
ALIA4J’s [(Just-In-Time) Compile-Time]
MOP for Advanced Dispatching

Christoph Bockisch

Software Engineering group
University of Twente

Enschede, The Netherlands

c.m.bockisch@cs.utwente.nl

Andreas Sewe

CASED
Technische Universität Darmstadt

Darmstadt, Germany

sewe@st.informatik.tu-darmstadt.de

Martin Zandberg

Software Engineering group
University of Twente

Enschede, The Netherlands

m.d.zandberg@student.utwente.nl

Abstract
The ALIA4J approach provides a framework for imple-
menting execution environments with support for advanced
dispatching as found, e.g., in aspect-oriented or predicate-
dispatching languages. It also defines an extensible meta-
model acting as intermediate representation for dispatch-
ing declarations, e.g., pointcut-advice or predicate methods.
From the intermediate representation of all dispatch decla-
rations in the program the framework derives an execution
model for which ALIA4J specifies a generic execution strat-
egy. The meta-object protocol (MOP) formed by the meta-
model and framework is defined such that new programming
language concepts can be implemented modularly: The se-
mantics can be implemented in an interpretative style (e.g.,
using reflection) or by describing how to generate corre-
sponding Java bytecode or even machine code. In the latter
two cases, the implementation can reason about the current
code generation context; this enables sophisticated optimiza-
tions. We discuss these optimization facilities by means of
two case studies.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments

General Terms Design, Performance

Keywords Advanced dispatching, meta-object protocol,
just-in-time compilation

1. Introduction
When developing a new (domain-specific) language, initially
its syntax and semantics are the primary concern and conse-
quently subject to much experimentation. For this task, a lan-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’11 Workshops, October 23–24, 2011, Portland, Oregon, USA.
Copyright c© 2011 ACM 978-1-4503-1183-0/11/10. . . $10.00

guage designer is required who is an expert in the domain to
which the language is going to be applied. Furthermore, flex-
ibility in the implementation of the semantics is required to
adapt initial designs. At this state, an interpreter-based ap-
proach to language implementation is most suitable. Once
the language design stabilizes, however, performance issues
come into focus. Optimal performance is typically achieved
by compilation-based approaches. But implementing a com-
piler requires detailed knowledge about the target platform
and is typically done by a language implementer, a role quite
different from the language designer. To minimize the effort
for both language designers and implementers and to ensure
that optimizations leave the language semantics unchanged,
an approach for transitioning from the initial design to the
final implementation is needed.
In this paper, we propose such an approach for lan-

guages based on dispatching, a language feature that has
seen much experimentation by language designers in recent
years, ranging from predicate dispatching [7] over aspect-
oriented programming [11] and context-oriented program-
ming [10] to various domain-specific languages. TheALIA4J
project1 therefore provides an approach for implementing
such programming languages. As demonstrated in our pre-
vious work [5], advanced dispatching is a mechanism that
subsumes the various styles of dispatching mentioned above.
To make advanced dispatching implementable in a flex-

ible fashion, we employ a meta-object protocol (MOP) to-
gether with a generic meta-model of dispatching declara-
tions implemented as abstract Java classes. To define a new
language, language designers have to refine this meta-model
to include the specific concepts of interest; all that is required
is extending a handful of Java classes. In ALIA4J, there are
three ways of implementing such a meta-model refinement,
each operating on a different level of abstraction.

1. The most abstract way is implementing a plain Java
method that realizes the semantics through interpretation.

1 The Advanced-dispatching Language-Implement Architecture for Java.
See http://www.alia4j.org/.

309

mailto:c.m.bockisch@cs.utwente.nl
mailto:sewe@st.informatik.tu-darmstadt.de
mailto:m.d.zandberg@student.utwente.nl
http://www.alia4j.org/

ALIA4J’s runtime MOP passes required input as argu-
ments to that method and handles the output provided
as the method’s result. Refinement implementations at
this level allow for easy experimentation; thus, this is the
level at which language designers will commonly work.

2. More control over the generated code is gained by imple-
menting a Java method that compiles the concept to Java
bytecode. ALIA4J’s compile-time MOP ensures that the
required input is provided to the generated bytecode on
the operand stack and expects the output on the stack as
well. Refinement implementations at this level allow for
context-dependent bytecode code generation; this allows
language implementers to improve runtime performance
in a portable way.

3. The most control is gained by implementing a method
that compiles the concept to machine code. ALIA4J’s
just-in-time (JIT) compile-time MOP ensures that the re-
quired input and output is provided to respectively col-
lected from the generated machine code in defined mem-
ory or register locations. Refinement implementations at
this level can make use of all VM internals; while los-
ing platform-independence, this allows language imple-
menters to strive for optimal runtime performance.

Any of the three strategies can be implemented in the
class that represents the language concept according to our
meta-model. Thus, the implementation of a concept’s seman-
tics and optimization is modular. Implementations of differ-
ent strategies can even co-exist; the best strategy is picked
at runtime. This is very useful to language implementers
who can use the—less efficient but by definition correct—
implementation produced by the language designer as a test
oracle.
In this paper, we illustrate the three levels of implement-

ing the semantics of language concepts in ALIA4J in two
case studies. We furthermore contrast ALIA4J’s three-level
approach with related work that targets a single level only.

2. A Runtime MOP for
Advanced-Dispatching

As outlined in the introduction, we have implemented our
approach of implementing programming languages in terms
of the ALIA4J project. At its core, ALIA4J contains a meta-
model of advanced dispatching declarations, called LIAM,2

and a framework for execution environments that handle
these declarations, called FIAL.3

LIAM defines categories of concepts relevant for dis-
patching and how these concepts can interact. For example,
dispatch may be ruled by atomic predicates which depend
on values in the dynamic context of the dispatch. When map-

2 The Language-Independent Advanced-dispatching Meta-model. See
http://www.alia4j.org/alia4j-liam/.
3 The Framework for Implementing Advanced-dispatching Languages. See
http://www.alia4j.org/alia4j-fial/.

Attachment

Action Specialization ScheduleInfo

Context Predicate Pattern

AtomicPredicate

1..*

* 0..1

*
* 0..1

0..2

Figure 1. Entities of the Language-Independent Advanced-
dispatching Meta-Model (LIAM) as UML class diagram.

ping the concrete advanced-dispatching concepts of an ac-
tual programming languages to it, LIAMhas to be refined.
Figure 1 shows the meta-entities of LIAM, discussed in

detail elsewhere [4, 5], which capture the core concepts
underlying the various dispatching mechanisms. They are
implemented as abstract classes. The meta-entities Action,
Atomic Predicate and Context must be refined to concrete
concepts. Refinement is achieved by inheriting from the
corresponding abstract class and implementing a so-called
“compute” method that realizes the concrete concept’s se-
mantics in an interpretative way, e.g., using reflection.
An Attachment corresponds to a unit of dispatch, roughly

corresponding to a pointcut-advice pair or to a predicate
method. An Action specifies functionality that may be exe-
cuted as the result of dispatch, e.g., the body of an advice
or predicate method. A Specialization defines static and dy-
namic properties of state on which dispatch depends. A Pat-
tern specifies syntactic and lexical properties of the dispatch
site. The Predicate and Atomic Predicate entities model con-
ditions on the dynamic state a dispatch depends on. The
Context entities model access to values like the called ob-
ject or argument values. The Schedule Information models
the time relative to a join point when the action should be
executed, i.e., the notions of “before,” “after,” or “around”
familiar from aspect-oriented programming.
Figure 2 shows the relation between ALIA4J’s compo-

nents in more detail. We will now briefly discuss their inter-
action by discussing the flow of compilation and execution
of applications on top of an ALIA4J-based language imple-
mentation: First, the compiler starts processing the applica-
tion’s source code and outputs a model ① for the advanced
dispatching declarations in the program based on the refined
subclasses ② of the LIAM meta-entities ③. Moreover, the
compiler produces Java bytecode ④ for the program parts
not using advanced dispatching. Then, at runtime, both, the
program’s model of dispatching declarations and bytecode
are passed to a concrete FIAL instantiation ⑤ and subse-
quently handled by the FIAL framework itself ⑥.
By transforming the advanced dispatching declarations,

FIAL generates an executionmodel for each dispatch site (join-

310

http://www.alia4j.org/alia4j-liam/
http://www.alia4j.org/alia4j-fial/

Language-
independent
meta-model

Language-specific,
refined meta-model

Program-specific
dispatching model

Java bytecode

Framework
for execution
environments

Framework
instantiation

Java Virtual Machine

①

②

③

④

⑤

⑥

Figure 2. Overview of the application life cycle in ALIA4J-
based language implementations.

point shadow in aspect-oriented terminology) in the pro-
gram, containing the model entities which are refinements
of Context, Atomic Predicate, and Action. For simplicity,
they are called LIAM entities or just entities throughout this
paper. ALIA4J’s MOP defines the control and data flow de-
pending on the results of evaluating the LIAM entities. The
evaluation protocol for an individual entity is as follows:

1. Retrieve the Java object representing the LIAM entity.

2. If the entity depends on context values, first perform these
steps for all required contexts.

3. Invoke the “compute” method on the entity object pass-
ing the values retrieved in the previous step as arguments.

4. The value returned in the previous step is the result value
of this entity.

3. From Runtime MOP to (Just-in-Time)
Compile-Time MOP

A FIAL instantiation is realized as an extension of an ex-
isting Java Virtual Machine. For the purpose of this paper,
its most important functionality is to execute the declara-
tive execution model derived by the FIAL framework, either
directly by interpreting the execution model or indirectly
by generating bytecode or machine code for it. When byte-
code or machine code is generated, the FIAL instantiation
may generate a call to the “compute” method (step 3 in the
above protocol). To make use of ALIA4J’s (JIT) compile-
time MOP, the FIAL instantiation can alternatively hand
over control over code generation to the LIAM entity. We
illustrate the implementation of this protocol by the example
of two FIAL instantiations in the following subsections.

3.1 The Compile-Time MOP in SiRIn

SiRIn4 is a fully portable FIAL instantiation implemented
using a Java 6 agent; it does not require a native compo-
nent. SiRIn wraps every dispatch site into a special method
and generates bytecode for these “reified” dispatch sites us-
ing the ASM bytecode engineering library.5 Each wrapper
method contains code derived from the execution model.
For many entities more efficient alternatives to reflection

exist, e.g., to load a value from the local execution context.
Especially for those entities that participate in regular, non-
advanced dispatch, such bytecode generation strategies are
obviously more efficient than a reflectively implemented
“compute” method. In fact, often bytecode can be generated
which is equivalent to code a Java compiler would generate
for the selfsame functionality.
The bytecode building method gets passed a description

of the syntactic context in which the dispatch takes place.
This can be used by the implementation to choose between
different code generation strategies.

3.2 The (JIT) Compile-Time MOP in SteamloomALIA

SteamloomALIA is a FIAL-based execution environment
built on the Jikes Research Virtual Machine (RVM) [1], a
high-performance Java VM. As such, it is a re-design of an
earlier execution environment, the Steamloom VM [3], built
among others by the first author. Unlike its predecessor but
like SiRIn, SteamloomALIA wraps call-sites into a special
method-like construct. As these “reified” call-sites are com-
pletely under the control of the execution environment, gen-
erating code for them is straight-forward. SteamloomALIA

thus does not employ a bytecode engineering library but
uses its own light-weight code generation engine.
SteamloomALIA uses two JIT compilers: The baseline

compiler is very fast but produces un-optimized machine
code only. In contrast, the optimizing compiler is slow but
produces highly optimized machine code. Depending on the
configuration, Jikes RVMmay choose between these compil-
ers for each method separately depending on the estimated
performance impact of the method. Beyond the ability to
generate specific bytecode that realizes the semantics of a
LIAM entity, SteamloomALIA also offers the ability to tailor
the machine-code generation of both JIT compilers.
The machine-code building method gets passed a descrip-

tion of the current JIT compilation context. This includes
all the syntactic information about the currently compiled
dispatch. Moreover, in the case of the optimizing compiler,
the compilation context may contain additional information.
When the optimizing compiler, for instance inlines a method
not only is information about the immediate caller of the dis-
patch available, but also about part of the chain of calls lead-
ing to the dispatch in question.

4 The Site-based Reference Implementation. See
http://www.alia4j.org/alia4j-sirin.
5 See http://asm.ow2.org/.

311

http://www.alia4j.org/alia4j-sirin
http://asm.ow2.org/

4. Case Study: Compile-Time MOP
Our implementation of ALIA4J contains more than 70 re-
finements of Context, Atomic Predicate and Action; this
gives rise to numerous re-use opportunities [5]. For all re-
finements we provide an interpretative implementation, us-
ing ALIA4J’s runtime MOP facilities. Many of the entities
reflect either runtime values from the local context of a dis-
patch or primitive arithmetic and logical operations.
As an example, consider the dispatch of a method invoca-

tion. Because dispatch is logically wrapped in site methods
in ALIA4J, values like the receiver (or callee) object as well
as the argument values are available as local variables. Thus,
the bytecode-support version of the CalleeContext can sim-
ply emit a bytecode instruction loading the corresponding
variable. In case the called method is static and there is no re-
ceiver, the bytecode generation emits the instruction for pro-
ducing the constant null. Since the generation method gets
a description of the dispatch site, it can recognize whether
the called method is static or not and can produce the cor-
rect instruction; the resulting bytecode does not contain any
conditional instructions.

5. Case Study: JIT Compile-Time MOP
An example of languages that can be realized with the
ALIA4J approach are aspect-oriented languages. In AspectJ,
for instance, aspects are types and extend the concept of a
class in several ways: Besides conventional members like
methods and fields, an aspect can contain pointcut-advice
pairs. A pointcut selects events at which the advice function-
ality must be executed, with advice containing statements
like methods. But advice are invoked implicitly in contrast
to the explicitly-invoked methods. Just like methods, advice
must be executed in the context of an instance of their defin-
ing type. When a pointcut matches—or rather when dispatch
decides to perform an advice action—an appropriate aspect
instance has to be discovered in order to invoke the advice
on it. Different strategies exist to discover such an instance.
In ALIA4J, a pointcut-advice pair can be defined as an

Attachment, whose Specializations and Action correspond
pointcuts and advice, respectively. The strategies for discov-
ering aspect instances are represented by a Context entity.

5.1 Semantics of the PerTupleContext

We have devised a generalized model that covers most of the
instantiation strategies used in present aspect-oriented lan-
guages and implemented it as a refinement of Context: the
so-called PerTupleContext. A LIAM Attachment may spec-
ify that a PerTupleContext provides the receiver object to the
Action, which then simply calls a method corresponding to
the advice functionality.
The PerTupleContext specifies a list of Contexts which

are relevant for discovering the desired aspect instance:
When it is evaluated, a tuple containing the values to which
the required Contexts have been evaluated is passed to the

PerTupleContext. Based on these inputs, the PerTupleCon-
text discovers the appropriate aspect instance, whereby it
can operate in one of two modes: In the explicit instanti-
ation mode, it may only return an instance when there is
already one associated with the input tuple. In the implicit
instantiation mode, it may either return an instance already
associated or, if no association exists so far, create a new
aspect instance. In the latter case, the newly created instance
is associated with the input tuple and returned the next time
the PerTupleContext is evaluated with the same input.
The associations are stored in a table not unlike a rela-

tional database. The values from the execution context are
stored in the first columns and the associated instances are
stored in the last column. Looking up an instance in this table
is also called performing a query, whereby we again distin-
guish two cases: First, we can perform exact queries, which
means that an input value is provided for each column. An
exact query can thus yield either zero or one result. Second,
we can perform range queries, where we can pass wildcards
for columns potentially leading to multiple results.6

This general model of aspect instantiation is motivated
by—butmore general than—association aspects [13], whose
purpose is to support behavioral relations amongst a group
of objects. It can be used to, for example, keep the state be-
tween a group of objects synchronized. In our unified model,
association aspects correspond to explicit instantiation with
range queries. Our model is also able to support the less
complex instantiation strategies of AspectJ. The isSingleton
strategy, for example, always uses the same aspect instance
throughout the entire program execution. Thus, the instance
does not depend on the execution state. In terms of our
model, this can be expressed using implicit instantiation
and an empty tuple of required Contexts. The perThis and
perTarget strategies provide separate aspect instances for
each caller respectively callee object at a join point. They
can be expressed by implicit instantiation with a 1-tuple
of required Contexts. The tuple then consists either of the
CallerContext or the CalleeContext.

5.2 Optimizations: An Outlook

Above we have described the semantics of the PerTupleCon-
text and have outlined its plain Java implementation. In this
section, we outline possible optimizations that are specifi-
cally possible when generating machine code. For our opti-
mizations, four properties of the associations of a PerTuple-
Context are relevant:

1. Is the tuple size of required input values zero or more?
In the former case, the query does not depend on input,
and we call the PerTupleContext context insensitive; oth-
erwise it is called context sensitive.

6 Above it was explained that an aspect instance acts as the receiver of a
method call, but the PerTupleContext can evaluate to zero or more instances.
Therefore, the result is passed to a special Action which iterates over the
provided instances and invokes the advice functionality on each of them.

312

2. Are the associated values instantiated explicitly or implic-
itly?

3. Are the associations fixed, or may new associations be
added in the future? Here, it is required that the program-
mer marks a PerTupleContext explicitly as non-changing
after an initialization phase.

4. Is the query a range or exact query?

We now discuss three scenarios in which the above ques-
tions have been answered in different ways. Each of these
scenarios gives rise to a possible optimization.

Scenario 1 The first optimization we discuss is applica-
ble whenever we have a context insensitive, explicit, non-
changing, and exact association. In this case, the evaluation
of the PerTupleContext always yields the same, constant re-
sult, which is already known at JIT-compile time.
In Java, however, no notion of object constants exists.

Therefore, neither the reflective implementation of PerTuple-
Context nor a bytecode-generating implementation can take
advantage of this knowledge. In Jikes RVM and hence in
SteamloomALIA, however, objects are represented as point-
ers and, in principle, constant pointers can exist as immedi-
ate values in the generated machine code. In practice, this
is not easily possible because the RVM performs garbage
collection and may move objects in memory; then a con-
stant pointer would become invalid. The machine code we
generate for the PerTupleContext in this case re-uses the
mechanism put in place by Jikes RVM for so-called root ob-
jects, i.e., globally accessible objects. Such objects can be
accessed with just one memory look-up.

Scenario 2 For context sensitive, explicit, non-changing,
and range associations, things are more complex: As the
query depends on input that can be different at each evalu-
ation, the result is also variable rather than constant. Never-
theless, since we have specified that the association does not
change anymore, we can cache results depending on the in-
put values. The required operations are relatively complex
and we do not see significant opportunities for optimizations
when generating these operations directly in machine code.
Therefore, we have implemented this behavior in plain Java
and generate a simple method invocation.
The two scenarios above discussed explicit instantiation.

This is, e.g., applied by the association aspects language.
The AspectJ language, in contrast, always applies implicit
instantiation. Furthermore, queries are always exact. With
implicit instantiation, the association is necessarily changing
as new input values can occur.

Scenario 3 For context insensitive, implicit, changing, and
exact associations, things are similar to the first scenario.
However, we have to distinguish two cases, namely whether
the singleton instance is already initialized or not when code
is generated for the PerTupleContext. In the latter case, we
create code that initializes the association and returns the

just-created instance.7 In the former case, we apply the sim-
ilar optimization as was discussed for the first scenario.
But in this case, we can do even better: Since the object’s

allocation is controlled by the PerTupleContext, the instance
is allocated in a specific memory area where garbage col-
lection does not move objects. Thus, we actually can use a
constant pointer to the instance and avoid any indirections.

5.3 Performance

Current performance measurements are encouraging. They
show that our implementation outperforms that of the com-
piler for association aspects in several cases. Also, in sce-
nario 3 the AspectJ compiler is outperformed by a factor of
ten in the best case. However, our benchmarking results are
too premature to be published in detail here. For example, we
do not measure different structures of the input tuple to in-
stance association. These are relevant, however, as many fac-
tors influence the measurements: How many elements does
the input tuple have? How many entries are stored in the as-
sociation? Does a range query match many or few entries?

6. Related Work
In the following, we discuss several MOPs that each target
one of the three levels addressed by ALIA4J (cf. Section 3).
None of the presented approaches supports all three levels of
MOPs, though; in particular, no systematic way is provided
for transitioning from one level to another while switching
from the language design to the optimization phase.

Runtime MOPs for Dispatching The new invokedynamic
Java bytecode instruction and its supporting API [12], as
specified by JSR 292, also constitute a MOP for advanced-
dispatching. On the one hand, this meta-model is more
low-level than ours; in particular, it forces language imple-
menters to derive the dispatch logic themselves using prim-
itives like guardWithTest. On the other hand, the JSR 292
meta-model is a pure runtime MOP that completely hides
the code generation level; in particular, the implementers of
a language runtime are barred from the optimization oppor-
tunities offered by user-defined bytecode or even machine
code generation.
That being said, an implementation of ALIA4J’s runtime

MOP on top of JSR 292 is certainly viable. Such an imple-
mentation would benefit from the proliferation of JSR 292
support in production JVMs, while at the same time offer-
ing language implementers a more convenient, higher-level
meta-model of advanced dispatching. A detailed analysis of
the trade-offs involved in such an implementation, in particu-
lar in the light of invokedynamic-specific optimizations [14],
is subject to future work.

7 In practice, this case is slightly more complex: at the time the dispatch
site is executed, the association may already be initialized, e.g., because the
dispatch site has been executed before. Therefore, we insert a test ensuring
that the association is not initialized twice.

313

Compile-Time MOPs for Dispatching The AspectBench
Compiler (abc) [2] is an extensible compiler for the As-
pectJ language. Its parser front-end builds an abstract syn-
tax tree (AST) of the source program. To implement a lan-
guage extension, the parsed grammar is adapted and as a
consequence new AST node types are added. After pars-
ing, the abc framework transforms AST nodes representing
aspect-oriented concepts to instances of abc-specific classes,
which are similar to ALIA4J’s meta-model. As is the case
in ALIA4J, the abc-specific classes have to be refined for
new language concepts. Such a refinement must implement
a method that can attempt to statically evaluate the con-
cept (e.g., whether a pointcut designator will always or never
be satisfied) and implement a Java bytecode generation strat-
egy if this is not possible. As there is no directly supported
way of implementing the semantics in an interpretative style,
a language designer developing a prototype with abc is al-
ways confronted with low-level implementation details.

Just-in-Time Compile Time MOPs Implementers of just-
in-time compilers often need to open up the compiler to
customizable compilation strategies. This may be for two
reasons: First, virtual machines may be meta-circular, i.e.,
written in the language whose execution they manage, which
may prohibit operations like direct memory access required
by the VM’s implementation. Second, VM implementers
want to offer a way to extend runtime support operations.
The first reason is the main motivation for the org.

vmmagic framework by Frampton et al. [8] applied in Jikes
RVM and for the Klein virtual machine presented by Ungar
et al. [16]. This org.vmmagic framework achieves extensibil-
ity by so-called intrinsic functions not directly expressible
in Java or Java bytecode. The implementation of Jikes RVM
can contain calls to corresponding methods following a spe-
cial naming convention. The Java implementation of those
methods, however, is merely a dummy; when the just-in-
time compiler encounters a call to such a method, it directly
inserts the corresponding machine code.
The Klein virtual machine is based on the Self bytecode.

Self includes the similar concept of primitives which are
messages that can be sent but that do not have an imple-
mentation in the application code. Instead, the virtual ma-
chine must provide an implementation. Klein provides sev-
eral ways of implementing primitives based on either gen-
erating corresponding machine code or implementing the
primitive in Self. When generating machine code, the VM
implementer can make use of an API which factors out the
generation of code sequences realizing common functional-
ity. When implementing a primitive in Self, a lower-level
variant of Self can be used which restricts the available prim-
itives thus avoiding infinite recursions.
In contrast to the org.vmmagic framework, in ALIA4J,

the code to generate is not hard-wired in the JIT compiler
but implemented in a separate module. Thus, adding a code
generation strategy for a language concept entity does not

require a re-compilation of the JIT compiler. Klein’s first op-
tion of implementing primitives is similar. Supporting both,
implementing a code-generation strategy and a high-level
method to which a callout is generated in Klein is similar to
ALIA4J’s distinction of the JIT compile-time MOP and the
MOP. In ALIA4J, however, modularity and extensibility of
language concepts are better supported. Sharing code gener-
ation strategies for common functionality is similar to what
we aim to support with our fine-grained meta-model, which
is naturally more extensible than an API.
Examples mainly driven by the goal of modularizing the

implementation of the JIT compiler and other virtual ma-
chine components, are the Open Runtime Platform (ORP) by
Cierniak et al. [6] and the XIR language of Titzer et al. [15].
ORP supports multiple source languages and multiple plat-
forms and targets at avoiding redundancies in the implemen-
tation of the JIT compiler that might arise due to the differ-
ent combinations. The implementation of runtime support
operations is called stub in ORP. Stub implementations are
not part of the JIT compiler but part of the component (e.g.,
the garbage collector) whose function they realize; thus, they
are a means to hide details about other components from the
JIT compiler. Stubs can be implemented in the C language,
but ORP also includes a domain-specific language, called
LIL [9] for this purpose. LIL is more abstract than assem-
bler and in fact architecture-independent. At the same time,
it embodies primitives specific to managed runtime environ-
ments, for example thread-safe operations.
The XIR language of Titzer et al. [15] was designed to im-

prove compiler-runtime separation in Java virtual machines.
With it, the developer of the runtime communicates the im-
plementation strategy for essential runtime features like field
accesses or method calls to the developer of the JIT compiler
in the form of so-called snippets. Each snippet is formulated
using an assembler-oriented interface to the compiler.
Like ORP and XIR, ALIA4J’s MOP was designed as a

clear interface, albeit not between implementers of runtime
and compiler but between implementers of high-level lan-
guage and language runtime. As such, ALIA4J by default
exposes the language implementer to less low-level detail; it
is easily possible to realize a concept’s semantics in a reflec-
tive, interpretative style only. If, however, more control over
code generation for LIAM entities is desired, a language like
XIR or LIL could be employed to good effect. But as this
level of control is typically exerted by the developer of the
language runtime, who integrates FIAL with a given runtime
and compiler, abstracting from the details of code generation
is, while definitely useful, not essential.
The presented approaches mainly offer different ways

to define the code which is to be generated for runtime
support operations. These approaches do not put forward
the idea of a JIT compile-time MOP which reflects upon
the current compilation context and generates different code
in specific situation. Nevertheless, approaches using an API

314

for emitting code (org.vmmagic and Klein) can in principle
conditionally emit different sequences of machine code.

7. Conclusion and Future Work
In this paper we have presented the ALIA4J architecture as
a meta-object protocol (MOP) for controlling advanced dis-
patching. The MOP’s implementation allows one to modu-
larly implement concepts relevant for dispatching, including
different kinds of optimizations: Besides an implementation
of the concept’s semantics in a reflective style, it is also pos-
sible to generate optimized bytecode or even machine code.
We have demonstrated this feature in terms of two case stud-
ies: One of them shows that the user-defined bytecode gen-
eration can lead to compilation results similar to those of
a conventional compiler. The second case study shows that
specific machine-code generation makes feasible optimiza-
tions that are out of reach for bytecode optimization. The
different implementation strategies can be freely mixed and
it is possible to implement the semantics of a language con-
cept at the most appropriate level. For instance, a language
implementer is not forced to generate machine code for a
concept that is already supported by bytecode.
In future work, we will improve the interface between

ALIA4J execution environments and the bytecode respec-
tively machine-code building methods. This includes most
importantly the passed information about the dispatch it-
self. The different execution environments do not yet pro-
vide information in the same way which hinders reusing con-
cept implementations across execution environments. Fur-
thermore, we will improve the implementation of the PerTu-
pleContext realizing aspect instantiation strategies. The cur-
rent implementation only supports the baseline compiler of
Jikes RVM; an implementation for the optimizing compiler
will be our next step. We also still have to perform a system-
atic performance evaluation of this optimization.

Acknowledgments
We would like to thank Andre Loker, who has developed the
unified model of aspect instantiation strategies underlying
the PerTupleContext.
This work was supported by the Center for Advanced

Security Research Darmstadt (www.cased.de).

References
[1] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith,

T. Ngo, J. J. Barton, S. F. Hummel, J. C. Sheperd, and M. Mer-
gen. Implementing Jalapeño in Java. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), 1999.

[2] P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins,
J. Lhoták, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. abc: An extensible AspectJ compiler. Transac-
tions on Aspect-Oriented Software Development I, 3880:293–
334, 2006.

[3] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Vir-
tual machine support for dynamic join points. In Proceed-
ings of the Conference on Aspect-Oriented Software Develop-
ment (AOSD), 2004.

[4] C. Bockisch, S. Malakuti, M. Aksit, and S. Katz. Mak-
ing aspects natural: Events and composition. In Proceed-
ings of the Conference on Aspect-Oriented Software Develop-
ment (AOSD), 2011.

[5] C. Bockisch, A. Sewe, M. Mezini, and M. Akşit. An overview
of ALIA4J: An execution model for advanced-dispatching
languages. In Proceedings of the Conference on Objects,
Models, Components, Patterns (TOOLS), 2011.

[6] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. The
Open Runtime Platform: a flexible high-performance man-
aged runtime environment. Concurrency and Computation:
Practice & Experience, 17:617–637, 2005.

[7] M. Ernst, C. Kaplan, and C. Chambers. Predicate dis-
patching: A unified theory of dispatch. In Proceedings
of the European Conference on Object-Oriented Program-
ming (ECOOP), 1998.

[8] D. Frampton, S. M. Blackburn, P. Cheng, R. J. Garner,
D. Grove, J. E. B. Moss, and S. I. Salishev. Demystifying
magic: high-level low-level programming. In Proceedings
of the Conference on Virtual Execution Environments (VEE),
2009.

[9] N. Glew, S. Triantafyllis, M. Cierniak, M. Eng, B. T. Lewis,
and J. M. Stichnoth. LIL: An architecture-neutral language
for virtual-machine stubs. In Virtual Machine Research and
Technology Symposium, 2004.

[10] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-
oriented programming. Journal of Object Technology, 7(3),
2008.

[11] H. Masuhara and G. Kiczales. Modeling crosscutting in
aspect-oriented mechanisms. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
2003.

[12] J. R. Rose. Bytecodes meet combinators: invokedynamic on
the JVM. In Proceedings of the 3rd Workshop on Virtual
Machines and Intermediate Languages (VMIL), 2009.

[13] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and
S. Komiya. Design and implementation of an aspect instanti-
ation mechanism. Transactions on Aspect-Oriented Software
Development I, pages 259–292, 2006.

[14] C. Thalinger and J. Rose. Optimizing invokedynamic. In Pro-
ceedings of the 8th International Conference on the Principles
and Practice of Programming in Java (PPPJ), 2010.

[15] B. L. Titzer, T. Würthinger, D. Simon, and M. Cintra. Improv-
ing compiler-runtime separation with XIR. In Proceedings of
the 6th International Conference on Virtual Execution Envi-
ronments (VEE), 2010.

[16] D. Ungar, A. Spitz, and A. Ausch. Constructing a metacir-
cular virtual machine in an exploratory programming environ-
ment. In Companion to the Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA), 2005.

315

http://www.cased.de/

	Introduction
	A Runtime MOP for Advanced-Dispatching
	From Runtime MOP to (Just-in-Time) Compile-Time MOP
	The Compile-Time MOP in SiRIn
	The (JIT) Compile-Time MOP in SteamloomALIA

	Case Study: Compile-Time MOP
	Case Study: JIT Compile-Time MOP
	Semantics of the PerTupleContext
	Optimizations: An Outlook
	Performance

	Related Work
	Conclusion and Future Work

