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Abstract 

Reachability analysis is an attractive technique for analysis of concurrent programs 
because it is simple and relatively straightforward to automate, and can be used 
in conjunction with model-checking procedures to check for application-specific as 
well as general properties. Several techniques have been proposed differing mainly 

. on the model used; some of these propose the use of fiowgraph based models, some 
others of Petri nets. 

This paper addresses the question: What essential difference does it make, if 
any, what sort of finite-state model we extract from program texts for purposes of 
reachability analysis? How do they differ in expressive power, decision power, or ac
curacy? Since each is intended to model synchronization structure while abstracting 
away other features, one would expect them to be roughly equivalent. 

vVe confirm that there is no essential semantic difference between the most well 
known models proposed in the literature by providing algorithms for translation 
among these models. This implies that the choice of model rests on other factors, 
including convenience and efficiency. 

Since combinatorial explosion is the primary impediment to application of reach
ability analysis, a particular concern in choosing a model is facilitating divide-and
conquer analysis of large programs. Recently, much interest in finite-state verifi
cation systems has centered on algebraic theories of concurrency. Yeh and Young 
have exploited algebraic structure to decompose reachability analysis based on a 
fiowgraph model. The semantic equivalence of graph and Petri net based models 
suggests that one ought to be able to apply a similar strategy for decomposing Petri 
nets. We show this is indeed possible through application of category theory. 
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1 Introduction 

The problem of analyzing concurrent systems has been investigated by many re
searchers. and several solutions have been proposed. The various solutions differs in 
the way concurrent systems are represented (fiowgraphs [Tay83b, LC89, BDER79], 
Petri nets [GMMP89, SC88, .Y1R87, SMS86], process algebras [Mil80, BHR84], 
temporal logic [CES86, Wol86] programming languages [Han73, Ger84, TK091, 
Tai85]), and in the kind of analysis performed (static analysis [BDER79, Ger84, 
Tay83b, LC89, TOSO], dynamic analysis [Han 73, CDK85, Tai85], symbolic execu
tion [YT88, GMMP89, Dila, Dilb, HK88], formal proof of properties [Mil80, Apt83, 
BR89, CES86, Wol86]). 

Among the proposed techniques, reachability analysis - systematic enumera
tion of reachable states in a finite-state model - is attractive because it is simple 
and relatively straightforward to automate, and can be used in conjunction with 
model-checking procedures (e.g., [ CES86]) to check for application-specific as well 
as general properties. Reachability analysis has been used successfully in limited do
mains like simple communication protocols [Sun81, Hol87]. Combinatorial explosion 
has stymied application of reachability analysis to general concurrent programs. 

One thread of research related to reachability analysis involves extracting models 
from program texts. Since Taylor proposed a reduced fiowgraph inodel for reachabil
ity analysis of programs expressed in Ada and related languages [Tay83b], a variety 
of alternative representations have been proposed. Long and Clarke have proposed 
a "task interaction graph" representation that captures synchronization structure 
more succinctly than Taylor's original model [LC89] (an important attribute since 
combinatorial explosion is the primary limiting factor in applying reachability anal
ysis). Shatz et al. have proposed extr~cting Petri nets from Ada programs in 
order to use existing Petri net analysis tools [SC88] and net reduction techniques 
[SMBT90]. 

This paper addresses the question: What essential difference does it make, if 
any, what sort of finite-state model we extract from program texts for purposes 
of reachability analysis? How do they differ in expressive power, decision power, 
or accuracy? Since each is intended to model synchronization structure while ab
stracting away other features, one would expect them to be roughly equivalent. 
vVe confirm that there is no essential semantics difference between Taylor's original 
model, Long and Clarke's TIG model, and Petri nets by providing algorithms for 
translation among these three models. This implies that the choice of model rests 
on other factors, including convenience and efficiency of available tools. 

Since combinatorial explosion is the primary impediment to application ofreach
ability analysis, a particular concern in choosing a model is facilitating divide
and-conquer analysis of large programs. Recently Yeh and Young have exploited 
algebraic structure based on algebraic process theory [Hen88, Mil89, Hoa85] to de
compose reachability analysis based on a graph model close to Long and Clarke's 
TIG model [YY91]. The semantic equivalence of TIGs and Petri nets suggests that 
one ought to be able to apply a similar strategy for decomposing Petri net models 
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of Ada programs. We show this is indeed possible through application of categor:i 
theory [MM90, Win87, Win84]. 

Section 2 reviews representative graph based models that have been used for 
reachability analysis of programs in Ada-like languages: task fiowgraphs 1 and cou
currency graphs, as they are introduced in [Tay83b], task interaction graphs (TIGs) 
and task interaction concurrency graphs (TICGs) as introduced in [LC89] (both of 
which concern flowgraph based models), and Petri nets and reachability graphs as 
introduced in [Rei85]. 

The substantial equivalence among the flowgraph based approaches is shown in 
Section 3. The overall equivalence between :fl.owgraph based and Petri net based 
approaches is discussed in Section 4. 

The introduction of compositionality in fiowgraph based approaches by using 
algebraic theory is discussed in Section 5, where the work presented in [YY91] is 
reviewed; the use of category theory for defining compositional rules for Petri nets 
is shown in Section 6. Section 7 concludes. 

2 Background 

Reachability analysis has been broadly used for the analysis of concurrent systems 
[Apt83, BDER79, CES86, LC89, McD89, Smo84, Tay83b, MR87, SMS86, SC88]. 
Two broad classes of models have been used for supporting reachability analysis of 
programs: flowgraph based models [Apt83, BDER79, CES86, LC89, McD89, Smo84, 
Tay83b]. and Petri nets [MR87, SMS86, SCSS]. 

The use of fiowgraph based models for analyzing Ada programs was first pro
posed in [Tay83b], and an improved model was described in [LC89]. An algorithm 
for reachability analysis of Petri nets has been first proposed in [ME69]. Reach
ability analysis of Petri nets has been used for analyzing concurrent programs by 
several authors ([MR87, SMBT90, SC88]). 

2.1 Concurrency Graphs 

Task fiowgraphs and task interaction graphs (TI Gs) have been defined as models 
of the Ada task system. Ada has been chosen for the increasing interests of the 
scientific and industrial community, but similar techniques can be defined for other 
concurrent languages with rendezvous synchronization. In this paper, Ada repre
sents only a common concrete point of reference. Both task fiowgraphs and TIGs 
consider only a subset of Ada. Some of the restrictions introduced on Ada are intrin
sic to static analysis algorithms, while some others are introduced in this paper in 
order to abstract away from details which would only complicate our presentation. 

If program objects can be indexed by variable expressions or referenced through 
a chain of pointers, a static tool is usually incapable of determining the particular 

1 In [Tay83b] task flow graphs are called simply flowgraphs; the name task fiowgraphs has been 
introduced here to avoid confusion with definitions that appear later in the paper and will be used 
consistently through the paper to refer to flowgraphs as defined in [Tay83b]. 
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identity of an object; thus static analysis algorithms cannot deal satisfactorily with 
arrays of records that include tasks as members, or tasks that are objects of access 
types. Dealing with real-time operations also causes problems, since the real-time 
behavior of an Ada program depends on the performance characteristics of the 
target machines, usually not available to a static analysis algorithm; thus static 
analysis algorithms cannot fully model real-time operators like delay statements, 
timed entry calls, delay alternatives in selective waits, etc. Finally, static analysis 
requires some restrictions on dynamic task creation: since static analysis consists 
in building a finite representation of the state space of the analyzed program, the 
number of tasks composing the program must have an upper bound. 

The restrictions introduced in this paper only for simplifying the presentation 
concern shared variables, task activation and termination, and subprograms. None 
of these features are considered in this paper, although dealing with them does not 
increase the complexity of the problem. 

The reminder of this section simply recalls the definitions of task flowgraphs, 
and concurrency graphs as presented in [Tay83b] and the definitions of TIGs and 
TICGs as presented in [LC89], in order to make the paper self-contained. )/fast of 
the definitions reported in this section are informal and/ or refer to the semantics of 
Ada (see Definition 4: concurrency graph). The formal definiti_on of these concepts 
is one of the contribution of this paper and is given in Section 3, where differences 
and analogies among such models are discussed. 

A task flowgraph represents the structure of a single Ada task abstracting away 
from all the aspects which are unnecessary in determining possible sequences of 
synchronization activities. Synchronization activities are statements involved in 
synchronization, like accept, entry call, select. A task fiowgraph can be easily ob
tained from the annotated ftowgraph produced by a compilation system by ignoring 
all the nodes representing states not in valved in synchronization activities. 

Definition 1 (synchronizatidn activity) Given an Ada program, a synchroniza
tion activity is one of the following statements: entry call, accept, select, select-else, 
task-begin, task-end. 

Definition 2 (fiowgraph) a 4-tuple G = (N, A, s, T) is a flow graph if and only 
if 

1. N is a finite set of elements called nodes, 

2. A C N X N is a binary relation on N; elements of A are called arcs 

3. s E N; s is called the starting node 

4. TC N; Tis called the set of terminal nodes. 

Definition 3 (task fiowgraph) Given an Ada task A, a task fiowgraph is a fiow
graph, where each node corresponds to either a synchronization activity in A, or a 
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task body T 1 is 
done: boolean: 

begin 
done := true; 
loop 

select 
accept(P) 

or 
accept (Q) 

end select; 
exit when done 

end loop 
end Tl 

task body TO is 
begin 

Tl.Q 
end TO 

task body T2 is 
begin 

Tl.P 
end T2 

Figure 1: A simple Ada program. 

compound statement 2 , and each arc corresponds to the flow of control among the 
considered statements in task A. The starting node is the node corresponding to the 
task-begin; the final nodes are the nodes corresponding to possible terminations of 
task A. 

Nodes of task flowgraphs will be also called state-nodes; a state-node m is called 
a successor of a state-node n, m E succ( n ), if there is an arc from n to m. 

As an example, the task flowgraphs corresponding to the Ada tasks of Figure 1 
are presented in Figure 2. Notice that the loop of task T1 is explicitly represented, 
since it contains a synchronization statement (a selective wait). 

An Ada program can be identified with the set of task flowgraphs corresponding 
to the tasks in the program. The execution space of an Ada program can be de
scribed by a concurrency graph, a flowgraph where nodes, also called concurrency-

2compound statements, like conditional statements and loops, are explicitly modeled in the task 
fiowgraph only if their body contains statements that correspond to synchronization activities. 
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Task TO Task Tl Task T2 

begin begin begin 

i i i 
• Tl.Q 

i 
Tl.P 

i i 
select 

end 

/ ~ 
end 

accept(P) 

• 

end 

Figure 2: Task fiowgraphs corresponding to the Ada program of Figure 1. 
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nodes, are k-tuples of state-nodes. one node for each task flow graph, ;:ind arcs 
represents actions that can cause a state transition in the program. 

Definition 4 (concurrency graph) Let P be a set of k task flowgraphs; a con
currency-node is a k-tuple of state-nodes; one node for each task flow graph in P; 
the concurrency-node A1 = < m1, .. ., mk > is a successor of the concurrency-node 
N =< ni, .. ., nk > if and only if: 

1. Vi, 1 ::; i ::; k either 

(a) mi E succ(ni) 

(b) mi = ni 

2. there exists at least one mi, 1 < J < k, which represents application of case 
la. 

3. adherence to the semantics of Ada is reflected in the selection of the successors 
of concurrency-nodes, 3 and 

4. the changes between the concurrency-state lvl and the concurrency-state N 
are the minimum number required to satisfy conditions (2) and (3), i.e., if 
the concurrency-state lvl is a successor of the concurrency-state N, then there 
does not exists a successor S of N such that the set of components for which S 
differs form N is a proper subset of the set of components for which ivl differs 
from N. 

A concurrency graph is the transitive closure of the successor relation. 

Condition 2 prohibits self-loops in the concurrency graph, since it requires that 
two concurrency-nodes in the su.ccessor relation differ for at least one component. 
Condition 3 requires that the flow of control on the task fl.owgraphs considered 
in building the concurrency graph follows the Ada semantics. Condition 4 limits 
the set of successors to the set of nodes reachable with at most one action, be it 
concurrent or sequential: concurrency states reachable from the concurrency node 
N with more than one action performed concurrently, do not belong to the set of 
immediate successor of N, but they can be reached from N through intermediate 
nodes. (Such models are commonly called interleaving, as versus true concurrency 

and partial order models.) 
As an example, the concurrency graph corresponding to the Ada program of 

Figure 1 is reported in Figure 3. The correspondence between the enumeration of 
the concurrency-nodes in Figure 3 and the state-node of Figure 2 is indicated in 
Table 1. 

3 This definition is taken from [Tay83b]; a formal definition that does not refer to the Ada 
semantics is presented in Section 3. 
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Figure 3: The concurrency graph corresponding to the Ada program of Figure 1. 
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concurrency [ state-node state-node state-node J 
node of task To of task Ti of task T2 

1 begin begin begin 
2 begin select begin 

3 Tl.Q begin begin 

4 begin begin Tl.P 
,) begin select Tl.P 
6 Tl.Q select begin 

7 Tl.Q begin Tl.P 

8 begin select end 
9 begin end end 
10 end end begin 
11 end select begin 
12 Tl.Q select Tl.P 
1.3 Tl.Q select end 
14 Tl.Q end end 

15 end end Tl.P 
16 end select Tl.P 
17 end select end 

18 end end end 

Table 1: Correspondence between the concurrency-nodes of the concurrency graph 
of Figure 3 (first column) and the state-nodes of the task flowgraphs of Figure 2 
(columns 2, 3, 4). 
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2.2 Task Interaction Concurrency Graphs 

Task interaction graphs (TI Gs) and task interaction concurrency graphs (TIC Gs) 

have been introduced for reducing the size of the task flowgraphs and concurren!=Y 
graphs. TIGs are defined starting from a partition of the statements of a single task 
in regions called task regions. 

Definition 5 (task region) Given an Ada task A, a task region is a portion of 
code starting from the task-begin, or from a statement that can immediately follow 
the execution of an accept or an entry call, and ends with the termination of the 
task execution or with accept or entry calls. 

The task regions for the Ada program of Figure 1 are shown in Figure 4. 
Tasks To and T2 are divided in two regions, the first one (C(Ol) and C(21) 

respectively) goes from the beginning of the program to the entry call, the second 
one ( C(02) and C(22) respectively) goes from the end of the entry call to the end of 
the program. Task T1 is divided in three regions; the first one (C(ll)) goes from the 
first statement of the program to either one of the two accepts; thus, it has two exit 
points; the second one (C(l2)) goes from the end of the accept of entry Q to either 
the end of the program or one of the two accepts, thus it has three exit points; the 
third one (C(13)) goes from the end of the accept of entry P to either the end of 
the program or one of the two accepts, thus it has three exit points as well. Task 
regions end and start with beginning or ending of synchronization activities (entry 
call, accept, select, select-else, task-begin, task-end). Task regions can be linked 
together by a relation that represents the synchronization activities of the program; 
e.g., task regions COl and C02 are related by the entry call Tl.P; task regions Cll 
and Cl2 are related by the accept of entry Q. 

Definition 6 (task interaction graph (TIG)) Given an Ada task A, a TIG is 
a flow graph, whose nodes correspond to the task regions in A, and whose arcs 
represent task interactions, i.e., flow of control between task regions; arcs are labeled 
with the type of represented interaction. 

The nodes of TIGs will be also called TIG-nodes. The TIG-node corresponding 
to the initial region of the task is called the initial TIG-node of the TIG; the TIG
nodes corresponding to regions of the task where the execution may end, are called 
final TIG-node of the TIG. The initial TIG-node cannot be a final TIG-node. 

The TIGs corresponding to the Ada program of Figure 1 are shown in Fig
ure 5. For each node there are as many exiting arcs as there are exiting points 
corresponding to possible task interactions. 

An Ada program can be represented by means of the set of TIGs corresponding 
to the tasks of the program. The execution space of an Ada program represented 
as a set of TIGs can be represented by means of a TICG, a flowgraph whose nodes 
are tuples of TIG-nodes, one for each TIG in the program, and arcs corresponds to 
the possible interactions between tasks in the program. 
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task TO 
C(Ol) ENTER(TASK ACTIVATION) 

Tl.Q 
EXIT(CALL START Tl.Q) 

C(02) ENTER(CALL END Tl.Q) 
end TO 
EXIT(TASK TERMINATION) 

task Tl 
C(ll) ENTER(TASK ACTIVATION) 

loop 
select 

accept(P) 
EXIT( ACCEPT START P) 

or 
accept (Q) 

EXIT(ACCEPT START Q) 
C(12) ENTER(ACCEPT END Q) 

end select; 
exit when done 
EXIT(TASK TERMINATION) 
end loop 
EXIT(ACCEPT START P) 

or 
EXIT(ACCEPT START Q) 

C(13) ENTER(ACCEPT END P) 
or 

accept (Q) 
end select; 
exit when done 
EXIT(TASK TERMI~ATION) 
end loop 
EXIT(ACCEPT START P) 

or 
EXIT(ACCEPT START Q) 

task T2 
C(21) ENTER(TASK ACTIVATION) 

Tl.P 
EXIT(CALL START Tl.P) 

C(22) ENTER( CALL END Tl.P) 
end T2 
EXIT(TASK TERMINATION) 

Figure 4: Task regions for the Ada program of Figure 1. 
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Task TO Task Tl Task T2 

8 
accept(Q) Tl.P 

Tl.Q 

accept(P) 

accept(Q) 

accept(Q) accept(P) 

Figure 5: Task interaction graphs (TI Gs) for the Ada program of Figure l. 

Definition 7 (task interaction concurrency graph (TICG)) Given a set of 
k T!Gs; a TIGG-node is a k-tuple of TIG-nodes, one for each TIC; arcs are defined 
by the following successor relation: a node l'VJ = < m 1 , ... , mk > is a successor 
of a node N = < ni, ... , nk > if and only if there exists i and j such that for all 

I i= i, j, m1 = n1 and 

1. < ni,mi >is an arc in TIGi 

2. < nj, mj > is an arc in TIGj 

3. the labels associated with arcs ( < ni, mi>) and ( < nj, mi>) match, i.e., the 
arc ( < ni, mi >) belongs to task Ta and is labeled with accept(P) and the arc 
( < nj, mj >) belongs to task n and is labeled with Ta.P. 

A TICGs is the transitive closure of the successor relation. 

The TICG corresponding to the Ada program of Figure 5 is shown in Figure 6. 

2.3 Petri Nets 

Petri nets have been originally proposed as a model for representing and analyzing 
concurrent systems; however they have been used also for representing and analyzing 
Ada programs [MZGT85, MP89, SMBT90]. 

Definition 8 (Petri net) A Petri net is a 4-tuple (P, T, F, Mo) where, 

1. P is a non-null set of elements, called places 
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p Q 

02,13,22 02,12,22 

Figure 6: The task interaction concurrency graph (TICG) corresponding to the Ada 
program of Figure 1. 

2. T is a non-null set of elements, called transitions 

3. F ~ (P x T) U (T x P) is a flow relationship between places and transitions; 
an element of F is called arc. 

4. }vfo : P ---+ N is an assignment of natural numbers to places, called the initial 
marking. The number associated with a place p by the marking m 0 is referred 
to as the number of tokens in place p 

Definition 9 (preset) The se,t of places for which there exists an arc leading to a 
transition t is called the preset of transition t, and is indicated by 9t. 

~ = { x E p I< x' t > E F}. 

Definition 10 (postset) the set of places to which there exists a pointing arc from 
transition t is called the postset of transition t, and is indicated by t•. 

t• = { x E p I< t' x > E F}. 

As an example, a possible representation of the Ada program of Figure 1 is 
presented in Figure 7. In Figure 7, transitions represent actions, places represent 
conditions and arcs give the relations between conditions and actions. Transitions 
are labeled for convenience of the reader. Different algorithms for obtaining a Petri 
net from Ada programs can be defined, resulting in different representations. The 
one chosen in the example of Figure 7 represents an Ada program by modeling only 
synchronization activities. 

The dynamic behavior of a system modeled by means of a Petri net can be 
represented by the firing rule, which describes the effect of actions on the marking 
of the net. 
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begin '--....-----' 

rendezvous ,.---...-:;;.-, 
onQ 

begin '---.---' .__..,..___. begin 

rendezvous 
onP 

Figure 7: A Petri net corresponding to the Ada program of Figure 1. 
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Definition 11 (firing) Given a net N with marking m, a transition t is enabled 
if and only if\:/ places p E "t, m(p) 2: 1. 

The firing of a transition t enabled in a marking m produces a new marking m' 
defined as follows: 

1. m'(p)=m(p)-1,\:/pE "t-t• 

2. m'(p) = m(p) + 1, \:/p Et• - °t 

3. m'(p) = m(p), otherwise. 

Definition 12 (firing sequence) Given a marking m, a firing sequence is a se

quence of transitions O' = < t1, .. ., tn > such that transition ti is enabled in the 
marking m, and transition t;+l is enabled in the marking produced by the firing 
of transition ti. The marking produced by the firing of transition tn is called the 
marking produced by the firing sequence O'. 

Definition 13 (reachability set) A marking m' is reachable for a marking m if 
the marking m' can be produced starting from the marking m by means of a firing 
sequence a. 

The set of all markings reachable for the initial marking m 0 is called the reach
ability set. 

The reachability set represents the execution space of the Petri net, and can 
be described as a graph whose nodes represent markings and whose arcs represent 
transition firings. 

The reachability graph of the Petri net of Figure 7 is presented in Figure 8. The 
correspondence between nodes of the reachability graph of Figure 8 and markings 
in the net of Figure 7 is given in Table 2, where the marking corresponding to the 
nodes of the reachability graph are described indicating which places are marked 
(in this case, the number of tokens in each place is always one). 

Definition 14 (safeness) A Petri net N = (P, T, F, Mo) is safe if and only if for 
all reachable markings the number of tokens in each place is less than or equal to 1. 

From the reachability graph of Figure 8 it is easy to verify that the Petri net 
of Figure 7 is safe. It is always possible to represent an Ada program composed of 
a fixed number of tasks by means of a safe net. Intuitively, if the number of tasks 
in the program is bounded, it is possible to represent the tasks by disjoint sets of 
places and the state of each task by a single token. In the net of Figure 7 places po, 
P1, and p2 represent the set of possible states for task To; places p3, p4, p5, P6, and 
p7 represent the set of possible states for task T1 ; places po, pg, and Pio represent 
the set of set of possible states for task T2 . Since each place represents the state of 
exactly one task, only the token corresponding to such a task can mark that place. 
The resulting net is thus safe. 
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Figure 8: The reachability graph of the Petri net of Figure 7. 
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nodes of the reachability marked marked marked 
graph place place place 

1 Po p3 PB 
2 Po p4 PB 
3 Pl p3 PB 
4 Po p3 pg 
5 Po p4 pg 
6 P1 p4 PB 
7 Pl p3 pg 
8 Po p4 Pio 
9 Po p4 P1 
10 P2 P1 PB 
11 P2 p4 PB 
12 P1 p4 pg 
13 P1 p4 P10 
14 Pl P1 P10 
15 P2 P7 pg 
16 P2 p4 pg 
17 P2 p4 Pio 
18 P2 P1 P10 
19 P?. p5 PB 
20 Po P6 Pio 
21 P2 p5 pg 

22 P1 P6 P10 
23 P2 P6 Pio 
24 P2 p5 P10 

Table 2: Correspondence between the nodes of the reachability graph of Figure 8 
(first column) and the markings of the Petri net of Figure 7 (columns 2, 3, 4 show 
the corresponding marked places in the Petri net of Figure 7.) 
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3 A Unifying Model for Concurrency Graphs and TIC Gs 

In this section, we show that task flow graphs and TIGs can be described by means 
of the same model, providing different interpretation algorithms for Ada. In this 
way, we prove that task fiowgraphs and TIGs do not differ from the model point 
of view, but they only differ in the representation mechanism of Ada programs. 
Moreover, we define a general composition mechanism for graphs and we show that 
both concurrency graphs and TICGs can be obtained by the application of such 
a mechanism on the same model, i.e., the reachability analysis methods proposed 
in [Tay83b] and [LC89] are substantially equivalent. By defining a common model 
for task flowgraphs and TIGs, we both provide a formal definition of fiowgraph 
based models which is Ada independent, and a means for comparing and evaluating 
the graph based models proposed in [Tay83b] and [LC89] and their efficacy for 
reachability analysis of concurrent programs. The formal definition of graph based 
models introduced in this section is also used in the next section as a basis for 
comparing these models with Petri nets. 

3.1 Labeled Flow Graphs and Concurrency Flow Graphs 

In order to define a compositionality rule, we introduce a set of labels, similar to 
the labels used in process algebras for modeling elementary actions [Mil89, BK84, 
BvG87]. The correspondence will be discussed in detail in Section 5. 

Definition 15 (action) Given a set I: of names and a set~ of co-names, such 
that for each name a E I:, there exists a na,me Ci E E (a is called the complementary 
action of O' ), and the special action 17, the set L of actions is defined as L = I: U 
EU {77}. . 

The only action without a complement in L is the special action 17. 

Definition 16 (labeled fl.owgraph) G = (N, A, L, s, T, l) is a labeled fl.ow graph 
if and only if 

1. (N,A,s,T) is afiow graph (see Definition 2); 

2. L is a set of actions; 

3. l : A___. L, is a labeling function for arcs. 

The special action 'r/ will be used to label local actions (i.e. non-synchronization 
actions); actions belonging to the set A U A will be used to label synchronization 
actions. The presence of complementary actions in different graphs allows the iden
tification of corresponding synchronization actions in different processes. 

Definition 17 (program) A program is a finite set of labeled flowgraphs sharing 
the same set of labels; thus potentially communicating. 
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Definition 18 (concurrency state) Given a program P = {(N;,A;,si,Ti) J ls; 
i s; k} 1 a concurrency state is a k-tup/e < n1, ... , nk > of state-nodes, one for each 
labeled flow graph in the program; a concurrency state .M = < n 1 , ... , nk > zs a 
successor of a concurrency state N =< m1, ... , mk > if and only zj 

either 3i, j such that 

1. \;I/ =f i, j, n1 = m1 

2. < ni, mi > E Aji\ < n j, m j > E A j /\ l ( < ni , mi >) = I ( < ni, mi >) 

or 3i such that 

1. '<il =f i, n1 = m1 1 

The initial concurrency state is the k-tuple < s1 , .•. , Sk >. 

A concurrency flow graph is the transitive closure of the successor relation. A 
final concurrency state is a concurrency state in the concurrency fl.ow graph without 
successors. 

A concurrency state represents the global state of the concurrent program as 
the set of the local states of all the sequential processes composing the concurrent 
program. A concurrency state JV! is a successor of a concurrency state N if J.Vf can 
be reached from N either through a synchronization action between two sequential 
processes in the concurrent program (the synchronization action is represented by 
the simultaneous evolution of the two processes on arcs labeled with complementary 
actions), or it be reached from N through a non-synchronization action performed 
by one of the component processes. 

3.2 Concurrency Graphs as Concurrency Flow Graphs 

An algorithm for representing Ada programs by means of labeled flowgraphs can be 
given recursively on the basic operators: the labeled flowgraph corresponding to a 
particular Ada program can be obtained by repeated applications of the rules, once 
the statements determining possible synchronization activities has been extracted. 

Algorithm 1 Let A be an Ada task; 

1. the first step of the algorithm consists in extracting from task A all the synchro
nization activities together with the flow relations among them in a manner 
analogous to the one proposed in Section 2.1. 

2. the second step consists of the recursive application of the following rules to 
the statements composing task A, starting from the innermost statements, i.e., 

· the statement at the deepest nesting level in the Ada program, until the most 
external structure has been reached: 
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Figure 9: The labeled fiowgraph corresponding to a begin statement. 

(a) The statement begin can be represented by a pair of nodes and an arc 
joining the two nodes labeled with a silent action T/ as in Figure 9. 

(b) A call to an entry Q can be represented by a pair of nodes and an arc 
joining the two nodes labeled with Q as in Figure 10. Here we assume 
unique names for entries in the whole program: there does not exists 
two entries in two different tasks with the same name; thus it can be 
assumed that the label Q uniquely identifies the entry Q of task Ti. This 
does not affect the generality of the algorithm, since names can be always 
disambiguated at compilation time. 

(c) the accept of an entry Q can be represented by a pair of nodes and an 
arc joining the two nodes labeled with ( Q) as in Figure 11. 

( d) the select of two or more statements S1, .. . , Sn, being guarded or not, can 
be obtained by joining the initial places of the subgraphs representing the 
statements that occurs in the bo'dy of the select as in Figure 12. 

(e) the sequential composition of two statements S1; S2 can be obtained by 
joining the final place of the subgraph corresponding to statement S 1 with 
the initial place of the subgraph corresponding to statement S2 as in Fig

ure 13. 

(f) A loop can be represented, starting from the subgraph modeling the body 
of the loop, by adding a return arc for each terminal node of the subgraph 
representing the body of the loop. If the loop contains exit conditions then 
an arc leading to an external node should be added for each node from 

where the loop can be exited, as in Figure 14. 

(g) an end statement can be represented by simply marking the terminal 

nodes of the preceding statements as terminal. 

The labeled fiowgraphs obtained for the program of Figure 1 are shown in Fig
ure 15, the corresponding concurrency fiowgraph is shown in Figure 16; the corre
spondence between nodes of the concurrency fl.owgraph and nodes of the labeled 
fl.owgraphs is given in Table 3. 

It is easy to see the correspondence between the labeled fl.owgraphs of Figure 
15 and the task fl.owgraphs of Figure 2, and between the concurrency fl.owgraph 
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Figure 10: The labeled fl.owgraph corresponding to an entry call. 

Figure 11: The labeled fl.owgraph corresponding to an accept statement. 

select 
Sl 

or 

or 
Sn 

end select 

Figure 12: The labeled flowgraph corresponding to a select statement. 
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J concurrency-node II state-node I state-node / state-node I 
1 1 4 9 
2 1 5 9 
3 2 4 9 
4 1 4 10 
5 1 5 10 
6 2 5 9 
7 2 4 10 

8 1 5 11 
9 1 8 11 
10 3 8 9 
11 3 5 9 
12 2 5 10 
13 2 5 11 
14 2 8 11 
15 3 8 10 
16 3 5 ' 10 
17 3 5 11 
18 3 8 11 
19 3 6 9 
20 1 7 11 
21 3 6 10 
22 2 7 11 
23 3 7 11 
24 3 6 11 

Table 3: Correspondence between the nodes of the concurrency :flowgraph of Fig
ure 16 (first column) and the nodes of the labeled :flowgraphs of Figure 15 (columns 
2, 3, 4). 
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Sl;S2 

Figure 13: The labeled fl.owgraph corresponding to the sequential composition of 
two statements. 

of Figure 16 and the concurrency graph of Figure 3. The main difference between 
the labeled fl.owgraphs of Figure 15 and the task fl.owgraphs of Figure 2 is the 
representation of the loop iteration: in Figure 2, the loop iteration is represented 
with an arc connecting two extra nodes indicated in the picture by two black dots, 
while in Figure 15, is represented with two different arcs, one for each possible 
termination point of the body of the loop. This duplication causes the presence of 
few more nodes in the concurrency fiowgraph, indicated in bold in Figure 16: the 
concurrency graph of Figure 3 can be obtq..ined from the concurrency fl.owgraph of 
Figure 16 by simply deleting nodes 19, 20, 21, 22, 23, 24. 

The correspondence shown for the example is fully general, and derives from the 
definition of task fl.owgraphs and the algorithm used for interpreting Ada programs 
by means of labeled flowgraphs: in both the cases the nodes correspond to the 
same set of Ada statements and the arcs connect the same nodes. Moreover, the 
algorithms for building a concurrency graph starting from a set of task fl.owgraphs 
and the definition of concurrency flowgraph starting from a set of labeled flowgraphs 
are based on the matching of elements which are related to the same Ada constructs. 
In other words, the algorithm for translating Ada programs into labeled flow graphs 
can be considered as a formalization of the concepts introduced in Section 2.1. 

3.3 TIGs as Flow Graphs 

An algorithm for translating Ada tasks to labeled fl.ow graphs so that the obtained 
fl.owgraphs will be equivalent to TIGs can be given in a very similar way. 

Algorithm 2 Let A be an Ada task 

1. the first step of the algorithm consists in extracting from task A the task regions 
together with their entry points and their.exit points (see Definition 5). 
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loop 
Sl 
exit when cl 

Sn 
exit when cm 

end loop 

Figure 14: The labeled fl.owgraph for a loop statement. 
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Task TO Task Tl Task T2 

Q 

Figure 15: The labeled flowgraphs corresponding to the program of Figure 1. 
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Figure 16: The concurrency fl.owgraph for the program of Figure 1 obtained from 
the labeled fl.owgraphs of Figure 15. 
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2. the second step consists in the recursfre application of the following rules to 
the task regions comprising task A: 

(a) for each task region identified at step 1, add a node to the labeled fiow
graph. 

(b) for each possible synchronization action linking two task regions (for more 
details see Section 2.2) a and b, add an arc going from the node corre
sponding to task region a to the node corresponding to task region b, i.e., 
add an arc from node a representing task region a, to node b representing 
task region b, if task region a ends with the start of execution of an accept 
statement for entry X (resp. a call statement of an entry X }, and task 
region b starts with the end of the execution of an accept statement of 
the corresponding entry X (resp. the end of a call of the corresponding 
entry X). 

( c) if the synchronization action linking task regions a and b corresponds to 
a call of an entry E, then add label E to the arc going from the node 
corresponding to task region a to the node corresponding to task region b. 

( d) if the synchronization action linking task regions a and b corresponds to 
an accept statement for entry E, then add label E t~ the arc going from 
the node corresponding to task region a to the node corresponding to task 
region b 4 . 

(e) The initial node corresponds to the initial region of the task. 

(f) The final nodes correspond to task regions with an exit to the end of the 
program. 

The labeled fiowgraphs and the concurrency fiowgraph obtained for the Ada 
program of Figure 1 are the TIG01 shown in Figure 5 and the TICG shown in Figure 
6 respectively. 

The correspondence shown for the example is fully general, and derives from the 
definition of TI Gs and the algorithm used for interpreting Ada programs by means 
of labeled fiowgraphs: in both the cases the nodes corresponds to task regions and 
the arcs to transfers of control between task regions and are labeled consistently. 
Moreover, the algorithms for buildine; a TICG starting from a set of TIGs and the 
definition of concurrency fiowgraph starting from a set of labeled flowgraphs are 
based on the matching of elements which are related to the same control transfers 
(see Definition 18). 

4 Concurrency Flow Graphs and Petri nets· 

In this section, we define an algorithm for translating a program (defined as a set 
of labeled fiowgraphs (see Definition 1 7) into a Petri net, and we show that the 

iWe assume unique names for all the entries in the whole program, as in Section 3.2. 
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reachability graph of the Petri net obtained from a set of labeled flowgraphs is the 
concurrency flowgraph corresponding to the same set of labeled flowgraphs. 

Algorithm 3 (representing a program as a Petri net) Given a concurrent pro
gram, i.e., a set of labeled flowgraphs according with Definition 17, it is possible to 
obtain a Petri net representation by applying the following rules: 

- for each node of each labeled flow graph, add a place to the Petri net. 

- for each arc a in the set of labeled flow graphs from node ni to node n2 such 
that l( a) = ry, add a transition t to the Petri net; the preset of transition t is 
the place corresponding to node ni and the postset of transition t is the place 
corresponding to node n2. 

- for each pair of arcs < a, b > in the set of labeled flow graphs, arc a from 
node n1 to node nz, arc b from node n3 to node n4, such that l(a) = l(b), 
add a transition t to the net; the preset of transition t contains the places 
corresponding to nodes ni and n3, the postset of transition t contains the 
places corresponding to nodes n2 and n4. 

- if node n is an initial node then the corresponding place is marked with one 
token (in the initial marking) 

- if node n is not an initial node then the corresponding place is not marked (in 
the initial marking) 

The Petri net obtained from the set of labeled flowgraphs of Figure 15 is the one 
already presented in Figure 7. The reach~bility graph of the Petri net of Figure 7 
is the concurrency flowgraph obtained from the same set of labeled flowgraphs, as 
it is easy to see from Figures 16 and 8. This observation is fully general and can be 
stated as a theorem. 

Theorem 1 Let P be a program, i.e., a set of labeled flowgraphs, and PN the 
Petri net obtained from program P applying Algorithm 3. The reachability graph of 
P N and the concurrency graph of P are isomorphic, i.e., for each node n of the 
reachability graph there exists a node n' in the corresponding concurrency flowgraph, 
and for each arc a in the reachability graph there exists an arc a' in the corresponding 
concurrency flowgraph so that if arc a goes from node n to node m in the reachability 
graph, arc a' goes from node n' to node m 1 in the concurrency flowgraph, being node 
n' (m') the node of the concurrency fiowgraph corresponding to node n (m) of the 
reachability graph, and vice versa. 

Proof 
The theorem can be proven by induction on the size of the labeled flowgraphs 

comprising program P. 
Basis of the induction 
Given a program P composed of k labeled fiowgraphs, each one composed of a 

single initial node and no arcs, the Petri net P N obtained from program P applying 

27 



algorithm 3 is composed of k marked places, one for each node in program P, no 
transitions, and no arcs. Both the concurrency fiowgraph for P and the reachability 
graph for PN are composed of a single node and no arcs, and thus are isomorphic. 

Induction step 
Let P be a program composed of k labeled fiowgraphs Fi, ... , Fk. Let hi and ki 

be respectively the number of nodes and arcs of fiowgraph F; for 1 ~ i ~ k. Let P N 
be the Petri nets obtained from program P with algorithm 3. 

Let assume by inductive hypothesis that the concv.rrency fiowgraph corresponding 
to program P and the reachability graph for the Petri net P N are isomorphic. In 
order to demonstrate the theorem, we mv.st prove that the concurrency fiowgraph 
for program P', obtained from program P by adding either a node or an arc to one 
of the fiowgraphs comprising P, let say fiowgraph Fi 1 and the reachability graph of 
the Petri net P N' obtained from program P' with Algorithm 3 are isomorphic. In 
fact it is always possible to obtain a program composed of k fiowgraphs in a finite 
number of steps starting with a program compose of k fiowgraphs each one composed 
of a single initial node and adding at each step either a node of an arc to one of the 
fiowgraphs comprising P. 

If program P' is obtained from program P by adding a node to fiowgraph Fi, then 
the concurrency graph of program P is also the concurrency fiowgraph of program P': 
since the concurrency fiowgraph is defined as the transitive closure of the successor 
relation, which is defined starting from arcs and their associated labels, adding only 
places does not change the reachability space. 

The Petri net P N' corresponding to program P' is characterized by the same set 
of transitions and arcs of P N and a new set of places obtained from the set of places 
of P N adding a new unmarked place p with empty preset and postset. Place p can 
never be marked and consequently the reachability graph of P N' is the reachability 
graph of PN. 

The concurrency fiowgraph corresponding to program P' and the reachability 
graph corresponding to the Petri net P N' are isomorphic by inductive hypothesis. 

Adding an arc a from state-node m to state-node n to the fiowgraph F; changes 
both the concurrency fiowgraph and the reachability graph of the corresponding Petri 
net. 

For what concern the relations between the Petri net P N' corresponding to pro
gram P' and the Petri net P N corresponding to program P there can be two cases: 

1 arc a is labeled with 77 1 i.e., the added arc does not represent a possible new 
synchronization. The Petri net P N' corresponding to program P' can be ob
tained from the Petri net P N corresponding to program P by adding a new 
transition t with only the place Pm corresponding to the node m in its preset 
and only the place Pn corresponding to the node n in its postset. 

The concurrency flow graph CG' corresponding to program P' can be obtained 
. from the concurrency fiowgraph CG corresponding to program P adding an ex

iting arc ca from each concurrency-node cm containing the state-node m as i-th 
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component. Let cm' be the concurrency-node hit by arc ca. The concurrency
node cm' differs form the concurrency-node cm for the i-th component which 
is the state-node n instead of m. The concurrency-node cm' can either be al
ready in CG or be a new concurrency-node. If cm' is in the concurrency gra-ph 
CG, the concurrency graph CG' differs from the concurrency graph CG only 
for arc ca. If the concurrency-node cm' is not in the concurrency graph CG 
then cm' can be either a final node or the source of new concurrency-arcs. In 
the first case the concurrency graph CG' differs from the concurrency graph 
CG for arc ca and state cm', otherwise it differs for a subgraph, rooted in cm'. 

To show that the concurrency fiowgraph CG' corresponding to P' and the 
reachability graph RG' corresponding to P N' are isomorphic, we must show 
that for each new arc ca exiting a concurrency-node cm leading to a concurrency
node cm', in the concurrency-flowgraph CG' there is an arc ra, corresponding 
to ca, exiting the node rm corresponding to the concurrency-node cm in the 
reachability graph RG' . We must also show that the node rm' reached from 
rm through arc ra corresponds to the concurrency-node rm'. 

Since the concurrency-node cm belongs to the concurrency fiowgraph CG, in 
the reachability graph RG corresponding to P N there exists a node rm that 
corresponds to cm by inductive hypothesis. Si"nce the concurrency-node cm 
contains as i-th component the state-node m, the corresponding node rm cor
responds to a marking where place Pm is marked, being Pm the place corre
sponding to node m. Thus in the reachability graph RG' exists an arc ra 
corresponding to the firing of the new transition t added to the net exiting 
node rm (transition t has only place Pm in its preset and thus it can fire). Arc 
ra leads to a node rm' that represents a marking where all the nodes marked 
in rm are still marked, except for place Pm, that is not marked any more and 
place Pn corresponding to node n that becomes marked. Arc ca corresponding 
to arc ra in the concurrency fiowgraph leads to a node cm' differing from node 
cm only for the i-th component, which is the state-node n instead of m. If the 
concurrency node cm' belongs to CG, node rm1 belongs to RG by inductive 
hypothesis; in this case the theorem is proved. 

If the concurrency-node cm' is a terminal node in the concurrency graph CG', 
we must prove that node rm' is a terminal in the reachability graph RG'. Let 
us assume by contradiction that rm' is not a terminal node, then there exists 
an arc exiting rm', that corresponds to a transition t' enabled in marking m' 
corresponding to state rm'. In state rm' all the places which were marked in 
rm are still marked, except for the places in the preset of transition t' which 
are not marked any more and the places in the postset of transition t' which 
are newly marked. By construction, transition t' corresponds to an arc a' in 
fiowgraph Fi. Since the components of the concurrency state cm' corresponds 
to the place marked in the marking represented with state rm', a new concur
rency state differing from state rm' for the components corresponding to the 
places in the preset of transition t' can be reached from rm' through arc a'. 
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But this contradicts the hypothesis that rm' is a terminal state in CG'. Thus 
state rm' is also a terminal node and the theorem is proven. 

Finally, if the concurrency state cm' is not in CG and is not a terminal node 
for CG', we must prove that node rm' is not in RC and is not a terminal node 
in RC'. We must also prove that for each node that can be reached from cm' 
in CG' there is a corresponding node in RG'. Since the concurrency graph is 
finite (see Theorem 2), the proof can be iterated until either a node already in 
the considered fiowgraph or a terminal node is reached. 

If the concurrency node cm' is not in CG, the corresponding node rm' is 
not in RG by inductive hypothesis. If the concurrency node cm' is not a 
terminal node in CG' then there exists at least an arc a' exiting cm'. Arc 
ca' corresponds to either one arc a1 labeled T/ or two arcs a2 and a3 with 
complementary labels in the fiowgraphs comprising program P'. Let assume 
that arc ca' corresponds to one arc a1 labeled with ry, the demonstration in 
the other case is analogous. In P N' there exists a transition t' corresponding 
to arc a1 by construction. Since arc ca' exits the concurrency state cm', one 
component of cm' (e.g., component i) corresponds to the input node of arc a1 • 

Since state rm1 corresponds to state cm', place Pi corresponding to the i-th 
component of the concurrency-state cm' is marked in rm'. thus transition t' 
is enabled in the marking corresponding to state rm'. The firing of transition 
t' corresponds to an arc ra' in the reachability graph RG'. ra' corresponds 
to arc cm' and leads to a state rm" that corresponds to state cm" reached 
from cm' through arc a'. State rm" corresponds to cm" because they differ 
from corresponding states (rm' and ,cm') for corresponding components (e.g., 
the components corresponding to the input/output state of arc ca' and the 
preset/postset of arc ra'). 

2 arc a is labeled with l =/::. ry, and thus there can exists arcs aj from node mj to 
node Tlj belonging to some others fiowgraphs of program P labeled with I. The 
net P N' can be obtained from the net P N by adding a transition tj for each 
pair of new matching arcs < a, aj > with places Pm and Pm;, corresponding to 
nodes m and mj, in its preset and places Pn and Pni, corresponding to nodes 
n and Tlj, in its postset. 

The concurrency flow graph CG' corresponding to program P' can be obtained 
from the concurrency fiowgraph CG corresponding to program P adding an 
exiting arc ca from each concurrency-node cm containing both the state-nodes 
m and mj as i-th and j-th components. 

The correspondence between the concurrency fiowgraph corresponding to pro
gram P' and the reachability graph corresponding to the Petri net P N' can be 
demonstrated with a deduction analogous to the deduction used for demonstrat
ing point 1, by only changing the considerations about the differences between 
the concurrency-nodes connected with arc ca in the concurrency graph and the 
markings corresponding to the nodes connected with arc ra in the reachability 
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graph. In this case the two concurrency nodes connected with arc ca differs for 
two components instead of one, and the markings corresponding to the nodes 
connected with arc ra differs for four places instead of only two, but there is 
an analogous correspondence between nodes and concurrency-nodes. 

Theorem 2 Given a program P, i.e., a finite set of labeled flowgraphs, the corre
sponding concurrency graph is finite. 
Proof 

The proof follows almost immediately from the definition of program and con
currency graph. Concurrency-states are finite tuples of state-nodes belonging to the 
fiowgraphs in program P. Since the number of fiowgraphs comprising a program P 
is finite and the number of state-nodes in each fiowgraph is also finite, the number 
of finite tuples of state-nodes is finite. 

5 Compositionality and Process Algebras 

The main drawback of reachability analysis is the combinatorial state explosion, 
which makes the application of reachability analysis to large complex systems vir
tually impossible. Although theoretical results imply that the -combinatorial state 
explosion cannot be avoided in the worst case ([Lad79, Tay83a, Smo84, Apt83]), it 
is possible to obtain significant improvements in many practical cases. The suitabil
ity of only one the the two approaches (viz. flowgraphs and Petri nets) to support 
efficient reachability analysis for a significant set of practical cases would be critical 
in the comparative evaluation of the two approaches. In this section, we review 
the approach proposed in [YY91], where the complexity of reachability analysis is 
controlled by considering labeled fl.owgraphs as terms of a process algebra and ap
plying suitable algebraic properties to the composition of labeled :flowgraphs. In 
the next section, we show that similar results can be obtained by considering Petri 
nets a subcategory of the two sorted algebras over multisets and using suitable com
position mechanism over Petri nets, thus showing that the two approaches can be 
considered equivalent from this point of view as well. 

The conventional approach to reachability analysis as presented in Section 2 of 
this paper is based on the construction of the whole reachability graph in a single 
step, i.e., first either the set of labeled :flowgraphs or the Petri net corresponding 
to the program is built and then the whole reachability graph is obtained from the 
representation of the program. Any change in the starting program requires the con
struction of a new reachability graph from scratch, without any chance of reusing 
the results obtained by analyzing the program before the last changes. Moreover, 
the approaches so far reviewed do not give any means of reusing the results ob
tained by reachability analysis of subsystems for analyzing the whole system. Thus, 
the reachability analysis of a system must be carried out from scratch even if its 
subsystems have been previously analyzed. 

In contrast, an incremental approach allows the derivation of the reachability 
graph of a system to be built step by step by incremental modifications of the reach-
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ability graph built from an initial version of the system, without requiring the con
struction of a new reachability graph for each step of the incremental development 
of the system. A compositional approach allows the reuse of the reachability anal
ysis of the subsystems for analyzing a system obtained by composition of different 
subsystems. Incremental and compositional approaches can result in a substantial 
reduction of the complexity of the reachability analysis for a wide class of modular 
and incrementally built systems. 

In order to introduce compositionality, a composition mechanism has to be de
fined for both labeled flowgraphs and concurrency flowgraphs, and it has to be 
associative (i.e., the order in which parts are combined together must not affect 
the final result). The extension of the composition rule, as defined in Section 3 for 
concurrency fl.owgraphs can be obtained by simply introducing a labeling function 
for the arcs of the concurrency flowgraphs. This can be easily done by attaching 
a label representing the action modeled by the arc to each arc of the concurrency 
:flowgraph. Unfortunately the so-defined operator is not associative, as shown in 
Figures 17, 18, and 19. Figure 17 shows a program composed of three labeled fiow
graphs (T1 , T2, T3); the concurrency fiowgraph obtained as defined in Section 3 is 
shown in Figure 18; the concurrency fiowgraphs obtained by composing the tasks 
incrementally is shown in Figure 19. In Figures 18 and 19, ~he arcs of the con
currency graph are labeled according to the actions taking place and the labeled 
:flowgraphs involved: for instance, Q(T3 , T2) represents the simultaneous occurrence 
of actions Q in the fiowgraph T3 and Q in T2• 

In Figure 19, parentheses are used to indicate the order in which labeled fiow
graphs are composed. (T1 composed T2) composed T3 indicates the concurrency 
fiowgraph obtained by first composing the 'labeled flowgraphs T1 and T2 , and then 
composing the obtained concurrency :flowgraph with the labeled fiowgraph T3 . 

The concurrency flowgraph built in a single step (Figure 18) shows (correctly) 
the two different possible evolutions of the program: either the simultaneous occur
rence of actions Q in T1 and Q 'in T2 followed by actions P in T1 and P in T2 , or 
actions Q in T3 and Q in T2 followed by actions P in T3 and P in T2 • 

The concurrency :flowgraph obtained by composing only the labeled :flowgraphs 
T1 and T2 shows correctly the synchronous sequence between the two flowgraphs, 
but the successive composition with the labeled fiowgraph T3 does not show the 
possible communication between tasks T2 and T3. The label matching between 
the labeled :flowgraphs T1 and T2 hides actions which do not correspond to actual 
synchronization; in particular the complementary actions of the labeled :flowgraph T2 
cannot be composed any more with actions P and Q of the flowgraph T3. Similarly, 
if only the flowgraphs T2 and T3 are composed first, the complementary actions of 
the labeled flowgraph T2 cannot be composed any more with actions P and Q of 
the :flowgraph T1 . In other words, the composition operation used in conventional 
reachability analysis is not associative. 

To overcome the lack of associativity, new composition operators need to be 
defined. In [YY91], a solution based on process algebras is presented. This solu
tion considers labeled fl.owgraphs and concurrency ft.owgraphs as models of terms 
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Tl T2 T3 

Figure 17: A simple program. 

P(T3,T2) 

Figure 18: The concurrency fl.owgraph for the program of Figure 17 built in a single 
step. 
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(Tl composed T2) composed T3 

P(Tl,T2) 

(T2 composed T3) composed Tl 

Q(T3,T2) P(TI,2) 

Figure 19: The concurrency fiowgraphs for the program of Figure 17 built in two 
sequential steps. 

of a process algebra, and uses the product defined in the process algebra as the 
composition mechanism. In the chosen algebra, the product should be associative 
with respect to an equivalence relation reflecting the intuitive notion of equivalence 
among fl.owgraphs. 

In [YY91], the algebra utilized is ACF- 77, whose definition can be found in 
[BK84, BvG87]. 

Figure 20 shows the composition of the labeled flowgraphs T1 and T2 of Figure 17 
using the compositional approach. Both possible synchronization actions and non
synchronization actions are explicitly modeled in the concurrency flowgraph. From 
the initial state So three actions are possible: the synchronization action Q(T1, T2) 

between tasks T1 and T2 on action Q and its complement Q, but also action Q 
performed by task T1 without any move of task T2 , or action Q performed by task 
T2 without any move of task T1. In this way the successive composition of the 
labeled fl.owgraph T3 results in the modeling of all possible synchronization actions. 
The same result would be obtained by first composing the labeled fl.owgraphs T2 
and T3 and then adding the fiowgraph T1 , as expected from the properties of the 
algebraic composition operator. The price paid to the associativity is an additional 
state explosion of the concurrency fiowgraph. Fortunately, the algebraic approach 
provides several mechanisms for simplifying the intermediate flowgraphs without 
affecting the final results. For instance, in the example of Figure 20 only the arcs 
labeled with actions Q and P are interesting. In fact only these actions can match 
actions P and Q that are performed by task T3 , the only task to be further composed 
to obtain the final system. Arcs labeled with P and Q in the example of Figure 20 
are not interesting any more, since we know they they will never match any further 
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Tl T2 T3 

Figure 17: A simple program. 

Figure 18: The concurrency fl.owgraph for the program of Figure 17 built in a single 
step. 
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TljjT2 

Figure 20: Composition of the labeled fiowgraphs T1 and T2 according to the rules 
of AC P17 • 

action that can be performed by some other part of the system not yet included in 
the description of Figure 20. Thus, the arcs labeled with Q and P can be dropped 
from the intermediate fl.owgraph without affecting the final result. This can be 
easily done by using the restriction operator of the underlying algebra. 

The operators and the axioms of the underlying algebra can be used to fur
ther reduce the intermediate results, in order to incrementally simplify the final 
results, as shown in the example of Figure 21. This figure shows how to obtain a 
bounded buffer with two positions by composition of two bounded buffers with a 
single position. 

Figure 21 a) shows two bounded buffers P and Q with capacity one. A bounded 
buffer with capacity one can perform only two actions: accept a message (action 
a for buffer P, action b for buffer Q) if the buffer is empty (state s1 for buffer P, 
state 8 3 for buffer Q) and transmit the received message (action b for buffer P, 
action c for buffer Q) if the buffer is full (state s2 for buffer P, state 84 for buffer 
Q). Different labels for the two buffers have been chosen here only for simplifying 
the description of the composition mechanism. Process P can be transformed to 
process Q by application of the relabeling operator of AC P - ry, and vice versa. 

Figure 21 b) shows the process (PllQ) obtained by composing the bounded 
buffers P and Q presented above. Process PllQ can evolve as either process P or 
process Q, or the synchronization of processes P and Q when possible. In the initial 
state 8s can either accept a message on the input position a (action a) as process 
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P and move to state s6 , or accept a message on the input position b (action b), as 
process Q and move to state s7. Once accepted a message on the input position a 
(action a) (and thus being in state s6), process PllQ can either accept a message 
on the input position b (action b) as process Q, or accept a message on the input 
position b as process P, or can evolve with action 7) corresponding to processes P 
and Q synchronizing on the complementary actions b and b. 

If we consider bas an internal channel for synchronization between processes P 
and Q and a and c as external channels, i.e., channels that process PllQ uses to 
communicate with its external world, then we would like to forbid process PllQ to 
communicate on channel b, i.e., perform action b orb. Formally this is represented 
by the application of the hiding operator, as shown in Figure 21 c), where the 
process (PllQ)\b is shown. Initially (state 89) process (PllQ)\b can only accept a 
message on the input channel a (action a) and move to state 8 10 • From state 8 10 

it can only perform action T/ representing an internal non-observable move, namely 
process P passing the newly received message to process Q on the internal channel 
b. From state 8 11 , it can either accept a new message on channel a (action a), or 
transmit the former message on channel c (action c). If we only consider the visible 
action a and c, we can see that process ( PllQ) \b acts as a bounded buffer with 
two position, i.e., it accepts at most two consecutive messages -and it transmits the 
received messages in the same order it receives them. 

Figure 21 d) presents process (PllQ)\b simplified by removing the internal action 
7). 

The example described in Figure 21 shows how the state spaces of two compo
nents (the one position bounded buffers) can be composed to obtain the state space 
of a bigger process (the two positions bounded buffer). Key features of process 
algebras that provide compositionality and incrementality to flowgraph models are: 

1. an eqv.ivalence relation. . 
The equivalence relation provides mathematical support for transformation 
and simplification of processes; for instance, the processes of Figure 21 c) and 
d) are equivalent in terms of an equivalence relation defined in ACP-17, and 
thus the process of Figure 21 c) can be simplifyed in the process of Figure 21 
d). 

2. a composition operator associative with respect to the eqv.ivalence relation. 
The associativity of the composition operator ensures that the order of com
positions of subsystems does not affect the final result; for instance, the com
position of the three tasks of Figure 17 can be done in two steps obtaining the 
same result regardless the order of composition. 

3. a restriction operator which allow the incremental simplification of flowgraphs. 
The restriction operator can be successfully used for abstracting away from 
internal actions, relevant before the composition of subsystems, but not rele
vant any more after their composition. Abstracting away from non essential 
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aspects while incrementally composing subsystems can be crucial for control
ling the state explosion of the overall system. Intuitively, the number of states 
and actions of the resulting systems is proportional to the number of states 
and actions of the component subsystems, thus using the two bounded buffer 
representation of Figure 21 b) as a component for a bigger system instead of 
the simplifyed representation of Figure 21 d) would produce a much bigger 
system description. Moreover, the application of the restriction operator can 
be necessary to guarantee the correctness of construction of the final system. 
For instance, if the subsystem of Figure 21 b) is composed with another sub
system that is not supposed to communicate with the bounded buffer on port 
b, but uses b as a name for one of its local ports, then their composition could 
present some undesirable communication between the two subsystems. 

Several tools have been constructed for experimenting with process algebras and 
verification of finite-state systems [ CPS91, CPS90, MSGS90, Fer88]. Although these 
typically provide a variety of algebraic manipulations, they can be used to perform 
reachability analysis as a series of composition and reduction steps. Yeh [YY91] de
scribes a prototype tool that derives both process graphs and scope structure from 
program texts in an Ad a-like language, and then uses the scope structure to guide 
a sequence of composition and reduction steps and thereby avoid combinatorial ex
plosion. The extent of the advantage of algebraic structure for reachability analysis 
of practical systems requires more study, but results so far are encouraging. 

6 Compositionality and Petri Nets 

In the former section we showed that algebraic properties can be used to reduce 
the complexity of reachability analysis based on :fl.owgraphs for an interesting class 
of systems; namely, systems that present some kind of modularity and can thus be 
decomposed into subsystems that can be analyzed separately. We identified three 
main features needed to control the complexity of reachability analysis: an equiva
lence relation, a composition operator and a restriction operator. In this section we 
show how to introduce similar mechanisms for Petri nets and thus how it is possible 
to reduce the complexity of reachability analysis for the same class of systems also 
by using Petri nets. The theoretical background relies on category theory and it is 
well documented in [MM90, Win87, Win84]. Subsection 6.1 informally presents the 
concepts formally introduced in [Win84], stressing the concepts used in this paper. 
Subsection 6.2 shows how the properties of Petri nets as a category introduced in 
Subsection 6.1 can be used for mastering the complexity of reachability analysis 
based on Petri nets in a similar way as properties of process algebras can be used 
to master the complexity of reachability analysis based on fl.owgraphs. 

6.1 The category safe net 

In th.is section we refer to safe nets, since safe nets are powerful enough to represent 
the class of systems that can be statically analyzed, as suggested in Subsection 2.3. 
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In order to compare Petri nets and thus define equivalent nets we need to in
troduce net transformations. Since our main interest is in reachability analysis, we 
are looking for net transformations that preserve the reachability set of the trans
formed nets. Intuitively, a net transformation that preserve the initial marking a:nd 
the preset and postset relations relates nets with the same reachability set. 

In [Win84], Winskel calls such transformations net morphisms and shows that 
these transformations preserve the reachability set; 

Definition 19 (Net morphism) Let N and N' be safe nets; a net morphism from 
N = (P, T, F, M) to N' = (P', T', F', M') is a pair < 77, /3 >, where 77: T--+ T' is a 
partial function, (3 ~ P x P' is a relation such that 

1. /](M) = M' 

2. Vt E T,•(77t) = (3(9t) U (77t)• = ;3(t•) 

Theorem 3 Net morphisms preserve reachable markings; i.e., if A1 is a reachable 
marking of a net N and< 77,(3 > is a net morphism, then f3(M) is a reachable 
marking of N'. 
Proof 
see [Win84] 

Isomorphic nets, i.e. nets that can be transformed one into the other by means 
of a bijective morphism, can be considered equivalent from the static analysis point 
of view. Isomorphisms for the category of safe nets play the role of equivalence 
relations for process algebras. 

In [Win84], Winskel also shows that safe nets together with net morphisms as 
defined above form a category with product, the category of safe nets. Products in 
categories have several nice properties very important in our framework, the most 
important one being associativity with respect to isomorphisms, i.e. ((Nix N2 ) xN3 ) 

is isomorphic to (Ni x (N2 x N3)). One can think of products in the category of 
nets as the basic composition mechanism among nets. Figure 22 shows two simple 
nets (No and Ni) and their product (No x Ni). Intuitively, the product of two nets 
contains all the transitions of the original nets with the same preset and postset 
(transitions to,o and ti,o in the net of Figure 22) and a new transition for each pair 
of transitions in the original nets with the union of the presets and the postsets 
of the original transitions (transition to,i in the net of Figure 22). The transitions 
of the original nets represents the actions of the original nets that can take place 
independently, while the new transitions represent all the possible synchronizations 
among the actions of the original nets. The set of places of the product of two 
nets is the union of the sets of places of the two component nets. It is possible 
to verify that the net-product preserves the reachability sets of the components, 
i.e. a marking M is reachable in No x Ni if and only if po(M) is reachable in No 
and pi(M) is reachable in Ni (po and Pl indicates the projections associated to 
the net-product, i.e., the marking related to the set of places corresponding to the 
selected component). 
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(NO x Nl)\{<tO,O>} 

Figure 23: Effects of the application of the net-restriction operator. 

The net-product constitutes a basis for composing nets, but it cannot be used 
as it is: in general, subsystems can communicate only on specific actions and not 
on any pair of actions as represented by the net product. Thus we need a way of 
defining the set of communication actions. In [Win84] this problem is solved by 
using a particular morphism, called net-restriction, that can be used to abstract 
away non-interesting actions. The effect <?f the net-restriction operator is to delete 
a subset of transitions from the original net, as shown in the example of Figure 23, 
where the net (No x Ni)\ { < to,o >} is obtained from the net (No x Ni) of Figure 
22 by restriction over transition < t0 ,0 >. 

The net-composition operator can be obtained from the net-product by abstract
ing away from all the actions resulting from composition of non-communication 
actions. 

To define the net-composition operator starting from the net- product and the 
restriction operator, we assume a labeling mechanism, which associates with each 
transition a label in a set of actions L = A U A U { 17}. The label associated to 
transition twill be indicated by .\(t). 

Definition 20 (net composition) Let No= (Po, To, Fa, Mo) and Ni= (Pi, Ti, Fi, lvli) 
be nets; the composition NollNi is defined as 
(No x Ni)\ { <ti, ti >I ti -Io/\ ti -Io/\ >-(ti) -::j:. .A(ti) } 

The net composition is a net with all the transitions of the components plus a 
transition for each pair of transitions in the component nets with complementary 
labels, as shown in the example of Figure 24. 

In Figure 24, the net NollNi contains all the transitions corresponding to in
dependent actions plus a transition obtained by matching the pair of transitions 
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NO II Nl 

Figure 24: The composition of the two simple nets of Figure 22. 
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labeled a and a, but not the transition obtained by matching transition b of net N0 

with transition a of net N1 . The transition corresponding to independent actions 
are labeled according to the action represented. The transitions corresponding to a 
synchronization are labeled with the null action 77. 

More generally the net-restriction operator can be used to abstract away from 
details before further composing the subsystems, similarly to the algebraic restric
tion operator. Like the algebraic restriction operator, the net-restriction operator 
is fundamental in order to be able to master the extra complexity introduced in the 
system by using the new composition operator. Any time we can deduce that some 
actions of the subsystems will never match actions performed by units in the rest 
of the system, those actions can be hidden using the net-restriction operator, thus 
simplifying the reachability space of the subsystem without exporting the additional 
complexity into the reachability graph of the whole system. 

6.2 The bounded buffer example 

In this subsection, we demonstrate how the net composition operator and the re
striction operator can be used to compose different sub-networks and simplify the 
intermediate result using the bounded buffer example already discussed in Section 
5 

The Petri nets modeling the two processes P and Q and the net obtaining by 
composing the two processes are shown in Figure 25. 

The reachability graph of the net PllQ, shown in Figure 26, corresponds exactly 
to the concurrency :fl.owgraph built applying the algebraic composition operator to 
the flowgraphs P and Q as shown in Figure 21. 

The net reduced by hiding action band bis shown in Figure 27. The reachability 
graph corresponds exactly to the reduced fl.owgraph of Figure 21. 

It should be noticed that the reachability graph of the reduced net can be ob
tained from the reachability graph of the whole net by deleting the arcs correspond
ing to actions b and b, as expected from the properties of morphisms and products. 

7 Conclusions 

This paper compares the most used approaches to reachability analysis of concur
rent programs: flowgraph and Petri net based approaches. It first compares the 
approaches from a "classical" point of view and it concludes that there is no es
sential semantic difference between the considered approaches. It shows that the 
differences of the various approaches are not in the way the state space is built, 
but in the way concurrent programs are represented. Any choice of approach must 
depend on other factors, like convenience and efficiency. A key factor for the reduc
tion of the state space is the amount of detail of the concurrent programs that are 
taken into account. 

This paper also compares the two approaches with respect to their suitability 
for supporting incremental and compositional analysis. It shows how the results 
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PllQ 

Figure 25: The Petri nets corresponding to two one position buffers and to their 
composition. 
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CP 11 Q) ' {b, b} 

Reachability grapf of (P II Q) \ {b, b} 
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Figure 26: The reachability set of the net PllQ of Figure 25. 
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(P 11 Q)\ <b, b} 

Reachability gr~of (P II Q) \ {b, i;} 

Figure 27: Reduction of the net of Figure 25 and corresponding reachability set. 
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obtained in [YY91J for flowgraph-based approaches can be obtained for Petri net 
based approaches as well. It thus shows that the various approaches to reachability 
analysis are equally amenable to techniques for reducing the complexity of the 
analysis. 

We believe that this paper represents an important step in selecting reachability 
analysis techniques for large complex practical problems by discussing key factors 
that can drive the choice of the model to be used. This paper also describes key 
techniques for extending reachability analysis for tackling complexity problems for 
a wide class of systems, regardless the choice of the model to support the analysis. 
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