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Abstract

This paper proves that the computational power of quantusraative proof systems, with a double-
exponentially small gap in acceptance probability betwteercompleteness and soundness cases, is precisely
characterized b¥XP, the class of problems solvable in exponential time by deit@stic Turing machines.
This fact, and our proof of it, has implications concerninggtum and classical interactive proof systems in
the setting of unbounded error that include the following:

e Quantum interactive proof systems are strictly more powlfan their classical counterparts in the
unbounded-error setting unleBSPACE = EXP, as even unbounded error classical interactive proof
systems can be simulated$PACE.

e The recent proof of Jain, Ji, Upadhyay, and Watrous (STO@pedtablishingQIP = PSPACE relies
heavily on the fact that the quantum interactive proof systelefining the clas®IP have bounded
error. Our result implies that some nontrivial assumptiartiee error bounds for quantum interactive
proofs is unavoidable to establish this result (unSBACE = EXP).

e To prove our result, we give a quantum interactive proofeysfor EXP with perfect completeness
and soundness error— 2=2"", for which the soundness error bound is provably tight. Establishes
another respect in which quantum and classical interaptivef systems differ, because such a bound
cannot hold for any classical interactive proof systemtimli$ acceptance probabilities for classical
interactive proof systems must be separated by a gap thaeiasa (single-)exponentially small.

We also study the computational power of a few other relatdmbunded-error complexity classes.

1 Introduction

Interactive proof systemss [Bab85, GMR89] are a centrabmati complexity theory. Itis well-known th&P, the
class of problems having single-prover classical intéragiroof systems with polynomially-bounded verifiers,
coincides withPSPACE [Fel86,[LFKN92, Sha92], and it was recently proved that thenes characterization
holds when the prover and verifier have quantum computetBN1D]. More succinctly, it holds that

IP = PSPACE = QIP. (1)

The two equalities in{1) are, in some sense, intertwined dnly through the trivial relationshipP C QIP,
together with the landmark resutSPACE C IP, that we knowPSPACE C QIP. While there exist clas-
sical refinements [SheB2, Meil0] of the original method ohduFortnow, Karloff, and Nisan [LFKN92] and
Shamir [Sha92] used to prodeSPACE C IP, there is no “short-cut” known that provésSPACE C QIP
through the use of quantum computation.

The opposite containments required to prove the two edmlit the above equatiohl (1) dile € PSPACE
andQIP C PSPACE, respectively. The first containment is usually attribue&eldman([Fel86], and can fairly
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be described as being straightforward to prove. The stdrtaof, in fact, gives a polynomial-space algorithm
that computes the optimal acceptance probability for agrova classical interactive proof systaxactly with
this optimal probability expressible as some integer @ididy2”*, wherek is the maximum number of coin-flips
used by the verifier. The proof of the containmépiP C PSPACE given in [JJUW10], on the other hand,
is more complicated: it uses known propertiesCdP [KWO0O, IMWOE] to derive a semidefinite programming
formulation of it, which is then approximated PSPACE through the use of an algorithm based on itinetrix
multiplicative weights updatmethod [AKO7/ WKO6]. Unlike the standard proof B C PSPACE, this proof
depends crucially on the bounded-error property of the wuarnteractive proof systems that defiQéP.

There must, of course, be alternate ways to prgf® C PSPACE, and we note that Wu [Wul0] and
Gutoski and WU [GW10] have made advances in both simplifgind extending the proof method of [JJUW10].
The main question that motivates the work we present in tifie pis whether the assumption of bounded-error is
requiredto proveQIP C PSPACE, or could be bypassed. Our results demonstrate that irst@adassumption
on the gap between completeness and soundness probsipilitig be in place to prov@IP C PSPACE unless
PSPACE = EXP.

To explain our results in greater detail it will be helpfulitdroduce the following notation. Given any choice
of functionsm : N — N anda,b : N — [0,1], where we takeN = {0,1,2,...}, we write QIP(m, a, b)
to denote the class of promise problg}m = (Ayes; Ano) having a quantum interactive proof systemith
m(|z|) messages, completeness probability at lefst) and soundness error at mésétz|) on all input strings
x € Ayes U Ayo. When sets of functions are taken in placenafa, or b, it is to be understood that a union is
implied. For example,

QIP(poly, 1,1 —277%) = | J QIP(m,1,1-277),

m,pEpoly

wherepoly denotes the set of all functions of the fopm N — N for which there exists a polynomial-time deter-
ministic Turing machine that outpuig(™ on input1” for all n € N. We will also frequently refer to functions
of the form f: N — [0, 1] that are polynomial-time computable, and by this it is mehat a polynomial-time
deterministic Turing machine exists that, on inpit outputs a rational numbef(n) in the rang€d0, 1], repre-
sented by a ratio of integers expressed in binary notatiar.n@in result may now be stated more precisely as
follows.

Theorem 1. It holds that

JQIP(poly, a,a — 272"") = QIP(3,1,1 — 27""") = EXP,
a

where the union is taken over all polynomial-time compwdbhctionse: N — (0, 1].

The only new relation in the statement of Theotem 1 is
EXP C QIP(poly,1,1 —272""); )
we have expressed the theorem in the above form only for #tedafaclarity. In particular, the containment

QIP(pOly, 1’ 1-— 2—2P01y) g QIP(3, 1’ 1— 2_2poly)

1We formulate decision problems pomise problemfESY84] because using promise problems is more naturalrétricting our
attention to languages in the presence of error bounds.

2The definitions of quantum computational models based ontgoacircuits, including quantum interactive proof sysseis par-
ticularly sensitive to the choice of a gate set in the unbedngtror setting. For our main result we take the standariblidfladamard,
w /2-phase-shift gate set, but relax this choice for a coupleiobecondary results.
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follows from the fact that
QIP(m,1,1 —¢) C QIP(3,1,1 —¢/(m — 1)?)

for all m € poly and any functiore : N — [0, 1], as was proved in [KKMVO09] (or an earlier result of [KWO00]
with a slightly weaker parameter). The containment

QIP(3,1,1 — 2_2}"0@) - U QIP(poly,a,a — 2_2}"0@)

is trivial. The containment l
U QIP(poly,a,a —272"") C EXP
a

follows from the results of Gutoski and Watrous [GWO07], asenglefinite program representing the optimal
acceptance probability of a given quantum interactive bsgeterﬁ can be solved to an exponential number of
bits of accuracy using an exponential-time algorithm [K®&2L S88| NN94].

The new containmenf(2), which represents the main conimitbwof this paper, is proved in two steps.
The first step constructs a classical two-prover one-roatetactive proof system with one-sided error double-
exponentially close to 1 for thEXP-complete &ccINCT CIRCUIT VALUE problem. It will be proved that
when an instance whose answer is “no” is given to this prosfesy, provers cannot make the verifier accept
with probability more than double-exponentially close ®vén if they are allowed to usena-signaling strategy
i.e., a strategy that cannot be used for communication ketwleem. The second step converts this classical two-
prover one-round interactive proof system to a single-@rauuantum interactive proof system without ruining
its soundness properties.

Theoreni L and its proof have the following three consequence

e Unbounded-error quantum interactive proof systems algtmore powerful than their classical counter-
parts unles®SPACE = EXP, as unbounded-error classical interactive proof systemsgnize exactly
PSPACE.

e The dependence on the error bound in the proof in [JJUW10dtisan artifact of the proof techniques,
but is a necessity unles3SSPACE = EXP. To be more precise, even though a double-exponential gap
is sufficient to obtain thdsXP upper bound by applying a polynomial-time algorithm for &afinite
programming, Theorem 1 implies that a double-exponental ig not sufficient for th& SPACE upper
bound unles®SPACE = EXP.

e Our proof of Theorenm]1 shows that a quantum interactive psgefem can have a completeness-sound-
ness gap smaller than singly exponential, which cannotdrapp classical interactive proof systems. In
our quantum interactive proof system 16X P, the gap is double-exponentially small, and this is tight in
the sense that a dishonest prover can make the verifier agitbgirobability double-exponentially close
to 1.

We do not know if the double-exponentially small gap in Tleeofl can be improved to one that is single-
exponentially small by constructing a different proof gyst

The two parts of the proof of Theordrh 1 mentioned above ar@agwed in Sections] 2 and 3. Some additional
results concerning unbounded-error quantum interactiveffsystems are discussed in Secfibn 4.

3The results of Gutoski and Watrolis [GWO07] establistEagP upper bound even for interactive proof systems with two ceting
quantum provers, and only mild assumptions on the gate sate®ded to obtain this containment. Namely, the contaitimads if
the gate set consists of finitely many gates and the Choielomiski representation of each gate is a matrix made oématicomplex
numbers.



2 A no-signaling proof system forEXP with a weak error bound

As discussed in the previous section, our proof of the cantant [2) has two parts. This section discusses the
first part, in which we present a classical two-prover ongitbinteractive proof system for diXP-complete
problem. The proof system will have perfect completenessaasoundness error double-exponentially close to
1, even when the provers are permitted to employ an arbitrargignaling strategy No-signaling strategies,
which are defined below, have been considered previousiatOB] and [IKMQ09], for instance.

2.1 Definition of no-signaling proof systems

In a(classical) two-prover one-round interactive proof systa verifier is a randomized polynomial-time pro-
cess having access to two provers (which we will call Alice &ob). All of the parties are given the same
input stringx. The verifier produces polynomial-length questions to &bmd Bob, receives polynomial-length
answers from them, and decides whether to accept or reject.

A verifier V naturally defines a family of two-player one-round gamesgxedl by input strings. Aclassical)
two-player one-round gam@ = (S, 7Y, Z, m, R) is determined by finite sets, 7', Y, andZ, a probability dis-
tribution 7 overS x T'and a functionR: SxT' xY x Z — [0, 1]. The valueR(s, t,y, z) is written asR(y, z | s, t)
by convention. This game is interpreted as a cooperativeplayer game of imperfect information played by
two players(Alice and Bob) and run by a third party called tteferee who enforces the rules. First the referee
generates a pair of questiofist) € S x T according to the probability distributionand sends to Alice andt
to Bob. Then Alice responds to the referee with an elemeatY and Bob responds with € Z. Finally the
referee decides whether Alice and Bob win or lose, usingaganméss in the most general situation: Alice and
Bob win with probability R(y, z | s, t) and lose with probability — R(y, z | s,t). Note that if we fix a verifier
and an input string: € {0, 1}*, the verifier acts as a referee in some two-player one-roantegry. .

A strategyof players in a two-prover one-round garte = (S,7.,Y, Z,w, R) is a family of probability
distributionsp, ; overY x Z indexed by(s, t) € S x T, where the value; ;(y, z) represents the probability with
which Alice replies with the string and Bob replies with the stringunder the condition that the verifier sends
the questiors to Alice and the questionto Bob. It is customary to writg(y, z | s, t) instead ofp; +(y, z). The
strategy is said to beo-signalingif the following no-signaling conditiongre satisfied:

1. No-signaling from Alice to Bob:

Zp(yaz“S?t) = Zp(y,z]s',t)

yey yey
foralls,s" € S,t € T,andz € Z.

2. No-signaling from Bob to Alice:
> py,zls,0) = ply,z|s,t)
zeZ z2€Z

forallse S,t,t’ € T,andy € Y.

For functionsa,b: N — [0, 1], a two-prover one-round interactive proof system with afieerl is said to
recognizea promise problemi = (Ay.s, Ano) With no-signaling provers with completeness probabilitieasta
and soundness error at most the corresponding games satisfy the following condision

e CompletenessFor everyx € Ay, there exists a no-signaling strategy for the gaife, that makes the
verifier accept with probability at least|z|).



e SoundnessFor everyz € A,,, every no-signaling strategy for the gaiig;, makes the verifier accept
with probability at mosb(|z|).

The class of promise problem4 having such a two-prover one-round interactive proof sysie denoted
by MIP7%(2,1). Itis known thatMIP7% (2, 1) = PSPACE for all polynomial-time computable functionsb :
N — (0, 1] for whicha(n) — b(n) > 1/p(n) for somep € poly [IKMQ9] [to10].

2.2 The proof system forEXP and its analysis

This section describes a (classical) two-prover one-raataefactive proof system farXP with perfect com-
pleteness (for uncorrelated honest provers) and sounéngssdouble-exponentially close to 1 against arbitrary
no-signaling provers. The proof system has the additioraqrty that the verifier's questions to the two provers
are uniformly generated random strings, which will be intaot in the next section.

For a Boolean circui with NV gatesg, g1, . . ., gv—1, Where gategy; is an input to gate; only if j < 4, a
pair (N, D) is called asuccinct representatioof C' if D is a Boolean circuit that, given an integeK ¢ < N —1,
returns the kind of gatg; (ZERO, ONE, AND, OR, or NOT) and the indices of gates from vkttige inputs tgy;
come (if any). Note that a succinct representation of lemgtbpresents a Boolean circuit with at mastgates.
The SuccINCT CIRCUIT VALUE problem is the following decision problem.

SuccINCT CIRCUIT VALUE

Instance: A succinct representation of a Boolean cir€uwith N gates whose fan-in is at
most two and an integér< k£ < N — 1.

Question: Does gatg, have valuel?

The SuccINCT CIRCUIT VALUE problem isEXP-complete (see, e.g., Theorem 3.31[of [DK0O]). We will give
a two-prover one-round interactive proof system farc8INCT CIRCUIT VALUE with the completeness and
soundness conditions stated above.

Theorem 2. TheSuccINCT CIRCUIT VALUE problem has a two-prover one-round interactive proof systath
no-signaling provers with perfect completeness and soesslerrorl — 2-2°" for somep € poly, i.e.,

SuccINCT CIRCUIT VALUE € MIPY, .0 (2,1).

)

Moreover, for some constant > 0 and infinitely many input strings, the soundness error of this proof system
is at leastl — 22",

Idea. The idea for the protocol is simple. The honest provers Huddcbrrect values of all gates in a circuit.
These values have to satisfy exponentially many local caimés, and the verifier checks one of these local
constraints chosen randomly. It turns out that the locastramts, together with the no-signaling conditions, are
sufficient to restrict the value of each gate claimed by tlogns to the correct value inductively, beginning from
the constant gates and propagating from the inputs and tpataf each gate, concluding the soundness.

Protocol. Without loss of generality we assume thdtis a power of two by adding unused gates as necessary.
The verifier chooses two integels< s,# < N — 1 uniformly and independently. He sengl$o Alice andt to

Bob. Alice answers all the values of the input gateg.oih the same order ab returns (if any). Bob answers
the value ofg;. The verifier checks the following conditions.

(a) If s =t, then Bob’s answer must be equal to the value computed froce’dlanswers (if any) and the kind
of gateg;.



(b) If g¢ is an input to gates, then the value of; claimed by Alice must agree with the value claimed by Bob.

(c) If t = k, then Bob’s answer must e

The verifier accepts if and only if all the conditions (a)-dc® satisfied.

Completeness. Completeness is easy: if the value of gatés 1, then provers who simply answer the requested
values of gates are accepted with probability

Soundness. Now we shall prove that this two-prover interactive proo$teyn has soundness error at mbst
2-0WN) — 1 — 2-0(2") ggainst no-signaling dishonest provers. Again we can asshaiN is a power of two
without loss of generality.

Let (N, D, k) be an instance of &ccINCT CIRCUIT VALUE, and letv; € {0,1} be the value of gate;
for 0 < i < N — 1. Fix any no-signaling strategy in the two-prover intenaetproof system, and letbe the
probability that this strategy is rejected. We assume1/(N? - 3%) and prove that gatg, has valuel.

Lete(s,t) be the probability that this strategy is rejected, condgith on pair(s, ¢t) of questions. Then

1
g = m ZE(S,t),
s,t

which implies for any questions ¢, it holds that

(s, t) < Ze(s’,t’) = N?% <

3_N.
st
Letd(i) be the probability that Bob answets- v; when asked.
We prove that '
. 3’

by induction on:.

First we consider the case whejgis a constant gate. This includes the casé ef 0. As Bob gives a
wrong answer with probability(:) when Bob’s question i$, regardless of Alice’s questio(i) < e(i,4) by
considering the probability that the strategy fails in thst &), which implies

32

5(1) < (i) < gy < oy

Supposeé > 1 andg; is not a constant gate. Assumds an AND or OR gate, and lg{ andjs be the indices
of the inputs tay;. First consider Alice’s answer in the case where her quesdio If the value ofg;, claimed by
Alice when her question isis wrong, then when Bob’s question s, either Bob’s answer is wrong or Alice’s
and Bob’s answers disagree. If their answers disagree thigeverifier rejects by the testl (b), and therefore this
happens with probability at mostji,j1) < 1/3". As Bob’s answer is wrong with probability(j;) and their
answers disagree with probability less thigf3”", the value ofg;, claimed by Alice when her question iss
wrong with probability at most _

J1
) + o < S,

In the same way, the value ¢f, claimed by Alice when her questioniss wrong with probability at most

. 1 32 41

If Bob’s answer fori is wrong, then if both questions aigeat least one of the following happens:
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e The value ofy;, claimed by Alice is wrong. This happens with probabilitydekan(3/! + 1)/3N.
e The value ofy;, claimed by Alice is wrong. This happens with probabilitydesan(372 + 1)/3N.

e The values ofy;, andg;, claimed by Alice are correct, but the value gfclaimed by Bob is wrong. As
this is detected by the test (a) of the verifier, it happenk pibbability at most (4,4) < 1/3".

Therefore, ' . '
_ 3Ir4+1 3241 1 3
0(i) < N + 3N +3—N<3—N.

The case wherg; is a NOT gate is proved in a similar way. This finishes the itidaacase and establishes the
inequality [3) for alli.

The inequality [(B) implies that Bob’s answer to questiois equal tov;, with probability greater than —
3k /3N > 2/3. On the other hand, by the test (c), Bob’s answer to quedtisnequal tol with probability at
leastl — e(k, k) > 1 —1/3Y > 2/3. These two conditions imply; = 1.

Remark.For a functiona: N — (0, 1], let MIPz®_,(2, 1) denote the class of promise problems having a two-
prover one-round interactive proof system with no-sigr@lprovers with acceptance probability at leastnd
soundness error strictly less thanBecause the maximum acceptance probability for no-siggpgirovers can

be computed exactly by solving an exponential-size lineaggam [Pre], we havelIPg®_,(2,1) € EXP for

any polynomial-time computable function N — (0, 1] by using any polynomial-time algorithm for linear
programming[[Kha79, Kar84]. Combined with Theorem 2, weeefP2°_ (2, 1) = EXP for any suchu.

a,<a

Tightness of soundness analysis.We shall prove the “moreover” part of Theoréin 2: the doubigemential
gap is tight for this protocol. This will be used in the nexttsen to prove that the soundness error of the quantum
interactive proof system fdEXP that we construct is at least— 2-2"" on infinitely many input strings.

This can be proved by studying the instance of theeSINCT CIRCUIT VALUE problem used by Trevisan
and Xhafa [TXQBE Let i be a positive integer. Consider a circaitwith N = 2h + 2 gatesgo, g1, - - - , goht1,
wheregg andg; are ZERO gates and, far< i < h, go; andgo; 11 are two identical OR gates whose inputs come
from g,(;_1) andgy;_1)41- Clearly this circuitC' has a succinct representation of length polylogarithmia.in
Letk =2h — 1.

Alice and Bob decide their answers as follows. First we desa@ach prover’s marginal probability distribu-
tion. When Bob is asked eithéi or 2; + 1 where0 < i < h, he answerg with probability 1/2’H and0 with
probability 1 — 1/2"~%. When Alice is askedi or 2i + 1 wherel < i < h, she answer§l,0) and (0, 1) each
with probability 1/2"~#+1, and(0, 0) with probability 1 — 2"~*. The joint distribution of their answers is defined
as follows. In what follows(y1, y2; z) denotes that Alice’s answer (g, y2) and Bob’s answer is.

s =t,|s/2] =14 > 1: Alice and Bob answef1,0; 1) and (0, 1; 1) each with probabilityl /2"~*+!, and
(0, 0;0) with probability 1 — 1/2"%,

e |s/2] =i>1,t=2(i—1): Alice and Bob answef1,0; 1) and(0, 1;0) each with probabilityl /2"~*1,
and(0, 0; 0) with probability 1 — 1/2"~%,

o |s/2] =i >1,t = 2(: — 1) + 1: Alice and Bob answe(1,0;0) and (0,1;1) each with probability
1/2h=*1 and(0, 0; 0) with probability 1 — 1/2"%.

e Otherwise: Alice and Bob give their answers in any way as lasighe marginal distributions agree with
the description above (e.g. they answer independently).

“Note that we cannot avoid a large soundness error simplydiyiaeng the problem to succinct Boolean formula valuegthwhis
restriction in place, the problem is PSPACE [Lyn77].



It is easy to check that this strategy is no-signaling.
With this strategy, the verifier accepts unléss {0, 1} and Bob answers (which fails in testp)). Therefore,

the verifier accepts with probability at ledst 1/((h+1)-2%) > 1—2~" = 1-272"" for some constant > 0.

3 Simulating no-signaling provers with quantum interactive proofs

In this section we present the second part of the proof of trdainment[(R), which is a simulation of the
two-prover one-round interactive proof system descrilpethé previous section by a quantum interactive proof
system with perfect completeness and unbounded soundmessTéne result in this section can be stated as the
following lemma.

Lemma 3. Lete: N — (0,1). Suppose that a promise problefn= (Ay.s, A,,) has a two-prover one-round
interactive proof system with no-signaling provers withfpet completeness and soundness error at rhest.
Assume moreover that, for each input A,.s U A,,, the verifier's questions are chosen uniformly at random
from the set{0, 1}#(#D x {0,1}*(D) for some functiork € poly.

(i) It holds thatA € QIP(4,1,1 — £2/144), that is, the problem has a four-message quantum interactive
proof system with perfect completeness and soundnessagmuostl — 2/ 1448

(i) If the original system has soundness erior ¢’ on inputz € A,,, then the derived quantum interactive
proof system has soundness error at lelasts’/4 on inputz.

Note that the containmeritl(2) follows by applying Lemimha 3he two-prover one-round interactive proof
system for the 8ccINCT CIRCUIT VALUE problem with no-signaling provers with perfect completsnand
soundness error at makt- 2-2""" constructed in the previous section.

Construction of the protocol. Given an input stringe € Ayes U Ay, the verifier in the quantum interactive
proof system that we construct acts as follows. First, thdigeprepares six quantum regist&sT, S/, T', Y,
andZ in the statg®)gg, |®)11//0)y|0)z, where|®) is the following maximally entangled state:

wherek = k(|z|). The four register§, T, S, andT’ arek qubits long, and¥ andZ must be long enough to

hold Alice and Bob’s answers in the two-prover one-roundquol. Next, in the first round, the verifier sends
S, T, Y, andZ to the prover and the prover sends back the same registezs, e verifier performs one of the
following three tests each with probability'4, and accepts unconditionally with probability4.

e Simulation test The verifier measureS/, T, Y, andZ in the computational basis to obtaint, y, andz,
respectively. If the result is accepted by the base twogrpvotocol, then the verifier accepts; otherwise
he rejects.

e Undo-Alice test The verifier tells the prover that the undo-Alice test is ®gerformed. He then sends
registersS andY back to the prover, and receivBs The verifier then destructively tests whether registers
S andS’ are in staté®) or not. If they are, then he accepts; otherwise he rejects.

®Itis possible to replace the coeffieicht144 with a larger constant at the expense of introducing slightlications in several parts
in the proof, but we will choose to use simpler argumentsarathan trying to maximize the coefficient.



e Undo-Bob test The verifier tells the prover that the undo-Bob test is to befggmed. He then sends
registersT andZ back to the prover, and receivés The verifier then destructively tests whether registers
T andT’ are in statd®) or not. If they are, then he accepts; otherwise he rejects.

Note that this verifier can be implemented exactly with tleedard Toffoli, Hadamard; /2-phase-shift gate set.

Proof of completeness and part[(li) of the lemma. Let z € Ayes U Ano,. We prove that if there exists a
no-signaling strategy in the base two-prover interactirmpsystem that makes the verifier accept with prob-
ability 1 — ¢/, then the quantum interactive proof system admits a styatesf makes the verifier accept with
probability 1 — &’ /4.

Let p be the no-signaling strategy in the base two-prover inteeproof system whose acceptance proba-

bility is 1 — ¢’. Let
=> py.zlst), PPl =D py.z|st)
z€Z yey

be the marginal strategies, which are well-defined becafitgeano-signaling conditions. The prover in the
constructed quantum interactive proof system performsdi@ving. RegistersS, T, Y, andZ are the prover’s
private registers initialized t{®).

e In the first round, he performs the following operation onistgysS, T, Y, Y, Z, andZ controlled on
registersS and T being in the statés)g|t):

0)stvyzz — )s)5 D VW, 2 [5,1) [yy)yyl22) 22
y7Z
This controlled operation changes the global state aswsltlo

1
oF Z‘Ssmss'é‘ttO>TT/f’00>Y\?‘OO>zZ

s,t

1
= ok Z|333>ss/§|ttt>TT/T Z VoY, 2| s,t) |yy>y§/|zz>zz
st Y,z

e In the undo-Alice test, he performs the following operat@nregistersS, Y, andY controlled on regis-
tersS, T, andZ being in the states)g|t)+]z)5:

DM P21 sy > 0)5100) g,
or does nothing iH®(z | t) = 0. This controlled operation changes the global state to
oF Z|380 )ss:5lttt) +1:5/00) YYZ (z1t)|22) 23,
which can be rewritten as

|®)s5/10)¢]00) |ttt) - (z]1t) |22),
SS YY \/—Z TTZ zZ

by rearranging the registers.



e Inthe undo-Bob test, he performs the following operatiomamistersT, Z, andZ controlled on registers,
T, andY being in the statés)z|t)+|y):

y,z | s, t
Z \ 22) 75+ 10)7/00) 23,
or does nothing ip* (y | s) = 0. This controlled operation changes the global state to

o Z|sss )sgg [tt0)+15100) 55 Z W 1) lyyhvy

s,t

which can be rewritten as
| >TT’|O> |00) 77 ® \/— Z|333 SS’SZ |Z/Z/>

This strategy passes the undo-Alice and undo-Bob testsoeithinty, and passes the simulation test with prob-
ability 1 — £/, resulting in the overall acceptance probability- & /4.

In particular, this implies that this quantum interactiveqf system has perfect completeness and the state-
ment in part (ii) of Lemmal3.

Proof of soundness. We prove the contrapositive: if there is a strategy in theleiprover protocol that is
accepted with high probability, then the input must be aigetance. Fix an instance € Ay U A,, and
a strategy in the single-prover protocol that is accepteti piobability 1 — ¢/, wheree’ < «(|z|)?/144. We
prove that there is a no-signaling strategy for Alice and Baihe base two-prover protocol that is accepted with
probability at least — 12v/e’ > 1—¢(|z|), implying thatz € Ay.s. As the verifier accepts with probability—e’,
the simulation test, the undo-Alice test, and the undo-Bsbeach succeed with probability at least 4¢’.

Let registerP denote the prover’s private space. Without loss of gertgrale assume that is first initialized
to |0) and that the prover performs a unitary operatidn= Ustyzp in the first round, a unitary operation
V = Vsyp in the second round in the undo-Alice test, and a unitaryatmr 1/’ = W+zp in the second round
in the undo-Bob test. Letl) be the state in registefs T, S’, T', Y, Z, andP after the first round:

|¥) = (Is1 @ Ustyzp)|®) 55/ [P)17:10)v[0) 2] 0)p-

Letp(s,t,y, z) be the probability with which the results of the measurenietiie simulation test are, ¢, y,
andz:

P(s,t,y,2) = (sls (t (Wly (212 (TrsTe [ W) (W) s) g [0) 1 [Y) v [ 2) 2

Note that because the verifier never se®dsr T’ to the prover, the reduced stéfestvzp|¥) (V| is not affected
by the operation by the prover in the first round. Therefatgryzp|¥)(¥| is the completely mixed state/22*
onS"andT’. This impliesy_,  5(s,t,y,2) = 1/2% for everys andt. Let

p(y,z|s,t) = 22kﬁ(s,t,y, z).

We shall show that strategy is “close” to some no-signaling strategy. For this purpose,use the notion
of §-no-signaling strategies.

10



A strategyp in a two-player one-round game is said todaeo-signalingwith respect to probability distribu-
tion 7 over the questions if there exist single-prover strategigg | s) andp®(z | t) such that

S (s, t)g 30| S plw 2l 5.0) — Ayl )| < @
s,t Yy z
So(s, )5 30| bl = 5.0) ~ PPz ]1) <6 (5)
s,t z Yy

We will now prove thap is 4v/¢’-no-signaling with respect to the uniform distribution otlee questions. Toward
this goal, we define

1 1
pA(y\S)zz—kZp(y,z\s,t), pB(Z‘t):?Zp(y7Z‘Sat)a
t,z Y

and prove the inequalitieBl(4) arid (5) with= 4/¢’.
Let p be the state of registefs, T, T/, andY after the verifier receives a message from the prover in the
undo-Bob test:

p = Trszp(Issrtry @ Wrzp)|W)(¥|(Issy @ Wrzp).
The fact that this strategy passes the undo-Bob test withgpibity at leastl — 4¢’ can be written as

1 — (@l (Trsry p)| @)y < 4€'.

We use the following easy lemma, which will be proved at the ehthis section. In what follows| X ||,
denotes the trace norm of a matiik || X ||, = Tr vV X*X.

Lemma 4. Let X and Y be finite-dimensional Hilbert spaces. Then, for a pure stajec X and a density
matrix p on X ® Y, it holds that

o = le) (el © Tra p||, < 4v/1 = (@|(Try p)le).

By Lemmd4, we have that

Take the partial trace ovdr and note thaflrt p = Trstzp|¥)(¥| to obtain that

I+
HTTSTZP|\I’><\IJ| - 2% ® Trstrzp|¥) (V|

< 8Ve.
1
Note that

> ply, 2| s t) = 2% (s]s, (tlr (yly (Trstze [9) (W) [5)s/ |17 [0+

z

P (y1s) = 2"(sls (yly (TrsTrize | V) (¥])]5)s/y)y-

11



Then,
1 1 A
2@252 ZP(%Z’SJ) - (yls)
s,t Yy z

:%Z

IT’
(slss (tl (yly <TrSTZP|\I’><\I’| T TFSTTfZP|‘1’>(‘1/|> 18)s/1t) W)y

s7t7y
1 It
<3 Trstzp | V) (Y] — i @ Trstrze ) (Y]
1
< 4Ve,

and therefore the inequalitj/l(4) is satisfied. The proof ef ittequality [(b) is analogous. This establishes the
claim that strategy is 4v/=’-no-signaling.

Now we prove that @-no-signaling strategy is close to some no-signaling egsat\We use a property of the
no-signaling conditions shown by Holenstein [HAl09]. Bybjing Lemma 9.4 in[[Hol09] twice, we obtain the
following.

Lemma 5. Letp be ad-no-signaling strategy with respect to a probability distrtion 7. Then there exists a
no-signaling strategy such that

1
(s, t)= ,z|s,t) —ply, z|s,t)] < 26.
; ( )Q;IP(?J |5,t) =By, 2 |s,1)]

The proof of Lemmal5 is the same as that of Lemma 9.5 in [Hol@®d, is omitted.
By Lemmd.5, there exists a no-signaling stratgguch that

1 1 .
ﬁ252’p(y72’37t) —p(y,Z‘S,t)’ < 8\/57
s,t Y,z

)

As the simulation test succeeds with probability at lIdast4<’, the no-signaling strategymakes the verifier in
the base two-prover protocol accept with probability astea

1—4e’ —8Ve > 1—12Ve > 1 — (|z)).

By the soundness of the base two-prover protocol, it must thaitz € A,.;. Therefore, the quantum interactive
proof has soundness error at most ¢2/144.

In the rest of the section, we will prove Lemina 4. We use thiefohg variant of Winter's gentle measure-
ment lemmal[Win99], proved by Ogawa and Nagaoka [ONO7].

Lemma 6. LetH be a finite-dimensional Hilbert space. For a density magrion # and a Hermitian matrix4
on# such that bothd and I; — A are positive semidefinite, it holds that

lp— VApVA|, < 2¢/Trp(Iy — A).
Proof of LemmaldLetY = ((¢| ® Iy)p(lp) @ Iy), and letA = |p)(p| ® Iy. Then, it holds that
VApVA = ApA =|e){pl®Y,

Tr pA = (@|(Try p)|)-

12



By Lemmd.®, it holds that

le = le) el @ Y|, < 2v/1— (el(Try p)lo).
which implies that

ITra p— Yy < 2¢/1 = (o[ (Try p)|e).
Then we have that

o = l) (el @ Tra p||,
<l = 1Mol @ Y|, + |[le) (el © Trx p — @) (ol @ Y|,
= |lp—le) el @ Y|, + [ Trx p = Y],

<4y/1—(¢[(Try p)|¢). O

4 Additional results

In this section we mention some additional results abouhtyuma interactive proof systems with unbounded
error.

4.1 One-round quantum interactive proofs for PSPACE with a weak error bound

Theorem 7. It holds thatPSPACE C QIP(2,1,1 — 27P°W),

Proof. The SUCCINCT BIPARTITENESSproblem is the problem of deciding if an exponential-sizapy, given

in its succinct representation, is bipartite. It is knowrb&aPSPACE-complete [[LB89]. It is straightforward to
construct a two-prover one-round XOR interactive prooteyswith perfect completeness and an exponentially
small gap for this problem. (We refer the reader(to [CHTWO04£h06] for the definition of XOR interactive
proof systems.) This proves the containment

PSPACE C @&MIP, | 5 poiym[2].
Theorem 5.10 of Cleve, Hayer, Toner, and Watrous [CHTWO4jlies that
SMIP, | _y—ponm [2] = @MIPT | 5o,y 2],
and the construction of Wehnér [Weh06] implies
OMIPY | ) oy [2] € QIP(2,1,1 — 277°),

We obtain the theorem by chaining these inclusions. O

4.2 Upper bounds

One may also consider the power of quantum interactive mgstems when acceptance is defined by a sharp
threshold value. That is, for any choice of functionsc poly anda: N — (0, 1], we may consider the class
QIP(m,a, < a), defined as the class of promise problems= (Ay.s, A,,) having a quantum interactive proof
system withn(|z|) messages that accepts with probability at leg@ist|) on inputse € Ay, and with probability
strictly smaller tharu(|x|) on all inputsz € A,,. The notationQMA (1, < 1) is shorthand foQIP (1,1, < 1).
The following two theorems concerning these classes aneegro

In this section, the following mild assumptions are madehengate set:

13



e The gate set consists of a finite number of gates.
e The amplitudes of each gate in the gate set are algebraicersmb

Without the second restriction, evé@QP would contain some undecidable languages; see Theoremf5.1 o
Adleman, Demarrais, and Huarig [ADH97].

4.2.1 Upper bound onQIP(poly, a, <a)

Theorem 8. For any polynomial-time computable functian N — (0, 1], it holds that
QIP(poly,a,<a) C EXPSPACE.

As stated in the introduction, Gutoski and Watrdus [GWOVgi semidefinite program representing the opti-
mal acceptance probability of a given quantum interactre®fsystem. When applied to the cld3EP (poly, a, <
a), with our relaxed assumptions on the gate set, this tramsftoon results in a semidefinite program of expo-
nential size with algebraic coefficients. The remainindg tiasto decide whether this semidefinite program has
the optimal value at least or less tharu. This task can be formulated as an exponential-size instahthe
SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTSproblem.

SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTSIS a problem based on semidefinite pro-
gramming. LetQ, R, andQ N R be the fields of rational numbers, real numbers, and algebeai numbers,
respectively. Each elemeatof Q "R can be encoded as a trigl¢(X ), a, b) of the minimum polynomialf (X)
of a overQ anda, b € Q with a < o < b such thatv is the only root off (X') betweer: andb. (See Section 10.2
of Basu, Pollack, and Roy [BPRO3].)

SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS

Instance: Integers,d > 0, m algebraic real matriced,..., A,, of sized x d, andm
algebraic real numbels, ..., b,,.

Question: Does there existdax d real matrixX > 0 such thaflr A; X = b; for all i?

The complexity of EMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTSIiS not known. (See Ra-
mana [Ram97] for related results.) Although there exisypomial-time algorithms for semidefinite program-
ming that compute an approximate solution to an arbitraegigron, they cannot be applied in a straightforward
way to the EMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS problem. We point out that the
problem is inPSPACE by using the following result.

Theorem 9 (Canny [Can88]) The problemEXISTENTIAL THEORY OF THE REALS is in PSPACE. That is,

given a quantifier-free Boolean formuba(x4, ..., x) with atomic predicates of the formgzq,...,z;) = 0
andp(zy,...,z,) > 0, wherep is a polynomial with integer coefficients given as a list aéficients in binary
notation, it is decidable in space polynomial in the lengtthe formulaF” whether there exists:1, . . ., z;,) € RF
that satisfied-.

Corollary 10. The problemSEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTSIS in PSPACE.

Proof. Note that an algebraic number encoded ASX ), a,b) can be represented as a variableonstrained
asf(r) =0Ax—a>0Ab—x > 0. By using this, we can write down each linear constrdintd; X = b; in
terms of the variables representing tffecoordinates of{. Moreover, the semidefinite constraikt = 0 can be
written as3M.X = M1 M, and therefore can be written as polynomial constrainthemroordinates ok. [

By combining the semidefinite programming formulation oW@7] and the polynomial-space algorithm for
SEMIDEFINITE FEASIBILITY WITH ALGEBRAIC COEFFICIENTS we obtain Theorernl 8.

14



4.2.2 Upper bound onQMA(1,<1)
Theorem 11. It holds thatQMA(1, <1) € PSPACE.

Proof. Let L € QMA(1,< 1). The same technique as the proof @QVIA C PP by Marriott and Wa-
trous [MWO5] reduced. to a problem of deciding whether or not an implicitly giverperential-sized matrid
has an eigenvalug, or equivalentlyl — A is singular.

The entries ofd are in a fieldF' that depends on the languafes follows. Letyy, .. ., «,, € C be the distinct
numbers that appear as entries in the natural represergaiicthe gates in the gate set used by the verifier in
the system for the languade Let FF = Q(«q, ..., ) be the field generated by the adjunctionagf . . . |
to the fieldQ, i.e. the smallest field containing all the rational numbenmd o1, . .., . Becausexy,...,qa,
are algebraicF is a finite extension of the fiel@. By the primitive element theorem (see e.g. Problem 7.5 of
[Lor08]), there exists an algebraic numherc F such thatF’ = Q(«). Let f(¢) be the minimal polynomial
of a overQ andd be the degree of (¢). The field F' is isomorphic to the quotient fiel@[t]/(f(t)), by which
we identify F' with the set of polynomials ove) of degree at mosf — 1. Using this representation, addition,
subtraction, multiplication, division, and equality iegtof the numbers irF’ can be performed itNC.

Using this representation, each entryAfian be computed iPSPACE. Csanky’s algorithm[[Csa76] can
then be used to determine whetller A is singular or not irPSPACE. O

5 Open problems

We conclude with a short list of open problems related to tprarinteractive proof systems with an unbounded
error.

o ISEXP C QIP(2,1,<1)?

e We havePSPACE C QIP(poly,1,1 — 27P°W) C EXP. Where doe®IP(poly,1,1 — 277°W) lie? One
may try to proveQIP(poly, 1,1 — 27P°) = PSPACE by improving the dependence of the parallel time
of an approximation algorithm for semidefinite programmamgthe error parameter. Note, however, that
this is open even for the special case of positive linearnamging [TX98].

e Is it possible to improve our upper bound8KPSPACE on QIP(poly,a, < a)? In particular, is it pos-
sible to avoid resorting to the exact feasibility of a serfirdte program? Or does the succinct version
of the semidefinite feasibility problem belong @QIP (poly, a, < a)? How small can the gap in accep-
tance probability between the completeness case and thdrsess case be in a quantum interactive proof
system?

e Does the containmer@MA C PP [MWO05] extend to the unbounded-error case? Our upper botind o
PSPACE may not hold if perfect completeness is not assumed.
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