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features that can be valuable in numerical analysis, and a survey of the pros and cons of the

languages with regards to work in numerical analysis. Language features such as polymorphism,

first-class functions, and object-oriented programming offer improved writability, readability,

reliability, and maintenance of computer software. The article discusses language features and

uses, and includes a comparison of current implementations. It is intended both as an introduc-

tion to nonprocedural language features for persons working in numerical mathematics and as

an exploration of some of the language requirements of numerical mathematics for persons

working in language development. The article discusses C+I, Fortran 77, Fortran 90, Haskell,

Lisp/CLOS, Modula-3, Satherj and SML with respect to a variety of numerical analysis tasks:

interpolation, optimization, array access and update, iteration, recursion, random number

generation, and Gaussian elimination on sparse matrices.
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1. INTRODUCTION

Many new languages offer features that can provide significant benefits for

developers of mathematical software. In most large software projects the

costs of personnel are far larger than the costs of computer resources, and the

fraction of cost devoted to personnel continues to grow. Languages that

reduce programmer time and increase software reliability, even at some cost

in computer resources, can increase software reliability and reduce the time

and cost of software development.
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Many problems are better modeled by functional or object-oriented

paradigms than by more-traditional procedural approaches. This fit can make

the translation from concept to program easier and more reliable, and is

sometimes called the appropriateness of the metaphor or model.

Often, nonprocedural languages enable code reuse by reducing duplication

of program code. Code reuse leads to better reliability, quicker time to

completion, and ease of maintenance by reducing the length and complexity

of programs.

Object-oriented programming is integral to a developing set of standards

for interoperability [Eckerson 1993; Horn 1993; Mobray and Brando 1993;

Nicol et al. 1993; OMG 1991]. Interoperability is the ability of software

components, such as user interfaces, mathematics libraries, and graphics

packages, to be used together with no prior knowledge of each other.

1.1 Features

The language features that enable the above benefits are discussed at length

in the body of this article and are briefly described below.

The first-class objects of a language are those that may be dynamically

created, passed to, and returned from a function, may be used in an expres-

sion, and may be an element in a data structure. First-class functions [Davie

1992; Louden 1993; Sethi 1989] are a feature in some languages: functions

themselves may be passed to and returned from other functions, may be

contained in data structures, etc. In many cases, use of fh-st-class functions

enables code that is more elegant and reliable. First-class functions are one of

the defining characteristics of functional programming languages.

Some languages support lazy evaluation [Davie 1992; Hudak and Fasel

1992], meaning that no expression is evaluated until its value is actually

needed. Thus a data structure may have an essentially infinite number of

members, such as a list of all primes or of all derivatives of a function, since

only a finite number will ever actually be used. Lazy evaluation facilitates

dealing with many problems involving conceptually infinite lists and struc-

tures.

One of the most-powerful facilities of modern languages is the ability to

apply a given routine to different types of data. For example, a single sort

routine might be used to sort integers, floats, character data, and records.

This ability is loosely called genericity or polymorphism [Louden 1993; Sethi

1989]: a routine may take generic arguments; its arguments may take “many

forms.”
In object-oriented programming [Booth 1993; Louden 1993; Wegner 1990],

objects are data structures that combine both data and program routines

related to that data. Object-oriented programming allows one to define new

kinds of objects and their properties easily. For example, one might define a

class of rational functions, each instance of which is a ratio of polynomials.

One could define operations such as addition, multiplication, etc. on them.

Using that class, one could write a program to solve a system of linear

equations whose coefficients are rational functions (see J. T. Holland’s Inter-
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net posting, 1993). In a procedural language such as C or Fortran 77, the

solution of the equations involving rational function coefficients would be a

complicated undertaking: a new Gaussian package would have to be written

from scratch, and the programmer would have to worry about the manipula-

tion of rational functions at each step of the way. But with a more-flexible

language, it is possible that an existing Gaussian elimination package, if

previously implemented with an eye toward polymorphism, could be used

unchanged to solve both the traditional problem with floating-point coeffi-

cients and the problem with rational function coefficients.

All modern languages contain some sort of type system [Louden 1993; Sethi

1989]. The languages C++, Fortran 77, Fortran 90, Modula-3, SML, Haskell,

and Sather all use static typing, meaning that type checking (finding errors

such as adding floats to characters) is done at compile instead of run-time.

Strong type checking means that all type errors are discovered; weak means

that some may go undetected. Common Lisp and CLOS use dynamic typing,

meaning that type errors are not caught until run-time. Many implementa-

tions of Fortran 77 do not catch any errors in types or numbers of parameters

passed to subroutines or functions, not even at run-time. This lack of support

makes such errors difficult to find, since they can be discovered only as

run-time logic bugs.

Very large problems require decomposition of some kind. While procedures

can be used for this purpose, additional levels of modularization are helpful

for decomposing very large problems. As a result, modular decomposition (i.e.,

breaking a program up into separate modules) is supported in many lan-

guages. Modules allow separate pieces of a large program to be constructed

independently—modules are only allowed to interact through their interfaces

and thus encapsulate their contents. Modules also support data abstrac-

tion—functionality provided by a module is entirely specified by its interface,

and the implementation of that functionality is hidden from the user. Such

programming languages allow the programmer to control the external visibil-

ity of procedures, variables, and types defined in a module.

1.2 Languages Reviewed

The languages reviewed are listed below. For compiler versions and availabil-

ity, see Section 5.3. C++ is reviewed here following two usage styles: a C-like

simple imperative style without classes and an object-oriented style using

classes. We chose to review only general-purpose languages, and omitted

Matlab, Mathematical, and similar special-purpose languages. For a more-

detailed discussion, see Section 6.

—C ++ is a large procedural object-oriented language with weak type sup-

port. C++ is a superset of C, with added object-oriented features [Coplien

1992; Ellis and Stroustrup 1990; Lippman 1991].

—Fortran 77, the current lingua franca of numerical analysis, is a procedural

language [ANSI 19781.
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—Fortran 90 is a successor to Fortran 7’7, with added features for user-de-

fined types (records), array handling, dynamic allocation, interface defini-

tions, and modules [1S0 1991].

—Haskell is a huge, sophisticated, pure functional language with modules

and strong static typing [Hudak 1992].

—Common Lisp is a huge dynamically typed language with a long history,

based on list processing [Steele 1990].

—Common Lisp Object System (CLOS) is an object-oriented extension to

Common Lisp [Keene 1989; Steele 1990].

—Modula-3 is a large, procedural, object-oriented language with modules and

strong static typing [Cardelli 1992].

—Sather is a small object-oriented language based on Eiffel and C

[omohundro 19901.

—SML is a small, elegant, mostly functional language with strong static

typing [Milner 1990].

1.3 Article Overview

Section 2 presents an overview of functional programming. Several powerful

features of functional languages are examined. Many small examples and two

sample problems—interpolation and optimization—are presented that illus-

trate some of the pros and cons of these languages for numerical analysis

work. Section 3 presents an overview of object-oriented programming, again

with small examples. The same two example problems—interpolation and

optimization—are revisited from the object-oriented point of view. Section 4

presents a variety of other language issues, including array handling, random

numbers, exception handling, and garbage collection. And Section 5 presents

a review of the performance and features of implementations of the reviewed

languages. The benchmark used is a typical numerical analysis task: Gauss-

ian elimination on sparse matrices. The implementations are compared with

respect to compilation and execution times, error messages, and documenta-

tion. Sources for the implementations are also noted. Sections 6 and 7 present

summary and concluding discussions.

2. THE FUNCTIONAL PARADIGM

There are a handful of powerful features found commonly in functional

languages that could be of particular value in numerical analysis. For more-
complete descriptions, please consult Cardelli and Wegner [ 1985], Davie

[1992], Louden [1993], Hudak [ 1989], Hudak and Fasel [1992], Paulson

[1991], and Sethi [ 1989].

2.1 First-Class Functions

The first-class objects of a language are those that have the properties listed

below [Davie 1992]. As an example of a first-class object, consider floating-

point values in C or C++.
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—First-class objects may be given a name: float x;

—First-class objects may be passed to and returned from a function: y = f(x);

x = f(u);

—First-class objects may be used in an expression: a = b + c* x;

—First-class objects may be used in data structures: structs {float x; float y;};
or class s {float x; float y;};

First-class functions [Davie 1992; Louden 1993; Sethi 1989] are a feature in

some languages: functions themselves may be passed to and returned from

other functions, may be contained in data structures, etc. In many cases, use

of first-class functions enables code that is more elegant and reliable. First-

class functions are one of the defining characteristics of functional program-

ming languages.

In a language supporting first-class functions, functions can be used as any

other value; functions can be passed to functions; functions can return

functions; elements of arrays can be functions; etc. While C, C-i-t, and

Modula-3 support pointers to functions, languages like SML and Haskell that

provide full first-class functions allow far more flexibility.

A pure functional language is one that supports first-class functions and

does not provide any means of changing the value of a variable, once it has

been set. This restriction facilitates some types of computational analysis.

Haskell is a pure functional language. SML is a functional, but since it, like

C++ and Modula-3, supports the alteration of variables (e.g., i := i + 1;), SML

is not pure. This issue is discussed more in Section 2.3. Functional languages

offer notation for anonymous functions, sometimes called lambda expres-

sions. Anonymous functions are, in essence, functions without their

names—for example, the function f(~) = z 2 has name f. In functional

language jargon, the identifier f has as its value the anonymous function

that maps its argument x to x 2. The anonymous function is x e x 2.

Some functional languages also support currying, which is the partial

application of a function. For example, let f be a function of two arguments

f(x, Y) = x + Y, and let g = f(2). The function f is applied with only it first
argument known, returning a function as a result. Thus the variable g is

bound to the function that maps y -2 + y, or in other words, g(y) = 2 + y.

Consider the following examples of first-class functions, which could be

written in either SML or Haskell:

Example 2.1.1 Function Composition in SML. Define a function compose

that returns the composition of its two arguments, each of which is a

function. The notation fn x => expression denotes an anonymous function

that, when invoked, maps its argument x into the value of expression.

fun compose f g = (fn x=> f (g(x))); (* Define function compose *)
fun plusl x = x + 1; (* Define function plusl *)
fun muIt2 x = 2*x; (* Define function mult2 *)

val addmult = compose mult2 plusl; (* addmult (x) is 2*(x + 1) *)
val x = addmult 5; (* The result is that x is bound to 12. ‘)
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Or alternately
val addmult = compose (fn x => 2XX) (fn x => x + 1);
val x = addmult 5, (* The result is that x E bound to 12. *)

Example 2.1.2 “Map” in Haskell. The function map takes two argu-

ments: a function f and a list la. When invoked, map returns a list lb, where

the i th element of lb is f( ith element of la). Note that in Haskell, function

application is written f x y instead of the more-familiar f (x, y). An example of

use:

la = [1,2,3,4,5] -–define Ilst la
fx=x’x -– define fcn f, which squares Its argument
lb = map f la --def(ne lb = [1,4,9, 16, 25]

Example 2.1.3 Interpolation. Suppose that a person has a set of (x, y)

pairs and wishes to create an interpolating function f, such that f(x)

estimates y. Let the matrix amat consist of one (x, y ) pair on each row.

In Fortran 77, Fortran 90, C++, or Modula-3, the solution would be similar

to the following Fortran 90 code:

call make_ interp (amat, cvec) I Calc coefficients vector cvec
c Now use coefficients in cvec to predict y for a gwen x

y = cvec(l) + cvec(2)+x + cvec(3)*xf~2 + cvec(4)*x”*3
y = use_ lnterp (cvec, x) ! Alternate way to do Interpolation

But in a functional language like SML or Haskell, one could write instead:

f = make_ interp (amat); (* Calc and return Interpolating function f ‘)
y = f(x); (y Use function f to predict y for a gwen x * )

This example illustrates that first-class functions in SML or Haskell can be

used to provide information hiding similar to that provided by the module

mechanisms of Fortran 90, Modula, or Ada. Specifically, in this example,

first-class functions provide the following advantages:

—The main procedure does not have to know about or deal with the type of

interpolating function.

—The method of interpolation can be changed without changing any other

procedures or functions.

—The interpolating function can be complicated (for instance, using different

interpolating coefficients for different ranges of X) without cluttering the

main program.

—The code to implement the interpolation function does not have to be

repeated everywhere interpolation is used.

Example 2.1.4 Optimization. Another common example in which first-

class functions are useful is when passing information from a high-level

routine through a middle one to a low-level routine.

For example, suppose one has a general optimization program genopt

(f, a, b), which finds the value of real x that minimizes a function f(x) over
some interval [a, b].

But suppose f is really a function not just of X, but of integers i and j. And

finally, assume that one wishes to try a handful of discrete values of i and j,
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and find the optimum value of x for each. How can the main program

communicate the values of i and j to f, without rewriting genopt?
In a procedural approach, the solution might be to keep i and j in global

variables. Consider the following solution in Fortran 77:

program main
common / ijvals / globi, globj
integer globi, globj
. . . globi = . . ..globj= . . .
x = genopt (tstfun, a, b)

double precision function tstfun (x)
common / Ijvals / globi, globj
interger globi, globj
tstfun = globi*x**globj
. . .

This solution has all the disadvantages of global storage. Although having a

unique name for the common block or module does provide some security, it

is still:

—difficult to know what functions alter or use global values,

—difficult to trace errors,

—difficult to maintain the program, as dependencies are implicit, and

—sometimes difficult to avoid inadvertent name collisions with other simi-

larly named objects.

Another way to solve this program would be to rewrite the general opti-

mization program genopt to accept parameters i and j, and to pass them

through to function f. While this solution makes dependencies explicit, it is an

even-worse solution in that it means rewriting genopt for each new use.

Using this solution means:

—multiple versions of genopt,

—little code reuse for the versions of genopt, and

—maintenance and version control problems for genopt.

Another way to solve this problem would be to use modules as provided by

Fortran 90, Modula, or Ada. Such a solution in Fortran 90 could be expressed

as follows:

module funmod

integer, private :: Iocali, Iocalj

contains
subroutine reinit (ii, jj)
integer ii, jj
Iocali = ii
Iocalj = jj;
end subroutine relnit
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real function testfunc (x)
real x
testfunc = .
end function f

end module funmod

program main
use funmod
. ..calcnewi. j...
reinit (I,])
x = genopt (testfunc, a, b)

end program main

In this solution, the module funmod exports only two routines, testfunc and

reinit. The subroutine reinit is provided to control access to the variables Iocali

and Iocalj in the module. They can only be modified by calling this subroutine.

In an alternative solution, variables Iocali and Iocalj could be made public,

essentially making them global to all routines that “USE” funmod. Making

these variables part of the interface has the disadvantage that they might be

unintentionally modified elsewhere in the program.

Finally, in a language with first-class functions, such as SML or Haskell,

one might write instead:

. . . talc new I, I . . .

let fun fnew (x) = f(i, j, x) (* Create function fnew which “)
(* encapsulates the current I, j values *)

val x = genopt (fnew, a, b) (* Find x minimizing fnew for I and j ‘)
in . . .

These languages allow the creation of new functions “on-the-fly.” All informa-

tion of i and j is encapsulated in the definition of fnew. An encapsulation of a
function and variable bindings is termed a closure. The cost of creating a

closure is similar to allocating a record for its environment, which is small.

The cost of calling a closure is only marginally slower than calling a statically

defined function, and is the same as calling a function passed as an argument

to a Fortran routine.

In summary, first-class functions provide a way to encapsulate values that

might otherwise be passed via globals or, worse yet, via general-purpose

routines that must be rewritten for each special case.

2.2 Functional Programming Idioms

The lack of ability to modify variables in pure functional languages leads to a

definite programming style. This style is often used in nonpure functional
languages, such as SML, as well.

2.2.1 Recursion. In a functional-style program, recursion is used to ac-

complish iteration. For example, in a language such as Fortran or C ++,

iteration is accomplished by updating a loop variable repeatedly:

prod = 1; // calculate n factorial
for (i = 2; i <= n; i+) // variables i and prod are

1/ repeatedly updated
prod = prod*l;
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But in a functional languages such as SML and Haskell, recursion would be

used. In SML one could write:

factorial (n) = if n = O then 1 else n* factorial (n – 1)

Recursive functions can be written in all the reviewed languages except

Fortran 77. While recursion is an occasionally used feature in nonfunctional

languages, in functional languages recursion is the preferred way to accom-

plish any iterative task. In general, recursion is more easily accomplished

and more elegantly expressed in functional languages than in procedural

ones. Some languages (such as Scheme) guarantee “tail-recursion elimina-

tion,” which means that, when possible, recursion is converted into iteration.

This optimization is common in all functional language implementations and

can often be applied. If this optimization is not performed, there is substan-

tial cost to using recursion over iteration.

2.2.2 Reduction. A list of values may be reduced by applying a reduction

operator, which collapses the list into a single value. For example, the list

[1, Z’, 3,4] may be reduced by sum ([1,2,3, 4]), resulting in the sum. In
general, a reduction operator specifies a binary operation and an identity

value. In sum, the binary operation is addition, and the identity value is O. In

the reduction operator product, the binary operation is multiplication, and

the identity value is 1. Functional languages such as SML and Haskell

provide methods of creating reduction operators. In Haskell, one could write:

sum = foldr (+) O and product = foldr (*) 1. Here (+) and (*) are sections: they

are functions of two arguments, created from the binary operators + and *.

Fortran 90 has sum and product intrinsic for intrinsic types, but they lack

the generality of reduction operators.

2.2.3 Pattern Matching. SML and Haskell also support pattern matching.

The formal arguments to a function maybe built out of constructors. In SML,

the operator :: prepends an element to a list, like the Lisp cons function. For

example, the expression a:: [b, c, d] yields the list [a, b, C, d]. The argument to
function f, below, uses a pattern to decompose the given argument into the

head (first element) and tail (remainder) of the list:

fun f(hd::tl) = hd*l O;

So the expression f([3, 4, 51) would yield 30.
Also, SML and Haskell functions maybe defined using cases. For example,

the following SML code defines a function f that maps 3 to 33, 4 to 444, and 5

to 5555.

fun f(3) =33
I f(4) = 444
I f(5) = 5555

Another common idiom in functional languages is use of an auxiliary

function, which is discussed next.
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2.3 Pure Functional Programming

Haskell is a pure (side-effect-free) functional language, meaning essentially

that values may be defined, but never modified. Standard C constructs like

i=i+l; orx=O; . . ..x=l ;cannot be used.

Pure functional languages have referential transparency, meaning that a

variable retains the same value throughout its scope, and may be replaced by

its definition with no change to program meaning.

For example, contrast the following programs to sum the elements of a

one-dimensional array in Fortran 90 and Haskell:

Fortran 90.

double precision function sumvec (veca)
double precision, dimension (:) :: veca
integer i
double precision sum
sum = 0,0;
do i = 1, size (veca)

sum = sum + veca (I)
enddo
sumvec = sum
return
end

Note that two variables are updated: the loop index i and the accumulator

sum.

Haskell. Array indices run from 1 to n. Define the function sumvec using

an auxiliary function sumveca. An auxiliary function is a local function for

use solely in the function defining it. In the following example, the auxiliary

function sumveca takes parameters vet, n, and i, and sums the elements of

vec from i to n using recursion. In Haskell, ! performs array subscripting, so

vet! i is equivalent to the more familiar vet(i) or vec[i].

sumvec vec n = sumveca vec n 1 --Main fcn sumvec sums from 1 to n
where sumveca vec n I = if i > n then O ––Aux fcn sums from i to n

else (vec!i) + sumveca vec n (i + 1)

Note that in this version, variables are not updated. The following Haskell

function illustrates a more-elegant way:

sumvec vec n = sum (map (vet!) [1 ..nl)

This example illustrates several features common in functional languages.

Here, [1. .n] generates a list of indices 1 through n. The ! operator performs

subscripting, so vec!3 returns the third element of vet. The construct (vet!) is

a section, and represents the function that, when applied to k, returns the

h th element of vet. So (vet!) k is the k th element of vet. The map function

applies its first operand, here the function (vet!), to each element of its

second operand, which here is the list [1. .n]. The result of the map application

in this case is a list of elements of vet. Finally, sum returns the sum of the

elements of the list. While this explanation may seem tedious, the example

shows that Haskell does offer numerous ways to create functions and use

them, i.e., first-class functions lead to new programming idioms.
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Pure functional languages present large problems in dealing with state

(updatable variables) and I\O. Since there are no updates in the pure
functional paradigm, any algorithms based on updating values or arrays (i.e.,

nearly all numerical algorithms) must be redeveloped to accommodate the

pure functional style. This is not a matter of rewriting or translating an

algorithm: in general, the basic algorithm must be redeveloped. Additionally,

dealing with 1/0 in a pure functional program can be extraordinarily compli-

cated. A program must be viewed as a function of all its input data that

returns all its output data. Simple programs using just a few lines of input

and output can become surprisingly convoluted. For more details on the

complexity of Haskell 1/0, see Hudak and Fasel [1992]. This is a topic of

current research, and promising methods to alleviate these difficulties are

being explored [Peyton Jones and Wadler 1993].

2.4 Lazy Evaluation

Lazy evaluation, sometimes called “nonstrict semantics,” means that no

expression is evaluated until absolutely necessary: if a result is never used,

the program statements used to calculate it never get executed. Haskell uses

lazy evaluation. All the other reviewed languages have strict evaluation,

meaning that program statements are executed as determined by standard

flow of control. To gain a feel for lazy evaluation, consider the following

examples:

c++.

X=l.o; //set value x
Y=x/O.O; Ilsetyto x/0,

// Produces error at this point.

Haskell.

X=l.o ––define value x
y=xio.o --define y as x10. y is not evaluated yet.
fz=3 --define function f, which always returns 3.
answer = f y ––evaluate f(y). f or y returns 3.

––not error, since y is never evaluated.

Lazy evaluation can be useful in defining infinite objects, as illustrated by

the following Haskell example. In Haskell, list indexing is performed by !!,

and the first element of a list is numbered O.

fx=x”x ––define function f,
––which squares its argument

x= map f [1..] ––define value x as infinite list
–-of squares [1, 4,9, 16, . . . ]

answer = x !! 3 --get fourth element of x, 16.

As another example, define a function ftter that takes a function f and

value x as arguments, and returns the infinite list [ f( x), f( IT x)),

f(f(f(~))), f(f(f(f(x)))), . . . ]. In Haskell, the single colon : is the cons opera-

tor—like the double colon :: of SML. In Haskell, if x is a value, and la is the
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list [a, b, cl, x: la is the list [x, a, b, cl. The double bang ! ! operator selects an

element from a list: la! !0 returns the first element of list la.

flter f x = x: flter f (fx) –-define function flter
gx=x’x --define function g,

––which squares its arg
la = fiter g 2 --define la= [2, 4,16,256, . ..]
answer = la !! 3 --get fourth element of la, 256

Although lazy evaluation can be mimicked in nonlazy languages, it be-

comes convoluted and tends to obscure the meaning of the program. Typi-

cally, in a nonlazy language a lazy list is implemented by a function that

returns the next list element on each succeeding call, or by one of several

similar methods.

Some optimizing compilers for conventional languages such as Fortran 77

provide an effect similar to lazy evaluation. Such compilers use dead-code

elimination, which simply elides sections of code whose results will not be

used, While this is certainly beneficial, it lacks the generality of lazy evalua-

tion in dealing with infinite data structures.

2.5 Polymorphism

In brief, polymorphism is the ability of a function or operator to accept

arguments of more than one type. In parametric polymorphism a function or

operator may be used with different types, but always performs the same

actions on its arguments. For example, some languages have a “length”

function that returns the number of items in a list. The same function works

on lists of integers, lists of floats, lists of strings, etc. In ad hoc polymorphism

or overloading, a function or operator performs different actions, depending

on the types of its arguments. For example, the + operator can be used to

add integers or to concatenate strings. There are many types of polymor-

phism, and a large literature on the subject exists. For an overview, see

Louden [1993] and Cardelli and Wegner [1985].

As an example of parametric polymorphism, consider a function “head’

that returns the first element of a list. The elements in the list can be of any

type a, so that function argument is of type “list of a ,“ and the returned

value of type a.

As another example, consider writing a “sort” function. Ideally, it would

sort integers, float, strings, . . or any type for which the comparison opera-

tion < is defined. The ideal sort could handle arbitrary structures or records
for which an operator < is defined.

Here is a comparison of the languages with respect to parametric polymor-

phism.

c++. C++ provides parametric polymorphism through “templates.”

While templates provide the flexibility to solve problems like the sorting

discussed above, they are clumsy and, in current implementations, can be

space inefficient.
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Fortran 77. Although Fortran 77 has a handful of generic intrinsic func-

tions, there is no facility for user-defined functions.

Fortran 90. Fortran 90 allows user-defined, generic functions. However,

this is much different than the parametric polymorphism provided by SML,

for example. A sort function in SML could sort any type for which < is

defined. In Fortran 90, the programmer must replicate the sort routine for

each type to be sorted. While not difficult for a small number of types, having

many nearly identical copies of a routine can become a maintenance headache.

Modula-3. Modula-3 provides generics, based on its module and interface

system. While workable, it is relatively clumsy. Defining a generic procedure

involves four files: the generic procedure, its instantiation, the generic inter-

face, and its instantiation. In Harbison’s text on Modula-3 [Harbison 1992] he

writes “The Modula-3 generic facility may seem somewhat cumbersome for

simple generics.”

SML and Haskell. SML and Haskell use type variables to provide para-

metric polymorphism. Haskell also provides a system of type classes. A type

variable is a variable representing the type of an ordinary variable. For

example, the SML type variable ‘a would have the value float when represent-

ing a floating-point variable. Type classes are sets of types. For example, the

Haskell type class Num contains the classes Integral and Floating. SML uses

functors and structures to provide other types of abstractions. While the type

classes of Haskell provide more flexibility than the type variables of SML,

Haskell’s module system lacks the flexibility of SML’S. In short, some opera-

tions that are easy to perform in Haskell are difficult in SML, and vice versa.

SML. SML has a full built-in system of type variables. However, it has

only two type classes, in the Haskell sense of type class. SML type classes are

the class of all types, denoted ‘a, where a may be any letter, and the class of

types supporting an equality predicate (“a). The equality type variables (“a)

can be instantiated only by types for which the equality operator ( = ) is

defined. This distinction is useful in defining some functions—for example, to

test a list to see if it contains a given element:

fun member (x:>’a, [ ]) = false (* x cannot be in the empty list *)
(* x is in list if it is the first element *),
(* or if x is in remainder of list (ys) *)

I member (x:”a, y::ys) = if x = y then true
else member (x, ys);

For more-general polymorphism, SML uses a module and signature system

similar to that of Modula-3.

Haskell. Haskell has a fully built-in system of type variables. It also has

classes of types that can be used with “contexts” to specify arbitrary con-

straints on the types to which a function applies. Haskell handles the

constrained polymorphism needed to write a generic sort function in a
straightforward and elegant manner. For example, to define a type “Pair of a“

where “a” is any type, one would write “data Pair a = Pr a a.” Further, the
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Table I. Summary of Func’uonal Features

First
Pattern

Parametric

class RecursIon Reduction
Lazy

matching evaluation
poly-

fcns morphism

C+t Yes Yes

Fortran 77 No (Note 1)

Fortran 90 Yes

Haskell Yes Yes Yes Yes Yes Yes

Lisp Yes Yes Yes Yes

LNp/CLOS Yes Yes Yes Yes

Modula-3 Yes Yes

Sather Yes Yes

SML Yes Yes Yes Yes Yes

Note 1. Some Fortran 77 implementations allow recursion in subroutines, although
the standard forbids it.

“Eq” class is defined in the Haskell prelude, and contains those types for

which equality ( = = ) and not-equal (/ = ) operators are defined. The type

“Pair of a“ can be included in class Eq if “a” is in Eq and if we define the

equality operator as, for example,

instance (Eq a) => Eq (Pair a) where
(Prab)== (Prcd)= (a==c)&&(b==d).

The “\= “ operator is defined automatically, using a default rule that

specifies “/= “ is not “ = = .“ In a similar vein, the “Oral” class is also

predefined in the Haskell prelude, and contains those types that are in class

Eq and additionally support operators <, < = , > , > = , rein, and max.

The type of “Pair of a“ could be included in class Ord with a definition similar

to the above, and a general sort function that takes any list of class Ord types

would work on “Pair of a,” assuming “a” is in Oral. Although the classes Eq

and Ord are defined in the Haskell prelude, the mechanism of class definition

is general. Had they not been predefine, a programmer might easily define

them. For an example, see Hudak [ 1992].

2.6 Summary of Functional Features

See Table I.

3. THE OBJECT-ORIENTED PARADIGM

There are many widely varied programming systems that have been called

“object-oriented,” and nearly as many definitions of the object-oriented (00)

paradigm as there are authors of 00 papers. For background material,
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see Wegner [1990], Louden [1993], and Booth [1993]. Here we consider the

salient features of an 00 system to be:

Class Structure. Classes may be defined, usually at compile-time. In-

stances or members of a class, called objects, may be created at run-time. A

class may define some or all of the following:

. Shared variables: a shared variable only occurs once in the class, and all

objects of the class share the same instance of the variable.

● Instance variables, sometimes called slots or fields: an instance variable

has a separate instantiation in each object within the class—each object

has its own copy.

● Methods: methods are functions that are invoked via an object. Typically, a

method is invoked by notation like obja. metha (parm 1, parm2, . . . ), where

obja is an object of a class classa, and metha is the name of a method

associated with that class. In some systems, methods are called messages,

and although the metaphor is based on messages and responses, the

functionality is similar to that of methods.

Inheritance. A class Beta maybe defined as a subclass of a class Alpha, in

which case each Beta object “inherits” all items—shared variables, instance

variables, and methods—of class Alpha and may access them as if they were

defined in class Beta. Class Alpha is called the parent of Beta. Some 00

systems, such as C++, allow class Alpha to restrict the items that Beta may

inherit. In one common method of method handling, if an application invokes

method M associated with an object of class Beta, the class Beta definition is

searched for a method matching Ms signature (parameter types). If found, it

is invoked. If not found, a similar search is performed on the parent class

(Alpha) of Beta, and so on up the class hierarchy until either finding a

method matching Ms signature or reaching the top of the class hierarchy, in

which case an error is signaled. Many languages support the ability to inherit

from more than one parent class, which is known as multiple inheritance.

Dynamic Dispatching. When a function associated with an object is in-

voked, the actual function invoked depends on the type of object and on its

class hierarchy. For example, assume class Alpha, representing a small

volume element, has subclasses Beta and Gamma. Assume that the method

M is defined for all three classes, so that M for the subclasses overrides M for

the parent class Alpha. Assume 1 is a list of objects of class Alpha. If an

application program selects an object o from 1 and invokes method M on o,

the version of M actually executed will be the method associated with Beta or

Gamma if o is in Beta or Gamma, and will be the method of Alpha otherwise.

Dynamic dispatching is critical to object-oriented programming, but can

make static type checking difficult or impossible.

There are a great variety of additional features in various 00 systems, but

for the purpose of this article we will focus on the above three.

The set of classes for a system is usually represented as a tree, with the
root at the top, and subclasses descending from their parents. This tree is

sometimes called the class hierarchy. If class A is above class B in the
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hierarchy, class A is the parent of B, and is sometimes called a base class for

B. The transitive closure of parents of B are the ancestors of B; the transitive

closure of subclasses of B are the descendants of B.

There are two main benefits to using the 00 paradigm instead of standard

procedural methods. First, 00 programming allows more code reuse. In many

applications, a person may need several versions of a routine, each slightly

different from the preceding one, to accomplish a variety of similar tasks.

When implemented in a procedural langaage, this requirement often means

maintaining several similar copies of the routine, leading to ample opportu-

nity for errors. In the 00 paradigm, usually the routines can be implemented

as subclasses of a base class, and the subclasses need only specify the

differences from the base version. There are other ways in which 00 pro-

gramming facilitates code reuse, which are covered below.

The second benefit of the 00 paradigm is that it often provides a more-

natural model for the physical world. Of~en, physical and computational

systems are approached in terms of a hierarchical model, which are repre-

sented far more easily using the 00 paradigm than the procedural paradigm.

Of the reviewed languages, C++, Lisp/CLOS, Modula-3, and Sather qual-

ify as object oriented.

There are two main approaches to setting up a class hierarchy:

Method A. Have the class structure represent our conceptual model of a

situation. Classes higher in the tree represent more-general categories (say,

vehicles), and subclasses represent more-specific categories (such as aircraft,

automobiles, and under them trucks, cars, etc.).

Method B. Have the class structure facilitate program implementation.

For example, an automobile dealer that handles a great many cars and only

an occasional large truck or motorcycle might have a base class “car,”

containing fields for “manufacturer,” “model,” and “price.” The “car” class

might have a subclass “general _vehicle,” containing the fields “num_wheels,”

“payload_ capacity, “ “empty_ weight,” etc. Although this class system seems

conceptually inverted, it eliminates the need to store irrelevant data for each

car, and it still allows the subclass “general_ vehicle” to make full use of all

the methods of class “car” for determining vehicle price, manufacturer, etc.

The 00 paradigm lends itself to groups of similar objects over which a

common set of operations is defined, and hierarchies over such groups. Three

areas that are common candidates for 00 implementation are:

—Computational objects: objects internal to a program, such as representa-
tions for numbers.

—Graphical user interface (GUI) objects: windows, graphs, etc.

—External objects: objects in the problem domain, such as antennas, automo-

biles, aspects of a finite-element model, subatomic particles, etc.

3.1 Examples

Some examples of the 00 paradigm for computational, GUI, and other

objects are shown below. The class hierarchy is indicated by indentation.
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Examples of Computational Objects

Numbers:
A base class, number, represents all numbers

Subclass int represents integers
Subclass stdint uses represents integers stored in 4-byte fields
Subclass arbint uses arbitrary-precision integers

Subclass complex represents complex floating-point values
Subclass float represents floating-point values

(Note: this IS arranged by the conceptual organization method (Method A
above), as complex values are more general than floats. However, a practical
organization might use Method B: class complex would be a subclass of class
float. Class float would contain the real part, and class complex would have an
additional field for the imaginary part.)

Matrices:
A base class, matrix, represents all matrices

Subclass dense_ matrix represents matrices stored in standard dense format
Subclass row_vector represents row vectors as dense matrices constrained to
have only 1 column.
Subclass column_ vector represents column vectors as dense matrices con-
strained to have only 1 row.

Subclass sparse_ matrix represents matrices stored in sparse format
Subclass diag _ matrix represents diagonal matrices. Only the diagonal elements
are actually stored.

Finite-element modeling:
A base class represents general elements.

Subclasses represent elements having edge effects.

Algebra:
A base class, group_ element, represents elements of an algebraic group.

Subclass field_ element represents elements of an associated algebralc field.

Examples of Graphical User Interface Objects [ Paxson et al. 1989].

A base class, window, represents a general graphics window,
Subclass basic_ graph represents a graph using pixel coordinates.

Subclass world_ graph represents a graph using world coordinates (floating-
point value between O and 1).

Subclass labeled_ graph represents a world_ graph with scales and labels.

Examples of External Objects.

A base class, widget, represents some equipment type.
Subclass rack_ mounted _widget represents those requiring rack mounting.
Subclass enclosed~widget represents those requiring a separate enclosure
Subclass rs232_wldget represents those using an RS232 serial interface
Subclass GPIB_wldget represents those using a GPIB interface

Subclass rs232_enclosed_ widget is formed by inheriting from both the rs232
and enclosed classes.
Other subclasses are formed similarly.

3.2 Object-Oriented Idioms

The 00 paradigm has spawned several programming idioms. Two of the

more-common ones are described below.
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3.2.1 Wrappers. One of the great benefits of 00 technology is the reuse of

code, by allowing incremental changes to procedures. A base class may define

a method M, and a subclass may modify the method M by defining its own

method M, thereby overriding the base class definition. The subclass M is

often structured as:

—Perform subclass-specific initialization.

—Invoke the base class method M to do the bulk of the work.

—Perform subclass-specific postprocessing.

Thus the subclass method M “wraps around” the base class method M, and

contains only the desired differences from the base method M instead of an

entire copy of it. In the GUI example above, the subclass methods wrap

around their parent class methods.

3.2.2 Abstract and Concrete Classes. An abstract base class has no in-

stance variables or shared variables, although methods may be fully defined.

Abstract classes are sometimes called stateless classes. Any variables must

be declared in subclasses. A pure abstract base class has the additional

restriction that while a method may be declared in it by specifying only the

method’s signature, the full method definition may not be specified in the

abstract base class. In this case, the method must be redeclared in a subclass,

where the full definition of the method is specified.

An abstract base class is useful for specifying a uniform interface for all

subclasses below it. The abstract/concrete idiom is useful in separating the

interface specification (the abstract class) from its various implementations

(the subclasses). It is sometimes known as the “handle/body” idiom [Coplien
1992].

For example, in the matrix class in Section 3.1, the matrix could be

implemented as a pure abstract base class, with no variables. The subclasses,

such as sparse _matrix, would contain both the variables and the implemen-

tations of the functions first declared in matrix.

3.3 Interpolation and Optimization Examples Revisited

As an example of class usage, consider again the problem of finding an

interpolating function from Section 2.1. An 00 solution might define a class

“interpolator,” and within that class define methods to calculate and use
interpolation coefficients. Each object of the class represents one interpola-

tion function (one set of interpolation coefficients). In C ++, the interpolation

solution is:

// Each object in class “interpolator” represents one interpolation
// function: that Is, one set of Interpolation coeffs.
class interpolator {
private:

vsmcolvecf cvec; // vector of coefficients
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public:
void make_ interp (vsmmatf amat) { II method to talc coeffs

~... compute cvec based on amat . . .

float use_ interp (float x) { //method to use the coeffs
//.. compute y = cvec[Ol + cvec[ll”x + cvec[21*x*x +...
return y;

}// end of use_interp
}; // end of class interpolator

//To use the interpolator, one could then program:
interpolator interpa; II create an object interpa
//... fill amat...
interpa.make _ interp (amat); // calculate interpolation coeffs cvec
y = interpa.use_interp (1.234); // use coeffs to perform interpolation

This implementation of the interpolation function shows essentially the

same structure as the functional solution, although the 00 solution is less

elegant than the functional. The 00 solution offers the same advantages:

separation and encapsulation of interpolation specifics apart from the main

program, thereby enhancing maintainability and reliability. Modula-3 and

CLOS implementations follow similar lines, but are more verbose.

As a second example, consider again the optimization example from Section

2.1. In that example the optimization routine genopt (f, a, b) took as parame-

ters the objective function f, and the lower and upper search limits. In the 00

paradigm, we use an optimization function genopt (obja, a, b) that takes as
parameter the object obja instead of the function f. The class of obja defines a
method for the function f, as well as variables for any additional information

(such as additional parameters i and j) needed by f. Since different applica-

tions would require different functions f, the class definition of the object

passed to genopt would change from application to application. Therefore the

function genopt must have parametric polymorphism. In C +-t, parametric

polymorphism is implemented via templates.

In the 00 implementation shown here, the genopt procedure only uses the

f method associated with object obja internally; any other slots or methods

associated with obja may be used to communicate between genopt’s caller

and f. In C++ the solution would look like:

template (class TP) double genopt ( // genopt, the general opt Proc
TP optobj, // TP is the class of the passed object
double a, // low search limit
double b) // high search limit
{

//... xmin= . . . . // talc and return value of x that minimizes f return xmin;
} // end of genopt func

//To use the optimization for a specific application, one could write:
class optclass { // define class with method f for objective func
public:

int savei, savej; // values of i and j for use by function f
double f (double x) { // objective function f

. . . resval = some objective function
return resval;

} II end of function f
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}: // end of optclass class

Int main (Int argc, char *argv[ 1) {
optclass optob]; // allot obJect to be passed to genopt
//... calcnewl, j...
optobj,savei = I; // set I and J in the object
optob].saveJ = ];
// find x minimizing f on the interval [a, b], for the given i and j,
xmin = genopt (optobj, a, b);

} // end mam

Sather handles the problem in a similar fashion but more elegantly,

primarily because parametric functions in Sather are far easier to use than

the clumsy template mechanisms of C ++.

The main disadvantage of the 00 approach, when compared with the

functional approach, is that a separate class must be defined to serve as the

parameter carrier for each type of invocation of genopt. In C++ and Sather,

this class has global visibility, cluttering the global name space. In functional

languages, the function passed to genopt can have either a local name or no

name (anonymous). None of the reviewed languages allow the definition of

anonymous classes.

The syntax of templates in C++ is particularly convoluted; this simple

example does not begin to show the size of the problems that come with

larger programs. The GNU C++ compiler does not yet implement templates

fully. Some commercial C++ compilers do implement templates, but often

C++ templates take so long to compile and link that many programmers

avoid using them (personal communication, P. Jensen, 1993).

The CLOS implementation of the optimization example follows the same

lines as the C++ and Sather versions: define a class whose objects enclose

the parameters to be passed from genopt’s caller to the objective function f.

4. MISCELLANEOUS LANGUAGE FEATURES

4.1 Array Handling in General

The languages offer different facilities for creating, accessing, and updating

arrays. In some cases, the array origin (index number of the first element) is

fixed at O or 1, in other cases it is flexible. See Table II.

4,2 Mathematical Functions

All the reviewed languages have intrinsic functions for exp, log. COS,sin, and
sqrt. All except SML additionally have tan, aces, asin, cosh, sinh, tanh.

Haskell, Lisp, and Modula-3 support in addition the inverse hyperbolic trig

functions. Why so few mathematical functions in SML? All the functions

available in C++ are easy to define in terms of these six. Perhaps the authors

of SML did not provide a more-complete set because, like Niklaus Wirth

[Wirth 1988], they value minimality. Unfortunately, this means everyone

using the functions has to define them personally. The only languages with

intrinsic support for complex values are Fortran 77, Fortran 90, Haskell, and
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Table 11. Array-Related Features

Supports

arrays of Subscript
Supports

Array Origin
Supports Supports

arbitrary checking
array

looping
updates

recursion

types

C+tasc o Yes No Yes Yes Yes

Ctt with user-specified No Yes Yes Yes Yes

classes

Fortran 77 user-specified No optional Yes Yes No

(Note 3)

Fortran 90 user-specified Yes optional Yes Yes Yes

Haskell user-specified Yes Yes No (Note 1) No Yes

Lisp o Yes Yes Yes Yes Yes

LispfCLOS user-specified Yes Yes Yes Yes Yes

Modula-3 O (Note 2) Yes Yes Yes Yes Yes

Sather o Yes optional Yes Yes Yes

SML o Yes Yes Yes (Note 1) Yes, but Yes

awkward

Note 1. Pure functional languages such as Haskell do not support updatable
(mutable) objects, such as updatable arrays. Haskell does provide a facility to create
an updated copy of an (unchanged) existing array. SML provides both immutable
(pure functional) and mutable (updatable) arrays. However, the immutable arrays are
only partially implemented in the version of SML used here (see the implementations
information in Section 5.3), so all SML array work in this article relates only to SML’S
mutable arrays.

Note 2. In Modula-3, arrays lose all index information when they are passed to a
subprocedure. For example, an array dimensioned [1:10] becomes [0:9] in a called
procedure. This is a lack of referential transparency in the language: avec[ 1] means
different things, depending on which procedure it appears in. If a caller passed an
array and an index value of an element to a subprocedure, the index value would be
invalid in the subprocedure.

Fortunately, most numerical analysis problems are best written with dynamically
allocated arrays (whose dimensions are determined at run-time), and in Modula-3
such arrays must start at origin O. However, when a programmer uses a statically
allocated array (whose dimensions are specified at compile-time, such as [1..256]), the
change of origin on entering a subprocedure can cause run-time bugs that are difficult
to resolve.

Although Modula-3 does have FIRST and LAST functions that give the first and
last indices of an array, they seem more like afterthoughts than features. Even if the
above subprocedure were coded as

v = avec[FIRST(avec) – 1 + k]

the subprocedure must still know the origin of vector avec (here hardcoded as “l”).
And in any event, avec[FIRST(avec) – 1 + k] is far less clear to the reader than
avec[kl.

In Modula-3, arrays may be indexed by arbitrary enumerated sets. The question
arises: when passing an array to a subprocedure, how does the compiler inform the
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Table 11—Conttnued

subprocedure of the array’s index set? This question is particularly meaningful when
the main and subprocedures are compiled separately. Some possible solutions to the
problem are:

—Decide that all arrays must be indexed by integers, and must have fixed origin. This

is the solution used in C and SML.

—Decide that all arrays must be indexed by integers, but may have arbitrary

user-specified origin. The origin information is carried with the array when it is

passed to a subprocedure. This is a solution available in Fortran 90, and can be

implemented in C++ matrix classes.

—Decide that arrays may be indexed by arbitrary enumeration sets, but that no
enumeration set information is passed to subprocedures. Programmers must main-
tain a coding style carefully that avoids possible confusion on array indexing. This
is the solution used in Modula-3. In the authors’ view, this choice compromises
seriously the safety and utility of the language in handling arrays. In defense of
Modula-3, it may be said that in most cases the origin defaults to O, and if the
programmer always uses O-based indexing, the result is much like coding in C. This
is similar to the solution used in Fortran 77: see Note 3.

—Decide that arrays may be indexed by arbitrary enumeration sets, and that the

enumeration set must be defined before the function using it. This is the solution

used in Haskell.

Note 3. In Fortran 77 arrays lose all index information when they are passed to a
subprocedure. For example, an array dimensioned (3, 5) becomes (1, 3) in a called
procedure. The programmer may get around this difficulty by passing explicitly the
array’s lower and upper bounds as procedure parameters, and in the subprocedure
dimensioning the array as arrayname (lobound, hibound).

Lisp. However, it is a straightforward matter to define complex operations in

the remaining languages.

4.3 Random Numbers

Many languages come with random number generators (RNGs), and they

nearly all fail at generating good random numbers [Mars aglia 1993; Marsaglia

and Zaman 1991; Park and Miller 1988; Press et al. 1988; Sullivan 1993].

C++ provides no built-in RNG.

Modula-3 provides a set of procedures based on the linear congruential

method. We did not test it for randomness. SML version 0.93 provides an

RNG, but unfortunately it is based on the Park and Miller RNG, which fails

some tests for randomness [Marsaglia 1993; Sullivan 1993]. The next release

of SML should contain Marsaglia’s more-robust subtract-with-borrow genera-
tor [Marsaglia and Zaman 1991]. Sather provides several RNGs, but unfortu-

nately the default is the flawed Park and Miller RNG.

The Haskell library includes a linear congruential method that, while not

credited, appears identical unfortunately to the Park and Miller RNG. In

pure functional languages such as Haskell, the use of any type of RNG is

problematic. In pure functional languages, one must make the RNG a func-

tion of the old seed, since no state information can be retained, and must

specify the old seed on each call. This means that if a sub-subfunction in a
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large program uses a random number generator, the seed must be passed up

to all its ancestors and back down again on the next call, even if none of the

ancestors deal with random numbers. This can be a burden on the program-

mer.

This requirement that the RNG seed information be passed up and down

the call chain implies more conceptual load for the programmer using func-

tional languages. In effect, RNGs cannot be encapsulated, since every ances-

tor must deal with their state. Random number generators fit naturally in an

object-oriented paradigm; in a pure functional paradigm, RNGs are problem-

atic.

The difficulty is in the metaphor: functional languages have referential

transparency, implying no side-effects, and by definition RNGs, like input/

output operations, involve side-effects.

4.4 Language Syntax

The syntax used in mathematics varies from language to language. In some it

may appear a bit unnatural. Consider the following comparison of statements

to update an element of an array y:

c-t+ : y[i] = a + b*x[i] + c*x[i]*x[i];
Fortran: y(i) = a + b*x(i) + c*x(i)**2
Haskell: Not possible to update variables or array elements.
Lisp: (seti (aref Y i) (+ a(* b (aref x i)) (* c (arefx i) (arefx i))))
Modula-3: y[i] =: a + b*x[i] + c*x[i]*x[i];
Sather: y[i] =: a + b*x[i] + c*x[i]*x[i];
SML: Array .update(y, !i, !a + !b*Array.sub(x, !i)

+ !c*Array.sub(x, !i)*Array.sub(x, !i));

4.5 Modularity

Supporting modularity involves defining mechanisms for creating modules

and allowing programmers to control the visibility of the contents of the

module. Classes in object-oriented programming languages serve many of the

same functions as modules in modular programming languages, although

there are also subtle differences. Of the languages reviewed, Fortran 77

supports modularity only via procedures, and C++ and Sather provide only

classes. Fortran 90, Haskell, and SML provide modules only. Lisp/CLOS and

Modula-3 support both modules and object classes.

4.6 Exceptions

Often a programmer wishes to signal an exceptional condition instead of

aborting the entire program, and wishes to have control return immediately

to some distant ancestor in the call chain. C++, Lisp, Modula-3, Sather, and

SML provide exception-handling capabilities. Fortran 77, Fortran 90, and

Haskell do not.

4.7 Dynamic Allocation

Dynamic allocation is the allocation of objects at run-time instead of compile-

time. This is useful in allocating arrays whose dimensions are not known
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Table III. Summary of Miscellaneous Features

Language

Modules
ExceptIon Dynamic

syntax Classes
Garbage

handling allocation collection
readability

c++ good Yes Yes Yes

Fortran 77 good

Fortrarr 90 good Yes Yes

Haskell good Yes Yes Yes

Lisp/ CLOS fair Yes Yes Yes Yes Yes

Modula-3 good Yes Yes Yes Yes Yes

Sather good Yes Yes Yes Yes

SML fau Yes Yes Yes Yes

until the program is run, and in creating dynamic data structures such as

lists and trees. All reviewed languages except Fortran 77 support dynamic

allocation.

4.8 Garbage Collection

Garbage collection is the automatic reclamation of dynamically allocated

objects that are no longer in use. With garbage collection, once a dynamically

allocated item (an array or object or similar item) is no longer used, automati-

cally the system reclaims the space for use by future allocated items. Without

garbage collection, programs that allocate memory without reclaiming it will

exhaust all available memory eventually in the heap and fail. Even before

that happens, these programs may suffer significant performance penalties

due to poor reference locality. The definitions of Haskell, Lisp, Modula-3,

Sather, and SML require all implementations of these languages to provide

garbage collection. Fortran 77, because it does not support dynamic storage

allocation, does not need garbage collection. C++ and Fortran 90 do not

provide garbage collection. However, with a good deal of’ difficulty one can

implement garbage collection in C++ by making pointers a class of their

own, and defining destructors for pointers that delete the object they point to.

This method is sometimes known as “smart pointers,” and is described in

Coplien [ 1992]. There are also current research efforts on “conservative

garbage collection,” to add garbage collection facilities on top of existing C

and C++ compilers [Zorn 1993].

4.9 Summary of Miscellaneous Features

See Table III.

5. BENCHMARKS

5.1 Gaussian Elimination on Sparse Matrices

Gaussian elimination is a method for solving for the vector x in the matrix

equation Ax = b, where A is an n-by-n matrix, and x and b are n-element
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column vectors. Here, n = 1000. All values used herein are double-precision

floating point.

In this test, the A matrices are initialized to random values with roughly

two nonzero elements per row. The b vectors were set to all nonzero random

values.

In a sparse matrix, only elements having nonzero value are stored. In these

tests, there are two versions of implementing sparse matrices: with dynamic

allocation or with static allocation.

In the dynamic version a sparse matrix is implemented as a vector having

elements O through n – 1. Each element of the vector represents one row of

the sparse matrix. Each such vector element heads a list of pairs, and each

pair contains the column number and value of a nonzero sparse matrix

element in that row. Element (i, j) is found by accessing the list at vector

element i, and traversing the list until finding an index > i, or the end of the

list. If we find index = i, we return the associated value; otherwise we return

0, Updates must insert nonzero elements into the lists, and must delete

near-zero elements of the lists when, for example, one row is added to

another and when some of the sums are near zero.

In the static version, sparse matrices are implemented using four statically

(at compile-time) allocated vectors. Each element of vector headvec repre-

sents the head of a matrix row. Elements in a row are represented by an

index number i.

—column(i) contains the column number associated with index number i

—value(i) contains the double-precision value associated with index number i

—next(i) contains the index number of the next nonzero element on the same

matrix row as i, or zero if it is the last on the row.

The dynamic version is simpler and more flexible than the static, since

array bounds may be set at run-time instead of compile-time. However since

Fortran 77 does not have dynamic allocation, we tested static versions in

Fortran 77, Fortran 90, and C++ for comparison purposes.

5.2 Compilation and Execution Times

Timings were performed on a Sun Spare-2 with 16MB memory that was not

on a network and was otherwise idle. Main-storage requirements of all

execution time tests were small enough that no memory paging was required;

however the compilers did cause paging. For each test situation, three

compile times and ten execution times were measured and the means re-

ported. The standard deviation of the measurements was less than 5’% of the

reported mean in nearly all cases. See Table IV.

Three versions of the Gaussian elimination program were used:

—Version A used dynamic allocation of the sparse memory elements, and

included code for subscript checking on all array references.

—Version B used static array allocation, as discussed above, and included

subscript checking.
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1

Table IV Compdation and Execution Times

Compde

Test program
time

Language Compiler
version

not optlmizedl

optimized

(Sees)
(sees)

c++ CenterLine 2.04 A: dynamic, subchk 14.9 / 16.1 3.23

C-H- CenterLme 2.04 B: statzc, subchk 18.9 / 22.9 7.47

Ctt CenterLme 2.04 C: stattc, no checks 11.4/ 13.0 1.83

c-l-t Sun 2.0.1 C: static, no checks 9.1 J 17.0 2.82

Ci+ GNU gcc 2.4.5 C: static, no checks 5.418.0 2.59

Fortran 77 Sun 2.0.1 C: static, no checks 8.9/ 19.6 2.65

Fortran 90 NAG 2.0a(264) A: dynamic, subchk 6.7 / 13.6 8.0

Fortran 90 NAG 2.0a(264) C: static, no checks 6,3 / 12.8 4.1

Haskell Chalmers 999.5 (Note 1)

Lisp CMU 17C A: dynamic, subchk 0.3 / 12.9 54.0

(Note 2)

Lisp/CLOS CMU 17c A: dynamic, subchk 0.43 / 12.1 54.6

(Note 2) I
Modula-3 I DEC 2.11 IA: dynamic, subchk I 27.1 /27.4 I 3.34 I

Sather ] ICSI 0.5.6 IA: dynamic, subchk I 17.1/ 16.5 I 3,99 I

SML I SML-NJ 1.02 IA: dynarmc, subchk I 19.4 /20.4 I 9.25 I

Note 1. We did not write a Haskell version of the Gaussian elimination benchmark,

because of the difficulty in representing state in Haskell. See Section 2.3. In bench-
marks on the Chalmers and Yale implementations, not shown here, we found the
Haskell implementations to be 50 to 10,000 times slower than C++ or Fortran in
array manipulations. Additionally, current Haskell implementations tend to die when
handling arrays larger than 20 by 20.

Note 2. Lisp offers both a compiler and an interpreter. The time to read all the
source into the interpreter is approximately 1.0 second, making it very fast for
debugging work.

—Version C used static array allocation and had no subscript checking.

All versions used 1000-by-1000 arrays with approximately 2 nonzero ele-

ments per row.

Discussion. The static version with no subscript checking, while awkward

to write and maintain, offered the fastest execution times. The dynamic

version, while offering more flexibility, safety, and maintainability, was

somewhat slower. The C++, Fortran 77, Modula-3, and Sather implementa-

tions had the fastest execution speeds. The Fortran 90 and SML implementa-

tions were slightly slower. This may be because they are relatively new
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compilers, and work on optimization is progressing. The Lisp compiler pro-

duced results significantly slower—most likely because of the run-time type

checking in Lisp.

The choice between the faster static version of the program and the more-

elegant dynamic version reflects the old trade-offi cost of machine time versus

cost of personnel.

5.3 Implementations

See Table V.

5.4 Error Messages

We translated a short program containing a one-character typographical

error into each of the review languages. The error caused a type mismatch

between the formal and actual parameters to a function. Fortran 77 and

Fortran 90 without interface definitions do not catch type errors at all, and

Lisp does not catch type errors until run-time. The Lisp message produced at

run-time was good. Fortran 90 using interface definitions, C++, Modula-3,

and Sather all produced concise and accurate error messages. The message

produced by SML was slightly more complex, but still manageable. In the

case of Yale Haskell, the error message was even more complicated, and with

Chalmers Haskell the error message was so abstruse as to be difficult to

decipher.

6. SUMMARY

C++ (CerzterLine 2.04, gcc 2.4.5). C++ is based on the imperative and

object-oriented paradigms. The C++ language has a large, complex, and

poorly integrated set of features, partly as a result of its long heritage. It has

fair type checking. It is difficult to extend in some directions, easy in others.

C++ offers operator overloading, which can facilitate some applications. The

language works well in the object-oriented and imperative paradigms but is

poor at list handling. It offers no built-in garbage collection. Existing C++

implementations are mature in many respects and offer among the fastest

execution time on all operations not requiring memory allocation. The gcc

compiler does not yet have a full implementation of templates; the Center-

Line compiler does.

F’ortran 77 (Sun Microsystems 1.4). Fortran 77 is an imperative language

with a long history, and is the lingua franca for numerical analysis. Imple-

mentations of Fortran 77, often by default, have poor type checking. Fortran

77 has none of the common features of new languages: dynamic allocation,

user-defined types (records), object-oriented features, first-class functions,

arbitrary array origins, exceptions, and modules. However, it does present a
clear and easily learned model. Because of the simple model and long history,
implementations are mature and offer excellent execution speeds. To the best

of the authors’ knowledge, there are no freely available compilers for either
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Table V, Implementations

I Version

1

Available from

C-H 2.04 CenterLine Software

Cambridge, MA USA

c++ gcc 2.4.5 ftp: gatekeeper. dec.com

pub/GNU/gee-2.4.5

Fortran 77 2.0.1 Sun Microsystems,

Mountain View, CA USA

Fortran 90 2.0a(264) Numerical Algorithms

Group, Oxford, U.K.

Haskell: 999.5 ftp: animal. cs.chalmers.se

Chalmers pubmaskell

Haskell: “new- ftp: nebula. cs.yale.edu

Yale emu” pub/haskell/yale

Lisp/ CMU ftp:

CLOS 17C Iisp-rtl .slisp.cs.cmu.edu

project/clisp- I/release

Modula-3 2.11 ftp: gatekeeper. dec.com

pub/DEC/Modula-3/release

Sather 0.5.6 ftp: Icsi-ftp.berkeley. edu

pubfsather

SML SML-NJ ftp: research. att.com

1.02 dist/ml

Ease
Inter

of

use
preter

T

%

fair yes

(Note 1)

fair no

(Note 1)

good yes

I

good no

*

good no

(Note 1)

Docum

entation

good

good

good

good

poor

(Note 2)

poor

(Note 2)

good

good

good

good

Error

messages

(See next

section)

good

good

good

(Note 3)

good

(Note 3)

poor

poor

good

(Note 3)

good

fair

fair

Note 1. Although SML and the Yale Haskell do not have separate interpreters they
do have incremental compilation, which amounts to nearly the same thing. Chalmers
Haskell does have an interpreter, but the syntax it accepts is different from that
accepted by the compiler. This certainly makes the Chalmers interpreter less useful
than it could be.

Note 2. While the Haskell Report is voluminous, many features are documented
sparingly if at all.

Note 3. Since Lisp uses dynamic type checking, many type errors that might be
caught at compile-time in a statically typed language are not caught until run-time in
Lisp. Given that, the error messages in the reviewed Lisp implementation are
reasonably good. The Fortran 77 standard requires checking of type and number of

arguments; however some implementations do not support this checking. This lack of

default checking may result, m part, from the need to compile large legacy Fortran
programs that contain such parameter errors. Many Fortran implementations provide
compiler options to direct the amount of compile and run-time checking that is
performed (e.g., a compiler flag to declare “irnphcit none” everywhere in the program).
Our experience has been that often, however, such checking is not performed by
default. Fortran 90 supports more-robust interface declarations and checking by
means of the interface block, in which the external interface of a procedure can be
explicitly declared. Reported experience with current Fortran 90 implementations
indicates that interface block declarations are carefully type checked.
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Fortran 77 or Fortran 90. However, f 2c, a utility to convert Fortran 77 to C,

is available from netlib at Internet ftp address netlib.att.com.

Fortran 90 (NAG 2.0a(264)). Fortran 90, an extension of Fortran 77,

offers additional features including: dynamic allocation, user-defined types

(records), modules, optional interface definition, and a host of features to ease
dealing with dynamically allocated arrays. As with Fortran 77, implementa-

tions are based on a long history and offer good execution speeds and good

documentation.

Haskell (both Chalmers 998.5 and Yale versions). The Haskell language

offers strong type checking, is purely functional, and is often elegant. It offers

a huge variety of features, including lazy evaluation and arbitrary type

classes, and excels in the functional paradigm. Unfortunately, the pure

functional paradigm is difficult to use in applications doing input/output and

may be inappropriate for algorithms that make updates to large data struc-

tures such as arrays. Current implementations of Haskell are immature and

can be slow, The immaturity of the implementations also results in weak

documentation and poor error messages. Haskell is a large, experimental

language with many sophisticated features and may require a significant

investment of programmer time and effort in order to become proficient.

Whereas many of the features of C++ seem to be afterthoughts and patches

to C, the features of Haskell appear better through out and coordinated.

Lisp /CLOS. Like C++, Lisp has a long history and a large variety of

features, some poorly integrated with others. Lisp syntax is based on a list

notation. While it is sometimes difficult to read, the simple syntax is helpful

in many symbolic applications, such as symbolic algebra systems.

Since nearly all binding in Lisp is done at run-time instead of compile-time,

it has tremendous flexibility. For example, the language allows creation and

evaluation of its own source code at run-time. The downside of run-time

binding is that type errors are caught at run-time instead of compile-time.

The reviewed Lisp/CLOS system provides a mix of execution speeds: some

Lisp functions are nearly as fast as those of C ++ and Sather; others are far

slower.

Modula-3 (2.07). Modula-3 offers a wide array of fairly well integrated

features and strong type checking. Its modularization structure can be useful

in large complex systems, but can be a clumsy overhead otherwise. Modula-3

is younger than C++, Fortran, and Lisp, relieving Modula-3 designers of

having to accommodate a load of historical baggage. While Haskell’s large size

comes from inclusion of many experimental features of theoretical interest,

Modula-3’s size comes from many practical features of interest to “real-world”

programmers.

Sather (0.5.6). Sather is a small object-oriented language offering a hand-
ful of powerful features and fast execution speed. Many of the algorithms

used in Sather’s library are almost toy-like in their lack of sophistication,

which can cause large execution times in some cases. Sather was designed for
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use on small programming projects, and consequently does not scale well to

large projects.

SML (SML-NJ 1.02). SML is a small, elegant, mostly functional language

that offers strong type checking. SML is especially good in the functional

paradigm: it supports first-class functions and is powerful and flexible in

handling functions and lists. SML’S syntax for ordinary imperative program-

ming (updatable variables) is clumsy and difficult to use. The SML-NJ

implementation is, in general, easy to use and has good documentation. The

SML of New Jersey implementation is relatively mature and offers fairly

good execution speed.

7. DISCUSSION

When a person, whether a professional programmer or scientist or general

computer user, wishes to use a computer to solve a problem, often he or she

has a mental conception, or model, of the problem at hand.

To implement a solution, the person must translate the mental model into

a programming language. If the language closely reflects their mental model,

the translation is easy. If the language paradigm is different from paradigms

used in the mental model, the translation can be difficult. Furthermore, all

the tools of formal proofs and verification of correctness apply only after

completing the translation from mental model to language paradigm. The

translation process itself is not verified.

We submit that numerical analysts and programmers in general often

become habituated to translating problems into a familiar paradigm—such

as the imperative model of Fortran, C, and Pascal. While this is useful for

many applications, other paradigms often provide a more-natural and elegant

representation of the problem domain.

The various languages reviewed here offer new paradigms and language

features that are useful in many situations. Some features associated with

the functional paradigm include first-class functions, several types of poly-

morphism, lazy evaluation, and infinite sequences. Some features associated

with the object-oriented paradigm, with its many variants, are new ways to

encapsulate data and procedure, code reuse through inheritance, and dy-

namic dispatching determined by object type.

The benefits of using these languages are better program reliability, greater

ease of maintenance, and fewer errors because OC

—Better fit between the language paradigm and the problem domain.

—Better reuse of code.

—Better encapsulation through first-class functions and objects, resulting in

less use of the global name space.

The bottom line is, in many cases-, faster software development and more-

reliable programs, saving costs in both the development and maintenance of

programs.
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Some of the languages reviewed here are fairly new, giving them both pros

and cons. They often have an elegance unencumbered by historical baggage.

And their implementations are in some cases immature, showing cryptic

error messages, difficult-to-use interfaces, and slow execution times.

The source code shown in the examples in this article may give others an

easier start in using some of the reviewed languages. The source for the

examples, as well as the programs used to produce the timing statistics, is

available by Internet ftp from site ftp.mathcom.com in directory Mathcom/

numex.

In summary, the paradigms and languages reviewed offer new and useful

ways for approaching tasks in numerical analysis.
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