
Explaining Recursion to the Unsophisticated

S. kl. Haynes
Department of Computer Science

Eastern Michigan University
Ypsilanti, Michigan 48197
haynes@emunix.emich.edu

Abstract

This paper addresses the topic of explaining
recursion to beginning programmers. It
briefly presents the common approaches, then
describes an extension to those methods called
the activation tree.

1. The Problem

Recursion is a difficult concept for beginning
programmers though its importance, even in
the early stages of the computer science
curriculum, is generally recognized [Ast94],
[McC87]. Recursion is important and subtle;
explaining it to a na'l've audience is challenging.
Beginning programmers tend to get lost in a
jungle of detail when tracing through recursive
programs. Yet, being beginners, they are not
yet ready for the simplifying abstractions in
the expert's kit.

I have used all five of the ways of explaining
recursion described in the following section.
The first four are commonly used approaches.
To this arsenal, I've added the activation tree, a
combination of certain information in runtime
stack frames, and the topology of the recursion
tree. Students have found it to be particularly
illustrative, as it gives them control over all
the necessary detail.

This short paper very briefly describes the
most common approaches to explaining
recursion: induction, runtime stack, the trace,
and the recursion tree. It then describes the
activation tree, showing how it relates to the
common methods. An example of a complicated
recursive program, which is traced using the
activation tree and the trace, is then given.

Using a simpler example, I make some remarks
on using the activation tree to help the students
improve their understanding of the concept of
induction.

2. Ways of Explaining Recursion

1. Induction
The inductive approach gives the high level

function definition, i.e., how the function is
defined in terms of itself and base case. The
EBNF definition of expressions is one such
example. One inductive definition of the
Fibonnaci series is:

Fib(k) = Fib(k-l) + Fib(k-Z);
Fib(2) = 1;
Fib(l) = 1;

The power of this approach cannot be
underestimated. However, students frequently
can understand the words without appreciating
the meaning. Understanding induction is the
expert-level abstraction alluded to in the first
section.

2. Runtime stack
Recursion is implemented in high level

languages by pushing and popping stack frames,
or activation record instances, onto the the
runtime stack. Each time a procedure is
invoked, a stack frame, containing local
variables, parameters, return address, and
other bookkeeping information is pushed onto
the runtime stack. When a called procedure
returns control to its calling procedure, the
stack frame for the called procedure is popped
off the runtime stack.

The advantage of using the runtime stack to
explain recursion is that the stack frames keep

S I G C S E
BULLETIN vol. 27 No. 3 Sept. 1995 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F209849.209850&domain=pdf&date_stamp=1995-09-01

t rack of all information required: parameter
values, local variables, return address, and
returned value.

The problem with the runtime stack is that
students necessarily are taking notes on the
static medium of paper, while the runtime stack
is a dynamic phenomenon. What with all the
pushes and pops, their notes become illegible
and useless.

3. The trace
Another technique is the trace. Every time a

procedure is called, a line with procedure name
and input parameters are printed. Every t ime a
procedure completes execution, a line with
procedure name and return value is printed out.
The output is indented so that corresponding
invocation and return are aligned.

The trace can be thought of as a static (pen-
and-paper oriented) simplification of the run-
time stack. The only information used from the
runtime stack are the parameter values, the
return values, and the calling order.

The trace can be very effective, and I've
f requent ly used it in conjunction with other
ways of explaining recursion. It can be
confusing for a student to build a trace of a
procedure which has multiple calls to itself.
The Fibonnaci series is an easy example of such
mult iple calls, Ackermann's funct ion (given
later), is notoriously more difficult.

4. The recursion tree
An effect ive illustration of recursion is the

recursion tree, (good examples are in [KLT91],
[NyL92] , [Sed88]) . The recursion tree is a
t ree where each node is the "cu r ren t
environment." That is, each node contains
parameters and local variables. Using this
technique, it is easy to identify a node as a
particular procedure executing in a particular
environment. The parent of a node is the
procedure which called the node. The children
of a node are the procedures which that node
calls.

Because of the 2-D presentat ion, the
recursion tree is easier to examine and use than
the trace. It also has the great advantage that it
is but a step to go from recursion tree to
induction. To get to induction from the runtime
stack or from the trace is much more difficult.

The recursion tree has a few disadvantages
that are easily remedied in the activation tree.
First, the nodes of the recursion tree do not
record the returning value of the node. Second,
confusion can arise when building a recursion
tree for a procedure which has more than two
calls to itself. Because one is tracing through
code while building the recursion tree, it is
important to keep track of which procedure call
in the code, one is returning from. This can be
especially confusing when the recursive calls
are embedded in d i f fe rent branches of a
conditional. Again, Ackermann's function is a
classic example of this difficulty.

5. The act ivat ion tree
The activation tree is a combination of the

run-time stack and the recursion tree. The
stack frames of the runt ime stack contain
additional required information, specif ically
the return value and the return address, the
topological organization of the recursion tree
makes it easier to follow the dynamic execution
of the program. It has the advantages of both
recursion tree and runtime stack. It does not
have the disadvantages of either. It is a simple
extension to the recursion tree, but has been
surprisingly effective among my students.

3. The Activation Tree

To explain the activation tree, I'll just give the
cookbook instructions I give to my students. I'll
use Ackermann's function to illustrate.

i n t a c k (i n t m, i n t n) {
if (m==O) r e t u r n (n + 1);
if (n==O) r e t u r n (ack (m - l , 1)) ;
r e t u r n (ack (m - l , a c k (m , n - l)));
}

INSTRUCTIONS:
1. Build a template of the act ivat ion record
instance. It must include funct ion name,
parameters, and return value.

Generic template AGM template

par1 : m I value
par2 n

Figure 1 Act ivat ion Record Instance

S I G C S E
B U L L E T I N VOI. 27 No. 3 Sept. 1995 4

Z. Examine the code. If the procedure calls
itself more than once, label each call to itself
with a unique number. Note the numbers 1, Z,
and 3 which subscript the three calls to ack.
(Aside, this label is an abstraction of the return
address).

int ack(in t m, in t n) {
if (m==0) r e tu rn (n + 1);
if (n==O) r e tu rn (ack 1 (m - l , 1)) ;
r e t u r n (ack2 (m-l , ack 3 (m, n - l)));
}

3. Draw the activation tree by tracing through
the program. Begin with the first invocation of
the procedure and draw, as the root of the
activation tree, the template with parameters
and local variables filled in.

4. Any call to any procedure is recorded in the
activation tree as a child node of the current
node. To execute the called procedure, move
down to that new child node.

(a) If the current node makes several
procedure calls, the children nodes are drawn
left to right in the order they are called. See
Figure 2.

(b) If arguments are calculated by making a
recursive call, those arguments must be
evaluated before they can be passed to any
funct ion. Make a normal (recurs ive)
procedure call, recording it in the activation
tree as a child of the current node.

(c) If an argument is calculated through a
recursive procedure call, then passed to a
(di f ferent) recursive call (as in Ackermann's
function, ack3), first evaluate the arguments,
then cafl the procedure with the argument
values. That is, there will be one child for each
recursive argument evaluation, then one child
for the function using those arguments.

S. A return from a procedure means filling in
the returned value and moving back up the tree
to the parent. Leaves of the tree correspond to
procedures which do not call other procedures.

6 The dynamic execution of the program
follows depth first traversal of the activation
record tree.

I E

I
I A

/
I I I 1 B I C

I I

I

I,
Figure Z

1 st tree: A invokes B
?.nd tree: A invokes B, C, A, in order

To complete the example, I give first the
trace of Ackermann's function when invoked
with parameter list (2,1); then its activation
tree is given in Figure 3. Certain invocations
and returns on the trace are labelled, which
correspond to labels on the corresponding
act ivat ion tree. This labell ing is for
illustrative purposes only.
> (ack 2 1)
Entering: ACK, Argument list: (2 1) //(a)

Entering: ACK, Argument list: (2 0)
Entering: ACK, Argument list: (1 1) / / (b)

Entering: ACK, Argument list: (1 0)
Entering: ACK, Argument list: (0 1) / / (c)
Exiting: ACK, Value: 2

Exiting: ACK, Value: 2
Entering: ACK, Argument list: (0 2)
Exiting: ACK, Value: 3

Exiting: ACK, Value: 3
Exiting: ACK, Value: 3
Entering: ACK, Argument list: (1 3)

Entering: ACK, Argument list: (1 2) / / (d)
Entering: ACK, Argument list: (1 1)

Entering: ACK, Argument list: (1 0)
Entering: ACK, Argument list: (0 1)
Exiting: ACK, Value: 2

Exiting: ACK, Value: 2
Entering: ACK, Argument list: (0 2)
Exiting: ACK, Value: 3

Exiting: ACK, Value: 3
Entering: ACK, Argument list: (0 3)
Exiting: ACK, Value: 4

Exiting: ACK, Value: 4
Entering: ACK, Argument list: (0 4) / /(e)
Exiting: ACK, Value: 5

Exiting: ACK, Value: 5
Exiting: ACK, Value: 5

S I G C S E
B U L L E T I N Vol. 27 NO. 3 SeDt. 1995 S

A second recursion example is the
calculation of the Fibonacci number. The
inductive definition is given in section 2 of this
paper. A trace of a call to F ib (5) follows.
Figure 4 shows the activation tree for Fib(5).

E n t e r i n g : FIB , A r g u m e n t list: (5)
E n t e r i n g : FIB , A r g u m e n t list: (4)

E n t e r i n g : FIB , A r g u m e n t list: (3)
E n t e r i n g : FIB , A r g u m e n t l ist : (2)
Ex i t ing : FIB , V a l u e : 1

E n t e r i n g : FIB , A r g u m e n t list:. (1)

Ex i t ing : FIB , V a l u e : 1
Exi t ing : FIB , V a l u e : 2

E n t e r i n g : FIB , A r g u m e n t l ist : (2) a['~
Exi t ing : FIB , V a l u e : 1

Exi t ing : FIB , V a l u e : 3
E n t e r i n g : FIB , A r g u m e n t list: (3)

E n t e r i n g : FIB , A r g u m e n t list: (2)
Exi t ing : FIB , V a l u e : 1
E n t e r i n g : FIB , A r g u m e n t list: (1)
Ex i t ing : FIB , V a l u e : 1

Exi t ing : FIB , V a l u e : 2

Exi t ing : FIB , V a l u e : 5

2 I

(c)

l ack, I
0 2
1 !

4. Mov ing t o Induct ion

Once a student has control of the necessary
detail of recursion, it is then important to begin
building a more expert level chunking ability.
The student needs to be able to move from the
gr i t ty detail to the more abstract, inductive
def ini t ion of the funct ion being performed
through recursion.

Among the methods described above, the
act ivat ion tree is a convenient method for
making this step. The topology of the tree is
derived from the execution, and the execution is
closely t ied to the inductive definit ion (which
was used to write the function). For example,
the activation tree in Figure 4 shows that the
node for Fib(5) has two children: Fib(4) and
Fib(3). That is, the value calculated for
Fib(5) must use the values calculated for
Fib(4) and Fib(3). The activation tree has the
return values placed in the r ight-side box,
making the return value accessible to the
student. According to the definition of Fib, the
values for Fib(4) and Fib(3) must be added
together in order to obtain the value for Fib(5).
If we replace the "5" in Fib(5) by "n", then the
activation tree tells us that Fib(n) is a function
of Fib(n-1) and Fib(n-2).

S I G C S E
B U L L E T I N Vol. 27 No. 3 Sept. 1995

(a)
I

lET' s I

:,b, e'

L
ack
0

21 I

I I
2 1

Figure 3 Act ivat ion tree for Ackermann(2,1)

l ' ib I I 5 5
I

/ ' -- .
I

1
I

Figure 4 Act ivat ion tree for Fibonacci(5)

The leaves of the activation tree correspond
to the base case(s) of the inductive definition.
Thus, Fib(2) returns, immediately, with the
value of 1.

******Recursion Continued On Page 14"*****

6

Decker R. and Hirshfield, S. : "The top 10 reasons why Object-Oriented programming can't be taught in
CSI". ACM SIGCSE Bulletin, 26(1), 51-55, 1994.

Mody, R.P.: "C in education and software engineering". ACM SIGCSE Bulletin, 23(3), 45-56, 1991.

Pyott, S. and Sanders, I.: "ALEX: an aid to teaching algorithms". ACM SIGCSE Bulletin, 23(3), 36-44,
1991.

Sakkinen, M.: "The darker side of C++ revisited". Structured Programming, 13(4), 155-178, 1992.

Solway, E.: "Should we teach students to program". Comm ACM, 36(10), 21, 1993.

Terry, P.D.: "Umbriel - a minimal programming language". Submitted to ACM SIGPlan Notices, 1995.

Wirth, N.: "Pascal-S: a subset and its implementation", in Pascal - The Language and its Implementation,
John Wiley, Chichester, 1981.

Wirth, N,: "The programming language Oberon". Software - Practice and Experience, 18, 671-690, 1988.

Wirth, N.: Programming in Modula-2 (3rd edition). Springer-Verlag, Berlin, 1985.

MS-DOS is a trademark of MiscroSoft Corporation. QEdit is a trademark of Semware Corporation. Turbo
Pascal is a trademark of Borland International.

************************************ Continued From Page ********************************

Because the inductive definition is a compact
and very general description of recursion, it is
important to understand it. The activation tree,
with its visually oriented structure, offers a
convenient stepping stone to thinking
inductively.

5. Conclusion

While recursion can be subtle, the recursive
problems given to beginning programmers,
Fibonnaci series, factorial function, Towers of
Hanoi, etc., are not particularly difficult. Yet
explaining even simple examples of recursion
to beginning programmers is difficult. This is
not because of subtlety, but because of the
complexity of tracing through code where there
are many "pending" procedures with the same
name.

There are several common approaches for
helping students understand recursion: the
inductive definition, the runtime stack, the
trace and the recursion tree. To these
approaches, this paper adds the activation tree.
In topology, the activation tree is the recursion
tree. In environment information, it is the

runtime stack. Students have found the
activation tree, especially in combination with
the trace, to make recursion clear.

References

[Ast94] O. Astrachan, Self-reference is an
i l lustrat ive essential, SIGCSE Conference
Technical Proceedings, ACM, Phoenix, Arizona,
March 1994, pp 238-242.

[KLT91] R.L. Kruse, B.P. Leung, C.L. Tondo,
Data Structures and Program Design in C,
Prentice Hall: New Jersey, 1991.

[McC87] D.D. McCracken, Ruminations on
computer science curricula. Communications of
theACM, 30(1):3-5, January 1987.

[NyL92] L. Nyhoff, S. Leestma, Data
Structures and Program Design in Pascal, 2nd
Ed., Macmillan:New Yrok, 1992.

[Sed88] R. Sedgewick, Algorithms, 2nd Ed.,
Addison-Wesley: Reading, Massachusetts,
1988.

S I G C S E vol. 27 No. 3 Sept 1995 14
B U L L E T I N

