
Reverse-Engineering User Interfaces to Facilitate Porting
to and across Mobile Devices and Platforms

Eeshan Shah
Dept. of Computer Science

Virginia Tech
{eeshan9,tilevich}@vt.edu

Eli Tilevich

ABSTRACT
As mobile devices are rapidly replacing desktop computers
for a growing number of users, existing user interfaces often
need to be ported from the desktop to a mobile device. In ad-
dition, successful user interfaces written for one mobile plat-
form are commonly ported to other mobile platforms. Tra-
ditionally, porting user interfaces requires that their source
code be reverse-engineered and translated, which is difficult
and error-prone. In this paper, we present an approach that
reverse-engineers user interfaces without having to analyze
their source code. Specifically, our approach examines an in-
terface’s runtime representation by means of aspect-oriented
programming (AOP). An aspect intercepts the program’s
control flow at the point when all the components of an in-
terface are laid out on the screen, but before the interface
is displayed. The aspect analyzes the interface’s in-memory
representation and extracts a platform-independent model
that can then be used to generate equivalent interfaces for
other devices and platforms. Our initial proof of concept
ports Java Swing interfaces to Android. In this paper, we
describe our approach, discuss its main technical challenges,
and outline future research directions.

Keywords
Reverse Engineering, Porting, GUI Models, Mobile Devices
and Platforms

1. INTRODUCTION
Garner Inc. predicts that by 2013 mobile devices will over-
take personal computers (PCs) as the most common means
for accessing the Web worldwide [4]. To accommodate this
massive transition to mobile computing, existing desktop
graphical applications will be ported to run on mobile de-
vices, including smartphones, tablets, and e-readers. In ad-
dition, because the marketplace of mobile devices is highly
volatile, mobile application vendors often need to port a
successful mobile application from one platform to another.
Because the majority of modern applications have sophisti-
cated graphical user interfaces (GUIs), the issue of porting
GUIs across platforms has come to the forefront of software
evolution.

Modern user interfaces are sophisticated and complex, but
most of them comprise a standard set of visual widgets such
as push buttons, edit areas, list boxes, and radio buttons.
To help the programmer build a GUI, major programming
environments provide GUI frameworks that encapsulate the
appearance and behavior of standard visual widgets as soft-

ware components. Using a GUI framework, the program-
mer can seamlessly build a complex GUI. Even though GUI
frameworks help express mostly the same functionality, they
differ vastly in their design and implementation. Specifically,
modern GUI frameworks differ in terms of their implemen-
tation languages (e.g., Java, Objective-C, etc.) and design.
For example, while emerging frameworks tend to be declar-
ative (e.g., the Android SDK), some of the existing ones are
procedural (e.g., Java Swing). All these differences compli-
cate the porting of GUIs across platforms.

In addition, porting GUIs to and across mobile devices and
platforms presents additional difficulties. Mobile devices dif-
fer in their screen size and input/output facilities. As a
result, a GUI may need to be adjusted significantly when
ported to run on a different device. For example, software
vendors often provide two separate versions of an applica-
tion for iPhone and iPad to accommodate the differences in
screen size and the presence of special hardware (e.g., GPS
receiver). All in all, when porting a GUI across mobile plat-
forms, directly mapping the widgets of one GUI to another
is likely to be insufficient to achieve the requisite levels of
usability.

Traditionally, porting a GUI between platforms has required
reverse-engineering its source code, which is difficult and
error-prone. The source code controlling the appearance
and behavior of a modern GUI is large and complex, written
according to the conventions of a given GUI framework and
its API. The source code is likely to include conditional logic
that lays out the GUI differently based on various factors
such as the type of data to be displayed or how the user
interacted with the GUI previously. All these complications
make it impractical to reverse-engineer source code when
porting GUIs between frameworks and platforms. A recent
approach has proposed using API wrappers to migrate GUIs
between Java Swing and SWT GUI frameworks [3]. This
approach would be inapplicable, for example, when porting a
GUI from Swing to Android; in Swing, widgets are expressed
as Java components, while in swing, widgets are expressed
in an XML file.

In this paper, we present an approach to reverse-engineering
GUIs that does not require the programmer to analyze the
GUI source code. Our approach extracts a general GUI
model from an application’s in-memory representation at
runtime. We combine the power of Aspect-Oriented Pro-
gramming (AOP) and reflection, facilities available for the

majority of modern languages. In particular, we use AOP
to intercept the application’s control flow at the point when
the GUI is about to be displayed on the screen. At this
point, the GUI must be completely laid out on the screen,
containing all the visual widgets placed at the designated
screen coordinates. Then, our approach leverages reflection
to examine the in-memory representation of the main GUI
object and extract a general model that describes the con-
tained widgets and their properties (e.g., size, color, coor-
dinates, etc.). The model is persisted in XML and can be
used to port the GUI to another GUI framework, platform,
or device.

The approach is simple but powerful, as it obviates the need
to parse and examine the program’s source code. Because
the extracted model is represented in XML, it can be used
for generating GUIs in any language or platform. The model
is generic and can be manipulated to adjust a GUI for the
specific requirements of any target platform. In this paper,
we describe our initial proof-of-concept that ports Swing ap-
plications to Android and outline future research directions.

The rest of this paper is structured as follows. Section 2
discusses the difficulties of engineering GUIs for mobile de-
vices. Section 3 give an overview of our approach. Section 4
describes our proof-of-concept that ports Swing GUIs to An-
droid. Section 5 compares our approach with related state
of the art. Section 6 outlines future work directions.

2. GUI ENGINEERING IN THE MOBILE AGE
The market of mobile devices is highly diverse. Vendors
offer devices with varied sets of hardware capabilities and
features. In addition, different platforms represent GUIs us-
ing their unique GUI toolkits, frameworks, and APIs. These
and other factors cause the differences in the look-and-feel
of mobile GUIs.

Screen real estate is significantly smaller on phones and
tablets than it is on desktops. In addition, users inter-
act with desktop applications differently than they do with
portable devices. The mouse and keyboard remain the pri-
mary input facilities for interacting with modern desktop ap-
plications. By contrast, touch interfaces have become stan-
dard for portable devices, including smartphones, tablets,
and e-readers.

It is these differences between desktop and mobile platforms
that make it impossible to directly map a desktop GUI to a
mobile one. Even a GUI that works well for one mobile plat-
form may not be directly portable to another mobile plat-
form. In fact, applications running on both a smartphone
and a tablet often have different GUIs to accommodate for
different screen sizes and available input facilities.

3. APPROACH OVERVIEW
Our approach entails raising the level of abstraction when
porting GUIs. That is, our goal is to manipulate a GUI
model whose abstraction level is higher than that of the
underlying source code. In the long run, we aim at ap-
plying the power of model driven architectures [7] to GUI
reverse-engineering and porting. In addition, we aim at com-
pletely bypassing source code when analyzing the original
GUI. Parsing source code is an unreliable mechanism to de-

termine the interface’s layout. When analyzing a GUI based
on its source code, the analyzer must take into consideration
the program’s control flow, which may depend on the pro-
gram’s input or the persisted state of the GUI’s previous
invocation. In addition, such an analyzer would have to be
made aware of the API exposed by the GUI framework in
place. These APIs follow different design and coding conven-
tions, further complicating the process of parsing the source
code to extract a GUI model.

By contrast, our approach examines the in-memory repre-
sentations of GUI objects at runtime. It relies on two main-
stays of modern programming technologies: AOP and re-
flection. AOP provides a systematic means to interpose new
code within existing software components. Reflection makes
it possible to examine object structures at runtime. We use
AOP to intercept the program’s control flow at the point at
which all the GUI components are laid out on the screen,
but before they are displayed. For example, Java Swing pro-
vides method setVisible to display a GUI object. An aspect
intercepts the program’s flow before setVisible is invoked.

Modern GUI’s form a tree-like structure, in which the tree’s
root is the top level window. All the other windows are
reachable from the root. Our approach uses reflection to ex-
haustively walk the in-memory GUI tree and record all the
contained window objects. If some GUI action (e.g., push
button press) creates a new tree-structured hierarchy (e.g., a
new dialog box), its display point is similarly intercepted us-
ing AOP and examined through reflection. The exhaustive
walk of the GUI tree-structured hierarchy is a recursive al-
gorithm that examines each visited visual components (e.g.,
a window) for its shape, size, color, etc. The recursive step
is repeated for each contained window until the leaf roots
are reached.

The visited window objects are recorded and distilled into
a general model. The model is persisted to stable storage,
so that later it can be translated into the GUI source code
for other platforms. As our intention is to keep the model
generic and language independent, we store the model in
XML. The exact model’s content and format are still be-
ing determined. Specifically, our design goal is to create the
general model that can naturally support both the initial ex-
traction and subsequent translation to working GUI source
code.

Because the model is extracted dynamically, our approach
is limited when a given GUI invocation does not utilize all
its components. For example, if some push button is only
displayed when the input date has certain properties, our
approach may not be able to extract this button. It becomes
the responsibility of the programmer to invoke the GUI in
such a way, so that all the components are utilized. The
process may take several invocations, the results of which
can be integrated into a single model.

4. PROOF-OF-CONCEPT
We have started this project by exploring how Swing GUIs
can be automatically translated to run on Android devices.
Figure 1 summarizes our approach. Our automated tool,
“Androider,” (∼1.5K LOC) intercepts the creation of binary
Swing GUI objects by means of AspectJ and Java Reflection.

Run the GUI

Application

Intercept the

application

using aspect

oriented

programming

Extract the

components

using

Reflection

Translate the

components

to platform

independent

domain

specific

language

Create

method stubs

for the

listeners
Reuse the

logic of the

application

Figure 1: Our approach

Figure 2 shows an AspectJ code excerpt used by Androider
to intercept and examine GUI objects at runtime. Androider
dynamically analyzes the GUI Swing components to create
a generalized GUI model. This model can then be used to
automatically generate GUIs for any platform, stationary
or mobile. Because well-designed GUIs follow the Model-
View-Controller architecture, Androider leverages this de-
sign facet to implement a pragmatic translation strategy.
Specifically, Androider completely translates the View, par-
tially translates the Controller, and leaves the Model in-
tact. Therefore, any Java-based GUI framework can reuse
the original Swing Model as is and need to only adapt the
Controller logic for the conventions of the target framework.

We have successfully applied Androider to re-engineer third-
party Swing GUIs to run on an Android device. Figure 3 is
a screenshot of a calculator application running on a laptop
computer, while Figure 4 is a screenshot of the same applica-
tion running on an Android emulator. Androider automat-
ically adapted this application’s GUI, eliminating the need
for the programmer to write any code to implement visual
components. Androider also generated skeletal implementa-
tions for all the required Controllers, so that the programmer
only had to fill in low-level event handling logic, which would
have been impossible to generate automatically. Finally, the
original Model components worked seamlessly with the au-
tomatically generated visual components.

We faced several challenging issues while researching this
approach. Android and Java use different layouts to dis-
play components and widgets on screen. Therefore, a direct

mapping of components and their corresponding layouts was
impossible. We used built-in Android layouts to create spe-
cialized layouts that were equivalent but not the same as
built-in Java layouts, and then used these specialized layouts
to arrange components and widgets on the screen. Creating
these layouts simplified the porting process.

Another hurdle we had to overcome was computing the cor-
rect application size and that of its individual components.
When generating an Android application from the model,
the components’ size had to be adjusted, so that the trans-
lated GUI would look similar to the original GUI. We also
had to insert logic to eliminate the components that did not
make sense for mobile platforms like Menu Bars, when trans-
lating the model. Reflection will extract all the components
that are part of the GUI. Thus, using this approach, we will
be able to capture the components that are not visible on
the screen and include them in the model representation of
the GUI.

As a demonstration, consider a simple Java Swing applica-
tion in Figure 5. This application how three push buttons, of
which the button with the text“Hidden” is not visible. How-
ever the button may become visible in response to a future
user interaction. As a result, our approach must extract all
the buttons when translating this application’s GUI to run
on a different platform. Figure 6 shows the extracted com-
ponents that form a tree-shaped structure, with the main
frame serving as its root. Each extracted component in-
cludes its size and color information. This extracted tree
serves as a model of the translated GUI. This model can
later be generalized and persisted in any format.

1

2 public aspect ExtractGUIModel {
3

4 /∗∗
5 ∗ Intercepts the java.awt.Component.setVisible() method
6 ∗/
7 pointcut setVisible(): call(
8 void java.awt.Component.setVisible(boolean));
9

10 /∗∗
11 ∗ Calls androider methods
12 ∗/
13 after(): setVisible() {
14 //obtain the Swing component that is about to be set visible
15 Component c = ((Component)thisJoinPoint.getTarget());
16

17 Androider a = new Androider(c, fileName);
18 //traverses c using reflection and extracts GUI model
19 a.extractGUIModel();
20 }
21 }

Figure 2: Aspect Code to Intercept and Examine
GUI at Runtime.

5. RELATED WORK
UIML is an XML based language for generating UI models
[1, 2]. Programmers write a model user interface in UIML
and then use UIML bindings to generate the user interface
in the desired language. This requires the programmer to

Figure 3: A third-party calculator written in Java
running on a laptop computer

Figure 4: The ported calculator application running
on Android emulator

Figure 5: Sample Java Swing GUI

know the UIML language. It has 5 main parts in which the
programmer defines the components that make the interface,
their arrangement, the data associated with them and their
appearance. We are exploring whether UIML may serve as
the general model for our approach. An important issue
that remains to be determined is whether UIML has ade-
quate support to express, manipulate, and translate modern
mobile GUIs.

In another approach, Java Swing is converted to AJAX en-
abled web based applications [6]. In this approach, Swing
GUI is reverse-engineered and automatically translated to
AJAX enabled front-end. UiBuilder is another tool used for
porting applications across platforms [5], and it is also XML
based. The language consists of interactor and constraint
tags to define the elements and their position on the screen.
At runtime, the XML is translated to the target platform
language using a translation library built for this purpose.

In some of these approaches, the programmer has to learn
a new language, while other creating wrapper classes cre-
ate wrapper classes to port applications to use a different
GUI framework [3]. Our approach differs in that we reverse-
engineer GUIs at runtime by examining in-memory represen-
tations of GUI objects. The extracted general GUI models
can then be used to generate equivalent GUIs for other plat-
forms. To take advantage of our approach, the programmer
does not have to learn a new language. Furthermore, our
approach completely bypasses the source code in the pro-
cess of reverse-engineering a GUI, which is likely to reduce
errors when extracting general GUI models.

6. FUTURE WORK
From here on now, we plan to apply what we have learned
from our preliminary work to our future research efforts.
We plan to investigate how our GUI model, generated while
porting Java applications to Android, can be fully gener-
alized, so that it could express GUIs for all major mobile
platforms. One way to support this generalization is to cre-
ate a library of all the supported platforms and devices that
run on them. In this library, each entry will contain informa-
tion such as the type of the device (e.g., smartphone, tablet,
e-reader, etc.), the operating system it is running on, its
screen size, and its implementation languages. The library
can then guide the translation, taking into consideration in-
dividual device characteristics and differences. Our vision is
to have one general GUI model, which will be extracted and
persisted for future use. The model will then be translated
into working code as guided by the library.

Specifically, when translating a general model to a particu-
lar platform, some components and widgets, not supported
by the platform may need to be replaced with equivalent
widgets supported on the target platform. For example, a
combo box can be replaced with a list of radio buttons and
vice versa; a table can be replaced with a simple list format-
ted as a table. This translation technology should enable
new types of mobile applications.

As an example, consider the domain of travel applications.
Almost every big city in the US has mobile applications de-
veloped to support its visitors. Usually, such applications
incorporate a variety of information including maps, land-
marks, hotels, restaurants, and entertainment. When an
application has to provide so much information to the user,
the GUI may be cluttered. We envision being able to mash
up such travel applications on the fly, installing only the
information needed for a given visitor. All the available in-
formation will be stored in a general repository, with the
GUI represented as our general model. The required pieces
of this model can be translated for the mobile platform at
hand and installed on the visitor’s device. In essence, in-

JFrame
Height = 160px
Width = 300px

JPanel
Height = 160px
Width = 300px

BGColor = Maroon
Layout = Flow

JLabel
Height = 25px
Width = 300px

Text = Press a button
TextColor = White
BGColor = Maroon

JLabel
Height = 25px
Width = 300px

Text = You clicked: Left
 TextColor = White
BGColor = Maroon

JPanel
Height = 45px
Width = 300px

BGColor = Maroon
Layout = Flow

JButton
Height = 40px
Width = 125px
Text = Hidden

TextColor = Maroon
BGColor = Orange

JButton
Height = 40px
Width = 125px

Text = Right
TextColor = Maroon
BGColor = Orange

JButton
Height = 40px
Width = 125px

Text = Left
TextColor = Maroon
BGColor = Orange

Figure 6: The GUI Tree of Extracted Sample App.’s Components

dividualized mobile applications can be created on the fly
for specific users. This is an ambitious vision, but our tech-
nology for reverse-engineering GUIs is the first step toward
realizing this vision.

7. REFERENCES
[1] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.

Williams, and J. E. Shuster. UIML: an
appliance-independent XML user interface language.
Computer Networks, 31(11-16):1695–1708, 1999.

[2] M. F. Ali and M. Abrams. Simplifying construction of
multi-platform user interfaces using UIML. In UIML
Europe 2001 Conference, 2001.

[3] T. Bartolomei, K. Czarnecki, and R. Lammel. Swing to
SWT and back: Patterns for API migration by
wrapping. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1–10. IEEE.

[4] Gartner Inc. Gartner highlights key predictions for IT
organizations and users in 2010 and beyond.
http://gartner.com/it/page.jsp?id=1278413, 2010.

[5] K. Luyten, B. Creemers, and K. Coninx. Multi-device
layout management for mobile computing devices.
Technical report, Limburgs Universitair Centrum, 2003.

[6] H. Samir, E. Stroulia, and A. Kamel. Swing2Script:
Migration of Java-Swing applications to AJAX Web
applications. Reverse Engineering, Working Conference
on, pages 179–188, 2007.

[7] J. Vanderdonckt. A MDA-compliant environment for
developing user interfaces of information systems. In
Advanced Information Systems Engineering, pages
16–31. Springer, 2005.

