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The problem of stepsize selection in the numerical solution of ordinary differential equations can

be viewed as an automatic control problem. We will demonstrate how control theory can be used

to analyze and improve the standard stepsize control algorithm.

Previously, Gustafsson et al. [5] suggested a PI controller to overcome the problem of

oscillating stepsize sequences that typically appear when explicit Runge-Kutta methods en-

counter stiffness. Its properties were investigated experimentally. Here, the superior properties

of the PI controller will be analyzed using a model for the relation between stepsize and the local

truncation error in the integration method. When stability limits the stepsize, the standard

asymptotic model fails to correctly describe this relation. Instead, a dynamic model that takes

this behavior into account is derived for explicit Runge-Kutta methods. The model is verified

using numerical tests and system identification.

The derived model helps analyzing standard stepsize control. The analysis gives insight and

leads to a good understanding of the properties of the control system. The acquired understand-

ing is used to further improve the PI controller as well as tuning its parameters,

Categories and Subject Descriptors: G. 1.7 [Numerical Analysis]: Ordinary Differential Equa-

tions–initial value problems, single step methods; G.4 [Mathematics of Computing]: Mathe-

matical Software— algorithm analysis, efficiency, reliability and robustness

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Control theory, numerical integration, Runge<Kutta meth-

ods, stability, stepsize control, stiff systems

1. INTRODUCTION

A standard algorithm for stepsize control is [4, 7]

()tol
I/k

hm=~ — hm.l
r~

(1)
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Fig. 1. A signal drawn from a control system simulation. The oscillatory component, in the

signal to the left, is caused by an irregular step size sequence. The correct signal, to the right, is

obtained by improvmg the stepsize control algorithm

where h is the stepsize, r the estimated error, tol the user-specified toler-

ance, -y a safety factor reducing the risk of a rejected step and k related to the

order of the integration method. This algorithm normally performs quite

well, but there are exceptions. One such exception is when stability rather

than accuracy limits the stepsize. This often results in a stepsize sequence

that oscillates violently. Moreover, the nonsmooth stepsize sequence may

excite modes that the error estimator fail~ to recover properly, leading to an

erroneous solution. Figure 1 shows an example from a simulation of a small

control system (see Section 6). By improving the stepsize control algorithm

the artifact can be removed, yielding a correct simulation result.

Another case, for which the standard stepsize controller does not perform

well, is differential equations with drastic changes in behavior. Here, one

often finds long sequences of alternating accepted and rejected steps, result-

ing in wasted computing time. A simulation of the Brusselator (see Section 5)

is shown in Figure 2. Just before and during the large state transitions at

t = 24.5, there are many rejected steps, which partly can be attributed to

poor stepsize control.

Earlier studies of the problem of oscillating stepsize sequences have fo-

cused mainly on describing, characterizing and analyzing the behavior [8, 9,

10, 13]. An exception is the recent study [1 l], in which an explicit

Runge-Kutta method is modified to behave properly together with the

standard stepsize controller. The modification trades the stability region

and/or the precision of the integration method for a more well-behaved

stepsize sequence. Other interesting early studies are presented by Watts [15]

and Zonneveld [161 where an extrapolation scheme on stepsizes and/or errors

is used to try to produce a smoother stepsize sequence.

The stepsize control loop can be regarded as consisting of a process and a

controller (Figure 3). The process has one input: the stepsize h, and two

outputs: the solution of the differential equation y and the error estimate r.

The stepsize controller tries to keep the output r close to the tolerance tol

using the stepsize h as control variable. The natural way to improve the
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Fig. 2 A simulation of the Brusselator. The two upper curves are the state variables, while the

lower third curve indicates whether the step in the integration method was rejected (level – 10

in the plot) or accepted (level – 4 in the plot). From t= 21.0 to f = 24.5 there are 24 accepted

and 21 rejected steps.
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Fig. 3. Control system view of stepsize control

stepsize control is to change the controller. By using elementary techniques

from control theory, a controller on the form

?zn=(;)k’(:)kphn., (2)

was suggested by Gustafsson et al. [5]. The controller has been tested for

explicit Runge-Kutta on a variety of problems and was found to have good

properties [5, 6]. Not only is the problem with stepsize oscillations resolved,

but the controller in general produces smoother stepsize sequences. As a

result, the error estimates show a more regular behavior.

To analyze the control system in Figure-3 a good process model is needed.

The model must correctly describe the relation between h and r

also in the case of an oscillatory stepsize sequence. In Section 2 such a

model will be derived for explicit Runge-Kutta methods. Using the model it is
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straightforward to explain the properties of the control system both when

using controller (1) as well as (2) (Sections 4 and 5). Moreover, the appropri-

ate value of the parameters kl and kP in (2) depends on the integration

method. An accurate process model allows for a more systematic way (Section

5 and Appendix B) of determining good values than the experimental ap-

proach taken by Gustafsson et al. [51.

2. MODELING THE PROCESS

An explicit m-stage Runge-Kutta method [7] applied to the initial-value

problem j = f( t, y), y(0) = y. takes the following form

E= f(LYn)>

(3)

{

ll~n+lll, error per step (EPS)
r 72+1=

ll@n+~ll/hn> error per unit step (EPUS).

The m-stage method supports two formulae of orders p and p + 1. The case

when the coefficient set corresponding to order p + 1 is used to advance the

solution is referred to as local extrapolation. Irrespective of which coefficient

set is used for the integration, the error estimator is of order p, = p + 1.The

motive to use EPUS is to get the same “accumulated” global error for a fixed

integration time regardless of the number of steps used.

For robustness, a mixed absolute-relative norm is used to form r. Two

common choices are

(4)

where ~i is (a possibly smoothed) absolute value of y;, and q, is a scaling

factor for that component of y.

In explicit Runge-Kutta methods the h – r relation shows two different

dynamical behaviors: one in the asymptotic range (h small), and one when

stability limits the stepsize. In both cases the influence of the differential

equation may be regarded as an external perturbation. All explicit Runge-

Kutta methods have qualitatively the same behavior, and we shall now

derive the appropriate models for the two cases.
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To obtain a linear model of the process near h = O, consider the real scalar

initial value problem

(x:=~x–x J t2-o, A<o

x(o) = Xo. (5)

The Runge-Kutta algorithm then yields the exact process

Yn+I = p(k~)yn> %+1= E(L~)yn (6)

where P( h. h) and E( h. h) are polynomials in h. h, and y. = x. – x,~.f.

The polynomial E(h. h) takes the form E(h. h) = K ~(h.h)” + K I( h, h) ‘C+ 1

+ . . . . and hence the error estimate

(7)

with k, = p, (EPS) or k = p,, – 1 (EPUS). Here O. is measured with the same

norm as i?. For I K ~ I > I K ~h. A I the process is described well using a static

model. The coefficient vector +. is varying along the solution y.. It is also

dependent on h., but the dependence is weak as long as I K ~ I > I K ,h~h 1.

By regarding log h as process input and log r as process output, the model

is turned into an affine relation. Using the forward shift operator q, (7) yields

log r. = Gpl(q) log h. + q-’ log 11~~11, Gpl(q) = kg-’ (8)

Thus, the process is just a constant gain k, depending on the order of the

error estimator in the integration method, and a disturbance lclg II d. II de-

pending on the properties of the differential equation and its solution (cf.,

Figure 4). The delay q-1 in the model is a consequence of the indexing

conventions, i.e., the stepsize h. is used to advance y. to y.+ ~, giving r.+ ~

as output. The model (8) takes the same form for the general problem

Y = f( t, Y), Y(O) = Y., with d formed from elementary differentials of ~ of
order p. – 1 and higher [61.

For the linear problem (5), @-+ O as t+ m, and to keep r equall to tol, the

stepsize controller will increase the stepsize. As h. h increases the stepsize

dependence of @. gets more pronounced, and consequently the process (8)

behaves as if k had increased. For o. sufficiently small, h. h reaches ~ Y, the
boundary of the stability region Y= { h h: I P(hh) I s 1} of the integration

method. Increasing the stepsize beyond the critical value h. makes the

nonlinear difference equation system (6) unstable, and the stepsize is said to

be limited by numerical stability. The behavior of (6) changes when h.h

approaches d Y, and the static linear model (8) no longer holds. Instead a

new dynamic process model has to be derived. The derivation is similar in

spirit to that of Hall [8, 91 and Hall and Higham [101.

A constant stepsize h. leads to the stationary solution I Y.+ I I = I Y. 1,

since I P( h~ h) I = 1. Denc~te the steady state values by r. and h~, and
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log h$

t

log lol log h log r
+ Gp (q)

—

Fig, 4. The closed loop system where the transfer function GP( q) represents the process and

Gc( q) the controller. The differential equation acts as an external perturbation log II @II (or

log h,).

consider small perturbations, i.e., h. = hJl + cJ. Then

(9)

~(~s~(l+ ~n-1)).
= E(h.h(l + en))

E(h.A(l + en_,)) ‘n
P(hSX)(l + en_lCz)

= E(h. A)(l + EnCl) Zn
E(h~h)(l + ~n_lCl)

= P(h~h)(l + e.)c’(l + ~._l)-c’+c2i?.

‘p(hh)(*)c’(*)-c’+c”

where

E’(h, ~)
C1(h~A) = h,~

P’(h, h)
Cz(h~A) = h,h

E(h~A) ‘ P(h~h) “

At steady state y. is small, i.e., r~ = I .2~I /x~ = I @~I /x~t~f (or if x~~~t < q,

r. = I 2. I /q. Using EPS, and noting that on the stability boundary d 9“,

I P(h~h) I = 1,(9) can be written

Clq + c~ – c1
log r. = GPz(q)(log h. – log h.), G,g(q) = . (lo)

~(~–1)

The dynamical behavior of the process is governed by GPZ( q), and the only
influence of the differential equation is the external perturbation log h. (cf.

Figure 4). Using EPUS changes the relation (10), and instead

log r. = GP~(q)(log h. – log h.),

(c, -l)q+c2-cl+l
GP3(~) =

9(9 – 1) “

(11)
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By changing the definitions of Cl and Cz to

the results (10) and (11) may be generalized to all linear systems dominated

by either a real negative eigenvalue or a complex conjugate pair of eigenval-

ues having a negative real part. An eigenvalue is said to be dominating, if it

is the first eigenvalue to reach a Y when the stepsize is increased, and at the

same time the other eigenvalues are well inside Y. Examples of this

type of generalization can lbe found presented by Gustafsson [61 and Hall and

Higham [101.

3. EXPERIMENTAL VERIFICATION OF THE PROCESS MODELS

The process models (8), (110), and (11) are linearization about h = O and

h = h. and are valid in a neighborhood around these h-values. The structure

of (8) indicates that as h increases (8) will still hold but behave as if the

value of k had increased. Still, somewhere in the interval h e [0, h~] there

must be a transition from (8) to (11) or (10). The previous derivations do not

explain what this transition looks like or where it takes place. By using

system identification it is possible to partly answer these questions as well as

verify the models (8), (10), and (11).

The nonlinear Robertson example (problem D2 [2]) was solved with differ-

ent tolerances using DOPR,145, an order 4/5 explicit Runge-Kutta method [71,

with local extrapolation arid EPUS used for stepsize control. For each toler-

ance a transfer function from log h. to log r. was identified using the system

identification toolbox in PRO-MATLAB [12]. The full identification procedure

is described in Appendix A.

For DOPR145 using local extrapolation the polynomials P(z) and E(z) are

2 z’ z’ z’ z’
P(Z)= l+ Z+; +F+Z+— —

120 + 600 ‘

9725 1326 27
E(z)=-!=+— —

40000 – 24000 “
(13)

Let &.X be the dominating most negative real eigenvalue of the Jacobian
of the nonlinear differential equation. For h. &.X = – 0.5 the following
model was obtained:

log rn = 4.25q-l log h.. (14)

Since the error estimator in DOPR145 is of fifth order and EPUS was used,

one would expect the value 4.0 instead of 4.25. The discrepancy is explained

by the fact that h~ differs significantly from zero and I K ~ I < I K ~ hh 1. As a
result, one does not observe the asymptotic behavior but a slightly modified

one. By assuming that the behavior of the nonlinear equation is com-

pletely governed by ~,x it is possible to analytically estimate the modified
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540 . K. Gustafsson

behavior. One gets

I E(hnA_J I II ynl]
e = -wh’n&JYn7 ~n+l =n+l

h~ “

It should then hold that

alogrn+l = ~ dlog?-n+l h ~

-(

log I E(hn&ax) I II ynll
=

aloghn n ahn ‘ahn hn )

(15

~0~ hn ~,x = – 0.5 the formula (15) evaluates to 4.19, which is in gooc

agreement with the value 4.25 obtained from identification, (14). As h. L..,. .... ..
i~creases, higher order terms in E(z) will play a larger role. Hence (15)

predicts the gain 4.51 for h~~,X = – 1.6,while the identification gives 4.60.

Note that these discrepancies are due to our assumption that &X dominates

the behavior and that in (15) we differentiate the approximation for r.+ ~.

The polynomial I?(z) is, however, sufficiently smooth to allow this operation.

As hn ~,x is further increased it will approach 3 Y where now a model of
the form (11) is expected. Although not vel ified by theoretical derivations the

identification indicates a gradual change from (8) to (11). As an example

consider hn ~,x = – 2.4. For this value the identification resulted in

For D0PR145 the

Cl = 5.85 and C’z =

4.87q – 0.15
log r. =

q(q – 0.24J log h..

negative real axis intersects C3Y at – 3.31. At this point

6.07, and according to (11) one would expect the model

4.85q + 1.22
log r. = 9(9 _ ~) loghn.

This is in almost perfect agreement with the identified model for hn &x =
– 3,3, see Table I.

4. THE CLOSED LOOP USING THE STANDARD CONTROLLER

Assuming O constant (or slowly varying) in (8) and trying to make r = tol in

the next step, leads to the stepsize controller (l). A step is rejected if r > v tol

(v ~ 1),and to reduce the risk of rejection, the safety factor -y (-y s 1) is
introduced. Typical values for v and ~ are 1.2 and 0.9, respectively.

In addition, there is often a limit on how much the stepsize may increase in

one step.
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Table 1. The Identified Transfer Functions from log h. to log rn,

k/q
w

-3.3

–3.3

–3.3

–3.1

–2.4

-1.6

-0.90

“-().54

— 4.85

4.85

— 4.86

— 4.88

— 4.87 –

4.60 –

4.41 –

4.25 –

1.23 1.00

1.23 1.00

1.18 1.00

0.84 0.75

0.15 0.24

— —

— —

— —

By regarding log h as control variable, the standard stepsize controller (1)

can be expressed as

~ fi(log(7’ . tol) - log m),log hn = ~ (16)

which can be interpreted as a control structure known as an integrating

controller [3, 5]. The set pc~int of the controller is log(~ k . tol), and log hn is

the controller state. Note that the safety factor ~ is equivalent to decreasing

the set point from log( tol) to log(7 k “ to?). Changing the set point changes the

performance but does not a’lter the dynamics of the control system,, and hence

in the sequel ~ will be assumed equal to 1.

In the standard controller (1) the integration gain is normally chosen as

1/k. Here it will be kept as a free parameter kI to investigate its influence

on the closed loop system. Then, the transfer function from control error to

stepsize for the controller (16), can be expressed as

q
log hn = GC1(q)(log tol – log r-~), GCl(q) = kI— (17)

~–1”

For asymptotically small stepsizes the process is well approximated by (8).

The same model structure is valid for both EPS and EPUS. The closed loop

system (see Figure 4), combining (8) and (17), may be written

log r~ = G,OZ(q)log tol + G@(q) log II+~)1 (18)

ACM Transactions on Mathematical Software, Vol 17, No. 4, December 1991.
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where

%1(~)%1(~) kkl
G,./(~) = ~ + Gcl(q)Gpl(q) =

q–l+kkI’

1 q–1
(19)‘o(q) = ~(1 + GCl(q)GpI(q)) = q(q–l+kkI)

are transfer functions from, respectively, tolerance and disturbance to error

estimate.

The characteristic equation (the denominator of G,Ol( q)) has a root at

1 – kkl. The root determines the stability as well as the transient properties

of the closed loop system. The difference operator q – 1 in the numerator of

G+(q) will remove constant components in log II@II at a rate determined by the

position of the root. Moreover, provided the closed loop system is stable, r

will eventually approach tol since G~Ol(l) = 1.

Choosing kl = 1/k, as normally is done in the standard controller, places

the root at the origin and makes the system as fast as possible. For this

choice a constant disturbance is compensated in one step, but at the price of

making r sensitive to higher frequency components in log II @II. The position

of the root is a tradeoff between response time and sensitivity, and hence the

value of kl is a design parameter and should not be regarded as given by

I/k.

When numerical stability limits the stepsize the process changes character.

Using the model for EPUS (11) together with the standard controller ( kl =

1/k), the closed loop system can be written (the case EPS is handled

analogously)

log r~ = G,O1(q)log tol + Gh,(~)log h,,

%l(!l)Gp2(~)
G,.,(q) = 1 + GC1(q)Gpz(q) ‘

kl((C1 – l)q+ 1 – Cl + C,)
—— (20)

q2+(–2+ kI(Cl–l)) q+l+kI(l– Cl+ C2)’

G,2(q)

GJq) = -1 + Gc,(q)Gp, (q) ‘

(e I)((c, - l)q+l - c,+ C2)——
9(~2+ (-z+ k,(c, - l))q+ l+kl(l - C1+C2)) “

Here, GtOl(l) = 1 and G~ \l) = O. Therefore log h,, which is constant or

slowly varying, will be removed and eventually log r will equal log tol,

provided the closed loop control system is stable.
The transient behavior as well as the stability of the control system is

goverened by the roots of

q2+(–2+ kI(Cl–l))q +l+kI(l– Cl+ C2) =0. (21)
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Fig. 5. The magnitude of the largest closed loop pole of the stepsize control loop when using

DOPR145 and the standard controller to solve a second order problem with complex eigenvalues,

X and ~. The magnitude is plotted as a function of p = arg(h~ k). The closed loop system is stable

only for p close to 7r /2.

The system is stable if th,ese roots are inside the unit circle. Hall [8, 9]

derives another stability test consisting of an eigenvalue check for a 2 by 2

matrix. In the special case k~ = 1/k, the characteristic equation of that

matrix equals the polynomial in (21). For the standard choice k ~ = 1/k the

roots of (21) are often to be found outside the unit disc, resulting in an

unstable closed loop systeml (see Figure 5 and Higham and Hall [111]).

When using the standard controller the closed loop system is almost always

unstable for h = h.. The instability causes the error to grow until the

controller reduces the stepsize to keep the error below tel. The reduction of

the stepsize moves h A inside Y and the process changes behavior from (11)

to (8), making the system regain stability. The error decreases and the

controller will increase the stepsize, again placing h A on d Y. The cycle

repeats itself creating an oscillatory stepsize sequence.

5. A NEW CONTROLLER

The properties of the closed loop system depend on the controller as well as

on the process, and one may change either one to improve the behavior of the

system. Higham and Hall [11] approach the problem by changing the process,

namely, the integration algorithm. When constructing an explicit Runge-

Kutta method there is some freedom in the choice of parameters. Normally

this freedom is used to minimize error coefficients or to maximize the

stability region of the method, but Higham and Hall exploit it to change Cl

and Cz such that the closed loop system is stable when the stamdard con-

troller is used.

It is our opinion that a better way to approach the problem is to change the

controller. Then the freedc}m in choice of parameters in the method can be

used to improve its numerical properties, while the stepsize control problem

is solved by improving the stepsize controller.
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The process models derived in Section 2 can be satisfactorily controlled

with a controller on the form

9 (h, + kp)q - kp
GC,(q) = kI— +kp=

q–l ~–1
(22)

This controller is by no means arbitrary. The standard controller (17) is

recognized as a commonly used control structure (discrete integral control) [3,

5]. Once this is realized, the modification to a discrete proportional-integral

(or PI) controller as in (22) is straightforward. By manipulating the expres-

sion log hn = GCZ(q)(log tol – log rJ, (22) can be rewritten as (2) [5]. From

this expression it is clear that the new factor corresponds to taking the most

recent development of r into account when deciding upon the next stepsize. It

is also clear that this type of controller is trivial to implement in existing

ODE codes.

Choosing the controller parameters kl and k ~ requires special attention.

Their values are a compromise between stability and response time, and

since Cl and Cz vary for different integration methods one cannot expect to

find a single set of values that will be acceptable for all integration methods.

Our tests indicate, however, that a reasonable first try is (see Appendix B)

0.3 0.4
kI=—

k’
kp=—

k’

i.e., kl = 0.08, kp = 0.10 for DOPR145 using EPUS and kI = 0.06, kP = 0.08

for EPS. A methodology to determine good parameter values is described in

Appendix B.

There is a major difference between DOPR145 and RKF45. For DOPR145

P(h~A) = 1 (h real), while for RKF45 P(h~A) = – 1 (X real). Hence, for a

differential equation at stationarity, RKF45 will result in a numerical solu-

tion that oscillates around the true solution, since the sign of .2 alternates. If

the stationary solution is nonzero the value of I y I will change as the sign of

2 alternates. Through the relative norm (4) this affects r, causing both r and

h to oscillate around their stationary values. The phenomena may be reduced

by using smoothed values of y in (4).

The standard controller (1) (and in a sense also the PI controller (22)) is

derived assuming log II o II constant or slowly varying. Consequently, the

performance will not be acceptable for problems where log II @II changes

rapidly (see Figure 2). The problem can be resolved using a controller that

predicts changes in log II @II. The controllers due to Watt [15] and Zonneveld

[16] are of this type. Unfortunately, the log II @II prediction and the stabiliza-

tion of (10) or (11) are conflicting objectives [6]. A predicting controller is

therefore more suitable for integration methods with unbounded stability

regions, or specialized problems and tolerances where the static model (8)

always holds.

When a step is rejected the next step to be taken is a retry, and from the

last attempt it is known what to expect ahead. The most likely reason for the

rejected step is a major increase in the disturbance log II ~ II. If the error from
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the rejected step is used to calculate log II ~~ II, and then a new stepsize h:

such that log r:+ ~ equals log tol is calculated, one obtains the standard

controller,

()tol ~lk
h:. — h n.

r n+l

(23)

Since the previous step was rejected due to an increase in log II ~ II, log II ~~ II

will generally be smaller than log II @~ II. Therefore (23) is often a bit conserva-

tive.

Due to the structure of log II @II it is reasonable to assume that it will

continue to increase during the steps succeeding the rejected step. Part of

this increase can be anticipated by having the stepsize decrease appropriately

after h:. The state in the controller could be updated to achieve this end. At

a rejected step h: is calculated from (23) and used as the next stepsize. If h:
leads to an accepted step, the controller state is updated such that if the

accepted step is perfect (r: = tol) there will still be a stepsize decrease of the

same factor as the one between h ~ and h:. If, on the other hand, h: is

rejected, (23) is used again.

The described strategy was used to solve the Brusselator [7]

jl = 1.0 + ,yfj+ – (0+ 1.O)Y, Y,(o) = 1.3

Y2 = PY1 – Y?Y2 Yz(o) = 6

with ~ = 8.533. In the time interval tG [21.0, 24.6] (see Figure 2) the number

of rejected steps were decreased by almost 50% (from 39 to 21). Each rejected

step is now normally followed by (at least) two accepted steps,, The first

accepted step is explained by (23) while the second is due to the special

update of the controller state.

To summarize this section, an outline of the code implementing the new

controller is presented in Listing 1 (see Figure 6). The controller is called

after each step in the integration routine, and calculates the step size to be

used in the next step. The variable x is the controller state, and as before, h
is the stepsize, and r the corresponding error estimate. Occasionally, the

error estimator may produce an unusually small (or large) value, thus

advocating a very large stepsize change. For robustness the controller should

(as usual) include some limitation on such big changes. Also, it is important

to avoid overflow or underflow in expressions as oldr/ r.

6. NUMERICAL TESTS

To demonstrate some of the properties of both the old and the new controller,

some problems were simulated using DOPR145 [7] with local extrapolation

and EPUS. (A more extensive list of problems are simulated by Gustafsson et

al. [51 and Gustafsson [6], although it is worth noting that the controller

presented in Section 5 includes a better restart strategy after rejected steps.)

The error was measured with the mixed absolute-relative 2-norm in (4), using

q, = 0.1, vi.
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if current-step-accepeted then

Fig. 6. Listing 1: An outhne of the code

needed to implement the new controller, in-

cluding the restart strategy after rejected

steps

if prtwious_step_r ejected then

x:=h. h/x

endif

‘:= (:)’’($9””
h:=z

oldr := T

else

endif

A simulation of y = – y + 1, y(0) = 1.1 is shown in Figure 7, and demon-

strates that the type of instabilities described in Section 4 occur also for very

simple problems. As the solution approaches its stationary value the stepsize

will increase. Eventually h~ reaches d Y and the process model changes from

(8) to (11). For this case the standard stepsize controller fails to produce a

smooth stepsize sequence, while the new controller performs well. For the

new controller the stationary stepsize is approximately 3.3, and hence h A =

– 3.3. This agrees well with theory since, for DOPR145, a Y intersects the

negative real axis at – 3.31.

Next we turn to the system used for the introductory example in Figure 1.

The problem is a small control system consisting of a continuous time

PID-controller [3] and a fourth order process. The variable y is the output

from the process and yPID is the output from the controller (and thus the

input to the process). The system is described by

y= 1
(p+ pzl (process)

( +( Yr-Y)-
PT~

YPm=k Y,– Y+
)

(controller) (24)
L pTd/N+ly

y,=l (reference signal)

with p being the differential operator. The parameter values k = 0.87,
TZ = 2.7, T~ = 0.69 and N = 30 yield a PID-controller well tuned for the

process.

Figure 8 shows some signals from the simulation of (24). The figure

consists of six small plots where all signals are plotted as functions of time.
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Fig. 7. Simulation of y = – y + 1, y(0) = 1.1 with tol

controller fails to produce a smooth stepsize sequence.
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Simulation of the small control system (24), tol
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norraafized error, new
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stepsize, new

Dk
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= 10-2.

The upper left plot shows the correct solution to the problem (y and yPID).

The upper right plot shows two curves corresponding to the work needed to

solve the problem. It is the total number of integration routine callls for both

the old standard controller (solid line) and the new controller (dashed line).

Note that also the rejectedl steps are included to properly reflect the total
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work. The two plots in the middle show the estimated error r normalized

with tol for the old (left) and the new (right) controller. The two lower plots

compare the stepsize for the controllers. The last four plots include only

succeeded steps (a step was rejected if r > 1.2tol).

The system (24) has four complex eigenvalues and two real. Five of the

eigenvalues have a magnitude approximately equal to 1, while the sixth

eigenvalue has & = – 40. When solving (24) the transient corresponding to

& dies out very fast. Consequently, the stepsize controller increases the

stepsize, and soon h & is placed on d Y. The resulting irregular stepsize

sequence excites the fast mode corresponding to ~. The error estimator fails

to recover this mode properly and the solution produced is erroneous, as was

demonstrated in Section 1 (see the plot of yPI~ in Figure 1). The new

controller produces the correct solution and reduces the number of rejected

steps, thus decreasing the total amount of work needed to solve the problem

by 20%.

The safety factor ~ was chosen as 0.9 in the old controller used in the

simulations. This makes the old controller aim for a lower error than the new

controller. The effect is readily seen in Figure 8. One may argue that the

safety factor lowers the set point making the old controller take more steps

than the new one, and hence the comparison is unfair. However, if the safety

factor is removed, the number of rejected steps (and hence the total work)

increases drastically due to the irregularity of the stepsize sequence.

The standard controller was also equipped with a small dead-zone on

stepsize change. Although normally not included in explicit methods, a small

dead-zone was introduced in this comparison since it may sometimes increase

the efficiency of the standard controller by preventing stepsize oscillations.

This effect can be seen in the time interval 2< t <7 in Figure 8. In spite of

fixes like the safety factor and the dead-zone, the old controller cannot

compete with the new.

7. CONCLUSIONS

Control theory provides efficient means to analyze the problem of stepsize

control in numerical integration. It naturally separates an integration rou-

tine into two parts: the process (integration method, differential equation,

and error estimator) and the stepsize controller. Hence, an integration method

can be constructed for optimal numerical behavior, and then a fitting stepsize

controller is designed.

To design the stepsize controller, a process model is needed. The static

asymptotic relation, normally assumed, between the stepsize and the local

truncation error is not always sufficient. When the stepsize is limited by

numerical stability, a dynamic model has to be used. Such a model was

derived and numerically verified for explicit Runge-Kutta methods.

Using the dynamic model, it is straightforward to analyze the standard

stepsize controller. The analysis gives insight and clearly points out that the

standard step size controller combined with a problem where numerical sta-

bility limits the stepsize leads to a locally unstable closed loop system.

The standard stepsize controller can be recognized as a commonly used
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control structure. A generalization of this structure is then natural, and

using design techniques fro m automatic control, its parameters can be tuned

such that good control is also achieved when numerical stability limits the

step size. The new controller gives better overall performance at little extra

expense.
Here only explicit Runge-Kutta methods were considered, and the proposed

controller was of PI type. ‘There is, however, nothing that limits the used

methodology to these eases. Similar analytical techniques are applicable to

other types of integration methods, and once a model is obtained it can be

used to analyze and improve the stepsize control.

APPENDIX A. IDENTIFICATION OF A MODEL FOR DOPR145

It is possible to verify the models derived in Section 2 using system identifica-

tion. When simulating a differential equation the stepsize ancl error se-

quences are stored and used to fit a dynamical model between log h and

log r. If the stepsize and error sequences are taken from a time-interval

where log II@II is relatively constant, its influence on the identification result

can be removed. Consequently, the models will depend only on the tolerance

and the integration method (DOPR145 with EPUS in this case), and not on

the differential equation.
The identification was dlone using problem D2 from the Enright et al.

paper [21

~1 = –0.04~~ + 0.01~zY3, yl(o) = 1.0

j’z = Aooyl – looy~y3 – 3oooy; , y2(o) = 0.0 (Al)

y3 = 3oy; , y3(o) = 0.0.

The first 0.3 seconds of the solution to (A. 1) and the stepsize sequences

resulting from simulations with toi = 10-2, 10-3, . . . . 10-9 are shown in

Figures 9 and 10, respectively. The new controller (22) described in Section 5

was used to prevent stepsiz,e oscillations.

After an initial transient the stepsize stays essentially constant. The larger

the value of tol, the larger this constant stepsize. This holck true for

tolerances below 10-5, while for larger values of tol the stepsize is suffi-

ciently large to put h~ax on 6’Y for DOPR145, i.e., h~ax = 1,51 “ 10-3.
(- 2180) = -3.3. The constant stepsizes indicate a constant log II@II, and

makes the problem ideal for identification.

The problem was solved with different values on tel. At t = 0.1, after the

transient has died out completely, an excitation signal was added by perturb-

ing log tol according to log tol = log tolo + 0.05 A tol~. Here A tol~ was a

PRBS (pseudo-random binary signal [14]) sequence alternating between + 1

and – 1). The perturbation was small and the stepsize varied only a few

percent around its stationary value. For each value of tolo the stepsize hn
and the error estimate r. were recorded and stored. During the data logging

there were no rejected steps. The experiment was done for tolo =

10-2,10-3 , . . . ,10-‘. Figure 11 shows the stepsize and the errc~r estimate

recorded for tol = 10-2.
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Fig. 9. The solutlon of the nonlinear problem (Al), YI (sohd line), .Y2 (dashed line)) and Y3

(dash-dotted line)
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Fig. 10. The logarithm of the stepsize for different tolerances. The curves come in order, i.e ,

the lower one corresponds to tol = 10-9, the second from the bottom corresponds to tol = 10-8,
and so on. The step size is practically constant for t > 0025. This is true for 0.025 < t < 0.30,

although only t K 0.05 is plotted here For tol = 10”, . . . 10-2 the stationary value of the

stepsize is identical and the curves overlap, implying that the stepsize is limited by numerical

stability.

The disturbance log IIo II introduces a slow ramp in the data sequences. To

remove it~ eIfeCt, a ramp fitted by least squares was subtracted from each

data sequence. For each pair of data signals (stepsize sequence and error
.equence) an ARMA-model from log h. to log r. was identified using the
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r normalized with tol
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Fig. 11. Stepsize and error estimate recorded from the identification experiment with tol =

10-2. The irregularities in the data sequences are caused by the perturbation of tol, and are not

due to bad stepsize control.

identification toolbox in P130-MATLAB [12]. The Akaike test and the statis-

tics of the residuals were used to decide upon a correct model order [12, 141.

The identified transfer functions are listed in Table I.

As hn~ax increases to the value that puts hn~,x on d.9, the process

gradually changes between the two models derived in Section 2. For hn ~,x
small and hn &ax on d Y, the models above agree very well with the

theoretical results.

APPENDIX B. DETERMINING CONTROLLER PARAMETERS

The closed loop transfer function from log tol to log r takes the form

Gc(~)Gp(~)
~(~) = 1 + Gc(q)Gp(~) (B.1)

where GP( q) is the process land GC(q) is the controller (see Figure 4,). Our task

is the following: given Gp(q) (e. g., Gpl(q) in ($), GpJq) in (10 or GpJq) in
(11)) choose Gc(q) such that the difference equation relating log r and log tol
is well behaved and the influence from log II+ II (or log h.) on log r is mini-
mized. This is the classical problem of feedback control [1, 3], and there exist

many different methods to determine GC(q).
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In our case the structure of GC(q) is already chosen (GCZ( q) in (22)), and we

are to determine k ~ and kP. It is worth noting that when designing a

controller in a situation where a (almost) constant disturbance, i.e., log IId II

or log h,, is to be eliminated, it is natural to choose a controller structure

that includes integral action [1, 31.

The roots of the denominator of (B. 1) determines the eigensolutions to the

difference equation relating log r and log tel. They also show up in the

transfer functions from log II@II to log r, and log h. to log r, and hence govern

the behavior of the closed loop system. The system is stable if all the roots

are inside the unit disc. Stable roots do not, however, necessarily give the

system good properties. For instance, roots close to the unit circle correspond

to eigensolutions with large time constants, and consequently the damping of

the varying disturbance log II@II will be slow. On the other hand, roots close

to the origin make the time constants small, and the system may be sensitive

to noisy fluctuations in log IId II.

The roots of the denominator of (B. 1) are given by the solutions to

GP1(q): qz+ (–l+k(kl +kP))q-kkP=O

GPz(q): q3+ (–2 + Cl(kI+ kP))q2 + (1 + Cz(kr+kP)

-C1(kl+ 2kP))q + kP(C1 – Cz) = O (B.2)

Gp3(q): q3+ (-2 + (Cl - l)(k1+kp))q2+ (1 + Cz(k,+ kp)

+(1 – Cl)(kI+ 2hp))q+kp(C1– C2– 1) =0

The case Gpl(q) is the most important, and kl, kP must be chosen such that
these two roots have advantageous positions, e.g., stable, as fast as possible,

sufficiently well damped. At the same time the roots for the case GPZ( q) (or

GP3( q)) should be stable for as many Cl, Cz values as possible. It is unfortu-

nately not possible to achieve stability for any values on Cl, CZ, and we have

to concentl.ate on the most likely ones. From our observations and from the

structure of (12), it seems like it is often true that Cl = k and C2 e [0, 2 k 1on

most parts of d 7. In the case DOPR145 Cl e [5, 61 and Cz e [0, 91 on d ~f’.
After having studied root positions for many different kl, k ~ values, we

suggest

0.3 0.4
kl=— kP=——

k’ k’
(B.3)

as a reasonable tradeoff between root positions for the normal case GPI( q)
and stability for relevant Cl, C2 values. It is, however, important to fine tune
the values given by (B .3) when using the controller with a new integration

method. One way of doing this is to study root locus plots (for example, see

Franklin et al. [31).

Example B. 1. Root locus plot. For DOPR145 with local extrapolation

using EPUS,

4.85q + 1.22
G,S(q) =

q(9– 1) ‘
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Fig. 12. Root locus from Example B. 1. kp is varied from O to 0.2 for three values of kI:

kI = 0.25 (x), kI = 0.12 (0), and kI = 0.05 (+). Small values of kp correspond to the roots

closest to the unit circle.

if evaluated at the point where 6’Y intersects the negative real axis. In

Figure 12 the roots of the denominator of (B.3) are plotted for kI = 0.25,0.12,
and 0.05, varying kp from O to 0.2. For small values of kp, the system is

unstable. Moreover, kI = 0,25 results in roots close to the unit circle for

every k ~ E [0, 0.21. Using observations like this it is possible to conclude that

kI <0.15, and kp e [0.06, 0.21 results in reasonable roots for this Gps(q).
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