
Fast Algorithms for Universal
Quantification in Large Databases

GOETZ GRAEFE

Portland State Unwersity

and

RICHARD L. COLE

Redbrick Systems

Universal quantification is not supported directly in most database systems despite the fact that

it adds significant power to a system’s query processing and inference capabilities, in particular

for the analysis of many-to-many relationships and of set-valued attributes. One of the main

reasons for this omission has been that universal quantification algorithms and their perfor-

mance have not been explored for large databases. In this article, we describe and compare three

known algorithms and one recently proposed algorithm for relational division, the algebra

operator that embodies universal quantification. For each algorithm, we investigate the perfor-

mance effects of explicit duplicate removal and referential integrity enforcement, variants for

inputs larger than memory, and parallel execution strategies. Analytical and experimental

performance comparisons illustrate the substantial differences among the algorithms. Moreover,

comparisons demonstrate that the recently proposed division algorithm evaluates a universal

quantification predicate over two relations as fast as hash (semi-) join evaluates an existential

quantification predicate over the same relations. Thus, existential and universal quantification

can be supported with equal efficiency by adding the recently proposed algorithm to a query

evaluation system. A second result of our study is that universal quantification should be

expressed directly in a database query language because most query optimizers do not recognize

the rather indirect formulations available in SQL as relational division, and therefore produce

very poor evaluation plans for many universal quantification queries.

Categories and Subject Descriptors: E.5 [Data]: Files; H.2.3 [Database Management]: Lan-

guages; H.2.4 [Database Management]: Systems—query processing

General Terms: Algorithms, Experimentation

This research has been partially supported by the National Science Foundation with grants

IRI-8996270, IRI-8912618, and IRI-91 16547, the Advanced Research Projects Agency (ARPA

order number 18. monitored by the US Army Research Laboratory under contract DAAB-07-9 1-

C-Q518), Texas Instruments, Digital Equipment Corp., Intel Supercomputer Systems Division,

Sequent Computer Systems, ADP, and the Oregon Advanced Computing Institute (OACIS).

Contact author’s current address: G. Graefe, Microsoft Corp., One Microsoft Way, Redmond, WA

98052-6399 (goetzg @ microsoft.tom).

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying M by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Q 1995 ACM 0362-5915/95/0600-0187 $03.50

ACM Transactions on Database Systems, Vol. 20, No 2, June 1995, Pages 1S7-236

http://crossmark.crossref.org/dialog/?doi=10.1145%2F210197.210202&domain=pdf&date_stamp=1995-06-01

188 . G. Graefe and R. L. Cole

1. INTRODUCTION

Quantification is a powerful concept for querying sets and databases, and

database query languages such as SQL support existential quantification,

which can easily be implemented using well-known semi-join algorithms.

However, relational completeness also requires universal quantification, i.e.,

the ability of a database system to evaluate complex “for-all” predicates

[Codd 1972]. Similarly, a relationally complete algebra includes relational

division, the operator required for most complex universal quantification

queries. Nonetheless, most query evaluation systems do not provide the

relational division operation or algorithms to implement it,

As an example of a universal quantification query, consider a market

research request to find customers who satisfy all of a given list of criteria,

using a relation R that indicates which customer meets which criteria. This

query is to find those customers A such that for each criterion B in the given

list, there exists a tuple in R matching A and B. In relational algebra, this

query is a division of R by the list of interesting criteria. In fact, the query is

a typical application of universal quantification and relational division, which

are not supported directly or efficiently in any commercial relational database

system.

Other examples can easily be imagined. Which students have taken all

computer science courses required to graduate? Which courses have been

taken by all students of a research group? Which suppliers can provide all

parts for a certain assembly? Which parts are available from all regional

suppliers? Which applicants possess all skills required for a new job opening?

Which skills are common to all recent hires? In order to illustrate the

ubiquity of useful universal quantification and relational division queries,

these questions are intentionally based on the relational schemas frequently

used for simple database examples. In fact, any many-to-many relationship

induces a pair of universal quantification queries, not only the two many-to-

many relationships underlying the first four questions above. Similarly, any

set-valued attribute suggests a pair of universal quantification queries, not

only the “skills’’-attribute underlying the last two questions. Many of these
queries answer very useful questions in the real world, in particular when

combined with a restriction on the divisor, e.g., the restrictions to “computer

science” and to “recent hires.”

Given the power of universal quantification and relational division to

analyze many-to-many relationships and set-valued attributes, why have

they been neglected in the past? We believe that this omission has largely
been due to the lack of efficient implementation algorithms. This article

attempts to remedy this problem by surveying algorithms for relational

division and comparing their suitability for small data volumes (all data fit in

memory), for large data volumes, and for parallel execution. Our primary

results is that a recently proposed algorithm called hash-diuision is superior

to all prior algorithms by its generality and its performance in simple and

complex cases as well as in parallel query execution systems. Our experi-

ments demonstrate that relational division can be computed as fast as a

ACM Transactions on Database Systems, Vol 20, No 2, June 1995

Fast Algorithms for lJniversal Quantification . 189

hash-based join or semi-join of the same pair of input relations. However, this

performance can be achieved only if query language and query formulation

enable the optimizer to detect universal quantifications that can be imple-

mented by relational division, and if the fastest relation division algorithm is

used.

Because universal quantification and relational division have been ne-

glected in past research, let us name and address four traditional rationales

for not supporting universal quantification and relational division explicitly

in database query languages and in query evaluation systems. First, rela-

tional division can be expressed in terms of other relational operators.

Second, universal quantification can be expressed using negated existential

quantifications. Third, it can be expressed using aggregate functions. Fourth,

for-all predicates are not used very frequently, so why bother?

The first rationale is correct: if I?(A, B) and S(B) are relations, then

R + S = m~(R) – ~~((m~(l?) x S) – R) [Maier 1983]. However, Cartesian

products tend to be very large, and this one must be matched against the

dividend R in a difference operation, which is as expensive as a join. Thus, a

query evaluation plan based on the equivalent expression using a Cartesian

product operator is very inefficient. We will present more efficient query

evaluation plans that do not require Cartesian product operations, and will

therefore ignore this alternative to relational division in our performance

comparisons.

The second rationale is also correct, although universal quantification

queries expressed using negated existential quantifications are very complex,

as we will see in Section 2. In SQL, for example, two nested “NOT EXISTS”

clauses and subqueries are required for our simple example queries, even in

the absence of additional query predicates. Given this complexity, universal

quantification queries are hard to specify correctly in SQL. Furthermore,

query optimizers typically will not recognize such queries as universal quan-

tifications and relational divisions, and therefore will choose query evaluation

plans much slower than the ones proposed in this article. In fact, many

commercial relational optimizers do not unnest any subqueries; in those

systems, formulating a universal quantification query using two “NOT EX-

ISTS” clauses results in a query evaluation plan similar to the relational

algebra expression above. At best, if both inputs are indexed with clustering

B-trees, the query plan for a universal quantification query with two “NOT

EXISTS” clauses will be similar to the naive division algorithm discussed in

Section 2.

The third rationale is also valid, and SQL formulations for relational

division queries based on aggregation and their query evaluation plans will

be discussed in Section 2. Unfortunately, formulations of universal quantifi-

cation and relational division queries based on aggregation are also very

complex. Moreover, as we will see in the performance evaluation, implement-

ing division by means of aggregate functions results in poor performance

except in rare circumstances—competitive performance requires that both

inputs be duplicate-free, that referential integrity between the inputs hold,

ACM Transactions on Database Systems, Vol. 20, No. 2, June 1995.

190 . G Graefe and R. L, Cole

and that the query processor use hash-based, not sort-based, aggregation.

Whenever the divisor is the result of a selection, referential integrity between

the relational division inputs will not hold and must be enforced explicitly in

a separate step, which is particularly expensive in parallel query evaluation

systems. Thus, direct algorithms that avoid aggregation are even more

important for modern, parallel database systems than they have been in the

past.

The fourth rationale seems to be the most important one: universal quan-

tification and relational division are rarely taught and used, However, it is

not at all clear what is cause and what is effect. Is it possible that universal

quantification queries are shunned because they are complex to express in

SQL and, if used, tend to run a long time? While universal quantification

may not be useful in transaction-processing environments, universal quantifi-

cation and relational division are very valuable in analyzing many-to-many

relationships and set-valued attributes, as discussed earlier. Moreover, in

next-generation database systems that enforce complex integrity constraints

on sets or support on-line decision support, data mining, knowledge bases, or

logic programming, the importance of quantification in general and universal

quantification in particular must be expected to grow.

The following sections examine algorithms for universal quantification by

relational division. We chose the context of the relational data model and its

algebra because we assume that the reader is most familiar with that model.

However, the algorithms considered here and the conclusions about the

algorithms’ performance are also applicable to other data models that require

universal quantification. Furthermore, the algorithms can serve as a basis for

more sophisticated quantification operators such as those explored on a

conceptual (as opposed to algorithmic) level by Carlis [1986] and by Whang et

al, [1990],

Section 2 gives an overview of algorithms that have been proposed for

relational division. A recently proposed algorithm called hash-di~ision is

discussed in Section 3. In Section 4, we consider modifications of these

algorithms using temporary files for inputs and intermediate results larger

than main memory. Section 5 describes adaptations of the algorithms to

parallel machines, both shared-memory and distributed-memory systems. In

Section 6, we illustrate complete query evaluation plans and derive analytical

cost formulas for the four algorithms. Section 7 uses the cost formulas for any

analytical performance comparison. An experimental comparison follows in

Section 8. The final section contains a summary and our conclusions from this

research.

2. EXISTING ALGORITHMS

In order to describe the algorithms most clearly, we introduce two example

queries that will be used throughout this paper. Assume a university database

with two relations, Course (course-~zo, title) and Transcript (student-id,

course-no, grade) with the obvious key attributes. For the first example, we

are interested in finding the students who have taken all courses offered by

ACM Tramsact,ons on D~t~base Systems, Vol 20, NO 2, June 1995

Fast Algorithms for Universal Quantification . 191

the university. As an English query over the relations in the database, this is

find the students (student-id’s) in Transcript such that for all courses (course-

no’s) in Courses, a tuple with this student-id and course-no appears in the
Transczzpt relation.

In relational algebra, this query is

In this example, the projection of Transcript is the dividend and the

projection of Courses is the divisor, The division result is called the quo-

tient. The attributes of the divisor are called divisor attributes, course-no

in the example. The quotient attributes are the attributes of the dividend

that are not in the divisor, student-id in the example. The set of quotient

attribute values in the dividend, n,t .~,, ~.,~ (Transcript) in this example, is

called the set of quotient candidates. The set of all dividend tuples with the

same quotient attribute value is called a quotient candidate group.

It is important to notice that both relations are projected on their key

attributes in this example. Thus, the problems of duplicate tuples in the

dividend or the divisor do not arise. However, if students were permitted to

take the same course multiple times, the Transcript relation would require

an additional key attribute term and the projection of Transcript on student-

id and course-no would require an explicit duplicate removal step. As we will

see, if the inputs of relational division may contain duplicates, either the

division algorithm employed must be able to handle them or the inputs must

be properly preprocessed. Performing duplicate removal can be quite expen-

sive, making very desirable an algorithm that is insensitive to duplicates in

its inputs.

We also assume, for this example, that the Transcript relation represents a

many-to-many relationship between students and courses. Thus, a referential

integrity constraint holds between dividend and divisor, namely that all

course-no values in the Transcript relation also appear in the Cozu-se rela-

tion. It is important that the validity of the referential integrity constraint be

known a priori; otherwise, the division algorithm or a preprocessing step (a

semi-join) must explicitly enforce it.

As our second example, we are interested in finding the students who have

taken all database courses, i.e., courses for which the title attribute contains

the string “Database.” For this example, the divisor is restricted by a prior

selection. Other restrictive operations on the divisor, e.g., a semi-join, would

have the same effect as the selection considered here. While the two example

queries seem almost identical, the referential integrity constraint assumed

above does not hold for the restricted Courses relation, In the example, there

may very well be transcript entries that do not refer to database courses. This

difference has ramifications when division is implemented using aggrega-

tions, which will be described shortly.

Table I summarizes the cases that must be considered separately in a

complete analysis of relational division algorithms. In order to shorten the
discussion, we only consider cases in which either both or none of the two
inputs may contain duplicates. Thus, in the analytical and experimental

ACM TransactIons on Database Systems, Vol. 20, NO 2. June 1995.

192 . G. Graefe and R. L. Cole

Table I. Cases to Consider for Relational Division Algorithms

Vlolatlons of Duplicates in Duphcates in

Case referential mtegrlty the diutdend the dwmor

1

2

3

4

5

6

8

No

No

No

No

Yes

Yes

Yes

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No

Yes

performance comparisons, we only consider four cases, namely cases 1, 4, 5,

and 8.

Let us briefly speculate which of these cases will arise most frequently. In

practice, a dividend relation will often be a relation representing a many-to-

many relationship between two entity types. In other words, many universal

quantification queries will find the set of instances of one entity type, e.g.,

students, that are related to all or a selected subset of instances of another

entity type, e.g., courses or database courses. We believe that queries using

an entire set or stored relation as divisor are not often useful, e.g., our first

example query. Instead, the subset alternative will be used much more

frequently, e.g., our second example query. Translated from the E-R-model

into the relational model, where relationships are represented with keys and

foreign keys, and into the classification of Table I, duplicates in the inputs

will often not be a problem, while referential integrity between dividend and

divisor can typically not be assumed. On the other hand, the problem of

duplicate removal does sometimes arise, e.g., in the modified example above

where students are permitted to take the same course twice, requiring an

additional key attribute term that is not present in the dividend.

Before discussing specific relational division algorithms, we would like to

point out that there are some universal quantification queries that seem to

require relational division but actually do not. Consider two additional rela-

tions Student (student-id, name, major) and Requirement (major, course-no)

and a query for the students who have taken all courses required for their

major. The crucial difference here is that the requirements are different for

each student, depending on his or her major. This query can be answered

with a sequence of binary matching operations. A join of the Student and

Requirement relations projected on the student-id and course-no minus the
Transcript relation an be projected on student-id’s to obtain a set of students

who have not taken all their requirements. The difference of the Student

relation with this finds the students who have satisfied all their require-

ments. The relational algebra expression that describes this plan is

‘?,tudent.,d,course-no(Transcript))

ACM TransactIons on Database Systems, Vol 20, No. 2, June 1995

Fast Algorithms for Universal Quantification . 193

This sequence of operations will have acceptance performance because it does

not contain a Cartesian product operation and its required set matching

algorithms (i.e., join and difference) all belong to the family of one-to-one

match operations that can be implemented efficiently by any suitably param-

etrized join algorithm, e.g., hybrid hash join [DeWitt et al. 1986; Shapiro

1986]. In fact, since the difference could be executed by hashing on the

student-id attributes, these two operations could be executed more efficiently

by a single matching operation for three inputs [Graefe 1993].

The following division algorithms do not depend on the existence of indices

or other associative access structures that might provide a mechanism for

fast or ordered access to tuples. Sort-based indices could be used instead of

explicit sort operations in the sort-based algorithms, in particular clustering

indices, and hash-based indices could be used to the hash-based algorithms.

When suitable index structures are available, they can speed up the affected

algorithms, e.g., by rendering a sort operation unnecessary. However, it is not

always possible to choose a suitable clustering. For example, keeping the

Transcript table in our example sorted and clustered on student-id’s is

useful, but as for any table representing a many-to-many relationship, the

alternative sort order on the other part of the table’s key (cow-se-no in the

example) is equally likely to be chosen to enhance join performance for other

queries. Any table representing a many-to-many relationship implies the

same problem.

Similarly, multi-table clustering (sometimes called “master-detail” cluster-
ing) would be useful and could improve the performance of some relational

division algorithms. Unfortunately, it is available in only a very few database

systems, and it has the same problem for many-to-many relationships as

clustering by sort order: while a master-detail relationship is inherently a

one-to-many relationship, a table representing a many-to-many relationship

can be clustered in two ways, For generality, we therefore do not presume

clustered relations.

Moreover, and more importantly, indices typically do not exist on interme-

diate query results. In order to ensure that our algorithms and analyses

apply to both permanent, stored relations and to intermediate query process-

ing results, we discuss and analyze division algorithms without any such

advantages. The cost of relational division in database systems and physical

database designs that could include suitable structures and orderings can be

inferred from the provided cost formulas by subtracting the cost of prepro-

cessing steps such as sorting.

2.1 A Naive Scwt-Based Algorithm

The first algorithm directly implements the calculus predicate. First, the

dividend is sorted using the quotient attributes as major and the divisor

attributes as minor sort keys. In the examples, the Transcript relation is

sorted on student-id’s and, for equal student-id’s, on course-no’s. Second, the

divisor is sorted on all its attributes. Third, the two sorted relations are
scanned in a fashion reminiscent of both nested loops and merge-join. The

dividend serves as outer, the divisor as inner, relation. The dividend is

ACM TransactIons on Database Systems, Vol 20, No 2. June 1995

194 . G. Graefe and R. L. Cole

Student Course

Jack Intro to Databases

Jill Database Performance

Jill Intro to Databases

Jill Intro to Graphics

Jill Readings in Databases

Joe Database Performance

Joe Intro to Compilers

Joe Intro to Databases

I Readings in Databases
I

1+Student

Jill

Dividend + Divisor = Quotient

Fig. 1. Sorted inputs into naive division

scanned exactly once, whereas the divisor is scanned once entirely for each

quotient tuple, and once partially for each candidate quotient tuple which

actually does not participate in the quotient, Differently than in merge-join,

however, both scans can be advanced when an equality match has been

found, The dividend relation may contain a tuple that does not match with

any of the divisor tuples, e.g., a Transcript tuple of a graphics course in the

second example. This algorithm’s scan logic ignores such extraneous records.

Figure 1 shows three tables marked Dividend, Divisor, and Quotient. The

dividend and the divisor are sorted properly for naive division. We show

string values in Figure 1 because they are easier to read; in a real applica-

tion, these would typically be identifying keys such as student-id and course-

no. Concurrent scans of the “Jack tuples in the dividend (there is only one)

and of the divisor determine that “Jack is not part of the quotient because he

has not taken the “Database Performance” course. A continuing scan through

the “Jill” tuples in the dividend and a new scan of the entire divisor includes

“Jill” in the output of the naive division. The fact that “Jill” has also taken an

“Intro to Graphics” course is ignored by a suitably general scan logic for naive

division. Finally, the “Joe” tuples in the dividend are matched in a new scan

of the divisor, and “Joe” is not included in the output.

Essentially this algorithm was proposed by Smith and Chang [19751 and

other early papers on algorithms for executing relational algebra expressions.
It is the first algorithm analyzed in the performance comparisons later in this

article.

SQL Formulations Using Two “NOT EXISTS” Clauses

In the introduction, we claimed that the typical SQL formulation of universal

quantification and relational division queries, which employs two negated

existential quantifications, leads not only to confusing complexity but also to

very poor performance. For example, presuming that “NULL” values are

ACM TransactIons on Database Systems, Vol. 20, No. 2, June 1995

Fast Algorithms for Universal Quantification o 195

prohibited, the first example query is Date and Darwen [1993]; and O’Neil

[1994]

SELECT DISTINCT tl,student-id FROM Transcript t]
WHERE NOT EXISTS (

SELECT’ FROM Course c

WHERE NOT EXISTS (

SELECT * FROM Transcript t2
WHERE t2.student-id = tl.student-id
AND t2.course-no = c.course-no)).

In order to process this SQL query, as many as three nested loops will be

used. The outermost one loops over all unique values for t1.student-id. The

middle one loops over the values for c. course-no. Notice that these two loops

correspond to the Cartesian product in the relational algebra expression

given in the introduction as well as to the two loops in naive division. The

innermost loop determines whether or not there is a tuple in Transcript with

the values of tl.student-id and c. course-no. Since this loop is essentially a

search, an index on either attribute of Transcript can be very useful.

If Transcript and Course are clustered using B-tree indices, many of the

index searches can be very fast. In this best case, the execution logic and

run-time of the two “NOT EXISTS” clauses will be similar to naive division.

Thus, when comparing other algorithms against naive division, we also

compare these algorithms with the best case of the typical SQL” work-around

for universal quantification,

2.2 Implementing Division by Aggregation

Since the naive division algorithm requires sorting both inputs and repeated

scans of the divisor, it may be rather slow for large inputs, and it seems

worthwhile to search for alternative algorithms. One such alternative uses

aggregations or, more specifically, counting. In fact, in most relational

database management systems, counting is the most efficient way to express

for-all predicates. However, it is left to the user to rephrase all universal

quantifications into aggregate functions, which is a likely source of errors,

e.g., incorrect counts due to the presence of duplicate tuples or the omission of

a predicate enforcing referential integrity.

The first example query can be expressed as “find the students who have

taken as many (different) courses as there are courses offered by the univer-

sity (tuples in the courses relation).” In SQL, assuming that there are no

duplicates in either relation, that all Transcript tuples refer to valid course-

no’s, and that there are no “NULL” values, this query is

SELECT t.student-id FROM Transcript t

GROUP BY t.student-id
HAVING COUNT (t.course-no) = (SELECT COUNT (course-no) FROM Course).

This query is evaluated in three steps. First, the courses offered by the

university are counted using a scalar aggregate operator. This step replaces
the subquery expression with a constant. Second, for each student, the

courses taken are counted using an aggregate function operator. Third, only

ACM TransactIons on Database Systems, Vol 20, No. 2. June 1995.

196 . G, Graefe and R. L. Cole

those students whose number of courses taken is equal to the number of

courses offered are selected to be included in the quotient.

If the dividend and divisor relations do not contain unique keys as in our

example, it would be necessary to explicitly request uniqueness of the stu-

dent-id’s and course-no’s counted. For example, some students may take the

same database course twice, if the first time resulted in a failing grade. In

that case, the Transcript relation should include a term attribute, which

would be part of the key. However, the dividend is the projection of Tran-

script on student-id and course-no; since part of the key is being removed,

duplicates are possible and duplicate removal in the dividend is required

before grouping and counting.

The second example query can be expressed as “find the students who have

taken as many database courses as there are database courses offered by the

university.” In SQL, this query can be expressed by

SELECT t.student-id FROM Transcript t, Course c

WHERE t.course-no = c.course-no AND c.title LIKE ‘?% Database’%”

GROUP BY t.student-id

HAVING COUNT (DISTINCT t.course-no) =

(SELECT COUNT (DISTINCT course-no) FROM Course

WHERE c.title LIKE “7cDatabase%”).

For illustration purposes, we included two “DISTINCT” key words where

they would be necessary if duplicates could exist. A good query optimizer

would infer key and uniqueness properties and ignore these “DISTINCT” key

words where appropriate. More important, however, are the additional

“WHERE” clauses. First, since referential integrity between dividend and

divisor does not hold, an additional join clause must be specified. Second, the

restriction on the divisor (on “04DatabaseVO”) musk be specified on both levels

of subquery nesting.

Comparing the query evaluation plans for the two SQL queries, the first

and the third steps of the plan above remain virtually the same, but the

second step becomes significantly more complex. Since it is important to

count only those tuples from the Transcript relation that refer to database

courses, the aggregate function must be preceded by a semi-join of Transcript

and Courses restricted to database courses.

The scalar aggregate operator for the divisor can be implemented quite

easily, e.g., using a file scan, and similarly the final selection. The aggregate

function and the possible semi-join require more effort; in the remainder of
this section, we will concern ourselves only with these operators.

Can All Universal Quantification Queries be Expressed by Counting?

While it seems to work for the example queries, one might ask whether all

universal quantification can be expressed by counting. The essential, basic

ideas for a proof are that (1) universal quantification and existential quantifi-

cation are related to each other as each is negated using the other, and (2)

existential quantification is equivalent to a count greater than zero. Negated,

ACM Transactions on Database Systems, Vol 20, No 2, June 1995

Fast Algorithms for Universal Quantification . 197

existential quantification is equivalent to a count equal to zero. Similarly,

universal quantification is equivalent to the count of non-qualifying items

equal to zero. This, in turn, is equivalent to a count of qualifying items equal

to the maximum possible, i.e., the count of qualifying items is equal to the

count of items in the set over which the query is universally quantified. Thus,

all universal quantification queries can indeed be rewritten using aggrega-

tion and counting.

Since this proof idea is quite simple and very intuitive, we do not develop a

formal proof here. In order to capture all subtleties of SQL semantics,

“NULL” values must be taken into proper consideration. Because most

universal quantification and relational division queries will follow the query

pattern given in the introduction, i.e., analyze many-to-many relationships

and set-valued attributes, and therefore involve key attributes, we will ignore
“NULL” values in the rest of this article.

Division Using Sort-Based Aggregation

The traditional way of implementing aggregate functions relies on sorting

[Epstein 1979]. In the examples, Transcript is sorted on attribute student-id.
Afterwards, the count of courses taken by each student can be determined in

a single file scan. The exact logic of this scan is left to the reader. An obvious

optimization of this algorithm is to perform aggregation during sorting, i.e.,

whenever two tuples with equal sort keys are found, they are aggregated into

one tuple, thus reducing the number of tuples written to temporary files

[Bitten and DeWitt 1983], We call this optimization early aggregation.

If the query requires a semi-join prior to the aggregation as in the second

example, any of the semi-join algorithms available in the system can be used,

typically merge-join, nested loops join, index nested loops join, or their

semi-join versions, if they exist. If merge-join is used, notice that the dividend

must be sorted on the divisor attributes for the semi-join, which are different

from the grouping (quotient) attributes. In the example, the Transcript

relation must be sorted first on course-no’s for the semi-join and then on

student-id’s for the aggregation.

Since sort-based aggregation has been used in most database systems, e.g.,

INGRES [Epstein 1979] and DB2 [Cheng et al. 1985], it is important to

understand its performance when used for relational division. Division using

sort-based aggregation is the second algorithm analyzed in the performance

comparisons below.

Division Using Hash-Based Aggregation

Sorting actually results in more order than necessary for many relational

algebra operations. In the examples, it is not truly required that the Tran-

script tuples be rearranged in ascending student-id order; it is only necessary

that Transcript tuples with equal student-id attribute values be brought

together. The fastest way to achieve this uses hashing. Thus, several hash-
based algorithms have been proposed for join, semi-join, intersection, dupli-

cate removal, aggregate functions, etc. (e.g., in Bratbergsengen [1984],

ACM Transactions on Database Systems, Vol. 20, No. 2, June 1995.

198 . G. Graefe and R. I_. Cole

DeWitt et al. [1984], DeWitt and Gerber [1985], F’ushimi et al. [1986],

Kitsuregawa et al. [1983], Shapiro [1986], Zeller and Gray [1990], and many

others). The most efficient technique for inputs larger than memory is hybrid

hashing [DeWitt et al. 1984; DeWitt and Gerber 1985; Shapiro 19861 if

modified with techniques for managing non-uniform hash value distributions

[Kitsuregawa et al. 1989; Nakayama et al. 1988].
Hash-based aggregate functions keep tuples of the output relation in a

main memory hash table, but not input tuples, The output relation contains

the grouping attributes. student-id in the examples, and one or more aggre-

gation values, e.g., a sum, a count, or both in the case of an average

computation. Each input tuple is either aggregated into an existing output

tuple with matching grouping attributes, or it is used to create a new output

tuple. When the entire input is consumed, the result of the aggregate function

is contained in the hash table.

If the aggregate function output does not fit into main memory, hash table
Oz)erflow occurs and temporary files must be used to resolve it. Since the hash

table contains only aggregation output, it is not necessary that the aggrega-

tion input fit into main memory. In the examples, if there are 500 students

with a total of 10,000 Transcript tuples, the hash table need hold only 500

tuples. Thus, hash aggregation performs well, i.e., without 1/0 for temporary

files, for much larger files than sort-based aggregation based on sorting

memory-sized runs using quicksort. The 1/0 requirements of aggregation

based on sorting using replacement selection [Knuth 1973] are similar to

those of aggregation based on hashing. If the output size is only slightly

larger than memory, hybrid overflow techniques as considered for join opera-

tions [DeWitt et al. 1984; Shapiro 1986] can also be used for aggregation and

duplicate removal.

If the aggregate function is preceded by a semi-join as in the second

example query, the semi-join can also be implemented using hashing, The

hash table used for the semi-join is different from the one used for aggrega-

tion, just as sort-based semi-join and aggregation require two separate sorts

on different attributes. The hash table in the semi-join is built and probed by

hashing on course-no’s, whereas the hash table for the aggregation is based

on hashing studen t-id’s.

Let us briefly consider duplicates again. In the naive division algorithm,

duplicates in either input relation can be eliminated conveniently as part of

the sort operation or, if the inputs are already sorted, by inserting a simple

filter that compares consecutive tuples. In sort-based aggregation, the initial

sort can be used to remove duplicates, although sorting cannot remove

duplicates and aggregate tuples at the same time. In other words, if duplicate

removal in the Transcript relation is required, the early aggregation can be

used for duplicate removal but the actual aggregation (counting course-no’s)

cannot be integrated into the sort operator. Similarly, hash-based aggrega-

tion cannot include duplicate removal, since only one tuple is kept in the hash

table for each group. While efficient duplicate removal schemes based on

hashing exist, they require that the entire duplicate-free output must be kept

in main memory hash tables or in overflow files. Thus, duplicate removal

ACM TransactIons on Database Systems, Vol 20, No, 2, June 1995

Fast Algorkhms for Unwersal Quantification . 199

based on hashing may be expensive for a very large dividend relation, with

about the same number of 1/0 operations as duplicate removal based on

sorting and slightly lower CPU costs [Graefe 1993].

Hash-based aggregation has been used only in a small number of systems,

e.g., in Gamma [DeWitt et al. 1986; DeWitt et al, 1990], Volcano [Graefe

1994], and Tandem’s NonStop SQL [Zeller and Gray 1990]. Division using

hash-based aggregation is the third algorithm analyzed in performance com-

parisons.

3. HASH-DIVISION

This section contains a description of a recently proposed algorithm intro-

duced as has?l-diuision in Graefe [1989], followed by a discussion of the

algorithm. The design of hash-division was motivated by a search for a direct

algorithm for universal quantification and relational division, similar to

naive division but based on hashing. Table II shows where the recently

proposed algorithm fits into a classification of universal quantification and

relational division algorithms.

Algorithm Description

Figure 2 gives pseudo-code for the hash-division algorithm. It uses two hash

tables, one for the divisor and one for the quotient. The first hash table is

called the divisor table, the second the quotient table. An integer value is

kept with each tuple in the divisor table, called the divisor number. With

each tuple in the quotient table, a bit map is kept with one bit for each divisor

tuple. Bit maps are common data structures for keeping track of the composi-

tion of a set; since the purpose of relational division is to ascertain which

quotient candidates are associated with the entire divisor set, bit maps are a

natural component of division algorithms.

FiDwre 3 illustrates the two hash tables used in hash-division. The inputs

are the same as those in Figure 1; hash-division, however, does not require

that the inputs be sorted. The divisor table on the left contains all divisor

tuples and associates a divisor number with each item. The quotient table on

the right contains quotient candidates, obtained by projecting dividend tuples

on their quotient attributes, and a bit map for each item indicating for each

divisor tuples there has been a dividend tuple. The fact that “Jack’ and “Joe”

have taken only one and two “Database” courses is indicated by their

incompletely filled bit maps. The courses on subjects other than databases do

not appear in either hash table, because it was immediately determined that

there was no compilers and graphics course in the divisor relation

The hash-division algorithm proceeds in three steps. First, it inserts all

divisor tuples into the divisor table. The hash bucket is determined by

hashing on all attributes. In the process, the algorithm counts the divisor

tuples, and assigns the current count as a tuple’s divisor number when the

tuple is inserted, Thus, a unique divisor number is assigned to each divisor

tuple. At the end of this first step, the divisor table is complete, as shown on

the left in Figure 3.

ACM TransactIons on Database Systems, Vol 20. No 2, June 1995

200 . G. Graefe and R. L. Cole

Table 11. Classification of Universal Quantification Algorithms

Based on sorting Based on hashing

Du-ect Nawe divwon Hash -du,ision

Indirect (counting) by Sorting with duplicate Hash-based duplicate removal,

semijoin and removal, merge-join hybrid hash join, hash-

aggregation sorting with aggregation based aggregation

// step 1: build the divisor table

assign divisor count +-- zero

for each divisor tuple

insert divisor tuple into the divisor table’s appropriate bucket

assign tuple’s divisor number +-- divisor count

increment the divisor count

// step 2: build the quotient table

for each dividend tuple

scan appropriate hash bucket in the divisor table

if a matching divisor tuple is found

scan appropriate hash bucket in the quotient table

if no matching quotient (candidate) tuple is found

create new quotient candidate tuple

from quotient attributes of dividend tuple

incl. a bit map initialized with zeroes

insert it into hash bucket of quotient table

set bit corresponding to divisor tuple’s divisor number

/i step 3: find result in the quotient table

for each bucket in quotient table

for each tuple in bucket

if the associated bit map contains no zero

print quotient tuple

Fig, 2. The hash-division algorithm,

In the second step, the algorithm consumes the dividend relation, For each
dividend tuple, the algorithm first checks whether or not the dividend tuple

corresponds to a divisor tuple in the divisor table by hashing and matching

the dividend tuple on the divisor attributes. If no matching divisor tuple

exists, the dividend tuple is immediately discarded. In the second example

query, a student’s Transcript tuple for an “Intro to Graphics” course does not

pass this test and is not considered further, and the algorithm advances to

the next dividend tuple. If a matching divisor tuple is found, its divisor

number is kept and the dividend tuple is considered a quotient candidate.

Next, the algorithm determines whether or not a matching quotient candi-

ACM TransactIons on Database Systems, Vol. 20, No. 2, June 1995

Fast Algorithms for Universal Quanhfication . 201

Divisor Number Bitmap

Database

Performance
’21 ~

Fig. 3 Divisor table and quotient table in hash division.

date already exists in the quotient table by hashing and matching the

dividend tuple on the quotient attributes. If no such quotient candidate

exists, e.g., because the quotient table is empty at the beginning, a new

quotient candidate tuple is created by projecting the dividend tuple on the

quotient attributes, and the new quotient tuple is inserted into the quotient

table. Together with the new tuple, a bit map is created with one bit for each

divisor tuple in the divisor table. This bit map is initialized with zero’s, except

for the bit that corresponds to the divisor number kept earlier. If, however, a

matching quotient candidate tuple already exists, all that needs to be done is

to set one bit in the quotient candidate’s bit map. At the end of this second

step, the quotient table is complete, as shown on the right in Figure 3, and

the divisor table can be discarded.

Finally, the third step determines the quotient of the two inputs, which

consists exactly of those tuples in the quotient table for which the bit map

contains no zero. This set can easily be determined by scanning all buckets in

the quotient table.

Algorithm Discussion

A number of observations can be made on hash division. First, duplicates in

the divisor can be eliminated while building the divisor table. In order to do

so, the first step of the algorithm must be augmented to test for an existing

duplicate in the divisor table’s hash bucket before inserting a new tuple into

the divisor table, which is the standard technique used for hash-based

duplicate removal and aggregate functions.

Second, duplicates in the dividend are ignored automatically. Two identical

dividend items map to the same divisor tuple and therefore the same divisor

number; moreover, they map to the same quotient candidate, and therefore to

exactly the same bit in the same bit map. To appreciate this effect of bit

maps, compare this method of detecting and ignoring duplicates in the large

input, the dividend, with duplicate removal in the indirect strategy using

hash-based duplicate removal. The latter strategy requires building a hash

table that contains all fields of all unique tuples from the entire dividend. In
hash-division, dividend tuples are split into two sections (vertically parti-

tioned into the divisor and the quotient attributes), and the repetition factors

ACM Transactions on Database Systems, Vol 20, No 2, June 1995

202 . G. Graefe and R. L. Cole

in each section are expected to be high. The divisor numbers and the bit maps

relate entries in these hash tables, which is much more memory-efficient

than the large hash table required in hash-based duplicate removal,

Third, it is instructive to compare hash-division against division using

hash-based aggregation with prior semi-join. In both cases, there are two

hash tables. In hash-division, they are the divisor and quotient tables. In

hash-based aggregation with prior semi-join, the first hash table contains the

divisor relation for the semi-join. The second hash table, used in the aggrega-

tion step, contains the aggregation output, i.e., the quotient candidates. The

counter used in the aggregation serves the same function as the bit map

employed in hash-division. Bit maps, however, provide the additional func-

tionality that duplicates in the dividend are ignored. If duplicates are known

not to be a problem, the hash-division algorithm can be modified to employ

counters instead of divisor numbers and bit maps.

Fourth, if the divisor is also free of duplicates and referential integrity

holds between dividend and divisor, the divisor table can be eliminated

entirely and the bit maps associated with quotient candidate tuples can be

replaced by counters. These are precisely the conditions required for division

based on aggregation without prior semi-join and duplicate removal, and the

resulting hash-division algorithm is, not surprisingly, similar to division

using hash-based aggregation.

Fifth, hash-division creates a hash table on its result (the quotient table)

that can be used for subsequent operations. For example, consider the

example queries to find student-id’s of students who have taken a set of

classes. Typically, the stz~dent-id’s themselves are not useful; a subsequent

join is needed to attach useful information such as the students’ names and

majors to these student-id’s, The quotient table available at the end of

hash-division enables an immediate hash-join with a third input, e.g., the

Student relation. A fairly simple and efficient modification of the hash-divi-

sion algorithm discussed so far could permit a third input and effect the

subsequent join. Hash-based aggregation implementations typically do not

permit retaining the hash table built for the aggregate function across the

step that compares the divisor count with the individual counts of quotient

candidates. Thus, hash-based aggregation has a clear disadvantage if the

quotient is to be joined with a third relation. The sort-based algorithms, naive

division and sort-based aggregation, have the useful property of delivering

their output sorted on the quotient attributes, e.g., student-id’s, which per-

mits an immediate merge-join with a third relation such as Student without

sorting the quotient. However, as we will see in the performance compar-

isons, the sort-based division algorithms are not really competitive.

Finally, hash-division depends on sufficient main memory to hold both

hash tables. Recall that the divisor and the quotient are the smaller relations

involved; the big relation is the dividend as it is a superset of the Cartesian

product of divisor and quotient. Even though the quotient table may actually

contain more tuples than the quotient, namely all quotient candidates, we

expect that the memory requirements do not pose a major problem in most

ACM TransactIons on Database Systems, Vol 20, No. 2, June 1995

Fast Algorithms for Unwersal Quanhfication . 203

cases. If, however, the divisor table or the quotient table are larger than the

available main memory, hash table overflow occurs and portions of one or

both tables must be temporarily spooled to secondary storage, Alternatively,

hash-division can take advantage of a multi-processor system. In the next

section, we consider techniques for handling hash table overflow in a single

processor database system. Adaptations of the hash-division and the other

algorithms to multi-processor systems are discussed in Section 5.

4. USING TEMPORARY FILES FOR LARGE INPUTS

In this section we consider the modifications required for each of the algo-

rithms discussed in the last two sections if one of the inputs (dividend or

divisor) or the quotient candidates do not fit into the available memory. For

sort-based algorithms, i.e., naive division and sort-based aggregation and

semi-join, the underlying sort operator must perform a disk-based merge-sort

as described in the literature, e.g., in Graefe [1993], Knuth [1973], and

Salzberg et al, [19901. For hash-based aggregation and semi-join, standard

overflow techniques can be used, e.g., overflow avoidance or fragmentation

[Fushimi et al. 1986; Sacco 1986] (possibly combined with bucket tuning and

dynamic destaging [Kitsuregawa et al. 1989; Nakayama et al. 1988]) or

hybrid hash overflow resolution [DeWitt et al. 1984; DeWitt and Gerber 1985;

Shapiro 1986]. In the following, we outline the alternatives for overflow

management in hash-division.

If the available memory is not sufficient for divisor table and quotient

table, the input data must be partitioned into disjoint subsets called parti-

tions that can be processed in multiple phases. The partitions are processed

one at a time. The first partition is kept in main memory while the other

partitions are spooled to temporary files, one for each partition, in a way

similar to hybrid hash join [Shapiro 1986]. For hash-division, there are two

partitioning strategies, which can be used alone or together.

In the first strategy, called quotient partitioning, the dividend relation is

partitioned on the quotient attributes using a partitioning strategy such as

range-partitioning or hash-partitioning. For the example queries, the set of

student-id’s would be partitioned, e.g., into odd and even values. Each phase

produces a quotient partition, which is the quotient of one dividend partition

and the divisor, The quotient of the entire division is the concatenation

(disjoint union) of all quotients partitions. Translated into the concrete

example, the set of students who have taken all database courses is the set of

students with odd student-id’s who have taken all database courses plus the

set of students with even student-id’s who have taken all database courses.

Since all dividend partitions are dividend with the entire divisor, the divisor

table must be kept in main memory during all phases. While this is no

problem for small divisors, it certainly can be a problem if the divisor is very

large.

The second strategy, called divisor partitioning, partitions both the divisor

and the dividend relations using the same partitioning function applied to the

ACM Transactions on Database Systems, Vol 20, No. 2. June 1995

204 . G. Graefe and R. L Cole

divisor attributes. For example, both the Courses and the Transcript rela-

tions are partitioned into undergraduate and graduate courses. Each phase

performs the division algorithm for a pair of partition files, one from the

dividend and one from the divisor input, producing one quotient partition.

Notice that the quotient partitions are quite different for quotient partition-

ing and divisor partitioning. For divisor partitioning, the quotient partitions

must be gathered in a final collection phase. Only the quotient tuples that

were produced by all single-phase divisions, i.e., the tuples that appear in all

quotient partitions, participate in the final result. Indeed, only students who

have taken all undergraduate database courses and all graduate database

courses have really taken all database courses. This set can easily be deter-

mined since the problem of finding the quotient candidates that appear in all

quotient partitions is exactly the division problem again. Thus, in order to

obtain the final result, each quotient tuple produced by a single-phase

division is tagged with the phase number. The collection phase divides (in the

sense of relational division) the union (concatenation) of all quotient parti-

tions over the set of phase numbers. However, instead of using a divisor table

to determine which bit to set in the bit maps, the phase number can be used.

Thus, the collection phase can skip the first step of hash-division, because the

phase number replace the divisor numbers.

Let us compare these two partitioning strategies with overflow and parti-

tioning strategies used when division is executed by hash-based aggregation

with a preceding hash-based semi-join. Divisor partitioning is similar to

partitioning in the semi-join on the join attribute, course-no in the examples.

Quotient partitioning is similar to partitioning the input to the aggregate

function on the grouping attribute, student-id in our examples. Since the

methods are somewhat similar in their algorithms and similar partitioning

strategies could be used for hash-based aggregation and hash-division, we

expect that the two methods exhibit similar performance for small and large

files. In fact, the similar partitioning strategies also suggest that similar

parallel algorithms can be designed, as we will discuss in the next section.

5. MULTIPROCESSOR IMPLEMENTATIONS

In this section we consider how well the four division algorithms can be

adapted for multiprocessor systems. In our discussion, we will include those

differences between shared-nothing (distributed memory) and shared-every-

thing (shared memory) architectures [Stonebraker 1986] that go beyond the
obvious differences in communication and synchronization overhead.

As for all query processing based on operators and sets, parallelism can be

exploited effectively by using program parallelism (pipelining between opera-

tors) and data parallelism (partitioning of sets into disjunct subsets). The

standard partitioning methods are hash- and range-partitioning; since both

forms of partitioning can be combined freely with sort- and hash-based query

processing algorithms, we assume here that either one is used such that the

partitions are practically equal sizes.

ACM Transactmns on Database Systems, Vol 20, No 2, June 1995

Fast Algonthrns for Universal Quantification . 205

Parallel Naive 13wision

For naive division, program parallelism can only be used between the two

sort operators and the division operator. Both quotient partitioning and

divisor partitioning can be employed as described below for hash-division.

Parallel Aggregation Algorithms

For algorithms based on aggregation, both program and data parallelism can

be applied using standard techniques for parallel query execution, e.g., those

outlined in DeWitt et al. [1990] and Graefe [1993]. While partitioning seems

to be a promising approach, there is a problem if a semi-join is needed for

referential integrity enforcement. Recall that the join attribute in the semi-join

(e.g., course-no) is different from the grouping attribute in the subsequent
aggregation (e.g., student-id). Thus, the large dividend relation (e.g., Tran-

script) may have to be partitioned twice, once for the semi-join and once

for the aggregation. Partitioning the large dividend relation twice can be

expensive.

Parallel aggregation permits a number of optimizations that are of interest

here. First, parallel aggregation does not require that the entire aggregation

input be shipped between machines. It is frequently more effective to perform

local aggregations first (e.g., count within each existing partition) and then

partition and finalize the aggregation (sum local counts). For example, after

the Transcript and Courses relations have been partitioned and semi-joined

on course-no, each student’s number of courses is counted within each

partition, and only then are local counts partitioned on student-id such that

local counts can be summed for each student, The effect is that not the entire

dividend, but only a relation about the size of the aggregation output from

each machine is partitioned (moved between machines) for the aggregation.

Second, if sort-based aggregation is employed to derive local counts, the

dividend partitions shipped across the network will already be sorted. Final-

ization of the aggregation can take advantage of this fact by merging a

partitions and summing the local counts within a particular partition, avoid-

ing another complete sort and aggregation of the partially aggregated input.

Third, a worthwhile idea for hash table overflow resolution in parallel

aggregation and duplicate removal is to send overflow buckets to their final

sites rather than writing them to overflow files. On each receiving site, the

records can be aggregated directly into the existing hash table, possibly

without creating any new hash table entries and without requiring any

additional memory. Considering that certainly all shared-memory machines

but also many modern distributed-memory machines provide faster commu-

nication than disk 1/0, this seems to be a viable alternative that deserves

investigation.

To summarize, division using sort- or hash-based aggregate functions is

most likely to be competitive if semi-join is not required. However, if a

semi-join is required, the dividend relation must be partitioned and shipped
twice across the interconnection network, once for the semi-join and once for

ACM Transactions on Database Systems, Vol. 20, No 2, June 1995

206 . G. Graefe and R. L Cole

the aggregation, thus significantly increasing the cost in most environments,

although the optimization using local aggregation can be used.

Parallel Hash-Division

For hash-division, program parallelism has only limited promise beyond the

separation of the division inputs’ producers and consumer from the actual

division operator, because the entire division is performed within a single

operator. However, both partitioning strategies discussed earlier for hash

table overflow, i.e., quotient partitioning and divisor partitioning, can also be

employed to parallelize hash-division.

For hash-division with quotient partitioning, the divisor table must be

replicated in the memories of all participating processors. After replication,

all local hash-division operators work completely independently of each other,

and each local division result will immediately be part of the global division

result. Clearly, replication is trivial in a shared-memory machine, in particu-

lar since the divisor table can be shared without synchronization among

multiple processes once it is complete.

In divisor partitioning. the resulting partitions are processed in parallel

instead of in phases as discussed for hash table overflow. However, instead of

tagging the quotient tuples with phase numbers, processor network ad-

dresses are attached to the tuples, and the collection site divides the set of all

incoming tuples over the set of processor network addresses. In the case that

the central collection site is a bottleneck, the collection step can be decentral-

ized using quotient partitioning.

6. QUERY EVALUATION PLANS AND COST FORMULAS

Beginning with this section, we analyze the performance of the four strate-

gies for universal quantification and relational division. This comparison is

very detailed in order to support our claim that the power of universal

quantification and relational division does not imply poor performance for

non-trivial database sizes. In fact, if division algorithms are appropriately

implemented and chosen by the query optimizer, universal quantification and

relational division are as fast as the simple and efficient hybrid hash join and

can therefore be included in database query languages without creating a

performance or throughput problem.

In this section, we illustrate query evaluation plans and develop their cost

formulas for the algorithms discussed above, including their variants provid-

ing duplicate removal or referential integrity enforcement. Some readers may

find this detailed analysis tedious—we recommend that those readers skip

over the cost functions, as well as their derivations and explanations, and

focus solely on the query evaluation plans in this section. For each of the four

relational division algorithms, we show up to four query evaluation plans for

the cases indicated earlier in Table I. Tuples flow from the leaves to the roots

of the plans, and the data paths between operators are labeled with the

number of tuples traveling each path.

ACM TransactIons on Database Systems, Vol 20, No 2, June 1995

Fast Algorithms for Unwersal Quant}flcation . 207

Table III. Variables Used in the Analysls

Vartable DescrlptLon

IRI Dividend cardinality

Dividend size in pages

kl Divisor cardinahty

Divisor size in pages

~Ql Quotient cardinality

Quotient size in pages

Quotient candidate cardinality

Quotient csndidate size in pages

Memory size in pages

Size reduction of divisor by duplicate removal

Size reduction of dividend by duplicate removal

Size reduction of dwidend by referential integrity enforcement

Degree of parallelism

We assume dividend relation R (I RI tuples in r pages) and divisor relation

S (IS] tuples in s pages) with quotient relation Q (IQ I tuples in q pages). The

projection of R on the quotient attributes is the quotient candidate relation C

(ICI tuples in c pages), Obviously, IQI < ICI < IRI and q < c s r. Further, we

assume m memory pages, with s + c < m. In other words, we only analyze

cases in which divisor and quotient are smaller than memory. Given that the

dividend relation is the Cartesian product of quotient and divisor, this

restriction will cover most practical cases. All variables are summarized in

Table III, together with those used in the analyses of duplicate removal,

referential integrity enforcement, and parallelism.

Our cost measure combines CPU and 1/0 costs, both measured as times

without overlap of CPU and 1/0 activity. The cost formulas capture all

essential operations such as 1/0 operations and record comparisons. We tried

to roughly match a contemporary workstation when setting the weights of the

cost units. The cost units, their values (in milliseconds), and their description

are given in Table IV.

For each of the four algorithms (naive division, division by sort-based

aggregation and semi-join, division by hash-based aggregation and semi-join,

and hash-division), we first derive cost formulas for the case that neither

duplicate removal nor referential integrity enforcement are required and

then also analyze the cost for these preprocessing steps. However, we first

estimate some common costs,

Costs for Original Inputs and Final Output

The cost of reading the divisor and dividend relations, assembling pages of

the quotient file (copying), and writing the quotient is

(r + s) X SeqIO + (IR + 1S1) X RdRec + q X Moue + IQI

x WrRec + q x SeqIO. (2)

ACM Transactions on Database Systems, Vol 20, No. 2, June 1995.

208 . G Graefe and R L. Cole

Table IV. Cost Units

Unit Tune [rns] Description

RndIO

SeqIO

RdRec

WrRec

RdTmp

WrTmp

Comp

Aggr

Hash

Move

Bit

Map

SMXfer

DMXfer

20
10
0.2
0,2
0.1
01
0.03
0.03
0.03
0.4
0.003
0.0001
0.1
4

random I/ O,onepagefrom or to disk (incl. seek and latency)

sequential 1/0, one page from or to disk (incl. latency)

CPU cost per record when reading a permanent file

CPU cost per record when writing a permanent file

CPU cost per record when reading a temporary file

CPU cost per record when writing a temporary file
comparison of two tuples
initializing aggregation, or aggregation of two tuples

calculation of a hash value from a tuple
memory to memory copy of one page
setting a bit in a bit map

initializing or scanning a bit in a bit map

transfer of one page between processes in shared memory
transfer of one page in distributed memory

We omit this cost in the following cost formulas, because it is common to all

algorithms and does not contribute to their comparison. In the analytic

performance evaluation in the following section, we include this base cost in

the diagrams to provide a reference point for the algorithms’ costs.

Sort Costs

Since several of the algorithms require sorting, we separate the formulas for

the cost of sorting. We distinguish between input relations that tit in memory

and those that do not. For the former we assume quiclcsort with an approxi-

mate cost function of

Sort(S) := 2 x ISI x logz (ISI) X Comp + s X Moue (3)

for relation S since it fits in memory.

For relations larger than memory, we assume a disk-based merge-sort

algorithm with fan-in F, in which runs are written with sequential 1/0 and

read with random 1/0. Its sort cost is the sum of sorting the initial runs

using quicksort one memory load at a time and the product of the number of

merge passes with the cost of each merge, both 1/0 and CPU costs, which is

Sort(R) := 2 x Il?l x log2 (lhl/(r/m)) X Cornp + hg~ (r/m)

X(r x (Moue + SeqIO + RndIO) + II?] (4)

X (WrTmp + RdTmp + logz (F) X Comp)).

Quicksort will be invoked r/m times, each time for lR1/(r,/m) tuples. The

merge depth is approximated by the logarithm without ceiling to reflect the

advantages of optimized merging [Graefe 1993]. The cost of writing a run,

e.g., an initial run, is included in the cost of reading and merging it.

6.1 Naive Division

Figure 4 shows three query evaluation plans for relational division using

naive division. The labels on the data paths between operators indicate the

cardinalities of intermediate results,

ACM Transactions on Database Systems, Vol. 20, No 2, June 1995.

Fast Algorlthrns for Universal Quantification . 209

Naive Division Naive Division Naive Division

%-’ %x’ lsl/y/ ‘=Jq/p

Scan S sort Sort Sort Sort-Unique Son-Unique

IRI ISI IRI 1s1 I IRI

Scan R Scan S Scan R Scan S Scan R
(a) (b) (c)

Fig. 4(a–c). Query plans for naive division.

If referential integrity is known to hold for the inputs and duplicate

removal is not required, sorting the divisor can actually be omitted and

replaced by counting. It is only necessary to sort and count the tuples with

equation quotient attribute in the dividend R. This plan is shown in Figure

4a. The cost of naive division algorithm in this case is

Sort(R) + IRI x (Con-zp + Aggr) + ISI XAggr + ICI x Comp. (5)

This formula reflects the costs of sorting R, dividing R into quotient candi-

dates groups, counting the size of each group, counting the divisor tuples, and

comparing the size of each group to the number of divisor tuples. Note that

this plan is quite similar to the plan using sort-based aggregation for the

same case, which will be discussed shortly.

Referential Integrity Enforcement

Naive division can enforce referential integrity as part of its nested merging

scans, if the two inputs are sorted properly, e.g., as shown in Figure 1. The

plan in Figure 4b shows naive division with two sort operations. The cost of

this plan is

Sort(S) + Sort(R) + IRI x C’omp + IQI x ISI X Comp

+(ICI – IQI) x 1S1/2 x Comp. (6)

The new cost components reflect sorting divisor S in addition to dividend R,

comparing consecutive R tuples to divide the sorted dividend into quotient

candidate groups, and comparing R and S tuples for referential integrity

enforcement. The latter cost is calculated separately for successful and unsuc-

cessful quotient candidates. We presume that half of the divisor file is

scanned for each unsuccessful quotient candidate before the failure is identi-

fied and the remaining dividend tuples of the quotient candidate are skipped

over without pursuing the scan in the divisor. Note that we assumed that

s < m; therefore, the repeated scans of the divisor can be performed without

1/0,

Duplicate Removal

If the inputs contain duplicates, the sort operations must identify and remove

them, which requires comparisons, costing (IRI + IS 1) x Comp. We presume

ACM TransactIons on Database Systems, Vol. 20. No. 2, June 1995.

210 . G. Graefe and R. L Cole

that duplicate removal reduces the divisor size by a factor a and the dividend

by a factor /3, as shown in Figure 4c. Thus, the cost for naive division with

duplicate removal but without referential integrity enforcement is

Sort(S) + Sort(R) + (IN + ISI) X Comp + lR1/~ X (Comp +Aggr) (7)

+ lS1/a X Aggr + ICI X Comp.

The cost for naive division with both duplicate removal and referential

integrity enforcement is

Sort(S) + Sort(R) + (IRI + ISI) X Comp + lR1//3 X Comp
(8)

+ IQI X]S1/a X Comp + (ICI – IQI) X lS\/a/2 X Comp.

6.2 Division by Sort-Based Aggregation

Performing a division by a sort-based aggregate function requires counting

the elements in S, sorting and counting groups in R, and verifying that the

counts for the groups of R equal the count of S. Figure 5a (upper left) shows

the query evaluation plan. Determining the scalar aggregate, i.e., counting

the cardinality of the divisor, and verifying that the correct count was found

for each group in the aggregate function costs IS I x Aggr + ICI X Comp. If we

assume for simplicity that the aggregate function on R is formed in the

output procedure of the sort’s final merge step, the costs of comparing each

tuple of R with its predecessor and the actual aggregation must be added to

the cost of sorting, i.e., IR I x (Comp + Aggr). Thus, the total cost for division

by sort-based aggregation is

Sort(R) + IRI X (Comp +Aggr) + ISI XAggr + ICI X Comp, (9)

Referential Integrity Enforcement

For sort-based referential integrity enforcement, the inputs must be sorted on

the divisor attributes and followed by a semi-join version of merge-join.

Figure 5b (upper right) shows the corresponding query evaluation plan. The

reduction factor of referential integrity enforcement is indicated by S. We

presume that the scalar aggregate can be performed as a side-effect of the

sort or at least can obtain its input from the sort; thus, we do not count the

cost of two divisor scans, only of one. Thus, only the costs of two sort

operations and of a merge-join must be added, which is (1R I + IS 1) X Comp.

We assume that the entire S relation is kept in buffer memory during sort
and join processing and ignore any cost of memory-to-memory copying in the

merge-join since the join is actually a semi-join, which can be implemented

without cop ying. Thus, the cost for sort-based aggregation with referential

integrity enforcement is

Sort(S) + Sort(R) + (IRI + ISI) X Comp + Sort(R/8)
(lo)

+ lR1/8 x (Comp +Aggr) + IS I X Aggr + ICI X Comp.

ACM Transactmns on Database Systems, Vol 20, No. 2, June 1995

Fast Algorithms for Unwersal Quanhficatlon . 211

Verify

Scal~Aggr Sort-AggrFct

1s1 IRI

Scan S Scan R
(a)

Verify

J“” “v
Scala~Aggr AggrFct

Islla I I lR1lP

Sort-Unique Sort-Unique

1s1 IRI

Scan S Scan R

(c)

Verify

v-
ScalarAggr Sort-AggrFct

1s1I I IRIIc$

Scan S Merge-Join

Ww
sort sort

1s1 IRI

Scan S Scan R

(b)

Verify

J’-’”+!
ScalarAggr Sort-AggrFct

Islla lRll@6

Sort-Unique Merge-Join

1s1 IsI@/ plp

Scan S Sort-Unique Sort-Unique

1s1 IRI

Scan S Scan R

(d)

Fig. 5(a-d). Query plans for division by sort-based aggregations

Duplicate Removal

When the dividend and divisor contain duplicate records, duplicate removal

must be performed prior to aggregation in the aggregation-based algorithms.

Figure 5c-d (lower left and right) show the query plans including duplicate

removal. A sort operator can perform either duplicate removal or an aggre-

gate function, but not both. Thus, the figures show a separate aggregate

function, which relies on sorted input and thus can identify groups by simply

comparing tuples immediately following each other in the input stream. The

common subexpression (sorting and duplicate removal from S) is shown twice

but charged only once in the following formulas. The cost of sort-based

aggregation with duplicate removal but without referential integrity enforce-

ment is

Sort(S) + Sort(R) + (ISI + IRI) x C“omp + lR1/~ X (Comp + Aggr) ~11)

+ /S//cz X Aggr + ICI X Comp.

ACM TransactIons on Database Systems, Vol 20, No 2, June 1995.

212 . G. Graefe and R L Cole

The cost of sort-based aggregation with both duplicate removal and refer-

ential integrity enforcement is

SOrt(S) + Sort(R) + (IRI + ISI) x Comp + (lRl\B + lS1/a) x Comp

+ Sort(R/~/6) + lR1//3/8 X (Comp +Aggr) (12)

+ lS1/a X Aggr + ICI X Comp.

6.3 Division by Hash-Based Aggregation

The query plan for hash-based aggregation, shown in Figure 6a (upper left),

is similar to the one for sort-based aggregation. The cost of hash-based

aggregation in memory is IRI x (Hash + hc x Comp + Aggr), where he is

the average number of comparisons required to traverse each hash bucket.

Recall that we assumed that s + q s m, meaning that no hash table overflow

occurs in the aggregate function. The cost of finding the scalar aggregate and

verifying that the same value was found for each group in the aggregate

function is the same as for sort-based aggregation. Thus, the cost for the plan

in Figure 6a is

IR] X (Hash + he x Comp +Aggr) + ISI X Aggr + ICI X Comp. (13)

Referential Integrity Enforcement

For hash-based aggregation, the additional cost of a prior semi-join as shown

in Figure 6b (upper right) is IS I x Hash + IR I x (Hash + he x Comp) for

building a hash table with the tuples from S and probing it with the tuples

from R. Thus, the total cost for division by hash-based aggregation and

hash-based semi-join for referential integrity enforcement is

ISI X Hash + IRI X (Hash + he x Com,p) + lR1/8
(14)

X(Hash + hc X Comp +Aggr) + IS I X Aggr + ICI X Comp.

Duplicate Removal

The next two figures show the previous two query evaluation plans modified

to include duplicate removal. If the implementation of hash-based duplicate

removal were very smart, it would be possible to ensure that the duplicate

removal operator in Figure 6C (lower left) produces its output grouped

suitably for the subsequent aggregate function, making a separate hash table

in the aggregate function obsolete. Similarly, in Figure 6d (lower right), the

duplicate removal operation for the divisor could be integrated into the
hybrid hash join operation. However, we ignore these optimizations in our

cost formulas.

Since the duplicate-free dividend may be larger than memory, i.e., IR1/~ >

m, hash table overflow may occur in the duplicate removal operation. In this

case, recursive and hybrid hashing must be employed. The recursion depth

can be approximated by the logarithm of the duplicate removal output size

divided by the memory size, with the logarithm based equal to the partition-

ing fan-out, which we assume to be equal to the fan-in during merge-sort 1?

[Graefe 1993; Graefe et al. 19941. Thus the cost of hash-based duplicate

ACM Transactions on Database Systems, Vol. 20, No 2, June 1995

Fast Algorithms for Universal Quantification . 213

Verify

/w
Verify ScalarAggr Hash-AggrFct

Y w’ 1s1 lRll~

ScalarAggr Hash-AggrFct Scan S Hybrid Hash Join

1s1 IRI
Y“+!

Scan S Scan R Scan S Scan R
(a) (b)

Verify

y’ <cl

Scala~Aggr Hash-AggrFct

Islla I lRll~

Hash-Unique Hash-Unique

1s11 IRI

Scan S Scan R

(c)

Verify

Y-
ScalarAggr Hash-AggrFct

Is I/a I lRllflc$

Hash-Unique Hybrid Hash Join

1s1I Is@” Alp

Scan S Hash-Unique Hash-Unique

[s1 I IRI

Scan S Scan R

(et)

Fig. 6(a–d). Query plans for division by hash-based aggregations.

removal for the large dividend is—considering the actual duplicate removal

step in the deepest recursion level first and calculating the cost of (sequen-

tially) reading a partition file together with the cost of writing it (using

random writes):

Hashuniqzte(li) := IRI x (Hash + he x Cornp)

+ logF(r/rn) X (IRI X Hash -t- Ill (15)

x (WrTmp + RdTmp) + r X (RndIO + SeqIO)).

Thus, the cost of relational division using hash-based aggregation including

duplicate removal on the inputs but not referential integrity enforcement is

HashUnique(R) + ISI X (Hash + he X Comp)
(16)

+ lR1/Q x (Mm+ + hc x Comp + Aggr) + [S1/a x Aggr + ICI X Comp.

If both duplicate removal and referential integrity enforcement are re-

quired, the cost is

IlczshUnique(R) + ISI X (Hash + he X Comp) + lS1/a X Hash

+ lR1//3 x (Hash + he x Comp)
(17)

+ lR1/p/13 x (Hash + hc X Comp + Aggr)

+ lS\/a X Aggr + ICI X Comp.

ACM Transactions on Database Systems, Vol. 20, No. 2, June 1995.

214 . G Graefe and R, L. Cole

6.4 Hash-Division

When hash-division is used, a prior semi-join for referential integrity enforce-

ment or an explicit duplicate removal step is never necessary. Thus, the

query evaluation plan shown in Figure 7 always applies, although the actual

hash-division algorithm might have the divisor table and the bit maps

enabled or disabled. If it is known that neither duplicate removal nor

referential integrity enforcement is required, the simplest version of the

algorithm can be used. This version mimics the behavior of division by

hash-based aggregation without duplicate removal or referential integrity

enforcement. It uses neither divisor table nor bit maps and just counts divisor

tuples and dividend tuples by groups. The cost of this variant of hash-division

is

ISI xAggr + IRI X (Hash + hc X Comp +Aggr), (18)

which is the sum of the costs of counting the divisor tuples and of inserting

and counting in the quotient table. We use this cost formula although the

counting is done very efficiently with program variables of the hash-division

algorithm, not as a more general interpretation of a query evaluation plan as

in hash-based aggregation, which may invoke a relatively expensive abstract

data type facility, even for tasks as simple as counting.

Referential Integrity Enforcement

If, however, the validity of the referential integrity constraint is not known, a

divisor table must be used. In this case, the cost of hash-division is

IS] xHash + IRI X (Hash + he X Comp) + lR1/8

x (Hash + hc x Comp + Aggr). (19)

The differences to the cost for hash-division without referential integrity

enforcement reflect building and probing the divisor table.

Duplicate Removal

If the inputs contain duplicates, the divisor table must be probed while it is

being built and the quotient table must contain bit vectors instead of coun-

ters, with IS I/a bits per bit vector. If duplicates exist but referential integrity

is known to hold, the divisor table need not be probed with dividend tuples,

and the cost of hash-division is

ISI x (Hash + k X Comp) + IRI X (Hash + hc X Comp + Bit) ~20)

+ 2 X ICI X lS1/a X Map.

The first two terms account for building the divisor table and the quotient

table. The third term reflects initializing and scanning the bit maps.

The cost of the most powerful variant of hash-division algorithm, which
in eludes both duplicate removal and referential integrity enforcement, is

(IS + IRI) X (Hash + he X Comp) + lR1/8 X (Hash + hc X Comp + Bit)

+ 2 x ICI x lS1/a x Map.
(21)

ACM Transactions on Database Systems, Vol 20, No. 2, June 1995

Fast Algorithms for Universal Quantification . 215

Hash-Division

Iy WI Fig. 7. Query plan for hash division.

Scan S Scan R

The first term reflects probing the divisor table, both by the divisor while

building the divisor table and by the dividend. The second term accounts for

probing and building the quotient table, which includes setting bits in the bit

maps, which can be very fast if it is done word by word, not bit by bit.

6.5 Parallel Relational Division

The four algorithms for relational division and all their variants can readily

be parallelized with both pipelining and partitioning, i.e., inter-operator and

intra-operator parallelism, as discussed earlier. Figure 8 shows the most

complex plan for each of the algorithms, with datapaths requiring data

repartitioning and replication marked by “part.” and “repl.” For the direct

algorithms, i.e., naive division and hash-division, we assume quotient parti-

tioning, which requires that the divisor be broadcast to all sites. For the

component algorithms of the indirect strategies, i.e., duplicate removal, semi-

join, and aggregation, we assume partitioning on the join attributes or the

grouping attributes. Moreover, we assume a shared-nothing (distributed-

memory) machine with local disk drives or a shared-everything (shared-mem-

ory) machine with disk drives dedicated to processors in order to reduce

contention and interference. In any case, we assume that the available

bandwidth is sufficient that communication can occur in parallel between any

pairs of sites; thus, communication delay can be estimated by determining

the amount of data sent from each site to other processors. We also assume

that dividend and divisor are partitioned originally across all disks but that

the partitioning cannot be used for processing (e.g., partitioning is round-

robin).

In order to determine the cost of each plan, the cost of the underlying

sequential plan is increased by the cost of repartitioning data. If P is the

degree of parallelism, some data remain with the same processor, namely the

fraction I/P. The cost of exchanging data across process and machine bound-

aries for a relation R is r x X~er, where X~er should reflect shared memory

or distributed memory, i.e., either Xfer = SMXfer or Xfer = DMXfer given in

Table IV. Thus, the costs of naive division and of hash-division using quotient

partitioning are increased by

(r+l? Xs) X (1 – l/P) XXfer, (22)

where B represents the relative cost of broadcasting the divisor versus

sending it to only one recipient (B = 1 for full broadcast support, B = P for

no support). The same cost is added for aggregation-based algorithms that do

not enforce referential integrity explicitly by means of a semi-join. Parallel

ACM Transactions on Database Systems, Vol. 20, No. 2, June 1995.

216 . G. Graefe and R. L. Cole

Naive Division

Isy “=-JQ/p

Sort-Unique Sort-Unique Hash-Division

ISI part. part. IRI
-’~-

Scan S Scan R Scan S Scan R

Verify

Y@ v
ScalarAggr Sort-AggrFct

IsI/a part. I lR1//3’?i

Sort-Unique Merge-Join

1s1 Islp-=’ ‘-’-qIp

Scan S Sort-Unique Sort-Unique

ISI part. part. IRI

Scan S Scan R

Verify

HP’. ‘-+
ScalarAggr Hash-AggrFct

Islla part. I lR1/f18

Hash-Unique Hybrid Hash Join

1s1I By+ “-+/p

Scan S Hash-Unique Hash-Unique

ISI I part. part. I IRI

Scan S Scan R

Fig. 8. Parallel query plans for relational division

aggregation-based algorithms with referential integrity enforcement require

repartitioning the intermediate result, and their costs are increased by

r/~/8 X (1 – I/P) X Xfer. (23)

This can be reduced by splitting the aggregation operations into local and

global components, as discussed before. In this case, the data transfer cost for

aggregation is about

P X c X (1 – I/P) XXfer. (24)

Of course, all costs are incurred at multiple sites such that the response

time actually decreases even if the total resource consumption increases.

Moreover, the cost formulas derived above must be modified to reflect the

smaller dividend size at each site and the local, not the global, memory size.

For divisor partitioning, suitable plans and their cost can easily be found

by modifying the broadcast to repartitioning (remove factor B above) and

adding a final collection operator and its cost (division by the set of node

identifiers) to each plan. We omit illustrations and cost formulas here.

7. ANALYTICAL PERFORMANCE COMPARISONS

In this section we compare the algorithms’ performance by applying the cost

formulas derived above to various input sizes and to situations with and

without explicit referential integrity enforcement and duplicate removal. In

this analysis, we assume that the tuple size for R is 32 B and for S and Q 16

B. We chose fairly small tuples because in most practical cases, the tuples

ACM Transactions on Database Systems, Vol. 20, No 2, June 1995.

Fast Algorithms for Unwersal Quantification . 217

will consist of keys only as in our examples with student-id’s and course-no’s.

The memory used for sorting or hash tables is 1,024 pages of 4 KB each,

which is a realistic size for a single operator of a single query on a machine

used to serve many clients. The fan-in for merging and the fan-out for

partitioning is 16. The average number of comparisons required for scanning

a hash bucket is he = 2. Furthermore, we assume that neither R nor S are

sorted originally.

7.1 Sequential Algorithms

Since there is no typical or average case for division algorithms, the conceptu-

ally simplest case will be our first comparison: the dividend is the cross-

product of the divisor and quotient, i.e., R = Q X S, and neither duplicate

removal nor referential integrity enforcement are required.

Figure 9a shows the performance of the four division algorithms for IS I

varying from 16 to 4,096 with constant \QI = 256. Since R = Q x S for all

data points, IR [varies from 4,096 to 1,048,576. The bottom label in Figure 9a,

as in all subsequent figures, explains the varying parameter in the first line

and other pertinent parameters in the second line. The unmarked curve

indicates the base cost, i.e., the cost of reading the inputs and writing the

output, as previously mentioned when this cost was derived in the previous

section. The base cost is included in each algorithm’s cost.

It is immediately obvious that the two sort-based algorithms perform

almost alike; their only difference is the small cost for quick-sorting the

divisor. The two hash-based algorithms are also alike in their performance.

The reason is that in all algorithms, the treatment of the dividend relation R

dominates the cost, and both sort-based algorithms require sorting R while

both hash-based algorithms require probing a hash table. However, the

hash-based algorithms outperform the sort-based algorithms by quite a large

margin (a factor of 2 to 5) and most of their costs are base costs, i.e., scanning

inputs (dividend and divisor) and writing the final output to disk (the

quotient). Moreover, the sort-based algorithms’ performance deteriorates as

IS I and If? grow while the hash-based algorithms consistently perform well
relative to the base cost. The reasons are that hash-aggregation can proceed

without overflow whereas naive division and sort-aggregation must use run

files, and that hashing permits direct access to the correct hash bucket

whereas sorting requires N log N comparisons.

Referential Integrity Enforcement

Figure 9b shows the analytical cost of division when the referential integrity

constraint is explicitly enforced. The cardinalities of the dividend, divisor,

and quotient are IQ I = 256, IS I = 256, and IRI = IQ I x IS I x 8. In other words,

this comparison expands upon the midpoint of the previous comparison

shown in Figure 9a with the size of the dividend relation increased by a factor

which appears as reduction factor S in the cost functions for query evaluation
plans with explicit referential integrity enforcement. For example, if 8 = 1,

then lR/ = 65,536, and when 8 = 8, then IF? = 524,288.

ACM TransactIons on Database Systems, Vol. 20, No. 2, June 1995

218 . G. Graefe and R. L. Cole

❑ Naive Dwlslon

1500 –
x Sort-Based Aggregation

+ Hash-Based Aggregation

cost 1000 _ o Hash-Division

[see]

500 –

o–
I I I I I

16 64 256 1024 4096

Divisor Cardinality 1S1

lQl=256and R=Sx Q

(a)

2000 -+
❑ Naive Division

1500 –
x Sort-Based Aggregation

+ Hash-Based Aggregation

cost ~ooo” _ o Hash-Division

[see]

500 –

o–
I I I I I
1 2 4 8 16

Size Reduction by Referential Integrity Enforcement 6

IQI = ISI = 256, IRl = ISI X IQI X d

(b)

Fig. 9. (a) Cost of division algorithms. (b) Division with referential integrity enforcement

When the referential integrity constraint is explicitly enforced, as shown in

Figure 9b, the naive-division algorithm increases in a familiar IV log IV

pattern with the size of the dividend before the referential integrity enforce-

ment and size reduction.

The cost of sort-based aggregation significantly varies within Figure 9b

because of two sort operations for the semi-join and the aggregation. For

8 = 1, i.e., if the semi-join does not remove any tuples, the cost of sort-based

aggregation with explicit referential integrity enforcement is almost twice

that of naive division if the base cost is ignored. Thus, if referential integrity

must be enforced, sort-based aggregation is a particularly poor query evalua-

tion plan, although it is the only one available in most current systems. For

larger values of 8, the semi-join removes a large fraction of the dividend

before the second dividend sort, and the second sort becomes relatively

ACM TransactIons on Database Systems, Vol. 20, No. 2, June 1995

Fast Algorithms for Universal Quantification . 219

❑ Nawe l.huslon

1500 –
x Sort-Based Aggregation

+ Hash-Based Aggregation

cost 1000” _ o Hash-Division

[see]

500 –

o–
I I I I I
1 2 4 8 16

Size Reduction by Duplicate Removal a

P = CZ,IQI= 256,Isl = 256 x a, IRI = 65,536 x /3

(c)

8000 – ❑ Naive Division

x Sort-Based Aggregation

6000 – + Hash-Based Aggregation
cost o Hash-Division
[see] 4000 –

2000 –

o–

Size Reduction by Referential Integrity Enforcement 6

cz=~=4, 1Ql=256,1Sl =256X a,lRl=65,536x/?x6

(d)

Fig. 9. (c) Division with duplicate removal. (d) Division with duplicate removal and referential

integrity enforcement.

insignificant compared to the first dividend sort. Since the first dividend sort

has the same input size and the same cost as the sort of the dividend required

for naive division, the costs of the sort-based direct and indirect algorithms

become comparable for large values of 6, although the sort-based algorithms

are still much more expensive than the hash-based division algorithms.

In hash-based aggregation with referential integrity enforcement, the

semi-join reduces the number of dividend tuples by a factor of 6 for a

relatively small cost. In hash-division, the algorithm’s divisor table is en-

abled, which has exactly the same effect as a hash-based semi-join. Thus, for

larger values of 8, the overhead of hash-division relative to the base cost

actually decreases very slowly.
The hash-based algorithms have a significant performance advantage over

their sort-based counterparts: because none of the situations illustrated in

ACM TransactIons on Database Systems, Vol. 20, No. 2, June 1995.

220 . G. Graefe and R. L. Cole

Figure 9b causes hash table overflow, 1/0 to temporary files is avoided. The

reduction of the larger input R can be achieved by filtering it through the

in-memory hash table built on S. This is an example of the superiority of

hash-based join algorithms for different sizes of the two inputs also observed

in earlier research {Bratbergsengen 1984; Graefe et al, 1994].

Duplicate Removal

Figure 9C shows the costs of the four relational division algorithms when the

inputs require duplicate removal, For the duplication factors a and B, we

assumed that a = @ and varied their value from 1 to 16.

Again we see that the sort-based algorithms are more expensive because of

the duplicate removal processing prior to aggregation. In addition, the cost of

hash-based aggregation can now be discerned from that of hash-division. This

is because the cost of duplicate removal prior to aggregation is quite high,

requiring recursive processing since the duplicate-free dividend can no longer

be held by the in-memory hash table. Hash-division continues to be the

fastest algorithm. Duplicates in the inputs only require enabling of the

quotient table bit map processing, at only a small additional cost.

Figure 9d shows the midpoint of Figure 9C (a = P = 4) augmented with

referential integrity enforcement. The reduction factor for the dividend rela-

tion 6 varies from 1 to 16, Naive division outperforms sort-based aggregation

if referential integrity enforcement is required, as had been observed earlier

in Figure 9b. As the referential integrity reduction factor increases and the

input to the second dividend sort in sort-based aggregation becomes quite

small compared to the input to the fh-st dividend sort, the difference between

naive division and sort-based aggregation all but vanishes. With increasing

sizes of the original dividend relation, the cost of hash-based duplicate

removal becomes larger and larger. However, it does not approach the cost of

sort-based aggregation. The performance of hash-division is very steady. Over

the entire range, the cost of hash-division relative to the base cost is constant.

For both duplicate removal and referential integrity reduction factors equal

to 4, hash-division is almost 5 times faster than naive division, a little more

than 5 times faster than sort-based aggregation, and 2+ times faster than

hash-based aggregation.

Preliminary Conclusions

Since we realize that the formulas are not precise, we will also report on

experimental measurements in the next section. Nevertheless, we believe
that these analytical comparisons already permit some conclusions.

First, division by sort-based aggregation does not perform much better

than the naive algorithm. In fact, if a semi-join is necessary to ensure that

only valid dividend tuples are counted, the additional sort cost makes division

by aggregation significantly more expensive.
Second, if division is executed by aggregation, the division can be per-

formed much faster if hash-based algorithms are used for the aggregation

and semi-join, because the two input sizes, dividend and divisor, are very

ACM TransactIons on Database Systems, Vol 20, No. 2, June 1995

Fast Algorithms for Universal Quantification . 221

different. This parallels the observations by Bratbergsengen and others on

sort- and hash-based matching operators (join, intersection, etc.) [Bratberg-

sengen 1984; Ck-aefe et al. 1994; Schneider and DeWitt 1989; Shapiro 1986].

In sort-based division algorithms, the number of merge levels is determined

for each file individually by the file’s size. Therefore, sorting the large

dividend with multiple merge levels dominates the cost for both the aggrega-

tion and the join. In hash-based algorithms, on the other hand, the recursion

depth of overflow avoidance or resolution is equal for both inputs and

determined by the smaller one, in our case the relatively small divisor

relation. Since the inputs of the semi-join, dividend and divisor, differ by a

factor of at least the cardinality of the quotient, using a hash-based semi-join

operator is significantly faster. This conclusion can also be stated in a

different way: if a database system’s only means to evaluate universal

quantification and relational division queries is aggregation with prior dupli-

cate removal and semi-join, the semi-join as well as the aggregation should be

hash-based because in the case of relational division, the semi-join inputs

have very different sizes and therefore give hash-based join algorithms a

significant performance advantage.

Third, the new hash-division algorithm consistently performs as well as or

better than division by hash-based aggregation. However, if a semi-join or

duplicate removal is needed, hash-division significantly outperforms division

by hash-based aggregation as well as both sort-based algorithms.

Finally, hash-based algorithms outperform sort-based ones not only for

existential quantification but also for universal quantification problems and

algorithms. This result is different from the earlier observation cited above

because those papers pertained only to one-to-many relationship operations

such as join, semi-join, intersection, difference, and union, while this paper is

the first to demonstrate this fact for relational division. Most importantly, it

outperforms sort-based techniques consistently in a wide variety of situa-

tions.

Effect of Clustering Indices

Let us briefly consider the effect of clustering B-tree indices, despite our

general focus on algorithms that work on all relations, including intermediate

results. There are two effects that are interesting here. First, clustering

B-tree indices may save sort operations. Second, if an index contains all

attributes relevant for a query, the index may be scanned instead of the base

file, which permits significant 1/0 savings if index entries are shorter than

base file records.

The latter effect is not pertinent here, because we assumed very short

record sizes in our analysis. The former effect, however, is worth analyzing,

which we do in Figure 10. For this comparison, we modified the last compari-

son (Figure 9d) to presume sorted relations suitable for the first processing

step. Thus, the sort-based plans save the initial sort step for each input,

whereas the cost of the hash-based algorithms remains unchanged.
Most strikingly, hash-based aggregation is not competitive with the outer

three algorithms, because it requires temporary files for hash table overflow.

ACM Transactions on Database Systems, Vol. 20, No, 2, June 1995.

222 . G. Graefe and R. L. Cole

cost

[see]

4000

i.J

❑ Naive Division

3000
x Sort-Based Aggregation

+ Hash-Based Aggregation

2000 0 Hash-Division

1000

0
1

I I I I I
1 2 4 8 16

Size Reduction by Referential Integrity Enforcement 6

a=~=4,1Ql =256, 1Sl=256xct, lRl=65,536x/!?x6

Fig. 10 Diwsion with duphcate removal and referential integrity enforcement; no initial sorts

The other three algorithms are fairly close to each other as well as to the base

cost, i.e., the cost of reading the inputs and writing the final output. In other

words, reading the inputs and writing the output are the dominant costs for

these algorithms.

If Figure 10 had finer resolution, the following detailed trends would be

apparent. Naive division is consistently about 15% more expensive than the

base cost. Hash-division is 18–43% slower than naive division, with improv-

ing relative performance for higher reduction factors 8 and increasing divi-

dend sizes IR 1. Sort-based aggregation shows the most interesting behavior,

with costs 20– 112°A higher than the base cost. For small reduction factors 8,

the first sort step between merge-join and aggregation weighs in heavily

because the size of the dividend has not been reduced by the merge-join. For

large 6, i.e., referential integrity enforcement with large size reduction, the

second sort operation becomes almost negligible, and sort-based aggregation
even outperforms hash-division.

Thus, Figure 10 demonstrates that sorting the large dividend is the domi-

nating cost for sort-based relational division algorithms. If sorting can be

avoided by use of clustering B-tree indices, sort-based relational division

algorithms become competitive with hash-division. Non-clustering indices

would not have the same effect, unless they contain all required attributes

and permit index-only retrievals [Graefe 19931. On the other hand, if the
dividend is an intermediate query result of suitable B-tree indices do not

exist, hash-division is the algorithm of choice. Seen in a different way, the

hash tables of hash-division organize the divisor and dividend tuples into

associative structures, just like permanent indices on disk. However, since

they are in memory, they are faster than non-clustering indices on disk but

not quite as fast as clustering indices, which can deliver the input data

immediately in the proper organization (for naive division).

ACM TransactIons on Database Systems, Vol 20, No 2. June 1995

Fast Algorithms for Universal Quantification . 223

400 – ‘
❑ Naive Division

300 –
x Sort-Based Aggregation

+ Hash-Based Aggregation
cost o Hash-Division
[see] 200 –

loo–

o–
1

I I I I I
1 2 4 8 16

Size Reduction by Referential Integrity Enforcement 6

P=16, cr=fl=4, 1Ql=256,1Sl =256 xa, lRl=65,536x/?xd

(a)

❑ Naive Division

x Sort-Based Aggregation – 16

+ Hash-Based Aggregation
–8

o Hash-Division 4 Speedup

–2

–1
I I I I I
1 2 4 8 16

Degree of Parallelism P

a=~=J=4, 1Ql=256,1Sl =256 xa, lRl=65,536x/lx6

(b)

Fig. 11. (a) Parallel division on distributed memory. (b) Speed-up for parallel division alga.

rithms.

7.2 Parallel Algorithms

If division is executed on a parallel machine, inputs and intermediate data

must be partitioned across the processors, which add a new cost to all cost

formulas above. Figure 1 la shows the cost of the algorithms with duplicate

removal and referential integrity enforcement for a distributed-memory

database machine with P = 16 processors and no broadcast assistance (B =

P). Each processor is assumed to be equipped with CPU, disk, and memory

like the single processor in the previous subsection. The indicated relation

sizes pertain to the entire system, i.e., each processor stores and processes

l/P of these sizes, The base cost of Figure 1 la does not include partitioning
costs.

ACM TransactIons on Database Systems, VO1 20, No 2, June 1995.

224 . G. Graefe and R. L. Cole

The curves for the sort-based algorithms, i.e., naive division and sort-based

aggregation and semi-join, are similar to the corresponding curves in Figure

9d. The same is true for hash-division. The curve for hash-based aggregation

is different from that in Figure 9d because the parallel machine has a larger

total memory. Therefore, hash-based duplicate removal is possible without

overflow even for the larger dividend relation, saving significantly on 1/0

costs. In the cases where in-memory hash-based aggregation is feasible, i.e.,

8<2, it outperforms hash-division by a slight margin because counting is

faster than manipulating and scanning bit maps.

The similarity of Figure 9d and Figure 1 la indicates that the algorithms

appear to permit linear speedup. Figure 1 lb illustrates the speedup behavior

of the four parallel division algorithms with 1 to 16 processors in a

distributed-memory architecture. While hash-division comes very close to

linear speedup, the other algorithms exhibit super-linear speedup. The rea-

son is the same as discussed for hash-division in Figure 1 la: If only CPU and

disk bandwidth were added, the speedup should be at most linear. However,

memory is also added as the system grows, permitting not only a higher total

bandwidth but also more effective use of it, because the fraction of data that

fits in memory in hybrid hashing as well as the fan-in for sorting and

partitioning increases. However, as demonstrated in Figure 1 la, hash-divi-

sion is still the most efficient division algorithm. Unfortunately, super-linear

speed-up could not be achieved for any of the algorithms in our real experi-

ments, as we will see in the next section.

8. EXPERIMENTAL PERFORMANCE COMPARISON

To validate the analytical comparisons, we implemented the four division

algorithms in the Volcano query processing system. Volcano provides an

extensible set of algorithms and mechanisms for efficient query processing

[Graefe 1994]. All operators are designed, implemented, debugged, and tuned
on sequential systems but can be executed on parallel systems by combining

them with a special “parallelism” operator, called the exchange operator in

Volcano [Graefe and Davison 1993]. Volcano has been used for a number of

algorithm studies, such as Graefe [1989], Graefe and Thakkar [1992], and

Graefe et al. [1994].

In Volcano, all relational algebra operators are implemented as iterators,

i.e., by means of open, next, and close procedures [Graefe 1994]. For example,

opening a sort operator prepares sorted runs and merges them until only one

merge step is left. The final merge is performed on demand by the next
function. If the entire input fits into the sort buffer, it is kept there until

demanded by the next function. Final house-keeping, e.g., deallocating a
merge heap, is done by the close function. Operators implemented in this

model are the standard in commercial relational systems [Graefe 1993].

A tree-structured query evaluation plan is used to execute queries by

demand-driven dataflow passing record identifiers and addresses in the

buffer pool between operators. All functions on data records, e.g., comparison

ACM TransactIons on Database Systems, Vol 20, No. 2, June 1995

Fast Algorithms for Universal Quantification . 225

and hashing, are compiled prior to execution and passed to the processing

algorithms by means of pointers to the function entry points.

The naive division algorithm was implemented in such a way that it first

consumes the entire sorted divisor relation, building a linked list of divisor

tuples fixed in the buffer pool. It then consumes the sorted dividend relation,
advancing in the linked list of divisor tuples as matching dividend tuples are

produced by the dividend input, producing a quotient tuple each time the end
of the divisor list is reached.

Sort-based aggregation and duplicate removal are implemented within

Volcano’s sort operator. It performs aggregation and duplicate removal as

early as possible, that is, no intermediate run contains duplicate sort keys. A

merge-join consists of a merging scan of both inputs, in which tuples from the

inner relation with equal key values are kept in a linked list of tuples pinned

in the buffer pool. For semi-joins in which the outer relation produces the

result, no linked lists are used. For all algorithms involving sort, the run-

length was 4,099 records and the fan-in was 20.

The hash-based algorithms use bucket chaining for conflict resolution in

hash tables, The hash algorithms use Volcano’s memory manager to allocate

space for hash tables, bit maps, and chain elements. Chain elements are

auxiliary data structures that contain a pointer to the next tuple in the

bucket, a tuple’s record identifier and main memory address in the buffer

pool, and the divisor count or the pointer to the bit map respectively. For all

hash-based algorithms, a hash table size (number of buckets) of 4,099 was

chosen, providing parity with the sort-based algorithms.

Record sizes of the test data were 32 bytes for divisor and dividend and 8

bytes for the quotient. Dividend and divisor attributes were pseudo-randomly

generated and uniformly distributed integers such that all attributes were

unique and no data skew was present.

8.1 Sequential Algorithms

The experiments were run on a Sun SparcStation running SunOS with two

CDC Wren VI disk drives. One disk was used for normal UNIX file systems

for system files, source code, executable, etc., while the other was accessed

directly by Volcano as a raw device. Of the system’s 24 MB of main memory, 4

MB was allocated for use by Volcano’s buffer manager, in order to guarantee

that the experiments would not be affected by virtual-memory thrashing. The

unit of 1/0, between buffer and disk, was chosen to be 4 KB, which was also

the page-size.

Simplest Case

Figure 12a-b shows the measured performance of the four algorithms for

quotient cardinalities IQI of 16 and 1,024. Each figure illustrates division

performance for a fixed number of quotient records. The divisor cardinality

IS’I varies from 16 to 4,096 or from 16 to 1,024. In all cases, the dividend is the

Cartesian product of the divisor and the quotient, i.e., R = Q x S. This

ACM Transactions on Database Systems, Vol. 20, No. 2, June 1995

226 . G. Graefe and R L. Cole

50 –

40 – ❑ Naive Division

Elapsed 30_ x Sort-Based Aggregation

Time + Hash-Based Aggregation

[see] 20 – o Hash-Division

lo–

o–

16 64 256 1024 4096

Divisor Cardinality ISI

IQI=16, R=SXQ

(a)

1250 – ❑ Naive Division

1000 –
x Sort-Based Aggregation

Elapsed + Hash-Based Aggregation

Time 750- 0 Hash-Division

[see] 500 –

250 –

o–

16 64 256 1024

Divisor Cardinality IN

IQI=1,024, R=SXQ

(b)

Fig. 12. (a) Measured sequential performance, very small quotient. (b) Large quotient,

implies that neither duplicate removal nor referential integrity enforcement

are required, and the simplest form of each algorithm can be applied.

These experimental results (referential integrity holds and no duplicates)

substantiate the observations made in the analytical comparisons. In particu-

lar, the ranking of the algorithms here is the same one as in the analytical

comparison. The sort-based algorithms perform significantly less well than

the hash-based algorithms, and the direct implementation of division slightly

outperforms the general-purpose hash-based aggregation algorithm. The one

“surprise” is that sort-based aggregation appeared equal to naive division in

the analysis for this case (R = Q X S) but was significantly faster than naive

division in the experiments illustrated in Figure 12 (although not as fast as

the hash-based algorithms). This can be attributed to the fact that our

analytical model did not reflect early aggregation of the individual sort runs,

ACM TransactIons on Database Systems, Vol 20, No 2, June 1995

Fast Algorithms for Universal Quantlficatlon . 227

Elapsed

Time

Relative

To

Hash-Div.

1;&
4 + Hash-Based Aggregation

J

16 64 256 1024

Divisor Cardinality ISI

IQI=1,024, R=SXQ

Fig. 13. Performance relative to hash division, large quotient,

and therefore the cost of sort-based aggregation is overestimated in the cost

formulas.

The difference in performance for small relation sizes are small, but the

difference grows fast as the relations grow. Figure 13 shows the same data as

Figure 12b with all elapsed times divided by the elapsed time of hash-division

for the same input sizes. The difference between the slowest and the fastest

algorithms shown in Figure 12b and Figure 13 ranges from a factor of 5 to a

factor of 10. Differences of this magnitude occur for all input sizes in Figure

12a-b. For very small relation sizes, e.g., Ilil = 1,024, ISI = 64, and IQI = 16 in

Figure 12a, the performance differed by a factor of 3 between the slowest and

fastest division algorithms; 0.53 versus 0.17 seconds. For larger relations, e.g.,

Il?l = 4,194,304, ISI = 4,096, and IQI = 1,024 in Figure 12b, the performance
differed by a factor of almost 10: 1,380 versus 140.2 seconds. Naive division

became relatively worse because it requires that the larger input relation, the

dividend, be sorted; however, the sort cannot take advantage of early aggre-

gation like sort-based aggregation [Bitten and DeWitt 1983]. The implemen-

tation of division may not be crucially important for small dividend and

divisor relations, but if the relations are large, it is imperative to choose the

division algorithm carefully. The same is true if the dividend or the divisor

are results of other database operations such as selections and joins and the

possible error in the selective estimate makes it impossible to predict divisor
and dividend sizes accurately.

Referential Integrity Enforcement

Figure 14, shows the measured performance of the four algorithms when the

referential integrity constraint between dividend and divisor must be explic-

itly enforced during query execution. In Figure 14, the dividend cardinality

IR] = 65,536 and the quotient cardinality IQ] = 256 are fixed for all data
points while the divisor cardinality IS I = 256/8 varies. 8 is the factor by

which the dividend size decreases in the referential integrity enforcement

ACM Transactions on Database Systems. Vol 20, No 2, June 1995

228 . G Graefe and R. L Cole

504
❑ K n ~

40 –

Elapsed ~. ❑ Naive Division x

Time x Sort-Based Aggregation

[see] ~._ + Hash-Based Aggregation

o Hash-Division

lo–
6

1 I I I I
1 1.6 2 4 8

Size Reduction by Referential Integrity Enforcement 6

1S1= 256/6, IQI = 256, IRI = 65,536

Fig. 14. Measured sequential performance with referential integrity enforcement.

step and varies from 1 to 8. The elapsed times indicated to the left of 6 = 1

are the performance of the division algorithms without explicit referential

integrity enforcement. In other words, the rise in elapsed times from the

leftmost measurements to 8 = 1 represents the cost of a redundant referen-

tial integrity enforcement step in cases where referential integrity actually

already held for the inputs.

All four algorithms except naive division show significant costs for referen-

tial integrity enforcement. For large values of 8, the performance improves,

because fewer dividend tuples participate in the actual division. The sort-

based aggregation algorithm is most strongly affected, from 20.66 (no referen-

tial integrity enforcement) to 48.18 (6 = 1) to 32.77 (8 = 8) seconds, due to

the additional semi-join and its sort required to remove the non-matching

dividend records. The hash-based aggregation algorithm also requires this

additional semi-join, but the impact on its performance is less because it can

proceed without hash table overflow and without 1/0. Its elapsed times

range from 9.56 to 16.59 to 8.67 seconds. The hash-division algorithm must

use the divisor table, but incurs relatively little performance degradation,

from 7.95 to 10.83 to 7.09 seconds.

Note that the experimental results parallel the analytical results, except

for sort-based aggregation, which fared worse in the analytical comparison

than seems justified from the experimental results. Again, this is because we

did not include sort run aggregation into the analytical model, which signifi-

cantly speeds up sort-based aggregation. This also explains why the elapsed

times of sort-based aggregation more than double from the leftmost measure-

ments to 8 = 1 when a second dividend sort without early aggregation is

added for referential integrity enforcement using a semi-join version of

merge-join.

Duplicate Removal

Figure 15 shows the run-time performance of the algorithms when duplicate

records are present in the dividend and divisor. In Figure 15, the quotient

ACM Transactmns on Database Systems, Vol 20, No 2, June 1995,

Fast Algorithms for Universal Quantification . 229

Elapsed

Time

[see]

500 –
❑ Naive Division

400 – x Sort-Based Aggregation

300 – + Hash-Based Aggregation

o Hash-Division
200 –

loo–
Q

“
o-l u

,
I I I I
1 2 4 8

Size Reduction by Duplicate Removal a

D = a, IQI = 256, ISI = 256 X a, IRI = 65,536 X /3

Fig. 15. Sequential performance comparison with duplicates.

cardinality IQI = 256 is constant while the divisor cardinality /S I = 256 X a

and dividend cardinality IR I = 65,536 x @ vary with replication factors a

and ~ ranging from 1 to 8. In all experiments, a = ~. For example, if a = 1,

Il? = 65,536 and ISI = 256, and if a = 8, IRI = 524,288 and ISI = 2.048.

The performance difference between the worst and best algorithms is again

dramatic. For 8 = 8, the difference is a factor 6,500.98 seconds versus 76.20

seconds. Here the most important result is the difference between hash-based

aggregation and hash-division. In the measurements for division without

duplicate removal, the difference between these two algorithms was small,

whereas for 8 = 8, it is more than a factor of 4,326.63 seconds versus 76.20

seconds,

Differences in the relative performance of the algorithms between the

analytical and the experimental results are due to the omission of early

aggregation in the analysis and the fact that the buffer size and management

is different than assumed in the analytical comparison. In several cases in

the experiment, the entire dividend relation fits into the buffer, so that no

1/0 costs occur due to sorting. Furthermore, only a small percentage of the

entire buffer is used as sort space, so that temporary file pages remain in the

buffer pool from run creation to merging and deletion. Only when a large

dividend relation has to be sorted twice, i.e., in the case of sort-based

aggregation with preceding semi-join, is this effect not observed, and the

preceding semi-join and additional sort almost double the cost of sort-based

aggregation, e.g., for IRI = 65,536, IS I = 256, and IQ I = 256, the run-time is

20,48 versus 39.63 seconds.

It is important to realize that if a universal quantification is expressed in

terms of an aggregate function with preceding semi-join and the query

optimizer does not rewrite the query to use a direct division algorithm, the

query may be evaluated using an inferior strategy. This is true for both

sort-based query evaluation systems such as System R, Ingres, and most

commercial database systems (sort-based aggregation versus naive division)

ACM TransactIons on Database Systems, Vol. 20, No, 2, June 1995.

230 0 G. Graefe and R. L, Cole

and for hash-based systems such as Gamma (hash-based aggregation versus

hash-division). Since it is much easier to implement a query optimizer that

recognizes a division operation and rewrites it into an aggregation expression

than vice versa, universal quantification should be included as a language

construct in query languages, for example, as the “contains” clause between

table expressions originally included in SQL [Astrahan et al. 1976].

In summary, hash-division is always faster than any of the other algo-

rithms presented here. Even if we compare the most complex version of

hash-division, i.e., the version with automatic duplicate removal and referen-

tial integrity enforcement, against hash-based aggregation without duplicate

removal or referential integrity enforcement, hash-division is only slightly

slower than hash-based aggregation. However, when non-matching or dupli-

cate records must be removed from the inputs, hash-division is significantly

faster than the next best algorithm, hash-based aggregation.

8.2 Parallel Algorithms

Considering that parallel processing has been demonstrated to permit order-

of-magnitude speed-ups in database query processing, any new algorithm or

optimization technique should also be evaluated in parallel settings. In

addition to the comparisons of our four algorithms on a sequential machine,

we also measured speed-up and scale-up on a shared-memory parallel ma-

chine. Speed-up compares elapsed times for a constant problem size, whereas

scale-up compares elapsed times for a constant ratio of data volume to

processing resources. Linear speed-up is achieved if N times more processing

resources reduce the elapsed time to l/Nt}’ of the time. Linear scale-up is

achieved if the elapsed time is constant and independent of the input size,

provided the ratio of data volume to processing power is constant. In the

following diagrams, both linear speed-up and linear scale-up are indicated as

100% parallel efficiency.

The experimental environment was a Sequent Symmetry with twenty

80386 processors running at 16 MHz (about 3 MIPS each) and twenty disk

drives connected to four dual-channel controllers. Of these, we used up to

eight processors and eight disks, because we could not obtain more disks for

our experiments. In each experiment, we use the same number of disks as

processors. The data are round-robin partitioned at the start of each experi-

ment; thus, operations such as aggregation, join, and division require that

the first query execution step be repartitioning.

Figures 16a-b show run-times and speed-ups of the four algorithms using
two different partitioning schemes. (The mapping of tags on the curves to

algorithms is the same as in the previous figures; we omitted it here to keep

the figure readable.) While none of the experiments show linear speed-up, all

algorithms become faster through parallelism. In other words, the basis for

intra-operator parallelism, namely the division of sets (relations) into disjoint

subsets, applies not only to the known algorithms for sorting, merge-join,

hash-aggregation, and hash join but also to the new universal quantification

algorithm, hash-division. This observation holds not only in theory, as re-

flected in our analytical cost comparisons, but also in practice.

ACM Transactions on Database Systems, Vol 20, No 2, June 1995

Fast Algorithms for Universal Quantification . 231

Elapsed

Time

[see]

(solid

lines)

Elapsed

Time

[see]

(solid

lines)

100

50

0

====– --0_____
‘8+..==::: -++-.--. –– ----a

I ,

I I I I

1 2 4 8

Degree of Parallelism P

ISI=IQI=256, R=SXQ

(a)

1

0.8

0.6

0.4

0.2

0

i&~ :
.-,---.===_ 1

‘.. -#=...-_
‘.

100
--=== =#... --. 0.8‘.-.

‘% ----- -w---- = +.. -.
-. :--- - e

0.6
.- -.

50
+ 0.4

0.2

o– –0

Parallel

Efficiency

(dashed

lines)

Parallel

Efficiency

(dashed

lines)

1 2 4 8

Degree of Parallelism P

ISI=IQI=256, R=SXQ

(b)

Fig. 16. (a) Speed-up with divisor partitioning. (b) Speed-up with quotient partitioning

In fact, it would not have been realistic to expect linear speed-up with these

relatively small data volumes. First, in this experiment using a shared-mem-

ory machine, only processors and disks are added while memory remains

constant. Thus, the effect that permitted super-linear speed-up in the analyti-

cal comparison is missing. Second, since the Volcano implementation of

operators and buffers has been tuned very carefully and is quite efficient

[Graefe and Thakkar 1992], the CPU effort for manipulating records is very

low and a large fraction of all CPU effort is due to pre-process overhead and

protocols for data exchange. For example, for P = 8, a scan process for the

divisor scans as few as 32 tuples. Using a pool of “primed” Volcano processes

helps, but process allocation is still not free. In addition, each process opens

and closes its own partition file. With respect to data exchange note that, in
Volcano’s shared-memory implementation, each data packet going from one

process to another requires a synchronization, i.e., a semaphore system call,

ACM TransactIons on Database Systems, Vol 20, No 2. June 1995

232 . G. Graefe and R. L. Cole

Elapsed

Time

[see]

(solid

lines)

Elapsed

Time

[see]

(solid

lines)

150

100

50

0

Degree of Parallelism P

ISI=PX256, 1QI=256, R=SXQ

(a)

Parallel

Efficiency

(dashed

lines)

Parallel

Efficiency

(dashed

lines)

1 2 4 8

Degree of Parallelism P

ISI=PX256,1QI =256, R=SXQ

(b)

Fig. 17. (a) Scale-up with divisor partitioning. (b) Scale-up with quotient partitioning.

in each process. Since only l\P of all data stay on the same processor in any

data exchange step, the fraction of data that must go through the relatively

slow interprocess communication system calls increases with increasing de-

gree of parallelism P. These observations are supported by the fact that the
faster an algorithm, the poorer its parallel efficiency.

Similar observations apply to the scale-up experiments shown in Figures

17a-b. Figures 17a-b show run-times and scale-ups of the four algorithms

with constant ratios of input size to processing power for two partitioning

strategies. All algorithms suffer slight increases in processing time for larger

data volumes and degrees of parallelism. None of them exhibits truly linear

scale-up in our experiments. Nonetheless, the speed-ups and scale-ups ob-

tained are sufficient to support parallel processing for large universal quan-

tification and relational division problems.

ACM Transactions on Database Systems, Vol. 20, No. 2, June 1995.

Fast Algorithms for Universal Quantification 233

-1

Elapsed ~: ~
Time 15 x Sort and Merge-Join

[see] + Hybrid Hash Join

lo– o Hash-Division

5–
A A 6

I I I I I I I
1248 64 128 256

Size Reduction by Referential Integrity Enforcement 6

ISI = 256 /6, IQI = 256, IRI = 65,536

Fig. 18. Existential versus universal quantification,

8.3 Compariscm of Existential and Universal Quantification

Existential quantification is well-supported in most query processing systems

by semi-join algorithms such as merge-join and hybrid hash join. Figure 18

shows the measured performance of existential and universal quantification,

i.e., hash-based semi-join and hash-division, over the same inputs as those in

Figure 14, i.e., Il? = 65,536 and IRI = 256 are fixed while ISI = 256/8 varies.

8 represents the dividend’s “reduction factor” due to referential integrity

enforcement, that is, there are increasing numbers of non-matching records

in the dividend. When 8 = 1, the semi-join outputs all 65,536 records, whereas

the size of the quotient produced by hash-division is only IQI = 256. However,

when 8 = 256, the output of the semi-join and IQI are both equal to 256

records, and the algorithms for existential and universal quantification have

the same costs for output record processing. We can see that the run-times for

hash-based semi-join and hash-division are nearly the same regardless of the

number of output records, In fact, the difference between hash-division and

hash-join is much smaller than the difference between merge-join and hash-

join. This is another strong argument for directly supporting universal quan-

tification in today’s database query languages—performance of such opera-

tions need no longer be an issue because the performance of universal

quantification and relational division can be equivalent to that of existential

quantification and relational semi-join.

9. SUMMARY AND CONCLUSIONS

We have described and compared four algorithms for relational division,

namely naive division, sort- and hash-based aggregation (counting), and a

recently proposed algorithm called hash-division. Analytical and experimen-

tal performance comparisons demonstrate the competitiveness of hash-divi-

sion. Naive division is slow because it requires sorted inputs; it is competitive

only if neither input incurs costs for sorting. Division using sort-based

ACM TransactIons on Database Systems, Vol 20, No. 2. June 1995

234 . G. Graefe and R. L Cole

aggregate functions is almost as expensive as naive division; if a semi-join

and an additional sort are required to ensure that only proper dividend tuples

are counted, sort-based aggregation can be more expensive than naive divi-

sion. Division using hash-based aggregate functions is exiidly as fast as

hash-division when neither a preceding semi-join nor a duplicate removal

step are required. If either one is required because referential integrity or

uniqueness must be enforced, hash-division outperforms all other algorithms

because it automatically enforces referential integrity and ignores duplicates.

However, as in our second example (students who have taken all database

courses), referential integrity is unlikely to hold if the divisor is the result of

a prior selection or other restrictive preprocessing step. On the other hand, if

referential integrity holds and both dividend and divisor are duplicate-free,

the basic hash-division algorithm can be simplified by omitting the divisor

table and substituting counters for the bit maps associated with quotient

candidates, thus making it similar to hash-based aggregation in both algo-

rithm and performance.

Like the other algorithms consider here, hash-division is easy to paral-

lelize. Its speed-up and scale-up behavior is similar to that of hash-based

aggregation and join, while its absolute run-times are consistently lower than

those of universal quantification using hash-based aggregation. Moreover,

since hash-division does not require referential integrity to hold, it never

requires partitioning the dividend input twice, as is necessary in indirect

division algorithms based on aggregation, i.e., for the semi-join and the

subsequent aggregate function. Therefore, hash-division is particularly valu-

able in parallel systems, where it outperforms all other algorithms, Our

primary conclusion from this study is that universal quantification and

relational division can be performed very efficiently in sequential and parallel

database systems by using hash-division.

An additional result of our comparisons is that direct algorithms tend to

outperform indirect strategies based on aggregate functions, both in sort-

based and in hash-based query evaluation systems. In direct algorithms, the

larger input, the dividend, has to be partitioned, sorted, or hashed only once,

not twice as in indirect strategies based on aggregation. Thus, division

problems should be evaluated by direct division algorithms. However, it is

much easier for a query optimizer to detect a “for-all” or “contains” expres-

sion and to rewrite it into a query evaluation plan using aggregation than it

is to determine that a complex aggregation expression or a pair of nested

“NOT EXISTS” clauses are actually “work-arounds” for a universal quantifi-
cation problem. Thus, query languages should include “for-all” quantifiers

and “contains” predicts, e.g., as the “contains” clause between table expres-

sions originally included in SQL [Astrahan et al. 1976]. In other words, it was

a mistake to remove that clause from the original language design, and it

should be restored in future versions of SQL and in other database query

languages.

Finally, hash-division is fast not only when compared to other division

algorithms but also when compared to existential quantification algorithms,

i.e., semi-joins. We have shown experimentally that hash-division is as fast as

ACM TransactIons on Database Systems, Vol 20, No 2, June 1995

Fast Algorithms for Universal Quantification . 235

hash-based semi-join for the same two inputs, and performs much better than

sort-based semi-join. Thus, the recently proposed algorithm, hash-division,

permits database implementors and users to consider universal quantifica-

tion and relational division with a justified expectation of excellent perfor-

mance<

ACKNOWLEDGMENTS

Dale Favier, David Maier, Barb Peters, and the anonymous reviewers made

many excellent suggestions for the presentation of this paper.

REFERENCES

ASTRAHAN, M. M., BLASGEN, M. W., CHAMBERLAIN, D. D., ESWARAN, K. P., GRAY, J. N., GRIFFITHS, P.

P., KING, W. F., LORIE, R. A., MCJONES, P. R., MEHL, J. W., PUTZOLCT, G. R., TRAIGER, I. L.,

WADE, B. W., AND WATSON, V. 1976. System R: A relational approach to database manage-

ment. ACM Trans. Database Syst. 1, 2 (June), 97. Reprinted in Stonebraker, M.. 1988

Readings in Database Systems, Morgan Kaufmann, San Mateo, Calif,

BITTON, D., AND DEWITT, D. J. 1983. Duplicate record elimination in large data files. ACM

Trans. Database Syst. 8, 2 (June), 255.

BRATBERGSENGEN, K. 1984. Hashing methods and relational algebra operations. Proc. Znt ‘1.

Conf. on Very Large Data Bases (Singapore, August), VLDB Endowment, 323.

CARLIS, J. V. 1986. HAS: A relational algebra operator, or divide is not enough to conquer.

Proc. IEEE Znt ‘1. Con f, on Data Eng. (Los Angeles, Calif., February), IEEE, New York. 254

CHENG, J., LOOSELY, C., SHIBAMIYA, A., AND WORTHINGTON, P. 1985. IBM database 2 perfor-

mance: design, implementation, and tuning. IBM Syst. J. 23, 2.

CODD, E. F. 1972. Relational Completeness of Database Sublanguages. Prentice-Hall, New

York.

DATE, C. J., AND DARWEN, H. 1993, A Guide to The SQL Standard, 3rd cd., Addison-Wesley,

Reading, Mass.

DEWITT, D. J., KATZ, R., OLKRN, F., SHAPIRO, L., STONEBRARER, M., AND WOOD, D. 1984.

Implementation techniques for main memory database systems. Proc, ACM SZGMOD Corzf.

(Boston, Mass., June), 1.

DEWITT, D. J., AND GERBER, R. H. 1985. Multiprocessor hash-based join algorithms. Proc.

Int’1. Conf. on Very Large Data Bases (Stockholm, Sweden, August) VLDB Endowment, 151.

DEWITT, D. J., GERBER, R. H., GRAEFE, G., HEYTENS, M. L., KUMAR, K. B., AND MURALIRRISHNA, M.

1986. GAMMA-A high performance dataflow database machine. Proc. Int’1 Conf. on Very

Large Data Bases (Kyoto, Japan, August), 228. Reprinted in Stonebraker, M., 1988. Readings
in Database Systems, Morgan Kaufmann, San Mateo, Calif.

DEWITT, D. J., GHANDEHARIZADEH, S., SCHNEIDER, D., BRICKSR, A., HSIAO, H. I., AND RASMUSSEN,

R. 1990. The GAMMA database machme project. IEEE Trans. Knowledge Data Eng. 2, 1
(March), 44.

EPSTEIN, R. 1979. Techniques for processing of aggregates in relational database systems.

Univ. of California at Berkeley, UCB/ERL Memorandum M79/8, (February).

FUSHIMI, S., KITSUREGAWA, M., AND TANARA, H. 1986. An overview of the system software of a

parallel relational database machine GRACE. Proc. Int’1 Conf. on Very Large Data Bases

(Kyoto, Japan, August), VLDB Endowment, 209.
GRAEFE, G. 1989. Relational division: Four algorithms and their performance. Proc. IEEE

Znt ‘t. Conf. on Data Eng. (Los Angeles, Calif., February), IEEE, New York, 94.

GIWEFE G., AND THAKKAR, S. S. 1992. Tuning a parallel database algorithm on a shared-

memory multiprocessor. Softw.-Pract. Exper. 22, 7 (July), 495.

GRAEFE, G. 1993. Query evaluation techniques for large databases. ACM Comput. Surl,. 25, 2

(June), 73-170.

ACM Transactions on Database Systems, Vol 20, No. 2, June 1995

236 . G, Graefe and R. L, Cole

GRAEFE, G., AND DAVISON, D. L. 1993. Encapsulation of parallelism and architecture-indepen-

dence m extensible database query processing IEEE Trans. Softw Eng 19, 8 (August), 749.

GRAEFE, G 1994. Volcano: An extensible and parallel dataflow query processing system.

IEEE Trans. Knowl. Data Eng. 6, 1 (February), 120.

GRAEFE, G., LINVILLE, A., AND SHAPIRO, L. D. 1994. Sort versus hash revisited. IEEE Trans

Knowl. Data Eng. 6, 6 (December), 934,

KITSUREGAWA, M., TANAKA, H , AND MOTOOKA, T. 1983. Application of hash to data base

machine and Its architecture. New Gene~ation Comput. 1, 163.

KITSUREG~WA, M., NARAYAMA, M., AND TARAGI, M. 1989. The effect of bucket size tuning in the

dynamic hybrid GRACE hash join method. Proc. Znt ‘1. Conf. on Very Large Data Bases

(Amsterdam, The Netherlands, August), VLDB Endowment, 257

KNUTH, D. 1973. The Art of Computer Programming, Vol. III: Sorting and Searching. Addi-

son-Wesley, Reading, Mass.

MAIER, D 1983, Tlle Theory of Relational Databases. Computer Science Press, Rockville, Md.

NAKAYAMA, M., KITSURECAWA, M., AND TARAGI, M. 1983. Hash-partitioned join method using

dynamic destaging strategy. Proc. Int ‘1, Conf. on Very Large Data Bases (Los Angeles, Calif.,

August), VLDB Endowment, 468.

O’NEIL, P. E. 1994 ~ntroductzon to Relational Databases. Morgan Kaufmann, San Mateo,

Cahf,

SACCO, G. M. 1986. Fragmentation: A techmque for efficient query processing. ACM Trans.

Database Syst 11, 2 (June), 113

SALZBERG, B., TSURERMAN, A., GRAY, J , STEWART, M., UREN, S., AND VAUGHAN, B. 1990. Fast-

Sort: A distributed single-input single-output external sort. Proc. ACM SIGMOD Conference

(Atlantic City, N. J., May), ACM, New York, 94.

SCHN~lDER D., AND DEWITT, D. 1989. A performance evaluation of four parallel join algorithms

in a shared-nothing multiprocessor environment. Proc. ACM SIGMOD Con ference (Portland

Ore., May-June), ACM, New York, 110.

SHAPIRO, L. D. 1986 Join processing in database systems with large main memories. ACM

Trans. Database Syst. 11, 3 (September), 239.

SMITH, J. M., AND CHANG, P. Y. T. 1975. Optimizing the performance of a relational algebra

database interface. Commun. ACM 18, 10 (October), 568.

STONEBRAICZ~, M.. 1986. The case for shared-nothing. IEEE Data Eng. Bull, 9, 1 (March).

WHANG, K. Y., MALHOTRA, A., SOCIWT, G., AND BURNS, L. 1990. Supporting universal quantifi-

cation in a two-dimensional database query language, Proc, IEEE Int ‘1. Conf. on Data Eng.

(LOS Angeles, Calif., February), IEEE, New York, 68.

ZELLER, H. AND GRAY, J. 1990. An adaptive hash join algorithm for multiuser environments.

Proc. Int ‘1, Conf, on Very Large Data Bases. (Brisbane, Australia, August) VLDB Endowment,

186

Received April 1994; revised January 1995; accepted March 1995

ACM TransactIons on Database Systems, Vol 20, No 2, June 1995

