which implies that the

error is bounded by4 · 6
√
K+1

n1/3 lnn+ 6
√
K+1

n1/3 lnn = 30
√
K+1

n1/3 lnn.

Settingn0 = max(nq, nα, nm̄, n1), we get that for alln > n0 the total additive error is bounded
by

2
√
K + 1

n1/3
lnn+

30
√
K + 1

n1/3
lnn =

32
√
K + 1

n1/3
lnn.

QED

6 Discussion

The mechanisms proposed in this paper are based on two pillars – a differentially private mecha-
nism on the one hand and an imposing mechanism on the other hand. In the following we discuss
the importance of each of these pillars for the results obtained. In addition, we discuss some of the
limitations of our results.

6.1 Is differential privacy sufficient?

McSherry and Talwar [22] observed that differential privacy is sufficient to yield approximate
implementation inǫ-dominant strategies. However, as we show below, differential privacy does
not generally imply implementation with a stronger solution concept.

Our example is a pricing mechanism that utilizes the exponential mechanism and hence yields
anǫ-dominant implementation that (assuming parties act truthfully) well approximates the optimal
revenue. However, there are dominant strategies in the example that involve mis-representation
and lead to a significantly inferior revenue.

Example 2 Consider a monopolist producing an unlimited supply digital good who facesn buy-
ers, each having a unit demand at a valuation that is either0.5 + µ or 1 + µ where0 < µ < 0.5.
The monopolist cannot distinguish among buyers and is restricted to choosing a price in the set
{0.5, 1}. Assume the monopolist is interested in maximizing the average revenue per buyer.17 The
optimal outcome for the auctioneer is hence

OPT (t̄) =
maxs∈{0.5,1}(s · |{i : ti ≥ s}|)

n
.

17We consider the average revenue per buyer as the objective function, instead of the total revenue, in order to
comply with the requirement that the value of the objective function is restricted to the unit interval.
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If the monopolist uses the appropriate exponential mechanism then it isǫ-dominant for agents
to announce their valuation truthfully, resulting in an almost optimal revenue. However, one should
note that the probability that the exponential mechanism will choose the lower of the two prices
increases with the number buyers that announce0.5. Hence, it isdominant for buyers to announce
0.5. This may lead to inferior results. In particular, wheneverall agents value the good at1 but
announce0.5 the mechanism will choose the price0.5 with high probability, leading to an average
revenue of0.5 per buyer, which is half the optimal revenue per buyer.

6.2 Is imposition sufficient?

It is tempting to think that our notion of imposition trivializes the result, i.e., that, regardless of
the usage of a differentially-private mechanism, the ability to force agents to react sub-optimally,
according to their announced types, already inflicts sufficient disutility that would deter untruthful
announcements. The next example demonstrates that such a naive imposition is generally insuffi-
cient. Intuitively, the reason is that for inducing both truthfulness and efficiency, one needs a strong
bound on an agent’s benefit from mis-reporting: the utility from mis-reporting should be smaller
from the disutility from being committed to a sub-optimal reaction.

Example 3 Consider a digital goods pricing problem withn agents, where the valuation of each
agent is either1

n
or 1 + µ, and the possible prices are1

n
and1. In this example the optimal price

is 1 whenever there exists an agent of type1 + µ, µ < 0.5.

Consider the following mechanism: with high probability itimplements the optimal price and
with a low probability it uses an imposing mechanism. Note that the strategy to always announce a
valuation of1

n
is a Nash equilibrium. This announcement is clearly optimalif an agent’s valuation

is indeed1
n
. If an agent’s valuation, on the other hand, is1 + µ, then complying with this strategy

will result in a utility that is almost1, whereas deviating to truthful announcement will result ina
price of1 with high probability, hence a utility ofµ.

Therefore, the monopolist’s average revenue from a buyer isalways 1
n
. This is substantially

inferior to the optimal outcome, which could be as high as1, whenever all agents are of the high
type.

The Nash equilibrium from example 3 survives even if we modify the mechanism to be fully
imposing (i.e, it always imposes the optimal reaction). Thus, the above mentioned sub-optimality
holds.

We believe that the notion of imposition is natural in many settings, and that to some extent
imposition is alreadyimplicitly integrated into the mechanism design literature. In fact, any mech-
anism that is not ex-post individually rational imposes itsoutcome on the players: it imposes
participation and ignores the possibility players have to ‘walk away’ once the results are known.
Moreover, models that involve transfers treat these as imposed reactions: once the social choice
and transfers are determined, players must comply (consider taxation and auction payments as an
example).
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6.3 Model Limitations

There are three overarching limitations to the technique wepresent: (1) The generic mechanism
only works for objective functions which are not sensitive,(2) We consider settings where the
reaction set of agents is rich enough, such that any pair of types can be separated by the optimal
reaction on at least one social alternative; and (3) The sizeof the set of social alternatives cannot
grow too fast as the set of agents grows. We discuss these below.

6.3.1 Low sensitivity of the objective function

Many objective functions of interest are actually insensitive and comply with our requirements.
Revenue in the setting of digital goods, and social welfare (i.e., sum of agents’ valuations) are
typical examples. We note that although we focused our attention on social functions whose sen-
sitivity is constant (independent ofn), one can apply Theorem 2 also in the case whered = d(n)

as long asd(n)
n

→ 0 asn → ∞.

There are, however, important settings where the objectivefunction is sensitive and hence our
techniques cannot be applied. An important example is that of revenue maximization in a single
unit auction – it is easy to come up with extreme settings where a change in a type of a single agent
can drastically change the revenue outcome. Consider, e.g.the case where all agents value the
good at zero, resulting in a maximal revenue of zero. A unilateral change in the valuation of any
single agent from zero to one will change the maximal revenuefrom zero to one as well.

However, even in this case the domain of type profiles (valuation profiles) that demonstrate
sensitivity is quite small – for instance, if agents valuations are taken uniformly from[0, 1] then
although the worst-case sensitivity of the maximal revenueis 1, the ’typical’ sensitivity would be
of order1/n. In this case, the work of Nissim et al. [24] may turn to be applicable, as it yields
differentially private mechanisms where the deviation from the maximum depends on a local notion
of sensitivity calledsmooth sensitivity. We leave the examination of this approach to future work.

6.3.2 Rich reaction set

The second limitation is the requirement that agents’ reaction sets are sufficiently rich. In fact,
what we need for the results to hold is that for any pair of types of an agent there exists some social
alternative for which the set of optimal reactions for the first type is disjoint of the set of optimal
reactions for the second type. For example, in an auction setting, we require that for each pair of
agents’ valuations the auctioneer can propose a price such that one type will buy the good, while
the other will refuse.
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6.3.3 Small number of social alternatives

The approximation accuracy we achieve in Theorem 2 is proportional to
√

ln(np̃|S|)
p̃n

. Note that

p̃ > 1/|S|. A naive use of the theorem yields accuracyO(|S| lnn/n), yielding meaningful ap-
proximation as long as|S| (as a function ofn) grows slower thann/ lnn.

As we have demonstrated in sections 4.2, one can sometimes design a commitment mechanism
realizing a much bigger̃p, ideally independent of|S|. If that is the case, then Theorem 2 yields

approximation errorO(
√

ln(n|S|)
n

), allowing the number of social alternatives to be as high as an
exponential function of the number of agents. For largerS, the approximation error may not
vanish asn increases. Two interesting examples for such settings are matching problems, where
each social alternative specifies the list of pairs, and multi unit auctions where the number of goods
is half the number of bidders.

6.4 Alternative mechanisms

The framework we presented combines a differentially private mechanism with an imposing one.
Our general results refer to a ‘universal’ construction of an imposing mechanism (the uniform one),
yet the specific examples we analyze demonstrate that imposing mechanisms that are tailor made
to the specific setting can improve upon the results.

Similarly, it is not imperative to use the Exponential mechanism as the first component, and
other differentially-private mechanisms may be adequate.In fact, the literature on differential
privacy provides various alternatives that may outperformthe Exponential mechanism, given a
specific context. Some examples can be found in Dwork et al. [12], where the mechanism has a
noisy component that is calibrated to global sensitivity, or in Nissim et al. [24] where a similar
noisy component is calibrated to smooth sensitivity. The latter work also uses random sampling to
achieve similar properties. To learn more the reader is referred to the recent survey of Dwork [11].
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