

APPROVED:

Yan Huang, Major Professor
Song Fu, Committee Member
Bill P. Buckles, Committee Member and

Program Coordinator
Barrett Bryant, Chair of the

Department of Computer Science
and Engineering

Costas Tsatsoulis, Dean of the College
of Engineering

James D. Meernik, Acting Dean of the
Toulouse Graduate School

THE DESIGN OF A BENCHMARK FOR GEO-STREAM MANAGEMENT

SYSTEMS

Chao Shen

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

December 2011

Shen, Chao. The design of a benchmark for geo-stream management systems.

Master of Science (Computer Science), December 2011, 68 pp., 5 tables, 18 illustrations,

references, 18 titles.

The recent growth in sensor technology allows easier information gathering in

real-time as sensors have grown smaller, more accurate, and less expensive. The

resulting data is often in a geo-stream format continuously changing input with a spatial

extent. Researchers developing geo-streaming management systems (GSMS) require a

benchmark system for evaluation, which is currently lacking. This thesis presents

GSMark, a benchmark for evaluating GSMSs. GSMark provides a data generator that

creates a combination of synthetic and real geo-streaming data, a workload simulator to

present the data to the GSMS as a data stream, and a set of benchmark queries that

evaluate typical GSMS functionality and query performance. In particular, GSMark

generates both moving points and evolving spatial regions, two fundamental data types

for a broad range of geo-stream applications, and the geo-streaming queries on this data.

 ii

Copyright 2011

by

Chao Shen

CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

CHAPTER 1. INTRODUCTION 1

1.1. Motivation 1

1.1.1. Sensor Technology 1

1.1.2. Geo-Stream 3

1.1.3. Geo-Stream DBMS 5

1.1.4. Benchmark for Geo-Stream DBMS 10

1.2. Contribution 11

1.3. Organize of the Thesis 11

CHAPTER 2. RELATED WORK 12

2.1. Benchmark for Evaluating Data Management Systems 12

2.2. Example Benchmarks 13

2.2.1. Linear Road Benchmark 13

2.2.2. SEQUOIA 2000 Benchmark 14

2.2.3. 3-Dimensional Spatio-temporal Benchmark 15

2.2.4. The DynaMark Benchmark 15

2.2.5. COST Benchmark 16

2.2.6. BerlinMOD 17

2.2.7. Benchmark Summary 18

2.3. The Brinkhoff Data Generator 19

iii

CHAPTER 3. GEO-STREAMING DATA GENERATOR OF THE GSMARK

BENCHMARK 21

3.1. Real Road Network 21

3.2. Routes and Routing 23

3.3. Assigning Speeds 25

3.4. Capacity and Traffic Jams 26

3.5. External Events 27

3.6. Output Data 29

CHAPTER 4. WORKLOAD SIMULATOR OF THE GSMARK BENCHMARK 32

4.1. The Purpose of the Workload Simulator 32

4.2. Components of The Workload Simulator 34

4.2.1. Sender 36

4.2.2. Receiver 42

CHAPTER 5. QUERY SENTENCES OF THE GSMARK BENCHMARK 45

5.1. The Goals of Queries 45

5.2. Schema Used for Queries 45

5.3. Measuring for Query Performance 46

5.4. Query Sentences 46

CHAPTER 6. BENCHMARK PERFORMANCE ISSUES 55

6.1. Performance Experiments 55

6.2. Parameters’s Impaction of Performance 56

CHAPTER 7. INTERFACE DESIGN 58

7.1. Welcome Page 58

7.2. Introduction Page 59

7.3. Parameter Page 59

7.4. Control Page 61

iv

7.5. About Page 62

7.6. Download Page 62

CHAPTER 8. CONCLUSION AND FUTURE WORK 64

8.1. Conclusion 64

8.2. Future Work 65

BIBLIOGRAPHY 67

v

LIST OF TABLES

2.1 Summary of the benchmarks. An X indicates that the benchmark belongs to that

category. SP = Spatial Only, ST = Spatio-temporal, S = Streaming. 18

2.2 Brinkhoff’s principles of moving objects. 20

3.1 An example of the data generator’s vehicle TXT output file. 31

4.1 An example set of the sender’s parameters’ setting. 43

5.1 Schema for the benchmark queries. A data type prefixed with s indicates a streaming

version of the data type. 45

vi

LIST OF FIGURES

1.1 STREAM’s query system. 6

1.2 Aurora’s query system. 9

3.1 An example KML file resulting from converting a tiger/lines shape file. The file is

easy to read, understand, and usable by Google Maps without special requirements. 22

3.2 The data generator converted the tiger/line data file of Denton, TX, to the KML

format. The road network is real enough to host simulated vehicles for evaluating a

GSMS. 23

3.3 Polygon A moves from its current location to polygon B, changing shape as each

point travels along the straight-line trajectory (blue dash lines) to a point in polygon

B. Starting with a1, the data generator mapped the points using the minimal

distance and each point travels at a relative rate to the center point to ensure that

all points arrive at their corresponding points at the same time. 28

3.4 An example 200-face polygon moving northwest over the Denton, TX road network.

At each time interval, the polygon has changed position and shape. 30

3.5 136 simulated vehicles on the California road network for 90 minutes. Each blue

square represents the vehicle destination and the while lines trace all the routes by

the end of the dataset. 31

4.1 Data flow of workload simulator. 33

4.2 Simulated sensor network. 35

4.3 Sender’s working process of sending regular stream. 39

4.4 Workload simulator’s data flow. 44

vii

6.1 Data generation performance. Vehicle generation is exponential while polygon

generation is linear. 56

7.1 Welcome page. 58

7.2 Introduction page. 59

7.3 Parameter page. 60

7.4 Control page. 62

7.5 About page. 63

7.6 Download page. 63

viii

CHAPTER 1

INTRODUCTION

1.1. Motivation

1.1.1. Sensor Technology

In recent decades, sensor technology has grown at an unbelievable pace. The sensor size

is smaller, communication is faster, batteries can continue supplying power longer, networks

are more stable, and overall price is lower. All these developments bring great benefits to

people’s daily lives. The following paragraphs will discuss the benefits in more details.

First of all, the miniature sensors’ sizes are smaller than before. The coin-sized sensors

are easier to be embedded in moving objects. In many countries of the world, cell phones

are ubiquitous. Since the size of a typical cell phone is very small, people usually just leave

it in the pocket or purse, and carry the cell phone every day for communication purposes.

Now many cell phones are embedded with tiny-sized sensors and many applications are

developed using data collected by these sensors. With the explosive growth of the smart

phone market, fueled by faster data network infrastructure and the increasing need for

mobile computation, today’s mobile phone has become not just a communication device but

also incorporated entertainment, office productivity, and navigation functionalities. Today,

many cell phones have built-in GPSs (global position system) and various sensors and run a

complete operating system, providing a standardized interface and platform for application

developers. The fast development of smart phones enables a new and scalable way to collect

location data through smart phone applications. There are many location based services

(LBS) that are developed based on the cell phone’s build-in sensors. Basically the LBSs are

the services that use the objects’ location information for services. These services include

traffic monitoring system and patients’ location monitoring system. These services strongly

1

depend on the sensor networks and database management systems. The sensors gather

information about location and sometimes involve other interesting data attributes, such

as temperature, humidity, and, the most commonly used attribute, temporal data. After

the sensors collect all the necessary information, they send the data to a particular data

management system. The data management system should be able to store the data, process

the data, and query the data when users want to find the information they need.

Additionally, because of the fast communication capacity of mobile devices, real time

communication becomes possible. Many applications take advantage of that, such as appli-

cations with ”push” abilities. Many built-in sensors can gather different kinds of information

such as 3D acceleration, altitude, course and speed, position, latitude, longitude, and so on.

Many applications use the information and the mobile communication to serve users. For

example, when a user searches nearest restaurants in a mobile phone location based service

application, the mobile phone gets the user’s location from the built-in sensor, sends the

location into its server, queries the nearest restaurants in its database management system,

and sends the query results back to the user’s phone. When the user is walking or driving,

the location of the user is changing. The new locations will be sent from the mobile phone

to the application in real time. The application will query the nearest restaurants again

based on the new locations. Based on the search results, the application will pull the earli-

est information out of the queue, and push the newest search results into the queue of the

phone’s physical memory. By this way, a user can be updated with relevant information in

real time. To help real time communication, instead of using a traditional relational tuple

based data management system, some applications use a stream data management system.

In this chapter, sections 2 and 3 discuss stream data and its management systems in more

detail.

Fortunately, now the sensors’ battery can last much longer than before. For instance, the

iPhone’s build in Nike + iPod sensor’s battery can keep working for more than a thousand

active hours. The sensor has a sophisticated built-in power management system. The power

2

of the battery will only be consumed when the sensor is active. This system allows the the

sensor to have a longer life than the power’s maximum supply ability. Moreover, the sensor

network technology becomes more mature. For example, the researchers are more capable of

building advanced sensor networks with back up sensors. When setting up a sensor network,

researchers usually prepare several back up sensor nodes to avoid data losses in case of sensor

node failure. Therefore, in a sensor network, even when a sensor is out of battery power,

other sensor nodes will take the dead sensor’s duty, and continue sending data to the data

management system.

The cost of the sensor is also decreasing. And because of the sensor’s lower price, many

daily used devices have have sensors built in. For example, while many latest versions of

smart phones, tablets, and cameras all contain sensors, their prices are still affordable. More

and more consumers can enjoy sensor technologies at affordable prices. The sensor based

applications make people’s lives more convenient. Because more people use sensors daily,

there are more and more geo-streaming data generated. The huge amount of geo-stream

data requires more efficient database management systems.

Overall, sensors are much easier to use, more convenient to set up, and very reliable for

scientific research.

1.1.2. Geo-Stream

As mentioned by the above section, the continuing development in sensor technology

allows researchers to gather information easily in a real-time pace and is widely used in

people’s daily lives and research labs. The wide use of the sensors in many different research

areas generates huge amount of data. Much of this real-time data is geo-referenced stream

data—namely geo-streams. Spatial data often involves an object represented by a two- or

three-dimensional location on a geographic coordinate system, such as the latitude-longitude

geographic coordinate system, but some objects may require a spatial extent. Temporal data

is often a timestamp associated with the spatial data. Together, this forms spatio-temporal

data that can represent objects in relation to time, e.g. the object’s location at a given time.

3

While it may be interesting to know the object’s location at any moment, the real-time

trajectory is often more interesting. The sensor network monitoring the object can produce

a data stream of changing location points that researchers refer to as streaming data, or in

this case, geo-streaming data since it involves spatio-temporal data.

Many applications produce geo-streaming data, such as health care, emergency manage-

ment, object positioning and identification, earth science, and traffic monitoring. Location

based service is an area that could be strongly related with geo-stream data.

Location based services can be generally divided into 4 categories [14]. They are services

of emergency, services of information, services of tracking, and services of entertainment. One

typical application of emergency service is the hospital’s emergency response. Many hospitals

embed sensors in small electronic devices that could be easily carried by their patients. The

sensors can continuously report a patient’s position as a geo-stream to the hospital. When

the sensor senses an emergency situation, such as abnormal pulse, temperature that is below

or above a certain range, and palpitation that is suddenly disappearing, or when the patient

feels uncomfortable and triggers the sensor’s emergency button by himself or other witnesses,

the hospital can find the location of the patient much easier. It will save time for the hospital

to arrange an ambulance and analyze the information gathered by the sensors to prepare

for the emergency treatment. There are also many applications on mobile devices that

obtain users’ location geo-stream data from their mobile devices and serve the users with

local news, weather, stock information. Tracking services can be used to monitor traffic

flows in road networks. In many countries, the traffic-monitoring system is developed or

under development. Traffic-monitoring is taking a very important role in city planning and

developing. Traffic-monitoring systems often generate geo-streaming point data and deliver

the traffic flows into a data management system. Therefore, we can query the data stream

for the historical trajectory of a moving object and possibly to discover the habits of a certain

kind of object through long-term monitoring of their trips. The data can be used to do traffic

analysis, behavior analysis, and crime control. One interesting application of entertainment

4

services is to locate a user’s nearby friends. When a user is moving, the geo-stream data

of the user’s location comes into a data management system. And the system can query

for the friends who are very close to the user’s current location. Because geo-steam data

is real time, usually is location related, sometimes contains geo-related extent information,

and often comes with a time stamp, location based services become more and more popular.

Not only do location based services generate a huge amount of geo-stream data, many

other applications also generate an abundance of geo-stream data. For example, many

applications are developed for monitoring weather situations. Weather-monitoring systems

often generate spatial data to represent the regional events such rainstorms, snow weathers,

and blizzards. The geo-stream data of the weather monitoring provides useful information

that could be used to avoid injury, death, and asset loss in serious weather situations.

The resulting large data volumes require efficient management systems that traditional

database management systems (DBMS) lack. For example, a traditional DBMS does not

offer efficient modeling of spatial data types. Newer spatio-temporal database manage-

ment systems (STDBMS), such as SECONDO [10], do offer those capabilities but often lack

streaming capabilities.

1.1.3. Geo-Stream DBMS

Researchers have developed several stream management systems (SMSs) to reconcile the

need of managing streaming data.

One example is Stanford’s STREAM project, a general-purpose SMS that uses a specially

designed continuous query language (CQL) with sliding window operators for stream-to-

stream and stream-to-relation queries [5]. The paper states that more and more applications

need streaming data support. The data stream can continue flowing into a data management

system. Therefore, there is a need for queries that could handle not only the static data sets

but also the data stream. Traditional data management systems hardly process the continue

queries on the data stream. Therefore, they developed new query system to allow users

easily issue continuous queries on stream data. Their queries are based on three different

5

Figure 1.1. STREAM’s query system.

abstract parts: relational query language, window specification language, and relation-to-

stream operator. The window specification language uses window approach to select limited

data sets from the data stream, and transforms the data into relational tuples. It is a

process that performs stream-to-relation operations. It first places a window in the data

stream. When the data flows through the window, it is selected. The selected data can

be taken out from the flow and processed into the form of relational tuples. In addition, it

applies relational query language to query the target tuples. Most traditional query language,

such as SQL, can perform a query for relational tuples. When the query returns results, it

begins to run the relation-to-stream operations to output the results back to the data stream.

The relation-to-stream operations can transform the relational tuples into streaming data.

Therefore, the query did not break the data stream flow. The data comes into the query

system as a stream and also comes out as a stream. Therefore, in general, every time a data

stream brings the new data into a window, the window does three operations: stream-to-

relation, relational query, and relation-to-stream. All the data goes into the window in the

stream; the query results continue running out of the window and join into the stream. Fig.

1.1 shows the STREAM’s query system.

6

Another example is Aurora, a joint project between Brandeis University, Brown Uni-

versity, and M.I.T. that also uses window operators and eventually led to the StreamSQL

language [2]. It argues that the traditional DBMSs do not care about the historical data

while giving most attention to current data. Furthermore, it states that traditional DBMSs

always get exact query answers. Therefore, a traditional DBMS needs complete data to

answer a query. Moreover, the traditional DBMSs lack the ability to handle the real time

data. Streaming data is always incomplete and needs to be processed in real-time. For

example, when a data management system accepts data stream, the input data continues

flowing into the system. The data may not be complete when the system performs a query.

As an instance, when we try to query the cars’ trajectory in 2 hours from now, the data is

not complete when we run the query. The query will finish after the 2 hours. And since

the data stream continues flowing in the system, if we do not perform query in real-time,

we may miss the right point of doing the query. As another example, if we perform a query

of selecting a car’s current speed, if a system can not perform the query in real-time and

performs the query 2 minutes later, it will returns the cars’s speed of 2 minutes later, but not

the speed from the time we want to perform the query. Therefore, a system for streaming

data has to perform queries from the incomplete data sets and do it in real-time. From

the incomplete data sets, a query may not be able to return an exact answer, but it may

return the approximate query answers. For example, for a monitoring system, it may need

to perform approximate queries. The monitoring system’s data is continuously generating

all the time. The sensors for a traffic monitoring system can produce a huge amount of

geo-streaming data every day. Usually, a monitoring system needs to pay a lot of attention

to the historical data when it tries to find out abnormal objects in its data sets. When an

abnormal event happened, it needs to trigger an alert to tell users to pay attention to the

abnormal events. However, since the input data’s amount is huge and continues to grow, the

early streaming data may flow out of the management system already. Therefore, when we

track the historical data, we may not be able to return the exact answer from the incomplete

7

historical data sets which lead to approximate query answering. For the query processing

steps, Aurora is similar to Stanford’s STREAM project. It adopts the boxes and arrows

paradigm. The data input stream comes into a box, queries are performed in the boxes,

and the results go out from the box. The query results flow into applications as an output

stream. Aurora designs connection points on the data stream path. The connection points

are for applications, and they are where the applications connect with Aurora. When an ap-

plication needs new queries, Aurora can add new boxes in the connection points on the path

of data stream. When a data stream comes though the boxes, the system cut the unbound

data stream to finite data sets. The bounders of the data sets are the bounders of the boxes.

Then it performs queries in the boxes, and outputs the results back to the stream. In the

data stream, the query results flow into the application that is connected with the connection

nodes. When an application does not want a query anymore, Aurora can delete the boxes on

the path. Since the applications often need to query the historical data, Aurora can usually

store data for certain time period in the connection point. In a few cases, a connection node

can have no upper-stream node and it may only have historical static data sets. But without

the data that comes from upper-stream, the data in the connection node could not form

a stream. If we only want to query for the historical data, Aurora can just push the data

from the connection node going down as a down-stream even without upper-stream data.

And down-stream data could pull the data into a box to execute queries. Fig. 1.2 shows the

Aurora’s query system.

The 2 examples above of stream data management systems (SMS) illustrates how a

SMS is developed and what their basic features are. They are very famous SMSs, but they

are not the only well-structured SMSs that have been developed. In recent decades, many

researchers are focusing on stream data management area. They developed many SMSs and

used them in a lot of different applications. Some labs are still developing their own SMSs

for specific applications; some are modifying the existing data management system to make

8

Figure 1.2. Aurora’s query system.

it more suitable for the stream data; some are optimizing a SMS for making it faster and

more reliable.

For example, Borealis later superseded Aurora and offered additional features such as

dynamic revising of query results and dynamic query modification [1]. Borealis is a dis-

tributed data management system for stream processing. The processing is distributed to

different Borealis nodes in a network that has huge amount of query operations. Every node

can access and perform query operations toward the data stream. Each node is able to do

three different information revision operations toward the data stream. Information revision

allows us to recover the data from problems or mistakes in the input. In the Aurora system,

it can only insert data into a stream for the revision of information. In the Borealis system,

it has the insert data ability just as Aurora; moreover, it can delete a data record from the

stream, and replace a data record in the stream. This provides more revising control for

Borealis. It also contains many attributes in the data stream, such as data importance and

data arrival time, to optimize the query processing. With these attributes, it can use Vector

of Metrics to weigh the data’s impaction. In this way, we can get the most important or

expected query results faster. Overall, Borealis is designed based on Aurora, but contains

much more abilities than Aurora.

9

Another example is StreanInsight. Recently, Microsoft released the StreamInsight SMS,

which extends the Microsoft SQL Server framework to offer stream management [4]. These

SMSs are generally tuple-based that do not directly support geo-streaming objects.

Most of the example management systems open their source codes for the users. It’s

a great way to share knowledge. Users can download the source codes and see the entire

structures of the systems from the codes. Moreover, most of the developers of stream data

management systems also put their end-user applications on their website for free. The other

developers can easily implement new applications based on the published source code and

applications. And users can easily compare the traditional data management systems and

geo-stream data management systems.

1.1.4. Benchmark for Geo-Stream DBMS

The extensive usage of the sensors generates a lot of geo-stream data. The enormous

geo-stream data requires efficient stream data management systems for different applica-

tions. As said in previous section, there are many SMSs developed recently. The efforts

to adapt or create management systems for geo-streaming applications require determining

functionality and efficiency through performance evaluations. Benchmarks provide an eval-

uation platform by offering simplified experimental scenarios using scalable, well-structured,

data sets and operations to test individual components or entire systems. This makes it

simple to compare multiple systems under identical parameters while eliminating bias intro-

duced when data or operations favor one system over another. However, SMS benchmarks

are rare and there is no widely adopted benchmark for geo-streaming management systems

in the literature. The close relationship between DBMSs, STDBMSs, SMSs, and GSMSs,

does provide several relevant examples including SEQUOIA 2000 (spatial), DynaMark (spa-

tial), Linear Road Benchmark (spatio-temporal streaming), BerlinMOD (spatio-temporal),

COSTS (spatio-temporal), and 3-D Spatio-temporal Benchmark (spatio-temporal). The de-

tails of the above benchmark are discussed in the Chapter 2. Therefore, it is necessary to

have a benchmark for those SMSs, especially for geo-stream data management systems. The

10

thesis studies these benchmarks, and develops a brand new benchmark for geo-stream data

management systems. This benchmark is named as GSMark.

1.2. Contribution

This thesis presents GSMark, a framework for evaluating two-dimensional GSMSs. Specif-

ically, this thesis offers three contributions. First, this paper overviews the aforementioned

benchmarks and provides a classification scheme to categorizes them as being spatial or

spatio-temporal and either streaming or non-streaming. Second, it describes the three com-

ponents of GSMark. The data generator (1) produces streaming point and polygon objects

to cover various test scenarios. The set of queries (2) evaluate GSMS performance concerning

spatio-temporal data, both static and streaming, and typical operations involving selection,

join, aggregation, and continuous queries. The workload simulator (3) delivers geo-streaming

data over a simulated unreliable network. Finally, this paper discusses the benchmark’s data

generator performance to demonstrate its potential in creating large data sets in reasonable

time. GSMark v1.0 is available at http://powerranger.cse.unt.edu/GSMark.

1.3. Organize of the Thesis

The remainder of the thesis is organized as following. Chapter 2 discusses the related

works. Several representative benchmarks are reviewed. Through comparing the bench-

marks, the thesis identifies what need be developed for a geo-stream benchmark system.

Chapter 3, 4 and 5 present the 3 major components of the benchmark. Chapter 3 introduces

the data generator of the benchmark. It demonstrates how the data is simulated and the

main principles of the traffic flows. Chapter 4 presents the details of the benchmark’s work-

load simulator. The work-load simulator responds to the data delivery and storage. Chapter

5 summarizes the query sets of the benchmark. It includes the most popular queries for the

streaming data and most necessary operations for current geo-stream management systems.

Chapter 6 presents several experimental results of the benchmark. Chapter 7 concludes the

thesis, and suggests future works that could be done to improve the benchmark.

11

CHAPTER 2

RELATED WORK

2.1. Benchmark for Evaluating Data Management Systems

Even though there is not a widely adopted GSMS (geo-stream management system)

benchmark, several benchmarks share similar characteristics. One popular benchmark is the

TPC series that evaluates performance using business scenarios [17]. Adapting this series to

STDBMSs (spatio-temporal data management system) is a challenge because of the spatio-

temporal context. For example, a brokerage firm performing thousands of transactions per

minute consisting of time, purchase/sell amount, and identification information, is signifi-

cantly different from a weather storm that requires spatial extents and different processing

techniques.

Attempts to adapt/create benchmarks for STDBMSs and SMSs (stream management

system) have resulted in four general categories. Typically, a benchmark is either spatial

or spatio-temporal and either streaming or non-streaming1. A spatial benchmark evaluates

the system’s functionality regarding only spatial aspects, such as the performance of joining

polygons. Spatio-temporal benchmarks focus on both space and time; for example, it may

evaluate performance when finding overlapping polygon regions during a time interval. A

benchmark is streaming if it evaluates the system’s streaming capabilities; otherwise, it is

non-streaming. The following highlights various benchmarks in these categories, but note

that the benchmark’s goal determines the category. To clarify, let us consider a benchmark

that generates spatio-temporal data. If the benchmark only performs spatial queries, it is

a spatial benchmark, not spatio-temporal. If the data could represent streaming data, but

the benchmark does not treat it as such, it is a non-streaming benchmark.

1There are benchmarks for temporal databases but they are outdated since temporal data is typically

associated with spatio-temporal databases today.

12

2.2. Example Benchmarks

2.2.1. Linear Road Benchmark

The Linear Road Benchmark (LRB) is for stream management systems [6]. The authors

identified that a SMS benchmark requires semantically valid data (i.e. not random) meaning

that simulated2 data must to be realistic. LRB provides this by simulating a variable tolling

system that charges based on dynamic traffic congestion and accident proximity. The simu-

lated data consists of vehicle location reports every thirty seconds and associated statistical

information used for detecting and alerting vehicles of accidents and toll charge calculations.

The system uses the MIT Traffic Simulator to generate moving vehicles on straight parallel

roads with eight lane roads (four eastbound, four westbound) in a 100x100 square mile area.

Accidents occur at randomly every 20 minutes, forcing other traffic to slow down according

to a traffic spacing model.

The benchmark provides two query types: continuous and historical. The continuous

queries involve variable toll calculations and accident notifications since these are dependent

on current conditions. The non-continuous historical queries are account balance, daily ex-

penditure, or travel time estimation queries that the vehicles issue at some fixed probability

when producing a location report. The account balance query returns the current toll bal-

ance using data from the start of the benchmark execution until the request time. Daily

expenditure queries returns the toll charged for a given day within the last ten weeks, ex-

cluding the current day. The travel time estimation query uses historical statistics to predict

the travel time and toll charges based on the previous ten weeks of data.

While the benchmark does provide data and queries, it is limited in representing realis-

tic situations. First, the road network is limited to parallel straight roads when real road

networks have curves and intersections and it only considers traffic accidents as an imped-

iment to traffic flow. More importantly, LRB reduces the vehicle’s spatial location from

an x-y coordinate to distance from the westernmost point of the expressway. This limits

2This paper uses the terms synthetic and simulated interchangeably.

13

spatial and temporal data exploration necessary for GSMSs. For example, a GSMS could

represent dynamic global area events, such as a moving rainstorm or widespread fire, as

polygons that affect different road segments at different times. Therefore, this is techni-

cally a spatio-temporal streaming benchmark; however, the data limits its spatio-temporal

evaluation.

2.2.2. SEQUOIA 2000 Benchmark

Stonebraker et al. developed the SEQUOIA 2000 benchmark, a non-streaming spatial

benchmark, for evaluating performance when involving earth science problems [16]. They

identified that earth science applications typically require large databases of images, simu-

lation output, complex data types, and sophisticated searches. The problems also tend to

be on local, regional, national, and Earth scales and the benchmark reflects this by having

three sub-benchmarks: regional for large regions, national for entire countries, and Earth

for the entire globe. They further identify that the common data types for earth science

problems are raster, point, polygon, and directed graph, and gather real data from NOAA

(National Oceanic and Atmospheric Administration) Advanced Very High Resolution Ra-

diometer sensors (raster data), the USGS (United States Geological Survey) Geographical

Names Information System (point data), the USGS land-use/land-cover type dataset (poly-

gon), and the USGS drainage network (directed graph).

The authors provide eleven queries to evaluate the capabilities. The first query evaluates

creating and loading the database. Three queries cover the raster data type including listing

time-sorted raster data, raster data aggregation using time and geographical region, and

changing raster image spatial resolution. The next three queries involve finding a point

given an identification value, finding polygons that intersect specified rectangular regions,

and finding polygons with specific sizes within a given circular region. Queries 8, 9, and 10,

are points, polygons, and raster image spatial joins and the final query is a recursion query

using the drainage network directed graph.

14

The benchmark data is spatio-temporal data; however, it is a spatial benchmark because

the temporal attribute is like any other non-spatial, non-temporal, attribute. For example,

the joining of raster objects uses it as a filter and the retrieval of objects uses it as a sort key.

This data could potentially be streaming data, but the benchmark treats it statically, thereby

classifying it as a non-streaming spatial benchmark. The benchmark is also extensible to

other problem types, as noted by the authors, but it is still limited to spatial evaluation.

2.2.3. 3-Dimensional Spatio-temporal Benchmark

The 3-Dimensional Spatio-temporal Benchmark by Dr. Werstein is for non-streaming

STDBMSs [18]. He identified that most benchmarks at the time, such as SEQUOIA 2000,

could not apply to spatio-temporal systems because they rely on spatial information while

paying little attention to temporal attributes. The spatial information is also limited to two

dimensions while many real-world examples use 3-D data. As a result, the data sets are

often lacking and the queries limit the benchmark to spatial evaluation.

The benchmark fully evaluates the database’s 2-D and 3-D spatio-temporal capabilities

by extending the SEQUOIA 2000 benchmark data set, adding new functions to track histor-

ical characteristics, and providing queries that evaluate index creation, aggregation, object

tracking, overlapping regions, region based data retrieval (including overlapping regions),

point and polygon joining, and data updates/changes. This benchmark performs well at

evaluating spatio-temporal databases; however, it is limited to non-steaming systems and

does not provide any continuous queries that would be typical in a GSMS.

2.2.4. The DynaMark Benchmark

Myllymak et al. developed the DynaMark benchmark to evaluate middleware and data-

base servers that support LBS, but it is applicable to any spatial database since the database

benchmark component can stand-alone [15]. The data simulates the movement of mobile

users represented by an ID, three-dimensional location, and timestamp, who update their

location with an average periodicity. They also provide spatial queries categorized as prox-

imity, K-NN, and sorted-distance. The proximity query finds all the objects within a 2-D or

15

3-D range. The K-NN queries represent users searching for other users or stationary objects

and the sorted-distance query lists the objects based on distances relative to a reference

point.

The data could be used as spatio-temporal streaming data; however, the benchmark’s

focus is on the spatial index performance as the system inserts and updates user locations.

Furthermore, the spatial continuous point queries may use a polygon to limit the query range

but they do not evaluate the system’s capabilities involving a full range of spatial objects

such as a streaming polygon overlapping a line segment. A GSMS benchmark would need to

expand this and change the focus from indexing evaluation to streaming and spatio-temporal

aspects.

2.2.5. COST Benchmark

Like the DynaMark benchmark, the COST benchmark is for LBS systems but is applica-

ble to any spatio-temporal database system [12]; however, this benchmark is only concerned

with indexing performance. The benchmark measures the system performance using average

I/O and CPU time per index operation when performing updates and queries. The data is

simulated objects with periodically updated 2-D locations. The data position queries include

finding trajectories through an approximation function that uses historical data and are of

three types: timeslice, window, and moving window. The timeslice query returns objects

that intersect with a given 2-D rectangle while the window query returns objects that in-

tersect a rectangle during a given time interval. The moving window query returns objects

that intersect a trapezoid resulting from connecting rectangles at two different times.

The benchmark’s workload generator is important because it must enable index eval-

uation as opposed to query response evaluation. The generator uses several parameters

(number of objects, positioning, velocity skew, update arrival patterns, position accuracy,

and workload duration) with an extension to Šaltenis’s generator to produce synthetic data.

The queries include spatio-temporal aspects; however, since the focus is on indexing, the

benchmark does not fully evaluate a STDBMS nor is it concerned with streaming data.

16

2.2.6. BerlinMOD

The BerlinMOD benchmark, like LRB, simulates spatio-temporal data of moving vehicles

on a road network [9]. The Berlin road network serves as a base with vehicles following the

principle that drivers spend the majority of travel time between home and work or within a

surrounding neighborhood, in this case, a 3-km radius around the home. During the week,

the person travels between work and home (labour trip) following a typical temporal pattern.

At home, they have four-hours of spare time in which they may make an additional trip.

On the weekend, the person has two five-hour blocks for additional trips. A trip has a

starting location, destination, follows the shortest path, and attempts travel at the speed

limit. Acceleration, deceleration, and stop events occur with given probability to represent

impediments such as traffic lights and narrow curves.

The benchmark includes two query sets, range and nearest neighbor, which cover five

different aspects: object identity, dimension, query interval, condition type, and aggregation.

The dimensional and query interval aspects are the most interesting because they define the

spatio-temporal aspect of the benchmark. The dimension can be standard, meaning no

spatial or temporal aspects, or can have spatial, temporal, or spatio-temporal aspects with

the query interval defining the query as point, range, or unbounded (continuous). The query

set covers 26 out of the 96 possible combinations since not all combinations are meaningful

for evaluation purposes.

Overall, the BerlinMOD is one of the most comprehensive benchmarks for spatio-temporal

database systems. The data contains significant and meaningful spatial and temporal com-

ponents and the queries evaluate the key facilities. However, it is not a streaming benchmark

since it treats the data statically. Even the continuous queries use the data statically. This

benchmark partly servers as a base for GSMark by providing the moving vehicle concept

and similar queries, but GSMark expands to include streaming polygons and a streaming

data delivery system.

17

Table 2.1. Summary of the benchmarks. An X indicates that the benchmark

belongs to that category. SP = Spatial Only, ST = Spatio-temporal, S =

Streaming.

Benchmark SP ST S Data Notes

Linear Road X X Simulated Limited data set (straight, paral-

lel roads only, reduced spatial lo-

cation)

SEQUOIA 2000 X Real Spatio-temporal data, but tempo-

ral is not evaluated; geared to-

wards earth science problem

3-D Spatio-temporal X N/A Dataset not explicitly explained,

but suspected to be similar to SE-

QOUIA 2000

DynaMark X Simulated Spatio-temporal data but tempo-

ral is not evaluated; geared to-

wards index evaluation

COSTS X Simulated Focused on indexing only; not in-

tended for streaming systems

BerlinMOD X Simulated/Real Complete STDBMS benchmark

2.2.7. Benchmark Summary

Table 2.1 summarizes the benchmarks. The Linear Road Benchmark and BerlinMOD

stand out as providing the best foundational concepts for a GSMS benchmark. GSMark

borrows the vehicle-road network model but extends it to a larger framework and offers data

and queries suitable for geo-streaming data. The following section discusses the principles

considered for data generation using the vehicle-road network concept.

18

2.3. The Brinkhoff Data Generator

There are two general approaches to benchmark data. If the benchmark evaluates overall

performance, then the data should cover the important system components. If the benchmark

is for evaluation under specific conditions, then the data can be limited to those conditions.

The previously mentioned benchmarks exemplify this: SEQUOIA 2000 uses data represent-

ing typical earth science problems while BerlinMOD uses data to cover all spatio-temporal

features. For a GSMS benchmark, the data should be streaming spatio-temporal data that

is semantically valid; e.g., the temporal component should have some meaning in the context

of moving objects.

The data generator framework by Thomas Brinkhoff encapsulates nine principles of mov-

ing objects (Table 2.2) derived from identifying moving object properties exhibited on a

restrictive network [7]. Brinkhoff identified two types of data: synthetic and real. Generally,

the preference is for real data since it allows performance evaluation under realistic condi-

tions; however, it is sometimes difficult to obtain real data, determine the necessary extent

of the data, and how much data to use. In contrast, synthetic data is easy to generate and

one can design it to evaluate algorithms and structures under any condition, but at the cost

of losing realism. Therefore, one goal is to balance real and synthetic data by using real data

but with synthetic data included as necessary. A good example is a road network with vehi-

cles. The vehicles move at different speeds along connected segments and face impediments,

such as traffic jams and adverse weather conditions, while attempting the fastest path. In

addition, there are different road classes and time-scheduled traffic such as a ferry lines. Data

of real road networks is readily available and simulated vehicles can follow basic principles.

This example and principles serve as a foundation for the GSMark data generator.

19

Table 2.2. Brinkhoff’s principles of moving objects.

Principle

1 Moving real-world objects very often

follow a network.

2 Most moving objects use a fast path to

their destination.

3 Networks consist of classified connec-

tions, which have impact on the speed

of spatio-temporal objects.

4 The number of moving objects will in-

fluence the speed of the objects if a

threshold is exceeded.

5 The path of moving objects may change

if the speed on a connection is modified.

6 The number of moving objects is a

time-dependent function.

7 The speed of moving objects is influ-

enced by a spatio-temporal function,

which is independent of the network

and of the objects moving on the net-

work.

8 Moving objects belong to a class. This

class restricts the maximum speed of

the object.

9 Time-scheduled traffic may influence

the speed and the paths of moving ob-

jects.

20

CHAPTER 3

GEO-STREAMING DATA GENERATOR OF THE GSMARK BENCHMARK

The GSMark data generator encapsulates Brinkhoff’s principles by creating synthetic

data sets that incorporate real data. The resulting data consists of a real road network with

simulated moving vehicles influenced by traffic jams and weather conditions. The principles

are actually relaxed some to prevent creating repetitive evaluation data and to focus on

evaluating the streaming capabilities; adding an additional class system of constraints to

vehicles already under similar constraints does not significantly add to evaluating a GSMS

(geo-stream management system). The data generator can also stand alone and includes a

tiger/line shape file converter. The following describes the data generator in more details.

3.1. Real Road Network

As mentioned in Chapter 2, it’s better to have both simulated data and real data. Real

data can present more realistic condition, but is hard to obtain. Synthetic data is easy to

generated, but lacks the realism. It is necessary to make a balance of synthetic data and

real data. The GSMark data generator creates moving vehicles on a real-world road network

coming from the U.S. Census Bureau tiger/line shape files [8]. The tiger/line shape files are

an extensive source but the file format is difficult to interpret by inspection and often requires

a conversion tool. There are several converters that are easy to use, have most necessary

features, but are not free. Most free converters are not easy to use, and lack important

features. Therefore, GSMark designs its own converter to convert shape files. For pragmatic

purposes, the data generator will use information from ESRI’s GIS (geographic information

system) software white papers to convert and clean (remove duplicate data points and road

segments) the shape files into a simple text format resembling Feifei Li’s dataset of real road

networks from Florida State University [13]. The data generator also converts the files to

21

Figure 3.1. An example KML file resulting from converting a tiger/lines shape

file. The file is easy to read, understand, and usable by Google Maps without

special requirements.

the Google KML format allowing non-experts to easily read and visualize them. Google

KML files can be executed by Google Earth and Google map. Google Earth have more

functionalities that can present different views for users. For example, Fig. 3.1 shows a

KML file excerpt for Denton, TX, and Fig. 3.2 shows it overlaying the Denton’s Map in

Google Earth. Close inspection reveals some errors, such as creeks appearing as roads, but

the errors propagate from the original shape file and are removable by hand.

22

Figure 3.2. The data generator converted the tiger/line data file of Denton,

TX, to the KML format. The road network is real enough to host simulated

vehicles for evaluating a GSMS.

3.2. Routes and Routing

Each data point defining the road is a network node. The data generator will randomly

select, using a uniform distribution, two nodes designated as the vehicle’s start and desti-

nation nodes. The A* algorithm then finds the shortest path (route) between these two

nodes. The data generator ensures reasonable route distances with an adjustment to the A*

algorithm so that it adjusts the routes for every other vehicle to maintain a running aver-

age length (17 miles by default) as it generates vehicles. The A* algorithm removes road

segments from the end of the route if it too long or adds the shortest connecting segment

to the end if it is too short. The removal of segments still guarantees the shortest route;

however, adding segments do not guarantee the shortest route from the start node the new

destination node, but it is still reasonable for evaluation purposes.

23

Algorithm 3.2.1: Generate Vehicles()

Let : v = list of vehicles

end = user chosen end time

nodelist = all road network nodes

maxV = number of desired vehicles

moving = flag indicating vehicle movement

for i← 1 to maxV

do



v[i].startLocation← x ∈ nodelist

v[i].endLocation← y ∈ nodelist|x 6= y

v[i].route← A∗(x, y)

v[i].moving ← false

temp← randomInt(0, 9)

if 0 <= temp <= 2

then v[i].time← randomTime(0, 600)

else if 3 <= temp <= 6

then v[i].time← randomTime(600, end− 600)

else v[i].time← randomTime(end− 600, end)

Note : 600 = 10 minutes

The user specifies three parameters for the generator: start time, end time, and the total

number of vehicles. Each vehicle is unique with only one route in the dataset and will have

a random start time between the user specified times. Thirty percent of the vehicles start

in the first 10 minutes, 30 percent in the last 10 minutes, and the remaining 40 percent

in-between to represent two rush hour peaks. The variations in route and speed means

that the number of moving vehicles may be different at any given moment. Algorithm 3.2.1

summarizes this process.

24

3.3. Assigning Speeds

Speed assignment concerns two items: road segments and vehicles. Real road network

segments have a speed limit that vehicles generally adhere to or travel slower. For example,

highways often have a 70 mi/h speed limit outside city limits but vehicles will travel below or

at this speed to avoid speeding tickets and city streets may have 30 mi/h limits but vehicles

often travel slower through intersections and turns. In addition, vehicles on a road segment

typically travel the same speed to match the traffic flow. The data generator can use this

as an assumption to simplify speed assignment. Each road segment can have a speed limit

and any vehicles on the segment will travel at that speed unless impediments exist such

as traffic jams or weather conditions. When impediments occur, simply lowering the speed

limit forces the vehicles to travel slower. It is not necessary for the data generator to give

every road segment a different speed limit to evaluate a GSMS because traffic impediments

already factor vehicle speed changes into the dataset. The following two sections will discuss

how the benchmark uses traffic jams and weather conditions to impede the traffic through

adjusting the speed limit.

25

3.4. Capacity and Traffic Jams

Algorithm 3.4.1: trafficJam()

Let : v = list of vehicles

nodelist = all road network nodes

maxV = number of desired vehicles

moving = flag indicating vehicle movement

movingV = listofmovingvehicles

completedV = number of processed vehicles

timestamp = current time being processed

sort(v)

timestamp← 0; i← 0; j ← 0; completedV ← 0

while completedV < maxV

do



while v[i].time = timestamp

do



movingV [j]← v[i]

movingV [j].moving ← true

updateSegmentCounts()

calcSegmentSpeeds()

i← i + 1

for k ← 1 to movingV.size

do



if movingV [k].moving = true

then



move(movingV [k])

updateSegmentCounts()

calcSegmentSpeeds()

checkDest(movingV [k])

timestamp← timestamp + 1

completedV ← completedV + 1

26

(1) snew = max(smin, so − so ∗ ((Vc − Vmax)/Vmax))

The road segment capacity exerts influence on vehicle speeds; for example, a road segment

with capacity of 10 but currently hosting 20 vehicles forces vehicles to decrease speed. In

other words, this creates a traffic jam the data generator implements using Algorithm 3.4.1.

Any vehicles arriving to an impacted segment must slow down and the addition of this vehicle

further slows traffic. The proposed benchmark considers this by assigning a capacity and

using a slowdown equation to decrease the segment’s speed limit automatically when the

current capacity exceeds the maximum capacity. The new speed sn is the original speed so

minus a proportion of the original speed based on the current capacity Vc and the maximum

capacity Vmax. As is, this equation can produce a speed less than or equal to zero, which

would violate the traffic model since vehicles cannot have negative speeds and a speed of zero

would permanently halt any vehicles on the segment. Research has shown that in heavily

congested traffic, there is generally a minimum speed smin that vehicles move [3]; therefore,

the equation (Eq. 1) takes the maximum of either the minimum speed (by default 5 mi/h)

or the calculated speed. The speed returns to the original value once the capacity equals or

falls below the maximum.

There are two items to note. First, assigning different maximum capacities to the road

segments is not necessary because the variation in current capacity is sufficient for evaluating

a GSMS. This also coincides with the previous statement about directly assigning different

speeds to road segments—it is not necessary since this impediment creates the speed varia-

tions. Second, the traffic jam is not a defined object in the data set. Instead, it is implicit

in the distance between the vehicle coordinates.

3.5. External Events

External events, e.g. weather conditions, may affect vehicle speeds. The data generator

creates moving polygons to represent such events based on user-defined area size, speed,

27

Figure 3.3. Polygon A moves from its current location to polygon B, changing

shape as each point travels along the straight-line trajectory (blue dash lines)

to a point in polygon B. Starting with a1, the data generator mapped the

points using the minimal distance and each point travels at a relative rate to

the center point to ensure that all points arrive at their corresponding points

at the same time.

number of desired polygons, and number of polygon sides. It uses a simple method to

generate the polygon. First, it selects a random starting location to represent the polygon’s

center and another for the ending location. It then creates a rectangle around the starting

center point to serve as a polygon template. The dimensions of the rectangular are selected at

random but limited to ensure the area matches the user’s chosen size. Third, it conceptually

divides the rectangle into four quarters and then randomly selects points of varying distances

(maximum of about 17 miles) from the edge to create approximately one-fourth of the desired

sides per quarter. For example, a request for a 200-face polygon causes the generator to select

and connect 50 random points per rectangle quarter.

The polygon overlays the road network and moves at the user defined speed, changing

shape, until it reaches the ending location. The benchmark simulates this by creating two

polygons, one at the starting location and one at the ending location. The data generator

maps the polygon points from the starting polygon to the ending polygon based on the

28

minimum distance between the points of the two polygons. Alternatively, one can view this

as polygon A morphing and moving until it reaches the shape and location of polygon B.

Consider the two polygons in Fig. 3.3. There are five points in polygon B that point a1

can map to from polygon A. In this example, the minimum distance from a1 is to b2 so the

process maps those points and removes them from the remaining mapping process. Next,

a2 maps to b1 followed by a3 to b3, etc. Each point of A moves along the straight line

connecting it to its corresponding point of B at a relative speed such that all points meet

their corresponding points at the same time.

The moving polygon triggers a 70 percent decrease in the speed limits of road segments

beneath it, thereby slowing the vehicles; once it passes, the speed returns to normal. The

area affected is not the full polygon area however. The original rectangle serves as non-

strict boundary for the affected area to reduce edge detection complexity as it moves. It

is non-strict because the slowdown only affects full road segments. This simplification does

not affect the benchmark’s ability to evaluate a system because the data still exhibits the

moving object properties and the polygon’s primary purpose in evaluating spatio-temporal

facilities is unaffected.

3.6. Output Data

The data generator outputs the resulting data into both KML and TXT files. There are

two groups of files: the road network dataset and the vehicle/polygon dataset. The road

network dataset includes a KML file containing all nodes and edges and TXT files of network

nodes (.node filename extension) and edges (.edge filename extension). The vehicle-polygon

dataset has three files including a TXT file with all vehicle and polygon data and separate

KML files for vehicles and polygons. Table 3.1 is a vehicle TXT file excerpt showing each

vehicle with a unique identification, timestamp, and location. Fig. 3.5 shows the KML

vehicle-polygon file containing 136 vehicles for 90 minutes on the California road network.

The white lines trace the vehicle trips and the blue squares indicate their final destination.

29

(a) Time 0 (b) Time 1 (c) Time 2

(d) Time 3

Figure 3.4. An example 200-face polygon moving northwest over the Denton,

TX road network. At each time interval, the polygon has changed position

and shape.

With only a few vehicles, the trips cover a significant portion of the road network and indicate

that the data generator does create reasonable route distances.

30

Table 3.1. An example of the data generator’s vehicle TXT output file.

Time Stamp object ID Object Position

2011-1-31 17:47:43 0 -117.491379 34.809978

2011-1-31 17:47:53 0 -117.465027 34.735233

2011-1-31 17:48:10 0 -117.421669 34.604073

2011-1-31 17:48:13 0 -117.41745 34.580677

2011-1-31 17:48:15 0 -117.400993 34.580963

2011-1-31 17:48:16 0 -117.400291 34.576096

2011-1-31 17:48:22 0 -117.400414 34.522202

2011-1-31 17:48:33 0 -117.401802 34.428623

2011-1-31 17:48:44 0 -117.492363 34.428772

2011-1-31 17:48:52 0 -117.563164 34.428162

2011-1-31 17:48:54 1 -120.824333 40.101688

2011-1-31 17:48:56 0 -117.597809 34.427448

2011-1-31 17:48:58 0 -117.612152 34.42421

2011-1-31 17:48:59 1 -120.808983 40.063011

Figure 3.5. 136 simulated vehicles on the California road network for 90 min-

utes. Each blue square represents the vehicle destination and the while lines

trace all the routes by the end of the dataset.

31

CHAPTER 4

WORKLOAD SIMULATOR OF THE GSMARK BENCHMARK

4.1. The Purpose of the Workload Simulator

First, the purpose of the workload simulator is to deliver a data stream to a GSMS

(geo-stream management system). To evaluate the performance of a GSMS, we have to

have a data stream that can be delivered to a GSMS. By using the data generator, we can

have the data set ready for use, but the data is not delivered to a GSMS as a data stream.

Therefore, we need the workload simulator to deliver the data records as a data stream.

Different GSMSs may accept a data stream in different ways. To make the benchmark work

for different GSMSs, we do not restrict the data delivery to the format of a single GSMS.

Instead, we create a buffer in memory and deliver the data stream into that buffer. Any

application that is able to access the buffer can share the data stream. Fig. 4.1 shows how

the data stream flows into a GSMS.

In addition, the workload simulator should be able to not only simply deliver the data

stream, but also simulate a real sensor network’s complicated behaviors. This can make the

simulated data stream more realistic. Therefore, the GSMark’s data generator and workload

simulator work together to simulate a sensor network that has remote sensors on each moving

object. The simulated sensor network works as below: 1) each sensor can get the longitude,

latitude and timestamp of a moving object when a record is generated, 2) the sensor network

sends data each time unit (by default we use 1 second as a time unit), 3) several sensors (the

exact number of sensors is defined by the users) are used to detect the edges of the moving

regional events (such as a fire and a storm) and send the data records in each time unit.

The time unit, number of moving objects, and number of sensors for moving regional events,

strongly impact the performance of the benchmark. For example, the shorter the time unit

32

Figure 4.1. Data flow of workload simulator.

is, the slower the benchmark performs. The benchmark will also be slowed down when it has

more moving objects since it needs to find out each object’s position during every time unit.

For a moving regional event, it is represented by a polygon. We use the nodes of the polygon

to represent the sensors that report the geo-referenced information of the event. For example,

a special event that is monitored by 200 sensors is simulated by a polygon composed by 200

33

nodes. Therefore, if we use more sensors to report the geo-referenced information, we need

to check more sensors in each time unit. In other words, it means we need to check more

nodes’ positions each time unit which slows the benchmark dramatically. More details of the

benchmark’s performance’s issue are discussed in chapter 6. Fig. 4.2 shows the simulated

sensor network.

Furthermore, in some cases, the sensor network may behave abnormal. For example, the

network may not be able to always deliver the data records at the same speed. If a moving

object is in a bad signal area, the network’s speed may be much slower than during normal

conditions. Therefore, the workload simulator should be able to simulate the abnormal

situation of a sensor network. This is further explained in the next section.

In conclusion, the workload simulator’s purpose is to deliver the data records into the

GSMS as a data stream and work with data generator to simulate a sensor network’s realistic

behaviors.

4.2. Components of The Workload Simulator

To simulate the data delivery steps, we need to have two components. One component

to send data from the data sets that are generated from data generator; another component

to receive the data that is sent from the first part and make the data stream accessible for

the GSMSs. Therefore, the workload simulator has a sender and the receiver. The sender

executes on a local machine but simulates a sensor by reading data object records from

the data file and sending them to the receiver along with signal messages indicating the

beginning and the end of the data stream. The sender uses the time stamps to simulate

time. At the start of a sender cycle, the sender reads all the data for timestamp T1 and

sends it over a TCP/IP connection to the receiver. Then it sends all the data for timestamp

T2, and so on until the end of the dataset.

The sender also simulates sensor network delays. When it reads an object’s record with

timestamp Ti, there is a probability (50% by default) that the record will delay by a random

amount of seconds d (0-5 seconds by default). If the delay is greater than one second, then

34

Figure 4.2. Simulated sensor network.

the record transmits at time Ti+d, creating an out-of-order sequence. In addition, the record

also has a probability (50% by default) of delay by a random number of records. This creates

an unknown time delay and, if large enough, the record will end up at the end of the dataset.

The sender can delay the record by both time and record count; for example, it may delay

35

by 5 seconds and then an additional 11 records. Once it is in its new sequence location, the

sender may delay it again when it reads the record for a second time. In extreme cases, a

record could propagate to the end of the dataset.

The receiver executes in an infinite loop with a listener waiting for the signal from the

sender to receive data. Once signaled, the listener performs a reading operation that feeds

the incoming data into a 101-element circular FIFO memory buffer until it reads the sender ’s

end of data signal. After reading this signal, the listener begins waiting for the next incoming

data signal. The GSMS can directly use the resulting data in memory if shared, or the data

can reside in a file or database.

In the following sections, the details of the sender and receiver are discussed.

4.2.1. Sender

The main purpose of the sender is to simulate the sensor network’s data stream delivery.

Therefore, we study the sensor network’s realistic process of data stream delivery. The

process has several important features that may impact the performance of a GSMS.

First, the most basic feature of the sensor’s data stream delivery process is that the

sensors send a regular data stream to a GSMS server. We assume a situation in which we

have sensors on different moving objects and the sensors send the objects’ geo-referenced

information to a GSMS server every second. In this situation, the sensors will generate a

data stream that continues feeding each moving object’s geo-referenced information into a

GSMS every second. We also assume the geo-referenced information is a object’s longitude

and latitude, and we do not consider altitude since we assume that each moving object moves

on the ground.

Second, the delivery of the data records in the sensor network may be delayed. In a

perfect network situation, all the data should arrive at the server on time. However, the

network may be influenced by many factors, such as weather, obstructions between sensors

and servers, and other signals interferences. Therefore, when a sensor sends a data record to

36

a server, the delivery progress may be delayed since the network may be impacted by many

factors.

Third, the data records may not be delivered in the order of their time stamps. In the

entire sensor network, different sensors may be influenced by different factors making them

perform the delivery progress differently; for example, one sensor’s location is in a bad signal

area. The data delivery speed of this sensor is slower than other sensors that are in good

signal areas. This causes the data of this sensor to always arrive at the server later than the

data of other sensors. If the delay is long enough (longer than 1 time unit), it may cause the

disorder of the data records. To continue this example, let us assume that a sensor S1 is in a

bad network situation. S1 sends a data record that has 10:14:25 AM as its timestamp. The

other sensors send data records at the same time. If other sensors’s delivery can be processed

in real time, when other sensors’ data records reach the server, it is 10:14:25 AM. However,

the S1’s data record is still in the delivery process since its network is slower. Let us assume

that S1 has a 2 seconds delay. Its 10:14:25 AM data record reaches the server at 10:14:27

AM. Therefore, S1’s 10:14:25 AM data record reaches the sever after the other sensors’s data

records that have timestamps of 10:14:26 AM. In the data stream, it will cause a disorder of

data records.

Overall, we need to have the work-load simulator’s sender to simulates the normal data

delivery process, the delay situation, and the disorder situation.

4.2.1.1. Normal data delivery process. To simulate the regular data stream delivery, we

first select the data records that have the same timestamps. Therefore, we need to search

from the beginning of the data set that is generated by the data generator. If a data record’s

timestamp is as same as the first data record’s timestamp, we select it. We finished selecting

until we find a data record that has the timestamp later than the timestamp which we are

selecting.

For example, we have a data set that has the first data record of the timestamp 11:23:34

AM. We select the first data record, and check the data record that is next to the first data

37

record. If the second record’s timestamp is as same as the first record, we select the second

one. Let us assume the timestamps from the first data record to 13th data record are same.

The timestamps of the 14th data record is 11:23:35 AM. Therefore, we need to keep selecting

the data records from the first one to the 13th data record. We finish selecting right before

the 14th data record.

Then we add messages at the beginning and the end of the selected group of data records.

The message before the beginning of the data records should be the “Hello” message. It will

tell the listener of the receiver that the sender is ready to send the data records. We will

discuss the receiver in the next section. The message after the end of the selected data

records should be the “Bye” message. The “Bye” message tells the listener of the receiver

that the sender finished sending the selected data records.

After we selected the data records and added the two messages, we send the set of the

selected data records to the receiver through a Java socket. The Java socket is a built-in

class that is easy to use for connecting two machines through a TCP/IP connection. We

assume the sender is running on one machine, and the receiver is running on another machine

connected to by a Java socket. The data records are sent from the sender machine to the

receiver machine through the connection. After the sender finishes sending the set of the

selected data records, it waits until the next second to select the data records that have the

next time stamps. Fig. 4.3 shows the progress of how the sender works in this step.

When we simulate the regular data delivery, we have to be aware of the data records

that have previous timestamps. When we use work-load simulator to simulate a realistic

sensor network, the delay and disorder situations may be generated. Therefore, when we

select the data records of a timestamp, there may be some data records that have previous

timestamps right after them or in-between. For those data records, when we simulate regular

data delivery process, we include them in the selected data set and continue selecting next

data records until we find a record that has a timestamp that is later than the timestamp

we are selecting. In this way, we can deliver the data records which have the previous

38

Figure 4.3. Sender’s working process of sending regular stream.

timestamps to the server after the data records which have later timestamps.Therefore, the

disorder situation is simulated.

For example, suppose we have a data set that has the first data record with timestamp

8:13:41 AM, the second data record with timestamp 8:13:40 AM, the third to the 13th data

records with timestamps 8:13:41 AM and the 14th data record with timestamp 8:13:42 AM.

The second data record is generated earlier than the first data record since it has a earlier

timestamp. It is placed after the first data record because the sender simulates the disorder

situation. When we are doing a regular data delivery, after we selected the first data record,

we check the second one. Since the second data record has the earlier timestamp, we select

39

the second one, and check the third one. Because, from the third data record to the 13th

data record, the timestamps are as same as the first one, we select the data records until the

14th data record that has a later timestamp. After we place “Hello” and “Bye” messages

before the beginning and after the end of the selected data set, we deliver the data set to

the server. Therefore, the second record with previous timestamp will reach the server after

the first record. The disorder situation is simulated completely.

The regular data delivery is the most important and basic feature of the work-load

simulator. To make the data stream more realistic, the workload simulator also has to

simulate the delay and disorder situations.

4.2.1.2. Simulate delay. The simulations of delay and disorder are related. If, because

of a delay, a data record is delivered to the server after any other record that has a later

timestamp, a disorder will occur. Usually, since we set default time unit as 1 second, if a

delay lasts more than 1 second, it may cause a disorder. Through the simulation of delay

and disorder, when we look the data records in a data stream at time T1, we may find not

only the data records of timestamp T1 but also the data records of the previous timestamps.

Although the delay and disorder are related, since we use different parameters and equations

to compute the delay and disorder, we discuss them separately.

Before we introduce how the sender simulates delay, we need to define several parameters.

1) Delay possibility: we use this parameter to determine the possibility of delay. User can

set this number as any number between 0 to 1. When we simulate a delay, the sender

will use the uniform distribution to randomly generate a number between 0 and 1. If the

generated number is less than the delay possibility, it will trigger the delay simulation. Since

the sender uses uniform distribution to generate random numbers, every number has the

same possibility to be generated. For example, if we set the delay possibility as 0.4, it has

40 percent possibility to be selected. 2)Max delay: the max duration of delay. 3) Delay

duration: the duration of a simulated delay. The sender will randomly generate a number

from 0 to 1. Then it will use this number to multiply the max delay. The result will be the

40

simulated delay duration. Equation 2 shows the formula of computing the delay duration.

4) Deliver time: the time that a data record should be delivered to the server. When a data

record is delayed, after we compute the delay duration, we use its timestamp to plus the

delay duration to get the deliver time. The delayed data record is delivered to server at the

deliver time. Equation 3 shows how to compute the deliver time.

(2) DelayDuration = MaxDelay ∗ random[0, 1]

(3) DeliverT ime = DelayDuration + timestamp

For example, a delay is simulated in the following way. We randomly generate a number

in the range of 0 to 1. If we set the delay possibility as 0.5, and the random number is in

the range of 0 to 0.5, a delay will happen. For the duration of a delay, we also randomly

generate a number from 0 to 1. If the delay happens, we use the max delay to multiply the

random number to get the delay duration. If the random number is 0.3, and the max delay

is 20 seconds, the delay duration is 20*0.3=6 seconds. After we have the delay duration, we

use the data record’s timestamp to plus the delay duration to get a deliver time. If the data

record’s timestamp is 10:23:31 AM, the deliver time will be 10:23:31+6 seconds=10:23:37

AM. Therefore, the data record will be delivered at 10:23:37 AM.

4.2.1.3. Simulate disorder. For the disorder simulation, we use the similar strategy as the

delay simulation. There are several parameters we need to introduce. 1) Disorder possibility:

we use this parameter to determine the possibility of disorder. The sender can randomly

generate a number. If the random number is less than the disorder possibility, the sender

will simulate a disorder situation. 2) Max disorder range: the max range of a disorder. 3)

Disorder range: the range of a disorder. To get this number, we use the max disorder range

to multiply a random number. Equation 4 shows how to compute the disorder range. 4)

Disorder index: the index where the data record will move to. We can get it by using the

41

data record’s index plus the disorder range. Equation 5 shows how to compute the disorder

index.

(4) DisorderRange = MaxDisorderRange ∗ random[0, 1]

(5) DisorderIndex = DisorderRange + PreviousIndex

For example, the sender simulates a disorder by using following steps. First, we set up

a number for disorder possibility. Then we random generate a number from 0 to 1. If the

random number is less than the disorder possibility, a disorder will happen. For the range

of disorder, we need to set up a parameter of the max disorder range. Then we generate a

random number from 0 to 1. By using the random number to multiply the max disorder

range, we can get the disorder range. Based the disorder range, we can compute the disorder

index. If the data record is the 15th record in a data set, and its disorder range is 5, the

disorder index will be 15+5=20. After we got the disorder index, the sender will delete the

data record at the original place and insert it to the new index. Therefore, the sender will

delete the 15th data record, the insert the contents of the 15th data record before the 20th

data record. After all these steps, a disorder situation is simulated.

Overall, the simulations of disorder and delay make the behavior of a sensor network

more realistic.

4.2.1.4. Sender parameters’s setting. Table 4.1 using several examples to summarize how

we define the parameters of the sender, and how they work.

4.2.2. Receiver

The sender performs the delivery of the data records while simulating the delay and

disorder situations. After the data is sent from the sender, it is delivered to the receiver.

The listener part in the receiver always listens to the sender. After the sender sends a

data stream, the listener will tell the receiver to receive the data stream and forward the

42

Table 4.1. An example set of the sender’s parameters’ setting.

parameter:

1. delay possibility:

e.g. DelayPossibility=0.5

We generate a number from[0,1]. Assume we get 0.23.

0 < 0.23 < 0.5

Then a delay happens.

2. max delay:

e.g. MaxDelay=20;

We generate a number a from (0,1]. Assume we get 0.3.

DelayDuration=a*maxDelay=0.3*20=6 seconds

3. disorder possibility:

e.g. DisorderPossibility=0.5

We generate a number from[0,1]. Assume we get 0.31.

0 < 0.31 < 0.5

Then a disorder happens.

4. disorder range:

e.g. MaxDisorderRange=5

We generate a number from (0,1]. Assume we get 0.4.

DisorderRange=5*0.4=2

Then we change the record’s index and put in to the index+2.

data stream into a memory buffer. Fig. 4.4 shows the data flow from a sender to a memory

buffer.

The “Hello” message and “Bye” messages in a data stream are working as the signals

that trigger the listener ’s actions. When a listener receives the “Hello” message, it will know

that the sender is sending a data stream to the receiver. Then the listener will forward the

data records of the stream to the main part of the receiver. When the listener receives the

43

Figure 4.4. Workload simulator’s data flow.

“Bye” message, it will know that the sender finishes sending a data stream. The listener

will begin to wait for the next “Hello” message.

After the listener forwards the data records to the receiver, the receiver will create an

array in memory. The array size is fixed. By default, we set the size of the array as 101.

The receiver delivers the data records into the array one by one. Once the array is full, the

receiver will rewrite the array from very beginning. For example, for the array size of 101,

the receiver first writes the data records to the array from index 0 to 100. After it fills the

array element of index 100 with a data record, it will write into the element 0 again.

The memory buffer stores the stream data temporarily. If any GSMS want to input the

data stream, it can share the same memory location of the buffer.

Therefore, by using the sender and the receiver, the work-load simulator can successfully

simulate a realistic sensor network.

After we have the data records that are generated by the data generator and delivered as

a stream by the work-load simulator, the benchmark needs to use the query set to evaluate

different GSMSs. The query set will be discussed in the next chapter.

44

CHAPTER 5

QUERY SENTENCES OF THE GSMARK BENCHMARK

5.1. The Goals of Queries

The goal of the queries is to use the data and queries that are common to the most GSMSs

(geo-stream management system) to evaluate the GSMSs’ performances. In particular, the

benchmark data should consist of three attributes: time, object identification, and position,

with queries focusing on those attributes and typical operations such as selects and joins.

The following are queries designed for the proposed benchmark that cover selects, joins,

aggregations, and historical trajectories, and represent realistic situations that a GSMS may

encounter.

5.2. Schema Used for Queries

Each query is in both English and a geo-stream SQL with data types developed by Zhang

et al. [11]. Table 5.1 gives the schema used for these queries.

Table 5.1. Schema for the benchmark queries. A data type prefixed with s

indicates a streaming version of the data type.

vehicles(ID: int, location: spoint)

nodes(ID: int, location: point)

rain(ID: int, extent: sregion)

floods(ID: int, extent: sregion)

forestFires(ID: int, extent: sregion)

counties(name: sting, extent: region)

45

5.3. Measuring for Query Performance

Measuring the query performance may require more than a single execution and should

incorporate multiple parameter combinations due to peculiarities that may result from ran-

domization, small data sets, or peculiarities with the data. For example, Query 10 is more

interesting if it returns data instead of an empty set resulting from 5% being too low. As

suggested by BerlinMOD, 100 parameter combinations are often adequate and the number of

execution should vary with the query. If the query is simple, a single execution may not ac-

curately represent the result; if the query is complex, only a few executions may be necessary.

5.4. Query Sentences

Query 1: Find a vehicle’s position given a specific vehicle identification number (VID).

SELECT a.location[now]

FROM vehicles a

WHERE a.ID=VID

This relatively simple, but common geo-streaming query, evaluates the system’s ability

to access streaming point data for a specific object and return its location. The now qualifier

refers to the current system time, thus the query produces a single static result using the

time at which the user issued the query.

Query 2: Find a vehicle’s position given a specific vehicle identification number (VID) and

time t.

SELECT a.location[t]

FROM vehicles a

WHERE a.ID=VID

Similar to Query 1, this also finds the vehicle location from streaming data but at a

specific time, requiring the system to search historical data of the data stream.

46

Query 3: Find all vehicles that have passed a specific road network node in past 2 hours.

SELECT at(a.location[past 2 hours], b.location)

FROM vehicles a, nodes b

This continuous query evaluates the system using a join between a data stream and static

data. The vehicles locations are streaming points while the road network nodes are static

points. The past 2 hours qualifier creates a two-hour window from which the system returns

vehicle data, including spatial location.

Query 4: Find all vehicles that rain is currently influencing.

SELECT a.ID

FROM vehicles a, rain c

WHERE inside(a.location[now], c.extent[now])

This query evaluates joining point and polygon data objects involving streams—both

vehicles and rainstorms are streaming data. The system must join the two streams and cal-

culate the intersection to find those vehicles that lay within the streaming rainstorm region.

Query 5: Find rainstorms that currently overlap with a flooded region.

SELECT c.ID, d.ID

FROM rains c, floods d

WHERE intersect(c.extent[now], d.extent[now])

This query evaluates a system’s ability to join streaming data by searching for overlapping

moving polygons. The query appears simple, but the mechanics require several calculations

and operations that a typical mature GSMS would perform and it covers both spatial and

temporal aspects.

Query 6: Find how many vehicles are currently close (within 5 miles) to a node.

SELECT COUNT(*)

47

FROM vehicles a, nodes b

WHERE b.ID=NodeID

AND distance(b.location, a.location[now])<5

This aggregation query requires the GSMS to count of all the moving vehicles that are

within in 5 miles to a road network node. The query requires joining stream and static data,

but more importantly, it uses a compound predicate that requires a distance calculation and

filter before the count aggregation.

Query 7: Find how many forest fires happen in a given county during the past 2 years.

SELECT COUNT(*)

FROM forestFires e, counties f

WHERE intersect(e.extent[past 2 years], f.extent)

AND f.name=county

Similar to the previous query, this query is also a count aggregation query using stream

and static data; however, this one is a continuous query using a window on the streaming

data. In addition, the intersection operation requires a more extensive calculation than the

previous query because of the spatial extents.

Query 8: Find a car’s trajectory for the past 30 minutes.

SELECT trajectory(a.location[past 30 minutes])

FROM vehicles a

WHERE a.ID=VID

This is a continuous aggregation query that returns information from a single stream

using a window and trajectory function. This is another common query for a GSMS and is

particularly useful for location-based services.

Query 9: Find counties affected by a forest fire (FID) during the past 2 hours.

48

SELECT f.name

FROM forestFires e, counties f

WHERE duration(at(intersect(e.extent[past 2 hours],

f.extent), TRUE)) <> 0 AND e.name = FID

Similar to previous queries, this continuous query will join streaming and static data,

but this query finds the historical trajectory of a moving polygon in terms of the static re-

gions it overlaps with as it moves. The predicate is also complex, covering several streaming

operations and requiring comparisons.

Query 10: Find a forest fire that currently influences more that 5% of a county.

SELECT e.ID

FROM forestFires e, counties f

WHERE area(intersection(e.extent[now], f.extent))

> 5\% * area(f.extent)

This query evaluates the system involving the intersection of streaming and filters static

polygons by calculated results within the predicate. Specifically, it requires finding the in-

tersecting area of moving regions with static regions, computing the overlap coverage, and

selection using a comparison operator.

Query 11: Find whether a road network node is in a county or not.

SELECT b.ID

FROM nodes b, counties f

WHERE inside(b.location, f.extent)

This is a query that handles the join of 2 static tables. A traditional STDBMSs can do

join of a regional data and a point data. For a GSMS, it should have the same functionality

to proceed the operations of static data.

Query 12: Find objects that are in a county(CountyName) at a certain time(t).

49

SELECT a.ID

FROM vehicles a, counties f

WHERE inside(a.location[t], f.extent)

AND f.name=CountyName

This is a query that needs to do the join of the stream data and the static data. The

stream data records are the moving points. The static data is the polygon data. The query

first selects the the county that is named CountyName. Then it needs to find the spatial

information of the county. Finding extension information of a static region is a common

functionality for GSMSs and STDBMSs. Moreover, since the cars’ locations are coming into

the system as a data stream, it tests the system for searching the moving points’ spatial

information when a particular time is given. And it has to do a join for the point location

and the polygon’s location to find out whether a car is in the county at time t or not.

Query 13: Count how many vehicles that have passed the node b in the past 2 hours.

SELECT COUNT *

FROM vehicles a, nodes b

WHERE at(a.location[past 2 hours], b.location)

This query is similar to query 3, but this query tests a GSMS’s ability to do the counting

operation. Almost all the traditional DBMSs have the functionality for aggregations, such

as sum, count, average and so on. Count is one of the most frequently used aggregation.

The query requires a GSMS to search for the locations of a moving point in a given time

interval. It is one of the most important features of a GSMS. A moving object’s trajectory

in a certain time interval is usually very interested in a geo-stream. The query also requires

the join for the static points and the moving points.

Query 14: Find the distance between 2 cars(CID1, CID2) at a given time t.

SELECT distance(a.location[t], b.location[t])

50

FROM vehicles a, vehicles b

WHERE a.ID=CID1 AND b.ID=CID2

This query performs a join of the vehicles’ data. First, it needs to find one car that has

the ID of CID1 and another car with the ID of CID2. For the 2 cars, the query requires a

GSMS to get their spatial information based on their temporal information. A GSMS should

return the 2 cars’ locations of the time t. After that, the query requires a GSMS to compute

the distance between the 2 locations. It tests a GSMS’s ability of dealing with the spatial

information of 2 point data in a stream.

Query 15: Find all the cars that have been closed (within 5 miles) to each other in past 2

hours.

SELECT a.ID, b.ID

FROM vehicles a, vehicles b

WHERE distance(a.location[past 2 hours],

b.location[past 2 hours])<5

Similar as query 14, this query performs a join of the vehicles’ data. First, it needs to find

every car’s location and compare the location with all the other cars’ locations. The query

needs a GSMS to continue doing the first step for all the data records that have previous 2

hours timestamps. If there is a timestamp that the distance of 2 cars is less than 5 miles,

then we select the 2 cars as a pair.

Query 16: Find which car has run the longest distance in past 2 hours.

SELECT a.ID

FROM vehicles a

WHERE distance(a.location[now],

a.location[now-2 hours])=

MAX(distance(a.location[now],

51

a.location[now-2 hours]))

This query finds a car’s location now and 2 hours ago. Then it compares the locations to

get the distance. The query requires a GSMS to find the distance for each car and compare

the distances to find the max one. The car that has the max distance is selected. This query

is similar to the query 15, but they focus on different aspects. Query 15 compares 2 moving

points’ positions in a stream while this query compares each moving point’s position to itself

of a previous timestamp.

Query 17: Find whether there were 2 cars met each other in past 2 hours.

SELECT a.ID, b.ID

FROM vehicles a, vehicles b

WHERE at(a.location[past 2 hours],

b.location[past 2 hours])

Similar as query 15, but this query does not try to get the distance of 2 locations. This

query compares whether 2 locations are same or not. For each timestamp, it needs to com-

pare a car’s location with all the other cars’ locations. If the locations are same, we select

the 2 cars as a pair. The query needs to continue doing this step for all the cars’ every

timestamp in past 2 hours. If 2 cars have been the same place in the past 2 hours, the query

lists the IDs of the 2 cars. Query 15,16 and 17 give user several options to test a GSMS’s

ability of comparing the moving points’ positions in a past time interval of a data stream.

A GSMS has to be able to query the historical data records as well as handle the real-time

stream’s current data records.

Query 18: If the 2 cars (CID1, CID2) were in a same county at a timestamp (t), list the

county name.

SELECT f.name

FROM vehicles a, vehicles b, counties f

WHERE a.ID=CID1 AND b.ID=CID2 AND

52

inside(a.location[t], f.extent)

AND insdie(b.location[t],f.extent)

Similar as query 12, This query tests a GSMS’s ability to handle join of moving points

and a static region. First it needs a GSMS to select the car CID1 and the car CID2 in a

stream. Then the GSMS needs to select their locations of the timestamp t. After the GSMS

selects the 2 cars’ locations, it needs to join the points and the region’s extent information

to compare whether a moving point was in the region at time t or not. If the 2 cars were

both in the region (county f) at time t, the county’s name will be selected.

Query 19: If a car has been stayed in a same county for the past 2 hours, choose this car.

SELECT a.ID

FROM vehicles a, counties f

WHERE f.name=CountyName AND

duration(inside(a.location[past 2 hours],

f.extent))=2 hours

First, the query chooses a county based on its name. In addition, it needs to select a

car’s locations in last 2 hours. Then the GSMS needs to compare the car’s locations and

the county’s extent region. If there is any car has been stayed in the county for 2 hours, we

choose the car’s id.

Query 20: From now on, if a car stays in a same county for 2 hours, select the car’s id.

SELECT a.ID

FROM vehicles a, counties f

WHERE f.name=CountyName AND

duration(inside(a.location[2 hours from now],

f.extent))=2 hours

53

The query is similar to query 19, but it requires a GSMS which has the ability to do the

query for future data. It first chooses a county based on its name. Then it needs to check

every car’s trajectory from now to 2 hours later. Some GSMSs (such as Auraro) will place

a query node in the data stream. When the stream flows through the node, it will select

all the cars’ locations and store in the node. Then the GSMS needs to compare the cars’

locations and the county’s extent region. If there is any car has been stayed in the county for

2 hours, we choose the car’s id. A GSMS should be able to query a moving object’s future

trajectory as well as historical trajectory.

54

CHAPTER 6

BENCHMARK PERFORMANCE ISSUES

6.1. Performance Experiments

Evaluating a GSMS (geo-stream management system) requires large data sets, which

implies that a benchmark data generator should produce data sets in a reasonable amount

of time. We evaluated the GSMark data generator using a DellTM PowerEdge T110 server

with a quad core Intel R© Xeon R© X3430 (8M Cache, 2.40 GHz) processor and 8GB of ram

running CentOS 5.5. The test runs included examining the vehicle and polygon generations

separately and then together to determine which component contributes most to generation

time.

Fig. 6.1 shows typical results of a test run. For 100 minutes of data on the Denton

road network, vehicle generation time (Fig. 1(a)) is exponential with 200 vehicles typically

requiring only a few minutes but 2000 vehicles requiring over 50 minutes. There are three

reasons for this. First, the A* algorithm is logarithmic; however, the road network density

resulting from the tiger/line shape files is relatively high and the adjustment made to ensure

reasonable route lengths causes an increase. Second, the generator must sort the vehicle

list by start time before the vehicles begin moving since the traffic jam requires the current

capacity, a value only known if it processes the vehicles in order. The sort function uses

quick sort, but the random start times from a uniform distribution often produces the worst

case O(N2). Third, the traffic jam function must scan all road segments with vehicles to

check for over capacity and adjust the speed of vehicles if necessary.

The polygon-only generation in Fig. 1(b) has similar generation times, but the relation-

ship is linear. In this example, the polygons have 200 faces, travel at 10 mi/h, and are

55

approximately 30 mi2. The generation time is high mainly because, like the traffic jam func-

tion, it must check the segments it overlays and reduce the speed accordingly. Combining

this with vehicle generation produces and overall exponential generation time (Fig. 1(c)),

primarily because the vehicle generation is exponential.

(a) Vehicle Generation (b) Polygon Generation

(c) Vehicle-Polygon Generation

Figure 6.1. Data generation performance. Vehicle generation is exponential

while polygon generation is linear.

6.2. Parameters’s Impaction of Performance

In the previous section, it shows that how the benchmark performs when we generate

different numbers of vehicles, polygons, or both. All the parameters are setting as default.

It’s obviously, if we use better computer, the performance of the benchmark will improve.

But not only the computer hardware impacts the performance of the benchmark, a user’s

setting of the parameters will also influence the benchmark’s performance. In this section,

56

we show the users how the parameters impact the performance and give some suggestions

of setting up the parameters.

When users set up a parameter, users have to be careful about the number they want

to use. For example, to have more realistic polygons, user may want to have more nodes to

represent a polygon. When a polygon has more faces, its shape becomes more smooth. But

when a user assigns more nodes for a polygon, the data generator has to generate, monitor

and report more nodes each time unit. Workload simulator also has to send and receive more

nodes each time unit. This will slow down the benchmark dramatically. To continue the

example, a rain may have more than thousands faces. However, if we use so many nodes to

represent a rain, the benchmark will perform really slow. And when a user wants to generate

more cars in each time unit, it also costs more time to do so. Moreover, when we generate

more cars in a time unit, we have to check the positions of the cars in each following time

unit. We also have to analysis and the influence of each car for the traffic jam. Therefore,

to set the parameters, a user should take a balance of both the realism and performance.

57

CHAPTER 7

INTERFACE DESIGN

To let users easily use the demo of the the benchmark, we designed a simple interface.

The interface is made particular for the data generator which takes the most weight in the

benchmark. For the security purpose and network issues, at this point, we do not allow a

user to upload his own road network files. We have the Denton road network files in the

server. And the road network is sufficient for the demo purpose.

7.1. Welcome Page

When a user browses the interface, the default page is the welcome page. The welcome

page shows the welcome information to the users and notices the users to use the navigation

bar to find the information they need. Fig 7.1 shows the welcome page.

Figure 7.1. Welcome page.

58

Figure 7.2. Introduction page.

The green bar that is above the welcome message is the navigation bar. Users can click

one of the link to go the interested page.

7.2. Introduction Page

When a user clicks the Introduction link in the navigation bar, he will reach the introduc-

tion page. The introduction page presents the purpose the benchmark and the interface and

gives the basic background information for the benchmark. Fig 7.2 shows the introduction

page.

7.3. Parameter Page

Users can click the Parameters link in the navigation bar to go to the parameter page.

This page provides a user with 12 parameters. There is a TXT file of the parameters in

the server. When we run the data generator, it will read the parameters from the TXT file.

Through the parameter page, users have the access to the file’s parameters that are related

to the data generator. Fig 7.3 shows the parameter page.

59

Figure 7.3. Parameter page.

The first parameter here is the desired number of moving point objects. A user can define

how many moving points that he wants to generated. If we assume the moving points are

cars, and a user set this parameter as 30, the data generator will generate 30 cars.

The second parameter here is the road segment speed limit. User can set a speed limit

to each road segment from this parameter. All the moving points’ speeds can not exceed the

speed limit.

The third parameter here is the data set starting date and time. This parameter defines

the beginning time of the artificial timestamps. The simulated moving vehicles may begin

to move at this time, but not necessary. When set this parameter, a user should type year,

month, date, hour, minute and second. Each number should be separated by a space.

The fourth parameter is the time duration of the data set. For example, if a user wants

to simulate the traffic of 2 hours, he should set this parameter as 7200 seconds.

The fifth parameter is the road segment capacity. It is the capacity of a road segment.

If the number of the moving vehicles on a road segment exceed this value, it will trigger a

slow down function to calculate the vehicles’ speeds. A traffic jam will be simulated.

60

The sixth parameter is the road segment minimal speed. When a traffic jam is simulated,

the vehicles’ speeds on the road segment can not be further slowed down than this value.

This is the minimal speed for the vehicles that are in a traffic jam.

The seventh parameter is the average route length of the moving vehicles. When we do

routing, we do not want to have a route that is too long or too short. We make the lengths

of the routes follow a uniform distribution of the average route length.

The eighth parameter is the moving polygon speed. All the simulated special events’

speeds follow a uniform distribution of this parameter. It’s the average speed of all the

simulated polygons.

The ninth parameter is the number of moving polygons. It is the number of the special

events that a user wants to simulated. For example, if a user wants to simulate 2 special

events, he can set this parameter as 2.

The tenth parameter is the polygon size in square miles. All the simulated polygons’

sizes follow a uniform distribution of this parameter. Therefore, basically, this parameter is

the average size of all the polygons.

The eleventh parameter is the number of polygon vertices. It means how many nodes a

user wants to use to represent a polygon. More nodes are used, more smooth a polygon’s

shape is, but more slower the benchmark performances.

The twelfth parameter is the percent of speed reduction due to polygon influence. This

is the influence of a polygon. When a polygon overlaps a road segment, the road segment’s

speed is decreased. For example, if a user sets this parameter as 70, when a polygon overlaps

a road segment, all the vehicles on that road segment will be slowed 70 percent.

7.4. Control Page

After we set up the parameters, a user can click the Control link in the navigation bar

to run or stop the benchmark. In this control page, a user can run the data generator, stop

the data generator, and visualize the generated data set. Fig 7.4 shows the control page.

We have a google earth plug in on this page for visualization purpose. If a user wants to

61

Figure 7.4. Control page.

visualize the data set, he may need to down load the google earth plug in to do so. However,

if a user does not want to download it, he still can run the data generator and stop it at any

time. To view the data set, he can go to the download page to download the data set, and

use a TXT editor to view it.

A user can click the run button to run the data generator and the stop button to stop the

data generator. After running the data generator, a user needs to click the refresh button

to refresh the google earth’s visualization results of the new generated data set.

7.5. About Page

The about page shows all the authors that are related to this benchmark. This page

presents their name, affiliation, and contact information. If a user has any question, he can

contact them for the answers. Fig 7.5 show the about page.

7.6. Download Page

If a user clicks the Download link in the navigation bar, he can achieve the download

page. This page provides users with the downloads of 3 different files, such as the point kml

62

Figure 7.5. About page.

Figure 7.6. Download page.

data file, the polygon kml data file, and the whole generated data set TXT file. Fig 7.6

shows the download page.

63

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1. Conclusion

The benchmark studies recent research papers, and did a survey for streaming, spatio and

spatio-temporal database mangement system benchmarks. After we did the classification for

the research papers, it shows clearly what have been done recently toward streaming, spatio

and spatio-temporal DBMSs (database management system), what the current systems lack,

and what we can do to improve the current systems.

Through the survey, we have several observations. The recent growth in sensor technology

allows easier real-time gathering of geo-streaming data that requires efficient geo-streaming

management systems. Benchmarks for determining functionality and efficiency of GSMS

(geo-stream management system) are lacking, therefore, this paper presented GSMark, a

benchmark specifically for GSMSs. GSMark builds on spatial, spatio-temporal, and stream

management system benchmarks to provide a data generator, query set, and workload sim-

ulator using streaming point and polygon objects moving on real road networks. The 3

parts of the benchmark can either work together for the whole benchmark system or work

individually for particular research purposes. The data generator performance demonstrates

acceptable generation times for reasonable data set sizes that can sufficiently evaluate a

GSMS.

The data generator considers most principles that are generally used in streaming, spatio,

and spatio-temporal benchmarks. For example, most current benchmarks consider traffic jam

as an important feature for data simulation. Therefore, in the data generator of GSMark, it

generates traffic jam when the number of car exceed the road capacity. A few benchmarks

consider outside special events are another important feature for data generator. GSMark

64

also generators special events, and check how it impacts the road traffic. A few benchmarks

have simulated the peak hours for daily traffic. GSMark also simulates the traffic peak hours.

It also has many features that are not covered by previous benchmarks. For example, it

generates polygons as special events. Most benchmarks use rectangles to represent special

events. Using moving polygons to represent special events can test the geo-stream data

management system’s ability of dealing with polygons.

The workload simulator simulates delay and disorder situation of data delivery. Most

benchmarks do not consider the delay and disorder situation. And by separating data

generate and delivery processes, we give user more room to control each step. For example,

users have more control over delay possibility, max delay, disorder possibility, and max

disorder range. Based on the user’s setting of those parameters, the GSMark could simulate

more realistic traffic situations. And it also has more varieties. User can create different

patterns for data delivery by setting parameter differently.

Query set contains most popular queries for current benchmark systems. For example,

it has the join for points data, regional data, and point and region data. It covers the most

important testings for the geo-spatial streaming data management systems. Several queries

made specially for geo-spatial streaming data.

The whole benchmark system contains most popular features of current benchmark sys-

tems, and creates special features particularly for geo-spatial streaming data management

systems. It conducts a reasonable testing method for GSMSs, and has potential to get

expansion in the future.

8.2. Future Work

There are several future projects for this benchmark. First, even though it contains

typical queries that cover typical operations, the query set is not comprehensive enough to

evaluate a mature GSMS fully at this time. Second, a web-based interface could allow easier

parameter customization and provide mechanisms to customize the road network, polygons,

65

or vehicle distributions. In addition, the interface could also provide visuals about the result-

ing data set, such as a heat map with road segments colored by capacity or current speeds.

Finally, it is possible to improve the data generation algorithms and the data generator

could further incorporate traffic and driver patterns to increase realism; likewise, polygon

movements could also follow patterns. Improvements like these could shift the benchmark

into a series similar to the TPC series but with a geo-streaming context.

66

BIBLIOGRAPHY

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cherni-

ack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexander Rasin, Esther

Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik, The Design of the Borealis Stream

Processing Engine, Second Biennial Conference on Innovative Data Systems Research

(CIDR 2005) (Asilomar, CA), January 2005.

[2] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik, Aurora: a new

model and architecture for data stream management, The VLDB Journal 12 (2003),

120–139.

[3] M. Van Aerde, B. Hellinga, M. Baker, H. Rakha, M. Van Aerde, B. Hellinga, M. Baker,

and H. Rakha, Integration: Overview of simulation features, 1996.

[4] Mohamed Ali, An introduction to microsoft sql server streaminsight, Proceedings of

the 1st International Conference and Exhibition on Computing for Geospatial Research

& Application (New York, NY, USA), COM.Geo ’10, ACM, 2010, pp. 66:1–66:1.

[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R Motwani, U. Srivas-

tava, and J. Widom, Stream: The stanford data stream management system, Technical

Report 2004-20, Stanford InfoLab, 2004.

[6] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S. Maskey,

Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts, Linear road: a stream

data management benchmark, Proceedings of the Thirtieth international conference on

Very large data bases - Volume 30, VLDB ’04, VLDB Endowment, 2004, pp. 480–491.

[7] Thomas Brinkhoff, A framework for generating network-based moving objects, Geoinfor-

matica 6 (2002), 2002.

67

[8] U.S. Census Bureau Geography Division, U.s. census bureau - tiger/line, [Online; ac-

cessed June 11, 2011], http://www.census.gov/geo/www/tiger/.

[9] Christian Düntgen, Thomas Behr, and Ralf Hartmut Güting, Berlinmod: a benchmark

for moving object databases, The VLDB Journal 18 (2009), 1335–1368.

[10] Ralf Hartmut Gting, Thomas Behr, Victor Almeida, Zhiming Ding, Frank Hoffmann,

and Markus Spiekermann, Secondo: An extensible dbms architecture and prototype, Tech.

report, 2004.

[11] Yan Huang and Chengyang Zhang, New data types and operations to support geo-

streams, Proceedings of the 5th international conference on Geographic Information

Science (Berlin, Heidelberg), GIScience ’08, Springer-Verlag, 2008, pp. 106–118.

[12] Christian S. Jensen, Dalia Tiesyte, and Nerius Tradisauskas, The cost benchmark-

comparison and evaluation of spatio-temporal indexes, DASFAA, 2006, pp. 125–140.

[13] Feifei Li, Real datasets for spatial databases: Road networks and points of interest, [On-

line; accessed June 11, 2011], http://www.cs.fsu.edu/˜lifeifei/SpatialDataset.htm.

[14] D. Mohapatra and S.B. Suma, Survey of location based wireless services, Personal Wire-

less Communications, 2005. ICPWC 2005. 2005 IEEE International Conference on, jan.

2005, pp. 358 – 362.

[15] Jussi Myllymaki and James Kaufman, Dynamark: A benchmark for dynamic spatial

indexing, Proceedings of the 4th International Conference on Mobile Data Management

(London, UK, UK), MDM ’03, Springer-Verlag, 2003, pp. 92–105.

[16] Michael Stonebraker, Jim Frew, Kenn Gardels, and Jeff Meredith, The sequoia 2000

storage benchmark, Proceedings of the 1993 ACM SIGMOD international conference on

Management of data (New York, NY, USA), SIGMOD ’93, ACM, 1993, pp. 2–11.

[17] TPC, Tpc - about the tpc, [Online; accessed June 11, 2011],

http://www.tpc.org/information/about/abouttpc.asp.

[18] Paul Werstein, A performance benchmark for spatiotemporal databases, In: Proc. of the

10th Annual Colloquium of the Spatial Information Research Centre, 1998, pp. 365–373.

68

