
Greed Sort: Optimal Deterministic Sorting

on Parallel Disks

MARK H. NODINE

Motorola Cambridge Research Ce?lter, Cambrrdge, Massachusetts

AND

JEFFREY SCOTT VHTER

Duke Universi& Durha?n, North Carolina

Abstract. We present an algorithm for sorting efficiently with parallel two-level memories. Our

main result is an elegant, easy-to-implement, optimal, detemzinistic algorithm for external sorting
with D disk drives. This result answers in the affirmative the open problem posed by Vitter and
Shriver of whether an optimal algorithm exists that is deterministic. Our measure of performance
is the number of parallel input/output (1/0) operations, in which each of the D disks can

simultaneously transfer a block of B contiguous records. We assume that internal memory can
hold M records. Our algorithm sorts N records in the optimal bound of @(( N\BD) log (N/B)/
log (M/B)) deterministically, and thus it improves upon Vitter and Shriver’s optimal mndomized

algorithm as well as the well-known deterministic but nonoptimal technique of disk striping. It is
also practical to implement.

Categories and Subject Descriptors: B.4.4 IInput\ Output and Data Communications]: Perfor-
mance Analysis and Design Aids—worst-case analysis; F. 1.2 [computation by Abstract Devices]:
Modes of Computation—parallelism and concun-ency; F.2.2 [Analysis of Algorithms and Problem

Complexity]: Nonnumerical Algorithms and Problems—sorting and searching: E.5 [Files]:
sorting/search mg

General Terms: Algorithms

Additional Key Words and Phrases: 1/0 complexity, parallel disks, parallel 1/0, merge sort

The work of M. H. Nodine was supported in part by an IBM Graduate Fellowship and by a

National Science Foundation Presidential Young Investigator Award CCR 90-47466 with match-

ing funds from IBM Corporation.

The work of J. S. Vitter was supported in part by a National Science Foundation Presidential
Young Investigator Award CCR 90-47466 with matching funds from IBM Corporation, by

National Science Foundation grant CCR 90-07851, by the U.S. Army Research Office under grant

DAAL03-9 I -G-0035, and by the Office of Naval Research and the Defense Advmccd Research
Projects Agency under contract NOOO14-91-J-4052 and ARPA order 8225.

Authors address: M. H. Nodine, Motorola Cambridge Research Center, One Kendall Square,
Building 200, Cambridge, MA 02139, e-mail: nodinc@mcrc.mot.tom: J, S. Vhter, Department of

Computer Science, Duke University, Durham, NC 27708-0129, e-mail: @@es.duke.edu

Permission to make digital/hard copy of part or all of this work for personal or classroom use 1s

granted without fee provided that copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM. Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.

C 1995 ACM 0004-5411 /95/0700-0919 $03.50

Journal of lhe Amowil, on tor rlnnput~ng hl.tchmtry, Vd Q No .1, July 1+15, pp [11+(133

http://crossmark.crossref.org/dialog/?doi=10.1145%2F210332.210343&domain=pdf&date_stamp=1995-07-01


9~~ M. H. NODINE AND J. S. VITTER

1. Introduction

Sorting is reputed to consume roughly 20 percent of computing resources in

large-scale installations [Knuth 1973; Lindstrom and Vitter 1985]. Although we

can argue about the exact percentage, there is no doubt that sorting and

related operations are significant components of information processing. Of

particular importance is external sorting, in which the records to be sorted are

too numerous to fit in the processor’s main memory and instead must be stored

on disk. The bottleneck in external sorting is the time needed for the

input/output (1/0) operations. The reason that the 1/0 becomes the bottle-

neck is that CPU speeds are much faster than disk speeds, and moreover have

been growing at a much faster rate than disk speeds over the last decade. A

tendency to use parallel processors in large-scale applications further exacer-

bates the mismatch between the computational and 1/0 capabilities.

There are several approaches that are taken to mitigate the 1/0 bottleneck.

The first avenue, used in almost every system, is to transfer data in large units

or blocks; this blocking takes advantage of the fact that the seek time is usually

much longer than the amount of time needed to transfer a record of data once

the disk’s read/write head is in position. A second increasingly popular (and

necessary! ) way to alleviate the 1/0 bottleneck is to use many disk drives

working in parallel.] This method greatly increases the bandwidth to the 1/0

subsystem (by about a factor of the number of disks) while not appreciably

affecting the latency. The challenge, therefore, in using parallel disks is to take

advantage of the increased bandwidth by making certain that the items to be

read and written during 1/0s are evenly distributed over the disks.

Initial work in the use of parallel block transfer for sorting was done by

Aggarwal and Vitter [1988]. They considered a two-level memory model in

which D physical blocks, each consisting of B contiguous records, can be

transferred simultaneously in a single 1/0 into a primary memory capable of

holding M records (see Figure 1). Their model generalized the initial work of

Floyd [1972] and Hong and Kung [1981]. Aggarwal and Vitter derived matching

upper and lower bounds for their model, finding that the number of parallel

1/0s required to sort N numbers is

(N log( N/B)
@—

1BD log( M/B) “

They showed that the lower bounds are the same as those for permuting N

numbers and hold for an arbitrarily powerful adversary, except for the case

when M and 1? are extremely small, in which case they used the comparison
model to get the lower bounds. Aggarwal and Vitter [1988] showed the lower

bounds for permuting by computing the maximum of permutations that can be

accomplished in t 1/0 steps, and then computing the minimum number of

steps that are required to attain all N! permutations of N numbers. They

achieved the sorting upper bounds with two different algorithms, one based on

Merge Sort and the other based on Distribution (Bucket) Sort. For a treatment

of Merge Sort and Distribution Sort, see Knuth [1973].

1See, for example. Gibson et al. [1988], Gifford and Spector [1984]. Jilke [19S6], Magmnis [1987],
Patterson et al. [1988], and University of California at Berkeley [1989].
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Aggarwal and Vitter’s model is somewhat unrealistic, however, because in

practice, secondary storage devices cannot transfer any arbitrary set of D

blocks simultaneously. Vitter and Shriver [1990] considered the more realistic

parallel disk model, in which the secondary storage is partitioned into D

physically distinct disk drives (see Figure 2). Each head of a multihead drive

can count as a distinct disk in this definition, as long as each head can operate

independently of the other heads on the drive. In a single (parallel) 1/0

operation, each of the D disks can simultaneously transfer one block of B

records. Thus, D blocks can be transferred per 1/0, as in Aggarwal and

Vitter’s model, but only if no two of the blocks access the same disk. This

assumption is reasonable in light of the way real systems are constructed.

Vitter and Shriver presented a randomized version of Distribution Sort using

two complementary partitioning techniques. Their algorithm meets the 1/0

lower bound given earlier for the more lenient model of Aggarwal and Vitter.

Since the lower bound also applies to the more restrictive model, the algorithm

is optimal. It can outperform the well-known deterministic technique of disk

striping by a factor of about log M as measured by the number of 1/0s. Vitter

and Shriver posed as an open problem the question of whether there is an

optimal algorithm that is deterministic.

From a historical perspective, the idea of sorting using parallel media is not a

new one. Even [1974] proposed two algorithms for sorting using parallel tape

drives. These algorithms are not very general, however, as they require a

system with P processors and 4P tape drives. Bitton et al. [1984] later

considered the problem of sorting with P processors and P disks. and they

devised an elaboration of binary merge sort that uses N/P log N/P + log P

parallel read operations and the same number of parallel write operations.

Each processor requires 0(1) internal memory cells in their algorithm, since

they simulate a sequence of tree machines with a constant degree of 2. Our

model, on the other hand, has only one processor and internal memory with a

branching factor of D between internal and external memory. Dealing with

this branching factor is what makes the problem hard.

In the next section, we answer the open question posed in Vitter and Shriver

[1990] and present for the parallel disk model an optimal deterministic sorting

algorithm called Greed Sort. It performs a Merge Sort in a greedy way, using a

priority scheme during the first part of each merge process to do an “approxi-

mate merge” of the runs. A second part of the merge process completes the

merging, Oddly enough, the intuitions of Vitter and Shriver [1990] suggested
that merge sorting with D disks was particularly difficult to do. as opposed to

distribution sorting.

Throughout this paper, the measure of performance is the number of

parallel 1/0s the algorithm does; we ignore internal computation time. In
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9 The parallel disk model. The external memory 1s partitioned into D disks, all of which-.

transfer a block of B records in parallel.

practice, though, our algorithm is also very efficient in terms of internal

processing. Our algorithm also applies to a model in which each of the D disks

is controlled by a separate CPU with internal memory capable of storing M/D

records, and the D CPUS are connected by a network that allows some basic

operations (like sorting of the M records in the internal memories) to be

performed quickly in parallel. The bottleneck in this model can also be

expected to be the 1/0.

2. Greed Sort

The parameters for our two-level memory model (or parallel disk 1/0 model)

in Figure 2 are

N = # records in the file;

M = # records that can fit in prima~ memory;

B = # records per block;

D = # disk drives;

where M < IV, and 1 s DB < [(M – MP)/21, for fixed ~ < 1. The first con-

straint means that the problem is too large to fit in memory, and the second

that the total number of records that can be transferred in a single parallel

1/0, DB, cannot exceed about half of the internal memory locations. Our

measure of performance is the number of parallel 1/0s; during a parallel 1/0,

each disk can simultaneously transfer one contiguous block of data.

By a sorted list, we mean one in which the first block appears on track 1 of

disk 1, the second block on track 1 of disk 2, and so on, until the Dth block
appears on track 1 of disk D. The list then cycles back to the second block of

disk 1, and so on, as suggested by Figure 3. In general, the ith block of the

sorted list appears on track l(i – 1)/D + 11 of disk ((i – 1)mod D) + 1. The

B records within each block are numbered contiguously by their relative

positions in the block.

Our Greed Sort algorithm is a type of Merge Sort. A merge is a process that

starts with two (or more) sorted input lists and produces a single completely

sorted output list. A sorted list is sometimes called a “run” in this context. The

traditional Merge Sort algorithm always merges pairs of lists that are approxi-

mately the same size. Thus, to start, the algorithm divides the IV records into N
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lists of length 1, which it merges in pairs to form [N/21 lists of length at most 2

(all but possibly the last list will have length exactly 2). The next pass merges

the lists of length 2 to produce lists of length 4, and so on, until a single list of

length N finally results.

Greed Sort differs from the traditional Merge Sort in two ways:

(1) The initial lists have length M instead of length 1. We create these N/M

initial input runs (sorted lists) of size M by repeatedly reading in a

memoryload of M unprocessed elements, sorting it, and writing it back to

the disks.

(2) Traditional Merge Sort merges runs in pairs. Greed Sort merges R

= ~~/2 input runs at a time to form larger runs, which are used as

input runs for the next pass.

Each pass will be shown to take O(N/DB) 1/0s, giving us a total 1/0

bound ofq

((N N )) (N log( N/B)
o— 1 + l%= ~ =o—

DB 1DB log( M/B) ‘

which is optimal, by the lower bound of Aggarwal and Vitter [1988]. The

complete analysis is presented in Section 2,2,

THEOREM 2.1. Greed Sort deterministically sorts N > M records with

(N log(N/B)
o —-

DB log( M/B) )

parallel 1/0s, which is optimal.

The key to the success of Greed Sort is being able to do the R-way merge.

Let us assume that each of the R runs to be merged is stored consecutively on

disk, beginning on disk 1 and cycling through the D disks, as previously

described and illustrated in Figure 3. In each parallel read operation, the one

or two “best” available blocks from each disk are read into primary memory.

We define the best available blocks to be the block with the smallest minimum

key l~alue and the block with the smallest maximum key ualue. In this phase of

the algorithm, we do an approximate rnege on each of the D disks independently;

all of the approximate merges are taking place in parallel. With respect to any

disk, we generally read two blocks at each step, comprising two sorted sets of B

records. We merge the two blocks in prima~ memory and write the smallest B
records to the output list that we’re forming for that disk; we put the largest B

records at the front of the run from which the smallest minimum was taken

2We use the notation log x, where x >1, to denote the quantity max{l, log~ x}.
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FIG, 4, Assume that Run 1 contains the block with the smallest minimum and Run 2 that with
the smallest maximum on some disk j. Then this figure shows what the situation will be after the
blocks have been processed.

(note that this run remains sorted after this operation). For example, in Figure

4, Run 1 contains the block with the smallest minimum on disk j and Run 2

the block with the smallest maximum. Merging those two blocks together gives

all the numbers from 1 to 8, of which we write the first four to the output, and

the other four back to Run 1, which is the run that had the smallest minimum

element. Ties are broken arbitrarily. If the blocks with the smallest minimum

and the smallest maximum are the same block, we read only the one block and

copy it directly to the output list.

Once all the elements in every run on all of the disks have been written to

their corresponding output list, we wind up with an “approximately merged”

list, The crucial observation, which we prove in Theorem 2.1.2, is that the

records are within RDB = D~ /2 positions of their correct sorted loca-

tions. By an appropriate use of clustering (or partial striping) throughout the

course of the algorithm, we can complete the merge of this approximately

merged list by a single pass consisting of several applications of the Columnsort

algorithm of Leighton [1985] applied to subfiles of size D=. We use

Columnsort since it is able to sort N = 0( A4~/z ) elements with a linear

number of 1/0s. Then, the next merge begins.

Columnsort is easiest to visualize as sorting into column-major order a

matrix with r rows and c columns. For technical reasons. there is a require-

ment that c divides r and r > 2(c – 1)J. Columnsort has eight steps, of which

the odd-numbered steps are all the same: sort all the records in each column.

In his original article, Leighton [1985] used the (impractical) AKS sorting

network [Ajtai et al. 1983] to do the sorts, since he was interested in establish-

ing the existence of a bounded-degree sorting network to sort N numbers in

O(log N) time. The correctness of Columnsort, however, is independent of

what algorithm is used to sort the columns. Steps 2 and 4 are a transpose
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FIG. 5. The transpose used by Steps 2 and 4 of
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a9m -~djp
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cio “ -~flr FIG. 6. The shift operation used in Steps 6 and

djp *
a9m~ 8 of Columnsort.
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operation in which the rows of the transposed matrix are wrapped to maintain

t~e same shape as the original matrix, is shown in Figure 5.- This transpose

operation leads to the requirement that c divides r. Steps 6 and 8 amount to a

shift by r/2 in column-major order, with padding by – co and cc before the first

element and after the last element, respectively. This shift operation is illus-

trated in Figure 6.

For reference, we give the pseudocode for the Greed Sort algorithm in

Figure 7. Recall that a sorted list cycles through all the disks. If we look at the

“slice” of any run that appears on some particular disk, it is easy to see that the

slice is a sorted sublist. Thus, we only need to examine the first unprocessed

block on a given disk in any run to find the block with the smallest minimum

(or maximum) on that disk from that run. The collection of first unprocessed
blocks, one for each (run, disk) pair, is called the candidate set of blocks, and it

is from this candidate set that we will select the best available blocks. To aid in

this process, we can store pointers to the blocks in two priority queues: one

using the blocks’ largest value as its key and the other using the blocks’

smallest value. The implementation details are unimportant from a theoretical

standpoint, however, since our model assumes that internal processing time is

free. Hence, the amount of time needed to compute the best available blocks

does not matter, as long as we have enough room to keep all the information

about the candidate set in memory. There are D disks and R runs, so the

candidate set has cardinality DR. We only need to keep two elements per block

in the candidate set, the largest and the smallest, so we need 0( DR) storage.

We show in Section 2.2 that there is room for these elements.

We assume for convenience in the pseudocode that the runs are separated

on each disk by blocks containing some dummy key value + ~ that is larger in

value than any key. The algorithm uses rzext[i, j] to keep track of the next block

of run i to be read from disk j. Thus, the set of all blocks next[i, j] comprises

the candidate set. The maximum and minimum key fields of block ~zext[i, j ] are
stored in biggest[i, j] and smallest[i, j], respectively. We do our 1/0 operations

into the buffers bl and b2, which each consist of D smaller buffers, one for

each disk. Buffers bl[j ] and b2[j ], for 1 < j < D, each hold B records from

disk j; we denote their maximum and minimum keys by max(bl[j]), min(bl[j]),
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algorithm Greed Sort

{ Create the initial runs }

repeat N/M times

read the next M records into primary memory, DB at a time

sort the M records internally

write the M records back onto disk, DB at a time

repeat until only 1 run is left

{ Merge together R = m/2 input runs at a time }

R:= v@73J2

{ Tbe output runs of the previous stage become the input runs for this stage)

repeat until all input runs have been processed

{ Assume the next R runs to process are numbered 1,..., R }

for i := 1 to R do { Initialize }

read in paralfel the first D blocks of run i into buffer bl

forj:=lto Ddo

rzezt[i, j] := 1

biggest[i, j] := max(bl [j])

srrzullest[i, j] := min(bf [j])

{ Do an approximate merge of the R runs }

repeat until alf records of the R runs have been processed

for j := 1 to D do in parallel

{ Find the best one or two blocks to read from each disk }

bestrunl [j] := z such that biggest [i, j] is a minimum

bestrwn2 [j] := i such that smallest [i, j] is a minimum

read block nezt[bestrunl [j], j] of run bestrunl [j] from disk j into buffer bl [j]

if bestrunl [j] # bestrun2[~] then
read block nezt [bestrun2[j], j] of run bestrun2[j] from disk j into buffer b2 [j]

merge bl [j] and b2[j] in place internally with the smallest elements in bl

write b2[j] to block nezt [bestrun2[~], j] of run bestrun2 [j] on disk j

write bl [j] to disk j in the output list

read block nezt[bestrrml [j], j] + 1 of run bestrunl [j] from disk j into buffer bl [j]

{ Update data structures }

nezt[bestrrml[j], j] := nezi[bestrunl[j], j] + 1
biggest[be.strwnl [j], ~] := max(bl [j]) { May be +CXJ }

smallest[bestrunl [j], j] := min(bl [j]) { May be +cm }

if bestrunl [j] # bestrun%’[j] then

smallest[bestrun2 [j], j] := min( b2[j]) { The biggest hasn’t changed }

{ Do a restorative pass to turn the approximate merge into a complete merge }

L := RDB

T := total # of records in the R runs

for t := O to [T’/Ll – 2 do

use Columnsort to sort records tL + 1,tL + 2, ..., tL + 2L of the output list

FIG. 7. Pseudocode for the Greed Sort Algorithm.

max( b 2[ j]), and min( b 2[ j ]). In the pseudocode, when we use the construct do

in parallel, we mean that the 1/0 within the loop should be done in parallel,

not that the actual computation needs to be done in parallel.

The overall structure of Greed Sort, like any Merge Sort algorithm, consists

of an outer loop that establishes what size lists are being merged, and an inner

loop that merges together lists of that size R at a time. The outer loop

terminates when the size of the lists to be merged reaches N.
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2.1. PROOF OF CORRECTNESS. The correctness of Merge Sort algorithms in

general is easy to establish, since each merge by definition produces a sorted

list. Thus, showing the correctness of Greed Sort depends on showing that each

merge pass correctly merges the R = ~~ /2 runs into a single sorted run.

THEOREM 2.1.1. Each sequence of an approximate merge followed by Column-

sorts in the Greed Sort algorithm correctly merges R runs.

Theorem 2.1.2 below shows that each record in the approximately merged

output list formed from the R runs is at most L = RDB locations from its

correct sorted location. Theorem 2.1.13 proves that the Columnsorts on succes-

sive overlapping subfiles of size 2L complete the sorting. Together, Theorems

2.1.2 and 2.1.13 establish Theorem 2.1.1.

THEOREM 2.1.2. In the approximately merged output list fo~med from merging

R runs, each record is at most RDB locations from its correct sorted location.

This theorem is proved using the lemmas below. The main lemmas are

Lemma 2.1.11, which limits how far any record can occur in the approximately

merged list after a record that has a larger key, and Lemma 2.1.12, which shows

that each element is close to its correct sorted location in the approximately

merged list.

For notational convenience, we will identify a record with the value of its

key. We are justified in doing this since, as mentioned above, the amount of

time needed for sorting is the same as that needed for permuting. In other

words, the difficulty in sorting is not in establishing the correct permutation for

the records, but in doing the actual routing. From this, it follows that doing

“key sorting” followed by the actual permutation does not affect the number of

1/0s by more than a constant factor, so we might as well cart around the

entire record.

In our arguments, we will often speak of the “tth smallest minimum record

on disk i“ or the “tth smallest maxilmum record on disk i“. By these, we mean

the tth smallest record in the set of minimum (respectively, maximum) records

in all the blocks in all the runs (before the merging begins). We will denote

these elements by y,rn~n and y,mta’, respectively. It would appear from this

terminology that we assume the ‘key values are distinct. The proofs, however,

work even if there are duplicate keys. If there are many records of the same

key value, it does not matter in what order we consider the duplicate values to

occur.

LEMMA 2.1.3. On any disk, the blocks are uacated from the input runs and

moued (in possibly altered fo?m) to the output ran in the order of their maximum

records.

PROOF. At each step, the block with the smallest maximum is written to the

output, although it may contain records that have been merged into that block

from other blocks. Furthermore, no step modifies the maximum record of any

block that is not written to the output. ❑

COROILARY 2.1.4. Tl~e largest record written to the output at step t on disk i is

no larger than ylrn~x.
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PROOF. This corolla~ follows from Lemma 2.1.3 and the fact that at least

B records no larger than y,’,”;’ are read at the tth step. ❑

NOW that we have limited how soon y,rn~x can be written to the output, we

turn our attention to y,m~n.

LEMMA 2.1.5. There are at most t – 1 blocks on disk i that contain records

smaller than ylm~~.

PROOF, In order to contain records smaller than yl~~n, a block must have a

smaller minimum than the block containing ytrn;”. But by definition, there are

at most t – 1 such blocks. (There could be more than t – 1 blocks containing

records at least as small as ylrn~n). ❑

LEMMA 2.1.6. As long as there remain blocks on disk i that contain records

smaller than y = y[rn:n, the number of such blocks decreases by at least one at each

step.

PROOF. Let us assume that there are still records less than y and look at

any time step. There are two cases to consider: the algorithm reads one block

on disk i or the algorithm reads two blocks. In the former case, the block

contains records less than y, since it has a smaller minimum, and all its records

are written to the output. In the latter case, the only way that the number of

blocks containing records less than y could not decrease is if only one of the

two blocks contains records less than y and some of those records are among

those written back to the input. The block that was chosen as having the

smallest minimum has records less than y. If there are at most B records of

value less than y in the two blocks, then all these records will be output.

Otherwise, if there are more than B records of value less than y from the two

blocks, then each block contains at least one such record, and only one such

block remains after output. ❑

Combining Lemmas 2.1.5 and 2.1.6, we get the following corollary.

COROLLARY 2.1.7. All records smaller than y,,,““ in the input runs on disk i are

written to the output on disk i before the tth output block.

Now that we have limits on when the maxima and minima are written onto

the output for disk i, we are ready to consider pairs of disks. First, we look at

disks after disk i.

PROOF. Consider the t smallest minimum records on disk j. For each of

these records, y,mfl, 1 < k s t, the block on the same track of the same run on

disk i has a maximum no greater than yl~~. Since each of these maximum

records occurs in a distinct block on disk 1, and y~rn~ s y,rn~n for all 1 < k < t,
there are at least t maximum records on disk i that are no greater than

Y,!’:” ❑

LEMMA 2.1.9. Let y be the largest record written to the output on disk i at step

t. Then all the records less than y on any disk j > i are written to the output before

step t.

PROOF. By Corolla~ 2.1.7, any record not written to the output before step

t on disk j is at least as large as yjrn~”. By Lemma 2.1.8, y,rn~n> y,m~x. By

Corollary 2.1.4, ~’,~:’ > y. Thus, all elements less than y have already been

written on disk j before step t. ❑
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Finally, we have gotten to the point that we can prove our first main lemma.

However, before doing so, we need a definition.

Definition 2.1.10. A sequence is called L-regressil’e if for any two records

x < y, y does not precede x by more than L records in the sequence.

LEMMA 2.1.11. The approximately merged output list is ~B-regressille.

PROOF. When a record y is written on disk i at step t, we do not have to

worry about records less than y appearing later in the approximately merged

list on any disks j > i, by Lemma 2.1.9. So we only need to consider those disks
j < i. But, in a sense, we can consider disks j < i as coming after disk i with a

one block offset in each run. Thus,, if j s i, then block b of run r on disk i

precedes block b + 1 of run r on disk j. Consequently, the same argument

that was used to show Lemma 2.1.9 applies in this case. In other words, if we

removed the first block of each rum on all disks j s i, no record on disk j

would follow a larger record on disk i. The first blocks of those runs can push

smaller records than y to later blocks of the output on disk j, but the position

of such smaller records can only shift by a number of blocks equal to the

number of runs, that is, by R blocks. Since each striped block in the output

contains DB records, it follows that a larger record can precede a smaller one

in the approximately merged list by at most RDB records. ❑

Now we show what RDB-regressive means in practical terms,

LEMMA 2.1.12. If a list is L-regressive, then euery record is at most L locations

from its correct sorted location.

PROOF. For the moment, let us suppose that all the records have unique

keys. We will lift this assumption later. Let y be the jth smallest record and

assume by way of contradiction that it occurs at position i where i < j – L. We

derive a contradiction by showing that there exists an x < y that succeeds y by

more than L records and hence the list is not L-regressive. Since y is the jth

smallest record, there are j – 1 records less than y. In order to meet the

L-regressive condition, all the elements less than y must occur in the range of

locations 1,..., i + L. There are i + L locations up to the point that is L

records beyond y, of which y is occupying one. So we have a total of j records

to be fit into i + L slots. By assumption, i + L <j, meaning that at least one

record less than y must be out of the desired range, contradicting the fact that

the list was assumed to be L-regressive. This same argument also shows that

the jth record cannot be at any location i > j + L. When duplicate keys are

allowed, the argument gets a little more complicated, since we cannot talk

about the jth record exactly. Saying that every record is at most L locations

from its correct sorted location means that there exists a permutation that sorts

the list and also moves no element by more than L locations. The above

argument shows that every record is within L of the closest location it can

acceptably go, from which it follows that such a permutation exists. ❑

Lemmas 2.1.11 and 2.1.12 directly prove Theorem 2.1.2. Finally, we demon-

strate that the final pass of Columrisorts finishes the sort.

THEOREM 2.1.13. If ece~ element in a list is within a distance of L of its sorted

location, then a series of sorts of size 2L, beginning at ele~ Lth location, will

suffice to complete the sort.
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2L

1 tL tL+L tL+2 L

FIG. S A series of sorts of size 2~ suffices to fi~ up an L-regressive list.

PROOF. Let there be ~ total records, so that we perform a total of

[~/Ll – 1 sorts of size 2L (the last sort may be smaller than size 2L). The

proof proceeds by induction on the number of sorts performed. During step
t >0 we sort records tL + 1,tL + 2 ,. ... tL + 2 L. We have the following

invariants at the beginning of step t (see Figure 8) and show that each step

maintains the invariants:

(1) All the records 1,..., tL are completely sorted.

(2) No record in tL + 1,..,, ~ is more than 2L before or L after its final

position,

The invariants are clearly met at the beginning since (1) refers to the null set

and we have assumed something stronger than (2), namely that everything is

within L of its correct sorted location.

Now we can demonstrate that each step in the range t = O,..., [lV/L] – 2

preserves the invariants. To preserve Invariant (l), we need to demonstrate

that the sort moves records that belong in locations tL + 1,. ... tL + L to their

final locations. By Invariant (2), every record that belongs in this range must

fall within the 2L records we are sorting: the record belonging at tL + L can

be off by at most L. placing it at tL + 2L, which is within the sorting range.

Thus, Invariant (1) is preserved. Similarly, Invariant (2) is preserved, since none

of the records moved to the range tL + L + 1, . . . . tL + 2 L belonged in the

block tL+ l,..., tL + L (by preservation of Invariant (l)), so that they must

be at most 2 L before or L after their intended location.

The last step by definition sorts the last up to 2L records, so that at its

conclusion, the whole list is sorted. ❑

2.2. ANALYSIS OF THE ALGORITHM. Now that we have shown the correct-

ness of Greed Sort, we substantiate our claim that its performance is optimal.

Before proving Theorem 2,1, we first show by a clustering technique that the

amount of storage space required for the data structures is small enough.

THEOREM 2.2.1. The amount of prima~ memo~ space needed for the data

structures of Greed Sort is 0( IMP), for ftied p < 1.

PROOF. The number of runs that we must merge in order to obtain optimal

performance is ~~ /2. As we pointed out in Section 2, the candidate set

requires a total of D~~ key fields to be kept in primary memory to decide

what blocks to read next, plus, in practice, any auxiliary structures used for

implementing a priority queue. At first glance, it seems if D = 0(M) and

B = 1 that Q( ~312) storage space will be required in primary memory, which
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is clearly impossible. However, we can use a partial disk striping method

throughout the course of the algorithm, while giving up only a constant factor

in performance. Assume that D = D( A4) grows faster than &f”, for some fixed

O < a < 1/2. We can cluster our D disks into clusters of D’ = kl” clusters of

D/D’ disks synchronized together. Each of the D’ clusters acts like a logical

disk with block size 1?’ = BD/D’. Thus, the number of prima~ storage loca-

tions we need is at most

The expression for the number of 1/0s remains the same, namely,

N log N/B’

(

N log N/B
k—

D’B’ log M/B;
=o—

)DB log M/B ‘

We set ~ = a + 1/2. The amount of memory needed for the buffers is 2DB,

so the total memory needed is at most

2DB + MB < M,

since DB < [(A4 – A4P )/2]. Note that for efficiency, an additional O(log Lf)

memory can be set aside for keeping priority queues without running into

memory problems. ❑

In order to demonstrate that Greed Sort has an optimal 1/0 bound, we need

to analyze the 1/0 efficiency of the Columnsort subroutine.

THEOREM 2.2.2. Columnsort sorts N < Dm records with O(N/DB) paral-

lel 1/0s.

PROOF. First we show that Collumnsort produces a correctly sorted se-

quence when N < D=. We define the number of rows in the matrix to be

r = M, so that each column can be sorted internally. We have

making use of our assumption that 2DB s A4. Thus, the number of columns in

our application of Columnsort is c = N/r s @, and the Columnsort

requirement that r > 2(c – 1)2 is met. Thus, the Columnsort works correctly.

Steps 1, 3, 5, 6, 7, and 8 can be done easily with O(N/DB) 1/0s. The

transpose-like operation in Steps 2 and 4 can be done with O(N/DB) 1/0s by

the p x q matrix transpose algorithm of Vitter and Shriver [1990] for p = M

and q = N/i14 s D~~. Doing this transpose will put the records on the

disks in exactly the right order; the only difference between the actual

transpose and the transpose-like operation in Steps 2 and 4 is how large we

consider the columns to be. The resulting number of 1/0s for Steps 2 and 4 is

(0 N logmin(i14, D~m, D~/B) .0 N log[D~~]

DB log(ill/B)
1(

DB log( M/B) 1

N()=o—
DB “
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Since each of the eight steps can be done in O(N/DB) 1/0s, the overall

Columnsort algorithm takes 0( N/DB ) 1/0s. ❑

The greedy merge reads each record at most three times (once for updating

biggest and smallest and up to twice for merging) and writes each record at

most twice, taking full advantage of parallel block transfer. The Columnsort

routine is called 2[N\k] – 1 times, each time using O(k/DB) 1/0s, for a

value of k that differs from pass to pass. Thus, we have shown the following

lemma.

~EMMA 2.2.3. Each merging step requires 0( N/DB ) parallel 1/0s.

By the remarks immediately before Theorem 2.1, this concludes the proof of

Theorem 2.1.

3. Conclusions

We have presented the first optimal, deterministic external sorting algorithm

for multiple disks, improving significantly the randomized algorithm of Vitter

and Shriver [1990]. The Greed Sort algorithm is easy to implement and is

efficient in terms of internal computations. An interesting open problem is

whether a distribution-type sort can be implemented deterministically and

optimally in terms of the number of parallel 1/0s in the two-level model. Such

an algorithm could have applications to optimal deterministic sorting in paral-

lel versions of other memory hierarchies as well.

Recently, we have successfully developed a simple, deterministic distribution

sort which, unlike Greed Sort, also extends to the parallel hierarchical memory

models P-HMM, P-BT, and P-UMH [Nodine and Vitter 1993]. The algorithm

is also optimal with respect to internal computation, even with parallel proces-

sors. The algorithm in Vitter and Shriver [1990] also has this property, but is

randomized.
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