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The implementation of an algorithm for the computation of a state feedback for multiinput linear

systems, resulting in a closed-loop matrix with a specified self-conjugate set of eigenvalues, is

presented. The computation uses only real arithmetic, assigning complex conjugate eigenvalues

in one double step. The implementation uses level-l BLAS routines where possible. A brief

description of the algorithm is also given.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:

Numerical Algorithms and Problems—computations on matrices; G.1.O [Numerical Analysis]:

General—numerical algorithms; G. 1.3 [Numerical Analysis]: Numerical Linear Algebra—

eigenualues; J.2 [Computer Applications]: Physical Sciences and Engineering-aerospace;

engineering; J.4 [Computer Applications]: Social and Behavioral Sciences—economics

General Terms: Algorithms

Additional Key Words and Phrases: Deflation, double steps, eigenvalue assignment, numerical

efficiency, pole assignment

1. INTRODUCTION

The eigenvalue assignment problem arises in the design of stable linear

systems. Such systems may be described by either the difference equation

Xh+l =Axh + Buh (1)

or the differential equation

~(t) =xIx(t) + Bu(t),

This work was supported by NSERC grant 0GP0944 and by an NSERC undergraduate research

award.

Authors’ address: Department of Computer Science, Memorial University of Newfoundland, St.

John’s, NF, AIC 5S7, Canada; email: {miminis, helmut]~ cs.mun.ca.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice is

given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.
01995 ACM 0098-3500/95/0900.0299 $0350

ACM Transactions on Mathematical Software, Vol 21, No 3, September 1995, Pages 299-326

http://crossmark.crossref.org/dialog/?doi=10.1145%2F210089.210094&domain=pdf&date_stamp=1995-09-01


300 . George Mlminis and Helmut Roth

depending on whether they are observed in discrete or continuous time,

respectively. In both cases, the n x n matrix A and the n X m matrix B are

time invariant and describe the characteristics of the system. The state of the

system is represented either at a discrete point ( Xfi ) or at some particular

instant in time (x( t)),and u represents the input to the system with the

intent to control its state. The properties that are discussed in this introduc-

tion apply to both discrete- and continuous-time systems.

An important concept in the study of linear systems is controllability. A

controllable system may be intuitively defined as a system that can be

brought from an initial state to any desired state in a finite sequence of steps

(or in finite time) using specified inputs (e.g., see Luenberger [ 1979, p. 276]).

Another important concept in linear dynamic system theory is stability,

defined intuitively next. Stability may be defined with respect to special

vectors called equilibrium points (better known to mathematicians as fixed,

critical, or limit points), which possess the property that, once the state of the

system becomes equal to such a vector, it remains equal to it for all future

time (e.g., see Luenberger [1979, p. 150]), given that the input applied to the

system is constant. Suppose now that the state vector rests at some equilib-

rium point and that it is moved slightly away from that point. If the state

vector tends to return to the equilibrium point, or at least if it does not keep

moving further away from it, the system is stable; otherwise, the system is

unstable (e.g., see Luenberger [1979, p. 154]). It may be shown that the

stability of a linear system (discrete or continuous) depends on the eigenval-

ues of the matrix A (e.g., see Luenberger [1979, p. 157]). One way of

stabilizing the system is by creating a matrix with a particular set of

eigenvalues. This can be accomplished by computing an input using the

current state of the system (state feedback). In discrete-time systems, for

example, the input could be computed as

Uh = –Fxh (2)

with F being some m X n matrix, When combined with (2), Eq. (1) becomes

X~+l=(A– BF)x~. (3)

To ensure the stability of the discrete-time system (3), the eigenvalues of the

matrix A — BF must be less than one in magnitude, whereas in continuous-

time systems, the eigenvalues of A – BF must have negative real parts (e.g.,

see Luenberger [ 1979, pp. 154– 158]). For A, B real, the problem becomes one

of choosing real F such that A – BF has a specified self-conjugate set of

eigenvalues. This is known as the Eigenvalue (or Pole) Assignment Problem

(EAP), since by choosing F we are assigning the eigenvalues we need for the

matrix A – BF.

The EAP can be shown to have a solution if and only if the system in (1) is

controllable [Wonham 1967]. There is a good number of papers on the subject.
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Some of the numerically oriented algorithms may be found in Kautsky et al.

[1985], Miminis and Paige [1988], Patel and Misra [1984], Varga [ 1981], and

Petkov et al. [1986]. A numerical comparison of these algorithms as well as

other algorithms on the subject may be found in Miminis and Paige [1988],

where there is also a rigorous rounding-error analysis, which establishes the

numerical stability of the algorithm presented in the same paper. Also in

Miminis and Paige [ 1988] it is stated that there is good possibility for the

algorithm in Petkov et al. [1986] to be numerically stable. We believe the

efficiency of the algorithm in Miminis and Paige [1988] and that of Petkov et

al. [1986] is due to the fact that they are both QR-like algorithms (QR is an

algorithm for the solution of the eigenproblem of a full matrix, e.g., see Golub

and Van Loan [1989]). Here we implement an algorithm that substantially

improves that of Miminis and Paige [1988]; it is presented in detail in

Miminis and Paige [1994]. The algorithm in Miminis and Paige [1994], unlike

that in Miminis and Paige [1988], assigns two eigenvalues at a time instead

of just one. In this way, complex eigenvalues may be assigned as complex

conjugate pairs, and thus, we completely avoid complex arithmetic. As a

result, the algorithm presented in Miminis and Paige [1994] is more efficient

than that in Miminis and Paige [1988] in terms of both time and space. It is

also more realistic since it computes a real F, whereas that in Miminis and

Paige [1988] produces, in general, a complex F.

In Section 2 we give a brief description of the algorithm and discuss some

results of our experimenting with it. In Section 3 we give the computational

cost of the algorithm, and in Section 4 we discuss some details of the

implementation and its use.

We adopt the following notation: uppercase Roman letters are used to

denote matrices; lowercase Roman letters denote column vectors and indices,

while Greek characters denote scalars. The transpose of a matrix or vector is

denoted by a superscript letter T (e.g., AT or b~). The notation k = i : r : j

means that k takes all of the values starting from i and j with step r; if

r = 1, the above may be written as i : j for simplicity. Given a matrix A, the

MATLAT3-like notation A( rl : rz, c1 : Cz) will denote a submatrix of A that

consists of rows rl through r2 and columns c1 through Cz. If, for example, all

rows of A are included, the above submatrix may be written as A(:, c1 : Cz).
For a product of matrices AB, the notation AB(rl : r2, c1 : C2), for example,

will denote the corresponding submatrix of AB. The notation

will denote that transformation R ~ (labeled 1) eliminates the (2, I)-element of

A into the (2, 2)-element. Then transformation R; (labeled 2) simply com-

bines the two rows of ml. Finally, O will denote a zero matrix or the big-O

notation; e, will denote the ith column of the identity matrix of size implied
by the context, and R will denote the set of real numbers.
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2. THE ALGORITHM

2.1 Description of the Algorithm

In this section we provide a brief description of the algorithm presented in

Miminis and Paige [1994]. The algorithm is implemented in double and single

precision by the DMEVAS and SMEVAS subroutines, respectively, which

are described in Section 4. In the following we refer to both subroutines as

MEVAS. Given a system (B, A), the algorithm in Miminis and Paige [1994]

initially computes orthogonal matrices T = R nX‘ and U G R ny m, such that

(B, A) is transformed into a staircase form (e.g., see Miminis and Paige
[1982], Paige [1981], and Van Dooren [1981]), as follows:

ii+
(B,, A1) = TT(B, A) u ~

—

\

(4)

with A,J = RnLynJ, where nl = rrmk(B1l) and n, = rank(Az ,. l), for z = 2 :(k

– l) and n, > rz, +l for i = l:(k – 1). The matrices Bll and A,,,.l, i = 2:(h

– 1), are of the form (O, R) with R nonsingular and upper triangular, with

the possible exception of Ak, h ~, which is zero if the system is uncontrollable

(see Paige [19811). If the system is controllable, k is the controllability index

of the system, and nk = i-ank( Ak, ~. ~). Along with the MEVAS subroutines,

we also provide two subroutines, DSTAIR and SSTAIR, that implement the

staircase algorithm in double and single precision, respectively. In view of the

fact that descriptions of the staircase algorithm may be found elsewhere, we

give none here. Nevertheless, in Section 4 we do provide necessary instruc-

tions for the use of STAIR.

In the following we briefly describe how to compute FI = UTFT so that

Al – BIF1 = T~( A – BUUTF)T has specified eigenvalues when (B, A) is

controllable. For simplicity we assume that m = n ~ = rank( Bll ); the case

m > nl can easily be handled by setting the first m – n, rows of Fl to zero

(see Miminis and Paige [ 19941). If, in (4), n ~ – nz >1, then s = 2[(n1 – n ~)/21

eigenvalues can be assigned “immediately. “ “Immediate” assignments, unlike

regular assignments (which will be described in the sequel), do not need to

transform the given problem in order to take effect. To see this, consider the

following example, where n = 5, m = 3, k = 3, nl = 3, nz = n~ = 1, with x
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representing a known element, and k representing an element to be deter-

mined:

Al – BIFI =

.

xx

xx

xx

xxx

xxx

xxx

I xxx

xx

(5)

***
***

***

I xxx
xx

Since Bll is upper triangular and nonsingular, we may easily solve the

system of equations from (5),

[1
xx

xx–

xx

xxx

1
**

XX**

x **

with respect to the first two columns of F’l, where ~1 + ~q and J2 – ~q are

two specified eigenvalues, with L2 = – 1 and q # O ~ (l = (2. Or, in general,

we may solve

Al(l:nl,l:s) –BIIFI(:, l:s) =

with respect to Fl(:, 1: s), where

z s/2

o

7 (6)

()4’,, 7,
z, =

- v, (,2

corresponds to the pair of specified eigenvalues <~1 + LqJ and ~~z — LTJ with
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7] + o * [-1 = [122 for j = 1: s/2. After the solution of (6), Al – BIFI in (5)
has the following form:

A.~F=~~~-~i:l;2y~j~

where Az=Al(s +l:n, s+l:rz), 13z=Bl(s +l:n, s+l:rn), and F2=

Fl(s + 1:m, s + 1: n).The algorithm now continues with the assignment of

the remaining eigenvalues, to the system (Bz, A2 ), by computing F2. Note

that Fl(l : s, s + 1: n) does not affect the eigenvalues; thus, it can be chosen

to solve some other problem. For example, it is shown in Miminis and Paige

[1994] that, if it is chosen so that

Z1

z s/2

0

/

the condition number of the eigenproblem of A – BF is improved. In the

MEVAS subroutines, however, it is simply set to zero, which decreases the

magnitude of F. For more details about the description of the general case of

the above procedure, see Miminis and Paige [1994]. “Immediate” assignments

may also occur later in the algorithm; if that happens they will be handled in

a similar way.

After the “immediate” assignment of the first s eigenvalues, we continue

with a system ( B2, Az ) of the form (4), where the new nl, rzz satisfy either

nl = nz or nl = nz + 1. In the case of nl = nz + 1,if a real eigenvalue exists,

it may be assigned in an immediate step as above and then proceed with a

system where the new nl, n2 satisfy nl = n2. If there are no more real

eigenvalues to be assigned, then the case n ~ = n2 + 1 will be handled in the

same way as the case nl = n2, which is described next.

Let r be such that n2 = .“. = n, > nr+l, that is, the subdiagonal blocks

A21,..., A,,_l of Al in (4) are nonsingular upper triangular matrices,

whereas A,+ ~,, is of the form (O, R), and set q z n,. In the following we

consider two cases, r > 2 and r = 2, which will be discussed separately since

they are treated differently. First, we consider the case r > 2, where the
algorithm computes orthogonal matrix Q and performs the similarity trans-

formation Q~(Al – BIFI)Q. Details for the computation of Q along with the

necessary theoretical justifications may be found in Miminis and Paige

[1994]. Here we will simply give an example to demonstrate how the above

transformation facilitates the assignment of two eigenvalues. Our example
uses asystemwithn =9, m=2, k=5, nl=n2=n~ =nA=2, andn5=l;

thus, r = 4 and q = 2. The transformation Q is computed as a product of four

orthogonal matrices Q = PI P2 P~ Pd as follows: the matrix PI is a product of
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q – 1 rotations that are applied on the right side of Al, eliminating all but

the first diagonal element of A,,, _ ~ into their right-hand neighbors. P: is
then applied to the left of ( Al Pl, 111), introducing a nonzero element to the

left of the top diagonal element of A,,,_ ~ and one nonzero element to the left

of each of the next q – 2 diagonal elements of A,_ ~,, _ ~. Note that, although

in theory the whole of Q~ = PLTP$P$P~ is applied to the left of Ill, in

practice, due to the form of 111, only part of Q affects it. In view of that, BI

will appear, in our example, only when it is affected. The effect of transform-

ing Al to P~Al PI may be represented diagrammatically as follows:

xx xx xx xx x

xx xx xx xx x

xx xx xx xx x

x xx xx xx -x

xx xx xx x

x xx xx x

xx xx x )
1~ +x x x

x x

‘x x xx xx xx x)

xx xx xx xx x

xx xx xx xx x

x xx xx xx x

-+ xx xx xx x ,

x xx xx x

+ xx xx x

xx x

t x x)

where + denotes a newly introduced nonzero element. Pz is now formed as a

product of either 2(q – 1) rotations or q – 1 Householder transformations,

which eliminate the newly introduced nonzero elements along with the

associated diagonal elements, into their right-hand neighbors. P: is then

applied to the left of ( P~Al PI Pz, P~Bl), introducing new nonzero elements as

follows:
‘x x xx xx xx x )

xx xx xx xx x

xx xx xx xx x

x xx xx xx x

1
xx xx xx X2

x xx xx x

(+ xl> x xx x
2 xx x

\ x x )
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#

Xxx xxx

Xxx xxx

Xxx xxx

Xx xxx

Xx xxx

+x Xxx

I I x

xx

xx

xx

xx

xx

xx

xx

xx

x

where Householder transformations were used in our example. P? now

consists of either two rotations or one Householder transformation that

eliminates elements n ~ + (r – 4)q + 1 and nl + (r – 4)q + 2 into element

nl + (r – 4)q + 3 of the nl + (r – 2)q + 1 row of the real matrix

(Al – AII)(Al – &l) PIPz.

This is the only part of the eigenvalue assignment where Al and Az explicitly

take part in the computation. Note that, even if Al, Az is a complex conjugate

pair, the matrix (Al – Al 1 )( Al – Az 1) is still real, and thus, the computation

will continue in real arithmetic. Also note that only one row of ( Al – Al 1 )( Al
– Az1) needs to be computed. Once P3 is known,

P$( P~P~Al PI Pz P~, P~P~Bl), with the following effect:
3

[x x xx xx xx x )

xx xx xx xx x

xx xx xx xx x

1

x xx xx xx x3

x xx xx xx x

+ xx xx xx x

x xx x

xx x

I I X1X

it is applied as

xx xx xx xx x’

xx xx xx xx x

xx xx xx xx x

xx xx xx xx x

+x xx xx xx x
+ xx xx xx x

x xx x
xx x

x Xj

Summarizing, we see that each rotation of PI and each Householder trans-

formation of Pz eliminate elements from a distinct row of the transformed
Al. They start with row rzl + (r – l)q going Up to row TZl + (r – 3)9 + 1. p3,

however, eliminates no elements of P~PfAl PI Pz; it simply combines the
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appropriate columns. Next we compute PA as a product of nl + (r – 4)q

Householder transformations (two in our example) or twice as many rotations

to eliminate the first two nonzero elements of rows n, + (r – 3)a + 2: – 1: a.
+ 3 into the third element of the same row. PA is

Pf(P~P~P~AIPl Pz P~ Pb, P~P~P~Bl ), with the following effect:

x X1X X1X X1X X1X)
xx xx xx xx x

xx xx xx xx x 1:
xx xx xx xx x

;+ x] >X x xx xx x
4(+ x) x xx xx x

x xx x

xx x

x x

-+

xx xx xx xx
xx xx xx xx

xx xx xx xx
xx xx xx xx

xx xx xx
x xx xx

xx
x

x
x

x
x

x
x

x
x

x

.
applied as

5
4

x
x

x
x.

+x
+

It is important to point out that each Householder transformation of PA

should first be applied on both sides of Al before the next transformation is

computed. lt is also worth noting that of all the above transformations only

the last nl Householder transformations (or 2 nl rotations) affect B1.

In the general case, the application of Q on Al – BIFI will have the

following effect:

/
Q~A,Q(l:2,1 :2) QTAlQ(l:2,3:n)

\

QT(A, – BIF1)Q =
QTA1Q(3: n, + ‘2, 1:2)

QTA1Q(3: 72,3: n)

o /

H

QTB,(l :2, :)

_ QT~1(3 : nl + 2,:) (FIQ(:, 1:2), F’IQ(:,3: n))

o
(7)
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——

Q~A1Q(l:2,1 :2)

-[QTW :2,:) ]DtQ(:, 1:2)1

Q~A, Q(3:7z1 + 2,1:2)

-[ QTBI(3: n, + 2, :)][FIQ(:, 1:2)1

*

where the h at the top right-hand corner of (7) represents a submatri

,

;hat

does not affect the eigenvalue assignment. It is shown in Miminis and Paige

[1994] that if Q is computed as described above and if FI Q(:, 1:2) in (7) is

computed so that

[Q~BJ3:n1 + V)]ml Q(W31 = Q~AlQ(3:w + 2,1:2) (8)

then the 2 x 2 submatrix

Q~AIQ(l :2,1:2) - [Q~Bl(l:2,:)]t FIQ(:, I:2)l

at the top left-hand corner of (7) has eigenvalues Al, AZ. Hence, a pair of

eigenvalues has been assigned, and if we set Az R Q~Al Q(3 : n, 3: n), Bz

‘( )

Elzi— with Bzz - Q~Bl(3 : nl + 2, :), and Fz - FIQ(:, 3: n), we may con-

tinu~ the assignments with Aa –BZF2.
It is shown in Miminis and Paige [1994] that the above procedure can only

treat the case r >2. When r = 2, we need slightly different algorithms for

nl = nz and nl = nz + 1.Let us initially consider n ~ = TZz.Here the orthogo-

nal transformation that facilitates the eigenvalue assignment is simply Q =

PI, where PI is computed exactly as in the r >2 case, that is, as a product of

q – 1 rotations (note that currently A,,, _ ~ - Azl ). The use of an example

facilitates understanding; we therefore consider the system n = 4, m = 2,

k=2, nl=na=2, q=2. Then

.

\
A F’, Q(2:m, l:2) Fz

)
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()
where Az = QTAIQ(3 : n, 3: n), Ba E ~: with Bzz R Q~Bl(3 : q + I, 2: ~),

and Fz ~ FIQ(2 : m, 3: n). Since B ~z is nonsingular and upper triangular,

FIQ(2 : m, 1 :2)can easily be computed so that

Bza[FlQ(2:m,l:2)] = QTAlQ(3:q + 1,1:2).

Having computed FIQ(2 : m, 1: 2), we can write the 2 x 2 top left block of

QTAIQ – QTBIF,Q as

[Q%Q(1:2 ,1:2) - [QTB1(l:2,2: m)][F1Q(2:m,l:2)]]

-[ QTB1(1:2, D][F1Q(1,1:2)I

‘(::: :::)-(fi)f~,

where ~1 # O, and ayl can be proved to be nonzero (see Miminis and Paige

[1994]). The above is a controllable two-dimensional single-input system. We

may then assign a pair of eigenvalues Al, Az by computing f: - F1 Q(l, 1 :2)
in (10) as

all + a22 – (Al + AZ), a12 + (a22 – Al)(azz – A2)\azl
f;=

A

Furthermore, we may observe that FI Q(l, 3: n), which is part of the (1,2)

block of(9), does not affect the assignment. Therefore, it can be chosen so that

the first row of the (1,2) block, given by

(lo)

QTAIQ(l :2,3: ~) - [QTB1(l :2,

may take any desirable value.

e~[ QTBI(l :2, 1)] # O, and thus,

FI Q(l, 3: n) once Fz is known. In

1)][FlQ(1,3: ~)] – [Q~Bl(l:2,2: m)]F2,

(11)

This can always be accomplished since

Eq. (11) may be solved with respect to

this particular implementation, we set it to

zero, which decreases the magnitude of F. We then continue the eigenvalue

assignments with the controllable system (232, Az ) by computing Fz.

The case r = 2, nl = n2 + 1, and no real eigenvalue to assign can be

treated in a similar way. Here Q = PIP2, with PI being a product of q – 1

rotations as in the n ~ = n z case, and P2 a permutation matrix that will

interchange columns one and three of Al – BI FI (see Miminis and Paige

[1994] for justification). We have seen up to now that Bll in B, is upper
triangular and that Q* applied to the left of BI maintains this structure in

B22. In the current case, however, the upper triangular form of Bll is slightly

perturbed by P:. To see this, consider the example nl = 3, q = nz = 2. With
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PI being only one rotation, we have

BI =

+Xx
+x

+

+Xx \
+x

x
+1’

o /

11
x

+
i

x2

=P;PfBl= + X X ,

+

o

where + represents a strictly nonzero element. At this point we may either

continue with the above form, or apply a rotation P to the right of P~P~Bl to

eliminate the (3, I)-element into its right-hand neighbor as

Itl

o x
+Xx

P~P~BP = +x.
+

o

The latter is the approach that has been implemented in the procedure

MEVAS. The rest is similar to the r = 2, n ~ = nz case except that this time

the resulting 2 x 2 single-input EAP has the form

(::: :H’lf~

with a12 + O instead. For more details, see Miminis and Paige [1994].

It is apparent that, when the case rzl = rz2 + 1 occurs and a real eigenvalue

is available, we have the following choices: either assign the real eigenvalue
immediately in a single step (similar to that in (5) and (6)), or continue with a

double step. Different choices will make the algorithm finish in different

ways. Although this is theoretically fine, it can be a problem when the

algorithm is to be implemented, since its end should be known a priori so

appropriate actions may be taken. Here we will describe the end of the

algorithm when the following procedure is adopted. First, we assign “im-

mediately” s eigenvalues in (5) and (6), and continue with a system that has
n + n — s states. If n is even, we only perform double steps; if n is odd, we

allow only one single step when the case nl = n2 + 1 occurs for the first time.
At this step a real eigenvalue will be assigned “immediately” (in MEVAS, the

nth eigenvalue), and we will continue with a system that has an even number

of states. The remaining eigenvalues will be assigned in double steps. Next
we show that, working in this way, the form of the final system can be

determined by the initial value of k (in (4)) only. At each double step, the

number of states of the resulting system decreases by two. Since n will
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eventually become even, the algorithm will always finish with a 2 X 2

system. To find the form of the final 2 X 2 system (let us name it S), we can

make the following observations for k. At each double step, the block rows r

and r – 1 of the current matrix Al decrease by one row each. When these

blocks consist of only one row each, they simply vanish. When that happens,

k decreases by two. If k is odd, it will eventually become one. In this case the

number of states of 9 equals the number of its inputs, and the continuation

is trivial. For example, solve for # in

where <1 + Lq and [z – L7) are the last two eigenvalues, with (1 = (z when

q # O. If k starts even, it will eventually become two. In this case & will be a

2 X 2 single-input system of the form (10) and can be treated in the same

way.

When this part of the algorithm finishes, F = PTFI Q has been computed.

Here Q represents all of the orthogonal transformations Q, used at each

double step, and ~ represents all of those orthogonal transformations P1

used when the case r = 2 and nl = nz + 1 occurs. Note that neither Q nor P

are the products of all the relevant transformations Q or P, respectively.

During the eigenvalue assignment, each Q and each P were not applied to

the whole of FI, but only to the relevant submatrix of F1. This should be

taken into consideration when the transformations are applied back in order

to compute FI from F. In view of this, the use of ~TFl @ above is an “abuse”

of notation, and it simply denotes the application of individual transforma-

tions PT, Q to the relevant submatrices of F1. In our software this part is

implemented by the subroutine MEVAS. Having now computed FI, we can

compute the original F as

F = UFITT, (12)

using the transformations in (4). In our software this part is implemented by

the subroutine 13KTRN.

2.2 Experimenting with the Algorithm

The aim of our algorithm is to compute an F such that A( A – BF) is a

specified set of self-conjugate numbers. Here A(o) represents the set of eigen-

values of a matrix. In view of this, we have

(A - BF)X=XJ, (13)

where J and X are the Jordan canonical form and the matrix of the

eigenvectors of A – BF, respectively. It is well known that, in the multiinput

case (m > 1), F is not unique. Furthermore, it has been shown in Kautsky et

al. [1985] that the nonuniqueness of F is due to the fact that any vector

x, =.#[VT(A – A,I)], i = 1: n, may qualify as an eigenvector of A – BF

corresponding to eigenvalue A,, where W(”) represents the null space of a

matrix and where V is an orthonormal matrix that spans M( B T). Although
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our algorithm is not directly concerned with the assignment of a particular

eigenvector, it obviously assigns some eigenvector implicitly.

Testing the effectiveness of an algorithm for the EAP maybe twofold. That

is, one may check the accuracy of the computed F as well as the accuracy of

the computed eigenvalues of A – BF against those specified for assignment.

The accuracy of the computed F depends on the stability of the algorithm

as well as the conditioning of the EAP. In Miminis and Paige [1988], the

numerical stability of the single-step algorithm for the same problem was

proven. Although the stability of the double-step algorithm presented here

and in Miminis and Paige [1994] has not been proved as yet, there is strong

evidence that the algorithm is numerically stable (we do, however, intend to

prove this formally in the near future). The condition number of the EAP has

not been formally found as yet; there has been strong experimental evidence,

however, as well as theoretical evidence (for the latter, see Demmel [19871),

that at least two factors affect it. The first factor is the relative “distance”(8)

of the given system from the nearest uncontrollable system (for a definition,

see Paige [1981]), and the second is q = rninl w – Al, with A = A(A) and
~ ● A( A – BF). The condition number appears to depend on q/8. The factor

q is a good estimation of how “far” the eigenvalues of A are from those to be

assigned. In order to test the effectiveness of the algorithm with respect to

the accuracy of F, we ran numerous experiments with systems of size up to
~ = 50 and varying m (including m = 1 when n = 50). Each run included

the computation of F in double precision (F~) and in single precision (F,).

Since Fd is at least twice as accurate as F., the quantity Ill’d – 3’. ll/llFd II was
used as an acceptable estimation of the accuracy of F,. In each run, where 8

and q were of reasonable magnitudes, the algorithm gave accurate results to

machine precision. We have also tested the algorithm with systems that are

nearly uncontrollable (small 8); as expected, the algorithm produced inaccu-

rate solutions. We observed, however, that nearly uncontrollable systems

manifested their existence by producing ill-conditioned systems of equations

in (8). They may therefore be identified, and the process may be aborted

before inaccurate columns of F contaminate the already accurately computed

columns. In this way, although the algorithm does not assign all of the

eigenvalues, those that are already assigned are assigned accurately. This

has been implemented in MEVAS, which in this case produces an F accurate

to machine precision (the level of accuracy depends on the tolerance used; see

below) so that some of the eigenvalues of A – BF are among those specified,

with the remaining eigenvalues being any. At this point it is worth mention-
ing that in the single-input ( m = 1) case, systems (8) are scalar, and scalar

equations are never ill conditioned. In this case an ill-conditioned EAP may

appear via (8) as a scalar equation with a zero (less than the tolerance used)

left-hand side. This obviously can be detected and avoided. Two of the

examples in our software demonstrate this, Note that in the case of an

ill-conditioned EAP the number of eigenvalues assigned depends on the

tolerance used (see TOL in Section 4.2). A small tolerance will allow more

eigenvalues to be assigned than a larger tolerance. On the other hand, as

more eigenvalues are assigned, the columns of F tend to become more
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inaccurate. The value of the tolerance is fully controlled by the user (see

Section 4.2), who therefore may control the above process.

Finally, we tested the algorithm with problems where q was relatively

large. Our results indicated that the effect of the magnitude of q on F was

twofold. First, we observed that a large q affected the accuracy of F, which

was expected. An q, however, not large enough to affect seriously the accu-

racy of F, may still cause problems by being responsible for an F that

produces a matrix A – BF with an ill-conditioned eigenproblem.

The following analysis supports our claim. Let J in (13) be diagonal; then,

from the Bauer–Fike theorem (e.g., see Golub and Van Loan [1989]), we have

“F’’%(X)2 11;11‘
(14)

where BF may be considered as a perturbation to A and where ~X) =

IIX11IIX- 1Il. Note that the Bauer-Fike theorem is well known for showing that

-%(X) is the condition number of the eigenproblem of a matrix (A – BF in

our case) with eigenvectors being the columns of X. From (14) we may

conclude that, if q is large, either IIFI I is large, or ~X) is large (in the latter

case, A – BF has an ill-conditioned eigenproblem). In Kautsky et al. [ 1985],

however, it is shown that

I\Al/ + IIJII%(X)
IIFII <

amL,t(B) ‘
(15)

~,n(B) being the minimum singular value of B. From (15) we see that,with cr

if IIFII is large, so is %(X). Now combining (14) and (15), we see that, if q is

large enough, A – BF has an ill-conditioned eigenproblem.

3. COMPUTATIONAL COST OF THE ALGORITHM

In this section we analyze the computational cost of the algorithm presented

in Section 2. In Section 3.1 we give the time complexity of the algorithm in

terms of an order on the number of multiplications. In Section 3.2 an analysis

on the storage requirements is performed. This analysis produces very strict

bounds since it is essential for MEVAS.

3.1 Time

The algorithm in Section 2 begins with a transformation that leads to form

(4). Procedure MEVAS, however, assumes that the system is already in form

(4) and proceeds with the assignments. Although form (4) is not computed by

MEVAS, it is worth mentioning that it takes

0(:723 + Tnnz)

multiplications to be produced when the QR decomposition is used (instead of

the SVD) to compute the ranks. Next we consider the part of the algorithm
that assigns the eigenvalues. At each double assignment, we need to compute

and apply an orthogonal matrix Q. To analyze this consider a system in form
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(4), where r = k and nl = nz = ““” = nh = q; thus, rq = t is the size of the
matrix Al. Obviously, any other system with r < k will involve less computa-

tions than the above. Thus, if we assume that every assignment takes place

on a system with r = k, we will produce an upper bound on the number of

multiplications of the worst case of our algorithm. We know that Q =

PI Pz P~Pb. PI consists of q – 1 rotations; each rotation, say, R,, applied on a

vector involves 4 multiplications. R, is applied on rq — z + 1 vectors, whereas

R? is applied on 2q + i vectors with i = 1: q – 1.Thus, to form R~AR, we

need 4((r + 2)q + 1)multiplications, whereas to form P~APl we need

4(q – I)[(r+ 2)q + 1] (16)

multiplications. Pz P~ now consists of q Householder transformations, say,

H,. Each H, applied on an E-dimensional vector involves 2P multiplications.

Note that in our algorithm we always have I= 3.11, is applied on (r – l)q +

2 – i three-dimensional vectors, while H,~ is applied on 3q + i vectors. Thus,

to form P~P~(P~APl)Pz Pz we need

6q[(r + 2)q + 2] (17)

multiplications. P1 finally consists of Householder transformations 111 that

start from row (r – 2)q + 2 and go up to row q + 3; hence, Pb consists of

(r – 3)q Householder transformations. For each of the first (r – 4)q of these
Householder transformations, H, is applied on (r – 2)q + 3 – i vectors,

whereas H~T is applied on 4 q + i vectors. Hence, to apply both H, and

H,T, i = 1 :(r – 4)q, we need

6(r – 4)q((r + 2)q + 3) (18)

multiplications. For the remaining q Householder transformations, H, is

applied on 2 q + 3 – i vectors, while 11,~ is applied on ( r + l)q vectors (since

Bll is included this time). Hence, we need a total number of

(r + 13)q2 + 17q (19)

multiplications. Summing up (16)–(19), in order to form Q~AQ we need

(6r2 - r + 81)q2 + (14r - 79)q -1 = O(6(rq)2) = 0(6t2)

multiplications. Now assume for simplicity that n is even. The number of

multiplications we then need to perform n/2 such double steps is given by

n

5

6 ~ t2 = 6 ~ (2t)2 = 0(n3). (20)
t=2,2, n t=l

In each double step, we need to solve two upper triangular systems of

equations of the type (8). The solution of an # x # upper triangular system

of equations requires O(#2\2) multiplications. Here we solve n such systems
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of order starting from m and decreasing down to 1. Thus, it is safe to say that

the number of multiplications for this part is

()

nm2
o~. (21)

Finally, we need to compute F = U~FQTTT. Here, however, we do not

consider transformations U, T that lead to form (4). Neither will we consider

the effect of ~, which is negligible compared with that of QT. To ~implify the

process further, we assume that QT is applied to the whole of F, instead of

just to the appropriate submatrix of F. Q consists of rz/2 transformations of

the type Q that is discussed in Section 2. Each Q consists of q – 1 rotations

and (r – 2)q Householder transformations. Each of these transformations is

applied on m vectors (m rows of F). Hence, it needs

4m(q – 1) + 6m(r – 2)q (22)

multiplications. But r < k, and q < m; hence, (22) is bounded by

4m(m – 1) + 6m(k – 2)m. (23)

Multiplying now (23) by n/2 and assuming that (k + l)m = n (in the aver-

age case, n = mk + n mod m), we find that the application of QT on @

requires

0(3n2m – 7nm2) (24)

multiplications. From (20), (21), and (24), we get that the algorithm needs

(O n3 + 3n2m – ~nm2
)

multiplications. The above assumes its maximum value

This value is 0(1.506n3).

3.2 Storage

The storage requirements of the algorithm described in

nated by the number of Householder transformations

when m = (3/13)n.

Section 2 are domi-

and the number of

Givens ;otations. Here we derive upper bounds on these numbers. Without

loss of generality, assume that rcznk(l?) = m. Let r, q, and n, with i = 1: k

be defined as in Section 2. Also recall that rotations and Householder

transformations arise in the following types of assignments:

Type 1. r >2. This assignment requires q – 1 rotations (one dummy
rotation if q = 1) for PI, q — 1 Householder transformations for P2, one

Householder transformation for P3, and nl + (r – 4)q Householder transfor-

mations for Pt.

Type 2a. r = 2 and nl = n2. This assignment requires q – 1 rotations for

PI and one dummy Householder transformation for P2.

Type 2b. r = 2 and n, = n, + 1. This assignment requires q – 1 rota-
tions for PI, one trivial Householder transformation for Pz, and one rotation

for P.
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The total number of assignments of each type (hence, total number of

rotations and Householder transformations) can be determined by observing

the change in the indices n,, i = 1: h, as the assignment proceeds. To this

end let a, ~ be nonnegative integers such that n = a m + /3, O s ~ < m, and

consider the following four cases. Initially, we assume that none of the

subdiagonal blocks of Al in (4) are rank deficient:

Case 1. a >2 and a even. The assignments proceed as follows (see the

example below): for each q = m : – 1: P + 1, we have (a – 2)/2 double steps

of Type 1 and one double step of Type 2. For each q = ~ : – 1:2,we have a/2

double steps of Type 1. Finally, for q = 1 we need a/2 double steps of Type 1.

As an example consider the case n = 26, m = 4; hence, a = 6 and /3 = 2.

Then r, q, and the indices n,, i = 1:7, will change as follows:

nL, i=l:7

4444442
4444332

4433332

3333332

3333222

3322222

2222222

2222211
222 1 1 1 1

2111111

2 1 1 1 100

2110000

2000000

rq

64

)

(a–2)

44 2
ofr>2

I

q=4=m,

2 4} lofr=2

63

)

a—2

43 2

1

ofr>2 q=3,

2 3) lofr>2

72

52

II

~ofr>2q=2=~,

32

71

51

11

~ofr>2q=l.

31

last assignments

Let gl be the number of Givens rotations associated with Case 1. Then, in

view of the above,

gl = ,=%L2 } ,=2(3++;(”—(q–l)+(q–l) +f

-[

777,(W2-1)—:1+ 12“

Anticipating the results of the case a = 2, we note here that gl < cr/2[ 1 +

(m(m – 1))/21 + (m – /?).
The summation of the Householder transformations is a little more compli-

cated because of the presence of nl + (r – 4)q transformations associated

with each Type 1 assignment. Note that r takes on a sequence of values at
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each q. Denoting this sequence by R~ and letting h ~ denote the number of

Householder transformations associated with Case 1, we find that

+5{;(q) + ~ [n, + (r-- 4)q]
*=2 r~R~ 1

(25)

( )+~(l)+ ~ [rzl+ (r-4)1] .
rGRl

Observe that

(l) for/3 +l<q<m, nl=qand R~= {a, a–2,...,2}; thus,

,; [n, +(r-4)ql =(1+ 3+..+ a-3)q;

q

(2) for2<q< D,nl=qand R~={a +1, a–1,...,3}; thus,

,5 [nl+(r-4)q] ‘(2+ 4+””” +a-2)q;

q

(3) forq=l, nl=2and Rl={a+l, a–1,...,3}; thus,

x[n, +(7-- 4)1]=(1 +3+...1)- l).
reRl

Putting these relations into Eq. (25) yields

h,= ~
{

a—2
~q+(l+3+ . ..+3)q+l+l

q=p+l )

+f
(

‘q +(2+4+
}{

““”+a–2)q + ;+ (1+3+ ““. +a–1)
9=2 2 )

-[
;1+

9( B+1) +( G2)TTZ(77Z +1)—

2 2 2 1+rn-p

[

P(B+l) (a–2) nz(wz+ 1)
<:1+

2 2+2 2 1+m.
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Let g, and h, denote, respectively, the number of Givens rotations and

Householder reflectors associated with the case i = 2,3,4. By analyses simi-

lar to the above, we find the following:

Case 2. a = 2.

m(n’z – 1)
g2=l+

2
+(rr -p),

~ =8(B+U
+m-E<B(P+l)2

2
+m.

2 2

Now, since a/2 = 1 and (a – 2)/2 = O we can write

[

m(rn – 1)g2=; l+
1

+(rn -p),
2

[

p(~+l) a–2m(7n+l)
hz<~l+ z +7

1
+ m.

2

Case 3. a >2 and a odd.

a—l

[

m(m – 1)
—1+

1

p(p-1)
g3 =

2 2
+

2

a—l

[

m(m – 1)
1+

1

/3(p+l)
<—

2 2
+

2’

[

a–l (m–~)
h3=———

p(p+l) a–lm(m+l)

2 2+2+2 2 1
+fl-1

a—l
<—

[ 1

(m–~)+B(B2+1)~a~1m(m2+1)+~,
2

Case 4. a = 1.

Since (a – 1)/2 = O, we can write

a—l

[

m(m – 1)

1

+B(p+l)
g4<Tl+ z

2’

cl-l
hb<—

2 [ 1
(~–p)+~(~2+1)\ ~;lm~m2+l)+P
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In summary, we have the following bound g on the number of Givens

rotations:

and the following bound

n’z(m – 1)

2 1+(m–/3), aeven,

1
772(772– 1)

1
+B(B+l)+

2 2’
a odd;

h on the number of Householder transformations:

+a–2m(m+l)

2 1+m,
2

a even,

Recall that the above bounds were derived under the assumption of no rank

deficiencies in the subdiagonal blocks of the staircase form of Al in (4). As a

final remark, note that the presence of such rank deficiencies will not

increase the number of Householder transformations or rotations required, so

that the above expressions are always valid upper bounds.

4. THE SOFTWARE

4.1 Overview

We provide implementations in both single and double precision, and follow

the convention that names of single-precision routines begin with the letter

“S” and double-precision routines with “D.” For ease of exposition, we will

refer only to the double-precision routines.

In addition to the subroutine DMEVAS, which implements the eigenvalue

assignment algorithm described in Section 2, we also include subroutine

DSTAIR to reduce matrices A and B to the form (4) required by DMEVAS,

and subroutine DBKTRN to compute F from FI in (12). A typical application

will call DSTAIFt, DMEVAS, and DBKTRN in this order. We also provide a

demonstration program illustrating the use of the software. This program

also computes the eigenvalues of A – BF to allow comparison with the

eigenvalues specified for assignment.

The routines have been successfully run on a number of computers, includ-

ing a CONVEX C-1 vector computer, an HP/720, a MIPS M-120, a DEC

MICROVAX III, a Sun 4/260, and a ZENITH Z-note 325L notebook equipped

with a 387 coprocessor. Although the above subroutines successfully run

when m = 1 (single-input systems), we would recommend the use of DSEVAS

instead [Miminis and Reid 1993], since this subroutine (also available in

single precision) has been specifically produced for single-input systems and
is faster than DMEVAS when m = 1. The algorithm has also been imple-

mented as a MATLAB function, available from the authors upon request. 1
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4.2 The Subroutine DMEVAS

DMEVAS computes a real matrix FI so that the matrix Al – BIFI has a

specified set of self-conjugate eigenvalues. The system ( BI, Al ) is in upper

staircase form (4). The subroutine heading and the argument declarations are

as follows:

SUBROUTINE DMEVAS (N, M, NCMPLX, GMAX, HMAX, A, LDA, B, LDB,
& F, LDF, EIGS, KMAX, KSTAIR, INFO, IWORK,

RWORK, TOL, IWARN, IERR)
INTEGER N, M, NCMPLX, GMAX, HMAX, LDA, LD13, LDF,

& IWARN, IERR, KMAX, KSTAIR( . ) , INFO (.2),

IWORK(GMAX + HMAX + N/2 + N)

DOUBLE PRECISION A(LDA, N), B(LDB, M), F(LDF, N), EIGS(N),

& RWORK(2*GMAX +3 XHMAX+3*N), TOL

The description of the input cu-guments is as follows:

—N: Row and column dimension of matrix A; row dimension of matrix B;
length of vector of eigenvalues EIGS; N >1.

—M: Column dimension of matrix B; row dimension of matrix F; M > I

—NCMPLX: Number of complex eigenvalues in EIGS (see also EIGS below).

O < NCMPLX < N, and NCMPLX even.

-GMAX: Maximum number of Givens rotations to be used in the computa-

tion. A value of GMAX may be computed as follows: let N = qM + r,

where q = [N/M], r = N mod M. Set rsum = r(r + 1)/2 and Msuml =

M( M – 1)/2; then

[

;(1 + Msuml) +M–r, if q is even,

GMAX =
q–1
T(l + Msuml) + rsum, if q is odd.

-HMAX: Maximum number of Householder transformations to be used in

the computation. A value of HMAX may be computed as follows: let q, r,

rsum, and Msuml be defined as for GMAX above. In addition, let Msum =

M( M + 1)/2; then

[

(
q–2

~ Msum —
2 1

+rsum+l +M, if q is even,

HMAX =
q–1

(

q–1
— Msum —

2 1
+rsum+M–r +r,

2
if q is odd.

1It may also be obtained by connecting to trzton.cs.mun ca (134.153 1 19) by anonymous ftp;

change dn-ectory to pub /mLmmLs, and in binary mode get the file PolePack. tar.Z.
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Less-stringent but simpler values for GMAX and HMAX maybe provided

by the following:

ri-2
GMAX= ~(1 +Msuml) +M~,

( )HMAX=~Msum~ +rsum+ilZ –r +M.

—A: The leading N x IV part of this array must contain the matrix Al in

staircase form (4). The array is overwritten during the process.

—LDA: Row dimension of array A, as declared in the calling program, with

LDA > N.

—B: The leading N x M part of this array must contain the matrix BI in

form (4). The array is overwritten during the process.

—LDB: Row dimension of array B, as declared in the calling program, with

LDB > N.

—LDF: Row dimension of array F, as declared in the calling program, with

LDF > M.

—EIGS: Vector of eigenvalues to be allocated. The complex eigenvalues

(there are NCMPLX of them) must occur as conjugate pairs. They are
stored in EIGS(l : NCMPLX), and the real eigenvalues (there are N –

NCMPLX of them) are stored in EIGS(NCMPLX + 1: N).

Since the real and imaginary parts of a complex number also determine its

conjugate, only one real part and one imaginary part are stored for each pair

of conjugates. These parts are stored in successive elements of EIGS, with

the real parts having odd indices. To store, for example, the four complex

eigenvalues (0.1, 0.2), (0.1, – 0.2), (0.3, – 0.4), (0.3, 0.4) and the two real eigen-

values 0.5, 0.6, EIGS may be initialized to 0.1, 0.2, 0.3, – 0.4, 0.5, 0.6. Observe

that, for odd i < NCMPLX, EIGS(i) and EIGS(i + 1) are the real and

imaginary parts, respectively, of a complex eigenvalue. The array may be

rearranged during the process.

—KMAX: The number of blocks in the staircase form (4) of the system

(Bl, Al).

—KSTAIR: Array of dimension 1 + KMAX. Note that KSTAIR(l) =

rank(lll) and KSTAIR(i) = rcznk(A,,,. l), for i = 2 : KMAX.

KSTAIR(KMAX + 1) is used by the routine. The array is overwritten

during the process.

The description of the output arguments is as follows:

—NCMPLX Number of complex eigenvalues that were not allocated. Com-
plex eigenvalues are always allocated as conjugate pairs, so NCMPLX will

always be even.
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—F: The leading M X N part of this array contains the matrix FI, which is

the solution to the Al – BIFI EAP, with (131, Al) in staircase form (4).

—EIGS: Vector of allocated eigenvalues followed by those that were not

allocated, if any. The order of eigenvalues in EIGS may differ from the

original insofar as the eigenvalue originally stored as EIGS( N ) may be

moved to EIGS( i ), with i + N. Then the eigenvalues originally stored in

EIGS( i : N – 1) will be shifted to EIGS( i + 1: N), with no additional

reordering. This can occur only if N is odd (and, hence, EIGS(N) is real),

as is discussed at the end of Section 2.1. The index i is returned to the

calling program in INF0(2) (see INFO below).

—INFO: INFO(I) returns the number of successfully allocated eigenvalues.

INFO(2) returns index in EIGS, of the eigenvalue originally stored as

EIGS(N) (see also EIGS above).

Regarding the remaining arguments, we have two work spaces FtWORK

and IWORK, and a tolerance TOL that is either a value specified by the

user, or, if the user-specified value is less than the relative machine precision

eps, TOL is reset to TOL = (M + N) II(B, A)llleps. For details on eps, see

routine DLAMCH in the LAPACK. Elements with a value less than TOL

are considered zero. We also have a warning argument IWARN and an error

argument IERR. Unless the routine detects an unusual case or an error,

IWARN and IERR contain O on exit, respectively. If they return a nonzero

value, it may be interpreted as follows:

—IWARN = 1: On entry, M > N.

—IWARN = 2: On entry, the sum of ranks of staircase blocks is not equal

to N.

—IWARN = 3: On entry, conditions for IWARN = 1 and IWARN = 2 both

exist.

—IERR <0: IERR = –j indicates a problem with the jth argument on

entry. In particular,

IERR = –1; on entry, N<l;

IERR = –2; on entry, M<l;

IERR = –3; on entry, NCMPLX <0, NCMPLX > N, or NCMPLX is odd;

IERR = –4; on entry, GMAX< 1;

IERR = –5; on entry, HMAX< 1;

IERR = –7; on entry, LDA < N;

IERR = –9; on entry, LDB < N;

IERR = –11; on entry, LDF < M.

—IERR = 1: Signifies an attempt to divide by zero (i.e., a magnitude less

than TOL) or to solve a numerically singular system of equations. Nor-

mally, this implies that the system is uncontrollable to machine precision,

but it can also occur as a result of errors in parameter passing.

ACM TransactIons on Mathematical Software, Vol 21, No 3, September 1995



Algorithm 747: Fortran to Solve the Eigenvalue Assignment Problem . 323

—IERR = 2: During eigenvalue assignment, a rank deficiency is discovered

in one of the staircase blocks, indicating that the system (131, Al) is

uncontrollable. Assignment of eigenvalues can proceed no further.

—IERR = 3: Signifies insufficient storage space for Givens rotations. The

quantity GMAX needs to be increased.

—lERR = 4: Signifies insufficient storage space for Householder transfor-

mations. The quantity HMAX needs to be increased.

4.3 Storage of Orthogonal Transformations in DMEVAS

Each Householder transformation H used in the subroutine is computed to

eliminate the first two elements of a three-dimensional vector into the third

element. Thus, the transformation can be completely specified by a three-

dimensional vector u (since H = I – 2 uuT/uTu; see Golub and Van Loan

[1989]). In DMEVAS the vector u is computed so that its third element is

normalized to unity. Since the value of u(3) is known, it need not be stored,

and u(3) is used to store uTu/2 instead. The individual vectors are stored in

columns of the 3 X h array QH, where h represents the maximum number of

Householder transformations that may be expected. Associated with each

Householder transformation is an index indicating where the transformation

is to be applied to a vector. This index is stored in the corresponding element

of array HCOL. Thus, if the Householder transformation stored at QH(:, j) is

to be applied to a vector at index i, then HCOL(j) is assigned the value i.

When a Householder transformation is computed to eliminate, for example,

x(l) and x(2) into x(3), not only is the vector u computed as above, but also x

is overwritten by Hx.

Similarly, each Givens rotation can be specified by a two-dimensional

vector. Each such vector is stored in a column of the 2 x g array QG, where g

represents the maximum number of rotations expected. The associated index

is stored in the corresponding element of the array GCOL. The Givens

rotations are computed and applied by the 13LAS routines DROTG and

DROT, respectively.

The subprogram first computes F = PTFIQ, and then FI by applying ~

and QT as described at the end of Section 2. At this point it is worth noting

that, since the staircase form (4) is not computed by DMEVAS, transforma-

tions V and T in (12) are not applied in DMEVAS, but later on in DBKTRN.

The transformation ~T consists entirely of rotations and is stored in QG

beginning at a high column index and progressing toward lower column

indices. Since the individual rotations of P T apply to only part of FI, the

associated index of FI is stored in the vector FCOL. Q consists of both
rotations and Householder transformations computed i-n each deflation step.

The rotations and Householder transformations of Q are both stored by

increasing the column index beginning at column 1 in QG and QH, respec-

tively. The end of each step is marked in the structures by setting negative in

GCOL and HCOL the indices associated with the last rotation and reflector

in that step.
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If in a particular step a Householder transformation but no rotation is

required, a dummy rotation is inserted into QG and recognized by its

associated index in GCOL, which is given the value zero. Similarly, if a

rotation but no Householder transformation is required, a dummy

Householder transformation is introduced with associated index equal to zero

placed in HCOL. These maneuvers facilitate the application of QT.

4.4 External Subroutines

The subroutines DHHLDR, DHHRFL, DTINVB, DINRMU, DINRMA,

and DABORT are supporting routines for DMEVAS. In addition, the LA-

PACK routines DTRTRS, DTRCON, and DLAMCH and the BLAS rou-

tines DASUM, DCOPY, DDOT, DROTG, DROT, and DSWAP are also

used. The demonstration program supplied also uses BLAS routine DGEMM

and the EISPACK routines BALANCE, ELMHES, and HQR. These rou-

tines are supplied for convenience, but local libraries may be preferred when

available.

4.5 Subroutines DSTAIR and DBKTRN

The heading of the subroutine DSTAIR and the declarations of its argu-

ments are as follows:

SUBROUTINE DSTAIR (N, M, A, LDA, B, LDB, KMAX, KSTAIR,
& ITRNSF, RTRNSF, IWORK, RWORK,

TOL, IWARN, IERR)

INTEGER N, M, KMAX, LDA, LDB, IWARN, IERR,
& KSTAIR( * ) , ITRNSF( x ) , IWORK( * )

DOUBLE PRECISION A(LDA, *), B(LDB, *), RTRNSF( *),

RWORK( * ) , TOL

On input the leading N ~ N and N ~ M parts of the arrays A and B,
respectively, contain the system matrices A and B in any form. On exit the

same arrays contain the matrices Al and BI in staircase form (4). ITRNSF

and RTRNSF have M + 2N + 3 + max(M, N)(M + 1)/2 and N(N + l)\2

+ max( M, N )( M + 1)/2 elements, respectively. They contain information

required by DBKTRN pertaining to the transformations performed on A and

B. On exit the warning and error arguments IWARN and IERR are either

zero, meaning that nothing suspicious was detected, or they have values that

may be interpreted as follows:

—IWARN = 1: The rank of BI or the rank of some block subdiagonal

element of the staircase form of Al is less than TOL. The system is
therefore uncontrollable to machine precision.
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—IERR <0: IERR = –j indicates a problem with the jth argument on

input. Specifically,

IERR = –1; on entry, N<l;

IERR= –2; on entry, M<l;

IERR = –4; on entry, LDA <N;

IERR = –6; on entry, LDB < N.

The heading of the subroutine DBKTRN and the declarations of its

arguments are as follows:

SUBROUTINE DBKTRN (N, M, F, LDF, ITRNSF, RTRNSF, RWORK,

IERR)

INTEGER N, M, LDF, ITRNSF( * ) , IERR

DOUBLE PRECISION F(LDF, *), RTRNSF( * ) , RWORK( * )

On input the leading M X N part of the array F contains the matrix FI as it

is produced by the subroutine DMEVAS. On exit the same array contains the

matrix F = UF17’T in (12). LDF is the row dimension of array F, as declared

in the calling program, LDF > M. ITRNSF and RTRNSF contain the trans-

formation information as computed by DSTAIR. Unless the routine detects

an error, IERR contains O on exit. If IERR # O, the following list gives its

meaning:

—IERR <0: IERR = –j indicates a problem with the jth argument on

entry. Specifically,

IERR = –1; on entry, N<l;

IERR = –2; on entry, M<l;

IERR = –4; on entry, LDF < M.

A detailed example on how to use subroutines DSTAIR, DMEVAS, and

DBKTRN to solve an EAP may be found in the demonstration program

DDEMO, which is included in the accompanying software.
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