
Robust Detection of Primary User Emulation Attacks in
IEEE 802.22 Networks

Olga León
Department of Telematics
Universitat Politècnica de

Catalunya (UPC)
Barcelona, Spain

olga@entel.upc.edu

Juan Hernández-Serrano
Department of Telematics
Universitat Politècnica de

Catalunya (UPC)
Barcelona, Spain

jserrano@entel.upc.edu

Miguel Soriano
Universitat Politècnica de

Catalunya (UPC)
& Centre Tecnològic de
Telecomunicacions de

Catalunya (CTTC)
Barcelona, Spain

soriano@entel.upc.edu

ABSTRACT
Cognitive Radio (CR) technology constitutes a new paradigm
where wireless devices can access the spectrum left unused
by licensed or primary users in an opportunistic way. This
feature opens the door to a main new threat: the Primary
User Emulation (PUE) attack, in which a malicious user
transmits a fake primary signal preventing a Cognitive Radio
Network (CRN) from using the available spectrum. Cooper-
ative location of a primary source can be a valuable tool for
distinguishing between a legitimate transmission and a PUE
attack whenever the position of primary users is known, as it
is the case of TV towers in the IEEE 802.22 standard. How-
ever, the location process can be undermined due to false
data provided by malicious or faulty nodes. In this paper,
we analyze the effect of forged reports on the location pro-
cess of a given emitter and provide a set of countermeasures
in order to make it robust to undesired behaviors.

Categories and Subject Descriptors
K.6 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection; D.2.8
[COMPUTER-COMMUNICATION NETWORKS]:
General—Security and protection

General Terms
Security,Design
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1. INTRODUCTION
Cognitive Radio Networks (CRNs) [2] are regarded to be

a possible solution to the current underutilization of the
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spectrum by allowing Cognitive Radios (CRs) to act as sec-
ondary users of the spectrum left unused by licensed ser-
vices. Thus, spectrum sensing is a crucial task in order to
detect vacant bands or white spaces and avoid interfering
primary transmissions. If a primary signal is detected in the
operation channel, the CRN must switch to another band
(a process known as spectrum handoff). On the other hand,
if another secondary user is already operating in such band,
self-coexistence mechanisms are needed to share the spec-
trum fairly.

With the specific characteristics of CRNs, new threats
have arisen [5, 10]. In particular, the community research
has paid special attention to the Primary User Emulation
(PUE) attack and False Feedback attacks, since they can
severely undermine the primary detection process. In the
PUE attack, first coined in [3], an attacker pretends to be
a primary user or incumbent by transmitting a signal with
similar characteristics to a primary signal or replying a real
one, thus preventing secondary users from using a vacant
band. Consequently, there is a need for providing effective
methods in order to distinguish between legitimate primary
transmissions and fake ones (PUE attacks).

Research on this topic has been generally based on the
recently approved standard IEEE 802.22 Wireless Regional
Area Networks (WRANs) [1], that defines a centralized net-
work composed by a Base Station (BS) and a set of CRs. In
such kind of networks, two different types of primary users
are defined: TV emitters and wireless microphones. Most
of the proposals dealing with PUE attacks [9] in 802.22 net-
works rely on energy-based sensing mechanisms, and their
performance is considerably reduced mainly due to shad-
owing. Localization techniques can be of paramount help
in order to discriminate between real primary transmissions
and PUE attacks [4]. According to the estimated position
of the primary source, the CRN could decide whether the
primary source is a TV primary transmitter, whose position
is known, and, in any case, precisely locate the source.

In this paper, we analyze the effect of forged reports on the
location-based PUE detection process of a CRN and provide
a set of countermeasures in order to make this process robust
to false feedback.

The structure of this paper is as follows. Sect. 2 provides
an overview of the main techniques used for location of RF
transmissions and sketches the current localization methods
suitable for CRNs. In Sec. 3, the current threats to those



methods are identified and then analyzed. Next, in Sec.
4, some countermeasures are both presented and evaluated.
Finally, Sec. 5 provides the conclusions of this work.

2. LOCALIZATION IN CRNS
Among the different existing location techniques for wire-

less networks [15], Received Signal Strength (RSS) and Time
Difference of Arrival (TDoA) seem to be the most suitable
for detecting PUE attacks. Opposite to Global Positioning
System (GPS) or Time of Arrival (ToA), they do not require
the cooperation of the node to be located, which cannot be
expected from either and attacker or a real primary source.

With RSS-based techniques, assuming that the transmis-
sion power and the path loss model are known, it is possible
to estimate the distance from the source to the reference
node. When transmission power is not known, differences
between RSS measured at pairs of receivers can be consid-
ered [12] removing in this way the dependency on the actual
transmit power. A set of at least three RSS measurements
is then used to estimate the position of the emitter by ap-
plying trilateration. Although RSS measurements are rela-
tively inexpensive and simple to implement in hardware [15],
they are susceptible of high errors due to the dynamics of in-
door/outdoor environments mainly due to multipath signals
and shadowing. The effect of shadowing is usually mod-
eled as log-normal and the standard deviation of received
power σdB leads to RSS-based estimates with variance pro-
portional to its range. For this reason, it may not be suited
for networks with long-range links, that is the case of WRAN
802.22 networks with ranges of order of kilometers.

On the other hand, TDoA is based on the difference of the
time of arrival of a single signal (transmitted by the node
to be located) at two different reference nodes. Note that,
as these measures do not depend on the transmitter’s clock,
TDoA can be applied for locating asynchronous transmit-
ters, as it is the case of a PUE attacker. As disadvantages,
it requires a tight synchronization between each pair of ref-
erence nodes and TDoA measures are also quite sensitive to
multipath propagation. However, TDoA provides consider-
ably higher accuracy than RSS.

In TDoA, if a signal was received at time t1 by the first
reference node and reached the second reference node at t2,
the difference of distances ∆d between the transmitter and
both receivers is given by vp ·(t1 − t2), where vp is the propa-
gation velocity of the signal. When multiple TDoA measures
are available, multilateration can be applied in order to es-
timate the node position. In a 2-dimensional space, each
TDoA measurement defines a hyperbola on a surface and it
is needed at least two TDoA measurements (three nodes or
more) to locate an emitter, where the position is given by
the intersection of both hyperbolas. On the other hand, in
a 3-dimensional space, each measurement defines a hyper-
boloid and therefore three measures are required to locate
the emitter. Nevertheless, in practice, measurements are
subjected to errors and thus the different TDoA equations
rarely intersect in a given solution. In this case, the loca-
tion problem can be posed as an optimization problem and
solved using, for example, a least squares (LS) method or an
extended Kalman-Bucy filter. Since Kalman-Bucy provides
no significant improvement in accuracy when the emitter
to be located is usually stationary [7], LS methods over a
linearized set of TDoA error equations (by means, for ex-
ample, of Taylor-Series Estimations) are often preferred for

stationary networks such as CRNs.
LS estimation methods [8] are iterative schemes that start

with a rough initial guess (xv, yv, zv) and improve the guess
at each step (xv + δx, yv + δy, zv + δz) by determining the
local linear least-sum squared-error correction (δx, δy, δz).
The target is to iterate the method until the components of
the correction are below a given threshold, that is to say,
that the estimation converges.

First, we have to obtain a linear estimation of the mea-
surement errors. According to this, given a set of n TDoA
measurements τi taken by the pairs made up of the BS and
each one of the CRs, the measurement errors assuming a pre-
diction (xv, yv, zv) can be expressed as in (2), with fi(x, y, z)
as in (1) the real TDoA measurement for the pair BS and
anchor node i for position (x, y, z).

fi(x, y, z) =
√

(x− xi)2 + (y − yi)2 + (z − zi)2

−
√
x2 + y2 + z2

(1)

e =


vpτ1 − f1(xv, yv, zv)
vpτ2 − f2(xv, yv, zv)

...
vpτn − fn(xv, yv, zv)

 (2)

Then, from the 1st-degree Taylor polynomial of e, the
matrix representation of the linearized forms of the distance
error can be expressed as in (3), with A an n-by-3 matrix
with the Taylor coefficients and δ a 3-by-1 column vector
with the corrections (δx, δy, δz).

ê = Aδ + e (3)

Assuming that ê is full rank, the value of δ that minimizes
the sum of quadratic errors êTê can be computed as in (4).

δ = −(ATA)−1ATe (4)

However, in the real world, measurements performed by
different nodes are subjected to different errors and then
their measures may contribute to the LS estimation with
different weights. Moreover, measurement errors are often
correlated. Consequently, localization methods, instead of
the previous approach, often minimize êTWê, with W an n-
by-n matrix with the assigned weights to every measure. In
such case, the most common approach [7] is to define W =
R−1 with R the matrix of covariances between measures.
Therefore, the optimal δ can be derived as in (5).

δ = −[ATWA]−1ATWe (5)

3. THREATS AND EFFECTS
Besides the usual threats to the localization method, that

are more related to the variance of the acquired measures
(SNR, multipath, fading, etc.), there are mainly two that
could undermine the accuracy when localizing a primary
source (real or fake): selfish nodes and liar nodes providing
false feedback.

Selfish behavior reduces the amount of available measure-
ments for the localization method and can become a big
risk as the percent of selfish nodes increases. Nevertheless,
selfish behavior in CRNs can be prevented with cooperation
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Figure 1: 2D prediction error of 10,000 iterations
for locating a transmitter placed at (30000meters,0)
in an 802.22 CRN with 30 collaborating CRs with
an average reception SNR of -10dB
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Figure 2: 2D prediction error in the same conditions
as in Fig. 1 but with 2 CRs (liars) providing false
feedback

enforcement mechanisms [13] without altering the localiza-
tion method. For example, in 802.22 networks the BS can
reduce or even cancel the bandwidth assigned to a given
node if it does not collaborate.

On the other hand, the effect of liar nodes providing bad
measures or false feedback is much challenging. Detecting
and avoiding them or mitigating their effect on the local-
ization method, as we will later explain in Sec. 4, requires
changes to the cooperative localization method. In the fol-
lowing we will analyze the effect of false data on cooperative
localization methods based on TDoA measurements, which
are, as previously explained, the preferred localization meth-
ods when no collaboration can be expected from the source
to be located.

Figures 1 and 2 are obtained considering an 802.22 net-
work deployed over an square area of 60x60 km2 composed
by a BS located at the origin (0,0) and a set of 30 CRs
nodes uniformly distributed within the area of the CRN.
The attacker is placed at the CRN boundary at (30km,0).

Whenever there is evidence of the existence of a primary
transmission (the attacker), the BS requests the CRs to ob-
tain TDoA measurements in order to locate the emitter. The
obtained position will greatly help to effectively distinguish
between a legitimate transmission and a PUE attack. The
average SNR at the BS position is -10dB. Since there is no
specific path loss model for the IEEE 802.22 standard being
developed and the Okumura-Hata model has been widely
used for UHF band measurements in digital TV reception
[6], we have adopted it as the path loss model. For the lo-
cation process, the Least Squares (LS) method described in
Sec. 2 is applied in order to minimize the error performed
in the estimation.

Figures 1 and 2 show the prediction error with 10,000
iterations of the localization method: the former when there
are no liars; the latter when two liars report false feedback.
We have adopted the worst case in which every liar reports
a “credible” TDoA measure to its BS, that is to say, that
provided measures are bounded to d

vp
, with d the distance

between the liar and the BS, and vp the propagation speed;
measures above this bound would be discarded by any BS
because they are not possible at all. Figures clearly show
that the presence of just two liars out of 30 CRs results in
a very inaccurate prediction (rising from order of meters to
order of kilometers) that could often lead to false positives.
This a devastating damage that, although it diminishes with
the number of cooperating stations, brings to the arena the
need for robust PUE localization methods.

4. ROBUST PUE DETECTION
As explained in Sec. 3, false reports provided by compro-

mised nodes can severely undermine the location method
thus leading to false positives or negatives regarding the de-
tection of primary users. Consequently, there is a need for
identifying false measurements in order to discard them for
the location process. This task could be accomplished by
comparing measurements from different nodes and looking
for large deviations. However, measurements can consider-
ably vary depending on the position of the CR within the
CRN. Therefore, the most intuitive would be to group nodes
into clusters and compare measurements among nodes be-
longing to the same cluster. Usually, outlier measurements
may be (badly) detected by means of LS fitting, but we rec-
ommend, as some other researchers [11], to use Least Me-
dian Square (LMS) fitting instead. LMS aims to minimize
the median of the residue squares as in (6) increasing its
robustness to deviated measurements.

(xv, yv, zv) = arg min [mediani (vpτi − fi(xv, yv, zv))] (6)

However, the process of minimizing the median of the
residue squares is prohibitive [17] and then the final posi-
tion estimation should be obtained with a mixed solution:

1. Divide the set of n CRs into c several clusters of equal
size s =

⌈
n
c

⌉
.

2. Apply the location process described in Sec. 3 sepa-
rately in every cluster obtaining an estimation of the
position of the emitter for each cluster (xv1, yv1, zv1)...
(xvj , yvj , zvj)...(xvc, yvc, zvc).

3. Compute the median of residue squares for each cluster
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Figure 3: 2D prediction error in the same conditions
as in Fig. 2 but with the CRN split into 3 equally-
sized clusters

j as

r2clusterj = median(r21...r
2
i ...r

2
s)

where ri = vpτi − fi(xvj , yvj , zvj) is the residue for
node i of cluster j and fi(xvj , yvi, zvi) as in (1) is a
“error-free” TDoA measure for the position estimation
obtained by means of LS method for cluster j.

4. Select as tentative estimation (xv, yv, zv) the one given
by the cluster with the lowest median of residues squares.

5. Compute the residue squares for all the n nodes con-
sidering the tentative estimation (xv, yv, zv).

6. Perform a new position estimation by applying a LS
method assigning a different weight to each node’s
measurement according to its residue square.

Assuming that at least in one of the clusters there are no
false measurements, the LS estimation provided by the clus-
ter will be more reliable and will exhibit a lower median
of residues squares. Thus, when computing the residues in
step 4 considering this estimation, false measurements will
be clearly identified due to its higher value with respect to
the rest. Since the accuracy of the location method improves
as the number of (reliable) measurements increases, a final
LS estimation is performed in the last step excluding out-
lier measurements or reducing their effect on the estimation
by assigning a different weight to each measurement accord-
ing to its residue. This is an implementation of Weighted
Least Squares (WLS) method, in wich the estimated posi-
tion δ = (xv, yv, zv) is obtained as in (5), defining W as a
diagonal matrix with the weights assigned to each measure-
ment as its diagonal elements wii.

Note that the election of the number of clusters plays an
important role on the algorithm’s performance. First, it
should guarantee that there exists at least one cluster with-
out liars; and second, when the number of stations n is small,
the number of clusters should be also as small as possible
to guarantee a minimum level of accuracy in the estimation
performed by each cluster.

Fig. 3 depicts the error obtained in the position estima-
tion with the same conditions as in Fig. 2 (two liars) when
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Figure 4: 2D prediction error in the same conditions
as in Fig. 3 but with no liars providing false feedback

the set of CRs is divided into 3 clusters and the LMS method
described above is applied. As it can be seen, the proposed
mechanism can effectively identify deviated measurements
and perform the location process almost with the same ac-
curacy as in the case when there are no liars and a simple
LS method is used.

Fig. 4 shows the effect of applying the LMS method when
there are no liars. Once again, the accuracy of the prediction
does not diminish with respect to the LS method although
the error samples exhibit a slightly higher dispersion due
to the weights mechanism used to ignore deviated measure-
ments. Besides, it introduces some overhead with regard
to the amount of computations performed in exchange for
making the system robust to liars.

Finally, as compromised nodes are likely to report false
data repeatedly, a trust mechanism should be integrated
into the system so as to keep track of node’s behavior over
time. Trust and reputation models have been extensively
studied specially in the context of ad hoc networks [14] and
recently, the idea of applying them to CRNs to enhance col-
laborative spectrum sensing has recently attracted research
interest [16]. In a similar way, they can be applied to the
location process of an emitter in CRNs by weighting the
measurements provided by each node according to the trust
or reputation assigned by the system and computed consid-
ering not only the reliability of the current measurement but
of those provided in the past.

5. CONCLUSIONS
CRNs appear as a promising solution to the scarcity of

radio spectrum since they can “intelligently” select the best
spectrum opportunities. However, their particular charac-
teristics pose new security challenges. Among them, the
main one is to provide mechanisms for distinguishing legit-
imate primary transmissions from PUE attacks without al-
tering the primary network behavior. Research on this topic
has been generally based on the IEEE 802.22 standard, in
which two different types of primary users are defined: TV
emitters and wireless microphones. Within these networks,
localization of the transmission’s source could help to pro-
vide valuable information to identify PUE attacks. In the
case of a TV emitter, according to this estimation and the



real position of TV primary transmitters, which is assumed
to be known to the CRN, the BS can take a decision about
the legitimacy of the transmission. On the other hand, in the
case of wireless microphones, the provided method precisely
locates the source of emission.

Nevertheless, life is not a bowl of cherries, and the lo-
calization methods themselves are also subjected to sev-
eral threats. In this paper, we have identified these threats
and we have outlined the devastating impact of the most
challenging one: malicious or compromised nodes providing
false feedbacks. Moreover, we have outlined some solutions
against these liars based on clustering and we have evalu-
ated their strength. The presented results show that this
is a promising research branch that is getting us to imple-
ment efficient and robust localization solutions. However,
further research is still needed on the integration of repu-
tation schemes with clustering; solutions not only providing
accurate predictions of a primary source’s location but also
identifying malicious nodes.
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