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1. INTRODUCTION

The Database research group at CWI was estab-
lished in 1985. It has steadily grown from two PhD
students to a group of 17 people ultimo 2011. The
group is supported by a scientific programmer and
a system engineer to keep our machines running.
In this short note, we look back at our past and
highlight the multitude of topics being addressed.

2. THE MONETDB ANTHOLOGY

The workhorse and focal point for our research is
MonetDB, an open-source columnar database sys-
tem. Its development goes back as far as the early
eighties when our first relational kernel, called Troll,
was shipped as an open-source product. It spread to
ca. 1000 sites world-wide and became part of a soft-
ware case-tool until the beginning of the nineties.
None of the code of this system has survived, but
ideas and experiences on how to obtain a fast rela-
tional kernel by simplification and explicit materi-
alization found their origin during this period.

The second half of the eighties was spent on build-
ing the first distributed main-memory database sys-
tem in the context of the national Prisma project.
A fully functional system of 100 processors and a,
for that time, wealthy 1 GB of main memory showed
the road to develop database technology from a dif-
ferent perspective. Design from the processor to the
slow disk, rather than the other way around.

Immediately after the Prisma project, a new ker-
nel based on Binary Association Tables (BATs) was
laid out. This storage engine became accessible
through MIL, a scripting language intended as a
target for compiling SQL queries. The target ap-
plication domain was to better support scientific
databases with their (archaic) file structures. It
quickly shifted to a more urgent and emerging area.

Several datamining projects called for better
database support. It culminated in our first spin-
off company, Data Distilleries, in 1995, which based
their analytical customer relationship suite on the
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power provided by the early MonetDB implementa-
tions. In the years following, many technical inno-
vations were paired with strong industrial maturing
of the software base. Data Distilleries became a sub-
sidiary of SPSS in 2003, which in turn was acquired
by IBM in 2009.

Moving MonetDB Version 4 into the open-source
domain required a large number of extensions to
the code base. It became of the utmost importance
to support a mature implementation of the SQL-
03 standard, and the bulk of application program-
ming interfaces (PHP, JDBC, Python, Perl, ODBC,
RoR). The result of this activity was the first official
open-source release in 2004. A very strong XQuery
front-end was developed with partners and released
in 2005 [1].

MonetDB remains a product well-supported by
the group. All its members carry out part of the
development and maintenance work, handling user
inquiries, or act as guinea pigs of the newly added
features. A thorough daily regression testing infras-
tructure ensures that changes applied to the code
base survive an attack of ca.20 platform configu-
rations, including several Linux flavors, Windows,
FreeBSD, Solaris, and MacOS X. A monthly bugfix
release and ca. 3 feature releases per year support
our ever growing user community. The web por-
tal! provides access to this treasure chest of modern
database technology. It all helped us to create and
maintain a stable platform for innovative research
directions, as summarized below. The MonetDB
spin-off company was set up to support its market
take-up, to provide a foundation for QA, support,
and development activities that are hard to justify
in a research institute on an ongoing basis.

3. HARDWARE-CONSCIOUS
DATABASE TECHNOLOGY

A key innovation in the MonetDB code base is
its reliance on hardware conscious algorithms. For,

"http://www.monetdb.org/
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advances in speed of commodity CPUs have far out-
paced advances in RAM latency. Main-memory ac-
cess has therefore become a performance bottleneck
for many computer applications, including database
management systems; a phenomenon widely known
as the “memory wall.” A revolutionary redesign of
database architecture was called for in order to take
advantage of modern hardware, and in particular to
avoid hitting this memory wall. Our pioneering re-
search on columnar and hardware-aware database
technology, as materialized in MonetDB, is widely
recognized, as indicated by the VLDB 2009 10-year
Best Paper Award [19, 2] and two DaMoN best pa-
per awards [22, 6]. Here, we briefly highlight im-
portant milestones.

Vertical Storage. Whereas traditionally, rela-
tional database systems store data in a row-wise
fashion (which favors single record lookups), Mon-
etDB uses a columnar storage, which favors analysis
queries by better using CPU cache lines.

Bulk Query Algebra. Much like the CISC vs.
RISC idea applied to CPU design, the MonetDB re-
lational algebra is deliberately simplified compared
to the traditional relational set algebra. Paired
with an operator-at-a-time bulk execution model,
rather than the traditional tuple-at-a-time pipelin-
ing model, this allows for much faster implementa-
tion on modern hardware, as the code requires far
fewer function calls and conditional branches.

Cache-conscious Algorithms. The crucial as-
pect to overcome the memory wall is good use of
CPU caches, for which careful tuning of memory ac-
cess patterns is needed. This led to a new breed of
query processing algorithms. Their key requirement
is to restrict any random data access pattern to data
regions that fit into the CPU caches to avoid cache
misses, and thus, performance degradation. For in-
stance, partitioned hash-join [2] first partitions both
relations into H separate clusters that each fit into
the CPU caches. The join is then performed per
pair of matching clusters, building and probing the
hash-table on the inner relation entirely inside the
CPU cache. With large relations and small CPU
caches, efficiently creating a large number of clus-
ters can become a problem in itself. If H exceeds the
number of TLB entries or cache lines, each memory
reference will trigger a TLB or cache miss, compro-
mising the performance significantly. With radiz-
cluster [17], we prevent that problem by perform-
ing the clustering in multiple passes, such that each
pass creates at most as many new sub-clusters as
there are TLB entries or cache lines. With radiz-
decluster [18], we complement partitioned hash-join
with a projection (tuple reconstruction) algorithm

40

with a cache-friendly data access pattern.

Memory Access Cost Modeling. For query
optimization to work in a cache-conscious environ-
ment, and to enable automatic tuning of our cache-
conscious algorithms on different types of hardware,
we developed a methodology for creating cost mod-
els that takes the cost of memory access into ac-
count [16]. The key idea is to abstract data struc-
tures as data regions and model the complex data
access patterns of database algorithms in terms of
simple compounds of a few basic data access pat-
terns. We developed cost functions to estimate the
cache misses for each basic pattern, and rules to
combine basic cost functions and derive the cost
functions of arbitrarily complex patterns. The total
cost is then the number of cache misses multiplied
by their latency. In order to work on diverse com-
puter architectures, these models are parametrized
at run-time using automatic calibration techniques.

Vectorized Execution. In the “X100” project,
we explored a compromise between classical tuple-
at-a-time pipelining and operator-at-a-time bulk
processing [3]. The idea of vectorized execution
is to operate on chunks (vectors) of data that are
large enough to amortize function call overheads,
but small enough to fit in CPU caches to avoid
materialization into main memory. Combined with
just-in-time light-weight compression, it lowers the
memory wall somewhat. The X100 project has been
commercialized into the Actian/VectorWise com-
pany and product line2.

4. DISTRIBUTED PROCESSING

After more than a decade of rest at the frontier of
distributed database processing, we embarked upon
several innovative projects in this area again.

Armada. An adventurous project was called Ar-
mada where we searched for technology to create
a fully autonomous and self regulating distributed
database system [5]. The research hypothesis was
to organize a large collection of database instances
around a dynamically partitioned database. Each
time an instance ran out of resources, it could so-
licit a spare machine and decide autonomously on
what portion to delegate to its peer. The decisions
were reflected in the SQL catalog which triggered
continuous adaptive query modification to hunt af-
ter the portions in the loosely connected network of
workers. It never matured as part of the MonetDB
distribution, because at that time we did not have
all the basic tools to let it fly.

Since, the Merovingian toolkit developed and now
provides the basis for massive distributed process-

*http://wuw.actian.com/products/vectorwise/
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ing. It provides server administration, server dis-
covery features, client proxying and funneling to
accommodate large numbers of (web) clients, basic
distributed (multiplex) query processing, and fail-
over functionality for a large number of MonetDB
servers in a network. It is the toolkit used by part-
ner companies to build distributed datawarehouse
solutions. With Merovingian we were able to open
two new research tracks: DataCyclotron and Octo-
pus. Our new machine cluster ® provides a basis to
explore both routes in depth.

DataCyclotron. The grand challenge of dis-
tributed query processing is to devise a self-organi-
zing architecture which exploits all hardware re-
sources optimally to manage the database hot-set,
to minimize query response time, and to maxi-
mize throughput without single point global co-
ordination. The Data Cyclotron architecture [4]
addresses this challenge using turbulent data move-
ment through a storage ring built from distributed
main memory and capitalizing on the functionality
offered by modern remote-DMA network facilities.
Queries assigned to individual nodes interact with
the storage ring by picking up data fragments that
are continuously flowing around, i.e., the hot-set.

The storage ring is steered by the level of inter-
est (LOI) attached to each data fragment. The
LOI represents the cumulative query interest as it
passes around the ring multiple times. A fragment
with LOI below a given threshold, inversely pro-
portional to the ring load, is pulled out to free up
resources. This threshold is dynamically adjusted
in a fully distributed manner based on ring charac-
teristics and locally observed query behavior. It op-
timizes resource utilization by keeping the average
data access latency low. The approach is illustrated
using an extensive and validated simulation study.
The results underpin the fragment hot-set manage-
ment robustness in turbulent workload scenarios.

A fully functional prototype of the proposed ar-
chitecture has been implemented using modest ex-
tensions to MonetDB and runs within a multi-rack
cluster equipped with Infiniband. Extensive exper-
imentation using both micro benchmarks and high-
volume workloads based on TPC-H demonstrates
its feasibility. The Data Cyclotron architecture and
experiments open a new vista for modern in-the-
network distributed database architectures with a
plethora of research challenges.

Octopus. In the Octopus project, we deviate
from the predominant approach in distributed data-
base processing, where the data is spread across a
number of machines one way or another before any

*http://www.scilens.org/platform/
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query processing can take place. We start from a
single master node in control of the database, and
with a variable number of worker nodes to be used
for delegated query processing. Data is shipped
just-in-time to the worker nodes using a need-to-
know policy, and reused, if possible, in subsequent
queries. A bidding mechanism among the workers
yields the most efficient reuse of parts of the orig-
inal data, available on the workers from previous
queries.

The adaptive distributed architecture uses the
master /workers paradigm: the master hosts the
database and computes a query by generating dis-
tributed subqueries for as many workers as it has
currently available. The workers recycle the data
they have processed in the past as much as pos-
sible to minimize the data transfer costs. Due to
the just-in-time replication, the system easily har-
vests non-dedicated computational resources, while
supporting full SQL query expressiveness.

Our experiments show that the proposed adap-
tive distributed architecture is a viable and flexible
approach for improving the query performance of
a dedicated database server by using non-dedicated
worker nodes, reaching benefits comparable to tra-
ditional distributed databases.

S. ADAPTIVE INDEXING

Query performance strongly depends on finding
an execution plan that touches as few superfluous
tuples as possible. The access structures deployed
for this purpose, however, are non-discriminative.
They assume every subset of the domain being in-
dexed is equally important, and their structures
cause a high maintenance overhead during updates.
Moreover, while hard in general, the task of finding
the optimal set of indices becomes virtually impos-
sible in scenarios with unpredictable workloads.

With Database Cracking, we take a completely
different approach. Database cracking combines
features of automatic index selection and partial in-
dexes. Instead of requiring a priori workload knowl-
edge to build entire indices prior to query process-
ing, it takes each query predicate as a hint how to
physically reorganize the data. Continuous physical
data reorganization is performed on-the-fly during
query processing, integrated in the query operators.
When a column is queried by a predicate for the first
time, a new cracker index is initialized. As the col-
umn is used in the predicates of further queries, the
cracker index is refined by range partitioning until
sequentially searching a partition is faster than bi-
nary searching in the AVL tree guiding a search to
the appropriate partition.
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Keys in a cracker index are partitioned into dis-
joint key ranges, but left unsorted within each par-
tition. Each range query analyzes the cracker index,
scans key ranges that fall entirely within the query
range, and uses the two end points of the query
range to further partition the appropriate two key
ranges. Thus, in most cases, each partitioning step
creates two new sub-partitions using logic similar
to partitioning in quicksort. A range is partitioned
into 3 sub-partitions if both end points fall into the
same key range. This happens in the first partition-
ing step in a cracker index (because there is only
one key range encompassing all key values) but is
unlikely thereafter [7].

Updates and their efficient integration into the
data structure are covered in [8]. Multi-column in-
dexes to support selections, tuple reconstructions
and general complex queries are covered in [9]. In
addition, [9] supports partial materialization and
adaptive space management via partial cracking.

While database cracking comes with very low
overhead but slow convergence towards a fully opti-
mized index, adaptive merging features faster con-
vergence at the expense of a significantly higher
overhead. Hybrid adaptive indexing aims at
achieving a faster convergence while keeping the
overhead low as with database cracking [10].

With stochastic cracking, we introduce a sig-
nificantly more resilient approach to adaptive in-
dexing. Stochastic cracking does use each query as
advice on how to reorganize data, but not blindly so;
it gains in resilience and avoids performance bottle-
necks by allowing for lax and arbitrary choices in its
decision-making. Thereby, we bring adaptive index-
ing forward to a mature formulation that confers the
workload-robustness previous approaches lacked.

Ongoing work aims at combining adaptive index-
ing techniques with the ideas of physical design and
auto-tuning tools. The goal is to exploit workload
knowledge to steer adaptive indexing where possi-
ble, but keep the flexibility and instant adaptation
to changing workloads of adaptive indexing.

6. SCIENTIFIC DATABASES

After the first open-source release of MonetDB,
we were keen to check its behavior on real-life exam-
ples beyond the classical benchmarks. The largest,
well-documented and publicly available dataware-
house was the Sloan Digital Sky Survey (SDSS)
/ SkyServer. Embarking on its re-implementation
was a challenge. None of the other DBMSs had ac-
complished a working implementation, either due to
its complexity or lack of resources (business drive).

Skyserver. We achieved a fully functional im-
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plementation of SkyServer 4. It proved that the col-
umn store approach of MonetDB has a great poten-
tial in the world of scientific databases. However,
the application also challenged the functionality of
our implementation and revealed that a fully op-
erational SQL environment is needed, e.g., includ-
ing persistent stored modules. Its initial perfor-
mance was competitive to the reference platform,
Microsoft SQL Server 2005, and the analysis of
SDSS query traces hinted at several techniques to
boost performance by utilizing repetitive behavior
and zoom-in/zoom-out access patterns that were
not captured by the system.

Recycler. An immediate follow up project fo-
cused on developing a recycler component to Mon-
etDB. It acts as an intelligent cache of all intermedi-
ate results. Avoiding recomputing of any subquery
as often as possible, within the confines of the stor-
age set aside for the intermediates. The results were
published in 2009 at SIGMOD and received the run-
ner up best paper award [11].

Recycling can be considered an adaptive materi-
alized view scheme. Any subquery can be re-used,
there is no a priori decision needed by a human
DBA. It is also more effective than recycling only
the final query result sets. Integration of the recy-
cler with the SDSS application showed that a few
materialized views had been forgotten in the origi-
nal design, which would have improved throughput
significantly. This was found without human inter-
vention.

SciBORQ. Scientific discovery has shifted from
being an exercise of theory and computation, to be-
come the exploration of an ocean of observational
data. This transformation was identified by Jim
Gray as the 4th paradigm of scientific discovery.
State-of-the-art observatories, digital sensors, and
modern scientific instruments produce Petabytes of
information every day. This scientific data is stored
in massive data centers for later analysis. But even
from the data management viewpoint, the capture,
curating, and analysis of data is not a computa-
tion intensive process any more, but a data inten-
sive one. The explosion in the amount of scientific
data presents a new “stress test” for database de-
sign. Meanwhile, the scientists are confronted with
new questions, how can relevant and compact infor-
mation be found from such a flood of data?

Data warehouses underlying Virtual Observato-
ries stress the capabilities of database management
systems in many ways. They are filled on a daily
basis with gigabytes of factual information, derived
from large data scrubbing and computational in-

‘see http://www.scilens.org/
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tensive feature extraction pipelines. The predom-
inant data processing techniques focus on massive
parallel loads and map-reduce algorithms. Such a
brute force approach, albeit effective in many cases,
is costly.

In the SciBORQ project, we explore a different
route [21]. One based on the knowledge that only
a small fraction of the data is of real value for any
specific task. This fraction becomes the focus of sci-
entific reflection through an iterative process of ad-
hoc query refinement. However, querying a multi-
terabyte database requires a sizable computing clus-
ter, while ideally the initial investigation should run
on the scientist’s laptop.

We work on strategies on how to make biased
snapshots of a science warehouse such that data
exploration can be instigated using precise con-
trol over all resources. These snapshots, constructed
with novel sampling techniques, are called impres-
sions. An impression is selected such that either
the statistical error of a query answer remains low,
or an answer can be produced within strict time
bounds. Impressions differ from previous sampling
approaches because of their bias towards the focal
point of the scientist’s data exploration.

7. STREAMING

DataCell. Streaming applications have been en
vogue for over a decade now and continuous query
processing has emerged as a promising paradigm
with numerous applications. A more recent devel-
opment is the need to handle both streaming queries
and typical one-time queries in the same applica-
tion setting, e.g., complex event processing (CEP).
For example, data warehousing can greatly benefit
from the integration of stream semantics, i.e., on-
line analysis of incoming data and combination with
existing data. This is especially useful to provide
low latency in data intensive analysis in big data
warehouses that are augmented with new data on a
daily basis.

However, state-of-the-art database technology
cannot handle streams efficiently due to their “con-
tinuous” nature. At the same time, state-of-the-art
stream technology is purely focused on stream ap-
plications. The research efforts are mostly geared
towards the creation of specialized stream man-
agement systems built with a different philosophy
than a DBMS. The drawback of this approach is
the limited opportunities to exploit successful past
data processing technology, e.g., query optimization
techniques.

For this new problem we combine the best of both
worlds. In the DataCell project [14] we take a dif-
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ferent route by designing a stream engine on top
of an existing relational database kernel [15]. This
includes reuse of both its storage/execution engine
and its optimizer infrastructure. The major chal-
lenge then becomes the efficient support for spe-
cialized stream features.

We focus on incremental window-based process-
ing, arguably the most crucial stream-specific re-
quirement. In order to maintain and reuse the
generic storage and execution model of the DBMS,
we elevate the problem to the query plan level.
Proper optimizer rules, scheduling and intermedi-
ate result caching and reuse, allow us to modify
the DBMS query plans for efficient incremental pro-
cessing. In extensive experiments, DataCell demon-
strates efficient performance even compared to spe-
cialized stream engines, especially when scalability
becomes a crucial factor.

8. GRAPH DATABASES

As database kernel hackers we can not escape
the semantic web wave. RDF and triple stores re-
quirements are also challenging the MonetDB ker-
nel. In a recent paper [20], we showed how exist-
ing database technology can provide a sound basis
for these environments. The base performance of
MonetDB for graph database is superb, but per-
haps we may find novel tricks when a complete
SPARQL front-end emerges on top of it. Most
likely, we can re-use many of the techniques devel-
oped in the context of MonetDB/XQuery, in par-
ticular run-time query optimization [12]. Never-
theless, we did not chicken out and got ourselves
lured into European development projects to pro-
mote Linked-Open-Data. A step towards this goal
is to carve out a benchmark that would shed light
on the requirements in this field.

9. FUTURE

Despite the broad portfolio of topics, there is a
strong drive and interest in pushing the boundaries
of our knowledge by seeking areas hitherto unex-
plored. The mission for the future is to seek so-
lutions where the DBMS interpret queries by their
intent, rather than as a contract carved in stone
for complete and correct answers. The result set
should aid the user in understanding the database’s
content and provide guidance to continue his data
exploration journey. A scientist can stepwise ex-
plore deeper and deeper into the database, and stop
when the result content and quality reaches his sat-
isfaction point. At the same time, response times
should be close to instant such that they allow a sci-
entist to interact with the system and explore the
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data in a contextualized way.

In our recent VLDB 2011 Challenges & Visions
paper [13], we chartered a route for such ground-
breaking database research along five dimensions:

- One-minute DBMS for real-time performance.
- Multi-scale query processing.

- Post processing for conveying meaningful data.
- Query morphing to adjust for proximity results.

- Query alternatives for lack of providence.

Each direction would serve several PhDs and pro-
duce a database system with little resemblance to
what we have built over the last thirty years. We
look forward to seeing members of the database re-
search community join our mission and take up the
challenges expressed.
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