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ABSTRACT
In this paper, we study the problem of anomaly detection in
sparse channel tracking applications via the `1-regularized
least squares adaptive filter (SPARLS). Anomalies arise due
to unexpected adversarial changes in the channel and quick
detection of these anomalies is desired. We first prove ana-
lytically that the prediction error of the SPARLS algorithm
can be substantially lower than that of the widely-used Re-
cursive Least Squares (RLS) algorithm. Furthermore, we
present Receiver Operating Characteristic (ROC) curves for
the detection/false alarm trade-off of anomaly detection in
a sparse multi-path fading channel tracking scenario. These
curves reveal the considerable advantage of the SPARLS al-
gorithm over the RLS algorithm.

Keywords
System identification, Sparsity-based signal processing,
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1. INTRODUCTION
Adaptive filtering is an important tool in statistical signal
processing, most appealing in system identification tasks
based on streaming data in environments with unknown
statistics [6]. For instance, it is widely used for echo cancel-
lation in speech processing systems and for identification or
equalization of wireless communication channels.

A wide range of input-output systems are described by sparse
models. For example, the multi-path wireless channel has
only a few significant components [2]. Other examples in-
clude echo components of sound in indoor environments
and natural images. Recently, the SPARLS algorithm has
been proposed for adaptive identification of such sparse sys-
tems [1]. In particular, it has been shown that the SPARLS
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algorithm significantly outperforms the widely used Recur-
sive Least Squares (RLS) algorithm for system identifica-
tion in terms of mean square error (MSE). Moreover, the
SPARLS algorithm has a much lower computational com-
plexity in practice.

An important problem in system identification applications
is anomaly detection. Suppose that one is interested in
tracking the characteristics of an input-output system, where
these characteristics are expected to lie in a set of ”normal”
system realizations. Any observable deviation from the set
of normal realizations is characterized as an anomaly. For
instance, consider the scenario of under-water communica-
tions. Suppose that a number of sensors are transmitting
their observations to a fusion center via the under-water
acoustic channel. Then, the sudden presence of an under-
water mobile object such as a submarine, will change the
underlying communication channels. Often times, the de-
tection of such events is desired, and in that case the sensors
must be equipped with adaptive filtering mechanisms allow-
ing them to detect and localize such events. The MSE ad-
vantages of the SPARLS algorithm makes it very appealing
to be incorporated as the adaptive tracking unit for anomaly
detection in such scenarios.

In this paper, we first study the prediction error of the
SPARLS algorithm, and show that it can be substantially
lower than that of the RLS algorithm. Inspired by this
appealing feature of the SPARLS algorithm, we present a
simple anomaly detection mechanism based on thresholding
the instantaneous prediction error. We then present Re-
ceiver Operating Characteristic (ROC) curves for the de-
tection/false alarm trade-off of the anomaly detection pro-
cedure applied to both the SPARLS and RLS algorithms.
These curves reveal the considerable operational improve-
ment of the SPARLS algorithm over the RLS algorithm.

The outline of the paper is as follows: we will give an overview
of the sparse system identification setting and the SPARLS
algorithm in Section 2. We will then study the prediction
error performance of the RLS and SPARLS algorithms in
this setting in Section 3. Simulation studies are presented
in Section 4, followed by conclusion in Section 5.

2. ADAPTIVE SPARSE SYSTEM IDENTI-
FICATION

2.1 Adaptive Filtering Setup



Consider the conventional adaptive filtering setup, consist-
ing of a transversal filter followed by an adaptation block.
The tap-input vector at time i is defined by

x(i) := [x(i), x(i− 1), · · · , x(i−M + 1)]T (1)

where x(k) is the input at time k, k = 1, · · · , n. The tap-
weight vector at time n is defined by

ŵ(n) := [ŵ0(n), ŵ1(n), · · · , ŵM−1(n)]T . (2)

The output of the filter at time i is given by

y(i) := ŵ∗(n)x(i). (3)

where (·)∗ denotes the conjugate transpose operator. Let
d(i) be the desired output of the filter at time i. We can
define the instantaneous (error of the filter as

e(i) := d(i)− y(i) = d(i)− ŵ∗(n)x(i). (4)

The adaptation block at time n solves the following opti-
mization problem:

min
ŵ(n)

f
(
e(1), e(2), · · · , e(n)

)
, (5)

where f ≥ 0 is a certain cost function. In particular, suppose
that d(i) is generated by an unknown tap-weight w(n), i.e.,
d(i) = w∗(n)x(i)+ η(i), where η(i) is the observation noise.
With an appropriate choice of f , one can possibly obtain
a good approximation to w(n) by solving the optimization
problem given in (5). Note that w(n) reflects the true pa-
rameters which may or may not vary with time. The noise
will be assumed to be i.i.d. Gaussian, i.e., η(i) ∼ N (0, σ2).
The adaptation block has only access to input, output and
observation triplet (x(i), y(i), d(i)).

A suitable cost function for tracking time-varying systems
is defined as follows:

fRLS

(
e(1), e(2), · · · , e(n)

)
:=

n∑
i=1

λn−i|e(i)|2, (6)

with λ a non-negative constant denoted by the forgetting
factor. The solution to the optimization problem in Eq.
(5) with fRLS gives rise to the well-known Recursive Least
Squares (RLS) algorithm (See, for example, [6]). Let

D(n) := diag(λn−1, λn−2, · · · , 1), (7)

d(n) := [d∗(1), d∗(2), · · · , d∗(n)]T (8)

and X(n) be an n×M matrix whose ith row is x∗(i), i.e.,

X(n) :=




x∗(1)
...

x∗(n− 1)
x∗(n)


 . (9)

The RLS cost function can be written in the following form:

fRLS

(
e(1), e(2), · · · , e(n)

)

=
∥∥D1/2(n)d(n)−D1/2(n)X(n)ŵ(n)

∥∥2

2
, (10)

where D1/2(n) is a diagonal matrix with entries D
1/2
ii (n) :=√

Dii(n).

2.2 The SPARLS algorithm
The SPARLS algorithm, introduced in [1], iteratively mini-
mizes the cost function

1

2σ2

∥∥D1/2(n)d(n)−D1/2(n)X(n)ŵ(n)
∥∥2

2
+γ‖ŵ(n)‖1 (11)

by updating the estimate ŵ(n) upon the arrival of the input
and observation pair. The parameter γ represents a trade
off between estimation error and sparsity of the parameter
coefficients. The SPARLS algorithm can be summarized as
follows:

Algorithm 1 SPARLS

Inputs: B(1) = I− α2

σ2 x(1)x∗(1), u(1) = α2

σ2 x(1)d∗(1), τ :=

γα2 and K.
Output: ŵ(n).

1: for all Input x(n) do

2: B(n) = λB(n− 1)− α2

σ2 x(n)x∗(n) + (1− λ)I.

3: u(n) = λu(n− 1) + α2

σ2 d∗(n)x(n).

4: Set ŵ(0) = ŵ(n− 1).
5: for all ` = 1, 2, · · · , K − 1 do
6: EM iteration: ŵ(`+1) := STτ

(
B(n)ŵ(`) + u(n)

)
.

7: end for
8: Update ŵ(n) = ŵ(K).
9: end for

The operator STτ (·) : CM 7→ CM in line 6 of the SPARLS
algorithm is denoted by elementwise soft-thresholding and is
given by:

(
STτ (w)

)
i
:= sgn

(<{wi}
)(|<{wi}| − τ

)
+

+ i sgn
(={wi}

)(|={wi}| − τ
)
+

(12)

where sgn(·) is the standard signum operator, ad (x)+ :=
max(x, 0). The performance of the SPARLS algorithm is
studied comprehensively in [1]. In particular, it has been
shown that the SPARLS algorithm is capable of achieving
significant MSE gains in sparse system identification, com-
pared to the widely used RLS algorithm.

3. PREDICTION ERROR ANALYSIS
3.1 Main Results
Let ŵ(n−1) be the estimate of w(n−1) at time n. We con-
sider the commonly used random-walk regeneration model
for the time evolution of the channel w(n):

w(n) = w(n− 1) + δ(n) (13)

where δ(n) ∼ N (0,∆). We assume that δ(n), x(n) and η(n)
are statistically independent at all times. The prediction
error at time n is given by:

ξ(n) := d(n)− ŵ∗(n− 1)x(n). (14)

This prediction error is often denoted by a priori estimation
error. Let

R := Ex{x(n)x∗(n)} (15)

be the input covariance matrix. We are interested in study-
ing the average steady state behavior of ξ(n) for both the
RLS and SPARLS adaptive filters. We have:

ξ(n) = (w∗(n)− ŵ∗(n− 1))x(n) + η(n)



Therefore,

Eη,x(n),δ(n)

{|ξ(n)|2} := Eδ(n){ε∗(n)Rε(n)}+ σ2, (16)

where

ε(n) := w(n)− ŵ(n− 1). (17)

For the sake of simplicity, suppose that the input covariance
matrix is diagonal, i.e., R = IM×M . Hence

Eη,x(n),δ(n)

{|ξ(n)|2} := Eδ(n)

{‖ε(n)‖22
}

+ σ2. (18)

The error term ε(n) can be written in the following form:

ε(n) = (w(n− 1)− ŵ(n− 1)) + δ(n)

Hence,

Eδ(n)

{‖ε(n)‖22
}

= e2(n) + Tr(∆). (19)

where

e(n) :=
∥∥w(n− 1)− ŵ(n− 1)

∥∥
2

(20)

is the a posteriori estimation error at time n−1, which con-
tributes directly to the prediction error. The average steady
state behavior of the a posteriori error is well-known in the
literature. We thus state the following proposition regarding
the steady state prediction error of the RLS algorithm:

Proposition 3.1. Let ξRLS(n) be the prediction error of
the RLS algorithm in a time-varying environment where λ <
1. Suppose that R, the input covariance matrix, is the iden-
tity matrix. Then, we have:

E
{|ξRLS(n)|2} ≥

(1− λ

1 + λ
M + 1

)
σ2 + Tr(∆).

in the steady state, where the expectation is over {x(i)}n
i=1

and {η(i)}n
i=1.

Proof. By the result of Section III of [4] we have:

E
{

eRLS(n)
}
≥ 1− λ

1 + λ
Mσ2 (21)

By combining Eqs. (18)–(20) and Eq. (21), the claim of the
proposition follows.

Next, we study the steady state prediction error of the SPARLS
algorithm. We prove the following proposition regarding the
prediction error of the SPARLS algorithm:

Proposition 3.2. Let ξSPARLS(n) be the a posteriori es-
timation error of the SPARLS algorithm. Let L ≤ 1

3µ0
for

some µ0 < 1 and R be the identity matrix. Then, we have:

E
{|ξSPARLS(n)|2} ≤

(
1

(1− ρK)2

(√
3 +

3γ

2σ

)2

L + 1

)
σ2

+ Tr(∆)

with probability exceeding

1−(M−L) exp
(
− γ2

8σ2

)
−exp(−L/7)−2M2 exp

(
− µ2

0
6(1−λ)

)
,

where the expectation is with respect to η(n), x(n) and δ(n),

and ρ ≤ 1− α2

σ2 (1− τ) with probability exceeding

1− 3M2 exp
(
− τ2

54M2(1− λ)

)
.

Proof. The proof is given in the Appendix.

3.2 Discussion
Proposition 3.1 gives a lower bound on the steady state pre-
diction error of the RLS algorithm. The estimation error
is proportional to M , which is the length of the channel.
Therefore, the lower bound is independent of L, the number
of nonzero elements of w(n).

On the other hand, Proposition 3.2 presents an upper bound
on the prediction error of the SPARLS algorithm, where the
estimation error is indeed proportional to L. Hence, in the
low sparsity regime, the prediction error of the SPARLS
algorithm can be substantially lower than that of the RLS
algorithm, for large values of L and M . This result will
be confirmed in Section 4, in a multi-path fading channel
tracking application. Note that the result of Proposition 3.2
is probabilistic. However, with appropriate choices of γ and
λ for a given M and L, the success probability can be made
arbitrarily close to 1.

4. SIMULATION STUDIES
4.1 Simulation setting
We consider the scenario of tracking a sparse multi-path fad-
ing channel, generated by the Jake’s model [7]. In the Jake’s
model, each channel component is sampled from a Rayleigh
random process with autocorrelation function given by

R(n) = J0(2πnfdTs) (22)

where J0(·) is the zeroth order Bessel function, fd is the
Doppler frequency shift and Ts is the channel sampling in-
terval. The dimensionless parameter fdTs gives a measure
of how fast each tap is changing over time. For the purpose
of simulations, Ts is normalized to 1.

The channel length is M = 100, where as there are only
L = 5 nonzero elements. The channel vector is normalized
to have norm 1. We probe the channel by a sequence of i.i.d.
Gaussian inputs.

4.2 Prediction error
Fig. 1 shows the steady state prediction error of the SPARLS
and RLS algorithms, for fdTs = 0.0005, and σ2 = 0.0001.
The choice of λ for the RLS algorithm in this case is 0.98.
The SPARLS algorithm is operating with the choice of pa-
rameters λ = 0.98, γ = 35, α = σ/2 and K = 1 (See Tables
I and II of [1] for details). The normalized steady state
prediction error is defined as:

10 log10

(
ξ(n)

E{|y(n)|2}
)

, (23)

where y(n) := w∗(n)x(n) is the noiseless output of the chan-
nel, and the expectation is over w(n) and x(n). A rectangu-
lar smoothing window of length 100 is used for the prediction
error for the sake of presentation.

The small-scale fluctuations of the prediction error are due
to the observation noise, whereas the large-scale fluctuations
are due to the temporal variations of the underlying channel.
As it can be observed from Fig. 1, the SPARLS algorithm
has a gain of about 5dB over the RLS algorithm in terms of
the prediction error.



0 200 400 600 800 1000 1200 1400 1600 1800 2000
−20

−15

−10

−5

0

5

10

Time

N
or

m
al

iz
ed

 P
re

di
ct

io
n 

E
rr

or
 (

dB
)

 

 

SPARLS
RLS

Figure 1: Normalized prediction error of SPARLS
and RLS for fdTs = 0.0005, and σ2 = 0.0001.

4.3 Receiver Operating Characteristic
Next, we consider an anomaly detection scenario in a chan-
nel tracking application. Suppose that the set of ”normal”
channels are those with L nonzero element, where each el-
ement is a Raleigh fading component. Moreover, suppose
that these elements are located among the first 20 coordi-
nates of w(n).

We consider the following on-off anomaly class: suppose
that at certain time instances, the last 50 elements of w(n)
take random values uniformly distributed in the interval
[0.05, 0.15]. These values are persistent for t0 time instances
and disappear. Suppose that these anomalies occur accord-
ing to a Poisson process with rate p. For instance, this
anomaly class can model the sudden appearance and disap-
pearance of a mobile underwater vessel which gives rise to
high delay components in the underwater acoustic channel.
The objective is to detect and localize the anomalies by ob-
serving the prediction error of the adaptive filters tracking
the channel.

As for the anomaly detection procedure, we monitor ξ(n),
the prediction error of the filter (smoothed with a moving
average window of length t0/2 = 25) and compare it with a
threshold value ξth. An anomaly is reported if the instanta-
neous prediction error exceeds the threshold ξth.

In order to compare the performance of the SPARLS and
RLS algorithms in this scenario, we look at the Receiver
Operating Characteristic (ROC) curves obtained for both
filters. The ROC curve shows the hit rate (detection) ver-
sus the false alarm rate of each filter, by sweeping through
an admissible range values for ξth. The hit rate is defined as
the ratio of correctly detected anomalies to the total num-
ber of anomalies. An anomaly is detected correctly, if it
is detected within a time interval of t0/2 from the occurred
anomalous event. The false alarm rate is defined as the ratio
of falsely detected anomalies over the total number of seg-
ments of length t0 in the observed data. In this sense, the
false alarm rate denotes the probability of a false detection
per time instance of the observed data. For obtaining the
ROC curves, the threshold value ξth varies uniformly in the
interval [0, 0.1].
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Figure 2: ROC curves for SPARLS and RLS in an
anomaly detection application.

Fig. 2 shows the ROC curve for the SPARLS and RLS
algorithms for fdTs = 0.0005 and σ2 = 0.0001. The Poisson
process has a rate of p = 0.05 and t0 = 50, and the curves are
obtained by averaging over 50000 time instances. As it can
be observed from Fig. 2, the ROC curve of the SPARLS
algorithm lies above that of the RLS algorithm. In other
words, for a given false alarm rate, the SPARLS algorithm
has a higher hit rate, and for a given hit rate, the SPARLS
algorithm has a lower false alarm rate. For instance, at a
false alarm rate of 10%, the SPARLS and RLS algorithms
have hit rates of 75% and 70%, respectively. Similarly, at a
hit rate of 85%, the SPARLS and RLS algorithms have false
alarm rates of 13% and 17%, respectively.

5. COLCLUSION
In this paper, we have studied the prediction error perfor-
mance of the SPARLS and RLS algorithms, revealing the
significant advantage of the SPARLS algorithm over the
RLS. Moreover, we have proposed a simple anomaly detec-
tion scheme and presented the corresponding ROC curves
for both the SPARLS and RLS algorithms, in a multi-path
fading channel tracking scenario. These curves suggest that
the SPARLS algorithm outperforms the RLS algorithm in
terms of detection/false alarm trade-off.
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APPENDIX
A. PROOF OF PROPOSITION 3.2
The proof is mainly based on Section IV-B of [1] and Theo-
rem 3 of [3]. Let w̃(n) be the solution to the `1-regularized
quadratic cost function. Let eSPARLS(n) := ‖w(n)−ŵSPARLS(n)‖2.
It has been shown in [1] that we have:

eSPARLS(n) ≤ ρKeSPARLS(n− 1) + ‖w(n)− w̃(n)‖2 (24)

where ρ := 1− α2

σ2 smin

(
X∗(n)D(n)X(n)

)
, where smin(·) de-

notes the minimum eigen-value. Also, from Theorem 3 of [3],
we have:

‖w(n)− w̃(n)‖22 ≤
(√

3 +
3γ

2σ

)2

Lσ2 (25)

with probability exceeding

1− (M − L) exp
(
− γ2

8σ2

)
− exp(−L/7)

given L ≤ 1/3µ, where µ is the coherence of the matrix

D1/2(n)X(n). The coherence of an N ×M matrix A with
columns {ai}M

i=1 is defined as

µ := max
i6=j

|a∗i aj |. (26)

It only remains to establish bounds on the coherence and
the minimum singular value of the matrix D1/2(n)X(n).

For simplicity, we assume that x(i) ∼ N (0, ν2), for all i =
1, 2, · · · , n. The following lemma establishes a lower bound
on the minimum singular value of D1/2(n)X(n):

Lemma A.1. Let ν2 1−λn+1

1−λ
= 1. Then, the eigen-values

of C(n) := X∗(n)D(n)X∗(n) lie in the interval [1− τ, 1+ τ ]
with probability exceeding

1− 3M2 exp

(
− τ2

54M2(1− λ)

)
.

Proof. Let nλ := 1−λn+1

1−λ
. The ith diagonal element of

C(n) is given by

Cii(n) =

n∑

k=1

λn−kx2
i (k)

with E(Cii(n)) = nλν2, where nλ := 1−λn+1

1−λ
. Using the

standard χ2 tail bounds given in Lemma 1 in Section 4.1
of [8] with ai := λn−i, i = 1, 2, · · · , n we get:

P
(|Cii(n)− nλν2| ≥ 4ν2

√
nλ2t

) ≤ 2 exp(−t)

for 0 ≤ t ≤ 1. Also, a slight modification of Lemma 6 in [5]
yields:

P
(|Cij(n)| ≥ t

) ≤ 2 exp

(
− t2

4ν2(nλ2ν2 + t/2)

)

Similar to [5], we seek conditions on λ, n and ν2 such that
the eigenvalues of C(n) lie in the interval [1−τ, 1+τ ], where
τ < 1 is a positive constant. It can be shown that if nλν2 =
1, and n is large enough so that nλ ≈ 1

1−λ
, by an application

of the Gersgorin’s disc theorem [5] the eigen-values of C(n)
lie in the above interval with probability exceeding

1− 3M2 exp

(
− τ2

54M2(1− λ)

)
, (27)

which establishes the claim of the lemma.

Next, we present the following lemma establishing an upper
bound on the coherence of the matrix D1/2(n)X(n):

Lemma A.2. Let x(i) ∼ N (0, ν2), for all i = 1, 2, · · · , n.

Then, if ν2 1−λn+1

1−λ
= 1, the coherence of the matrix D1/2(n)X(n)

is bounded by µ0 for some arbitrary constant µ0 < 1, with
probability exceeding

1− 2M2 exp

(
− µ2

0

6(1− λ)

)
(28)

for n À 1.

Proof. The coherence of the matrix D1/2(n)X(n) is given
by

µ = max
i,j

∣∣∣
n∑

k=1

λn−kx∗i (k)xj(k)
∣∣∣ (29)

Again, by a slight modification of Lemma 6 of [5] we get:

P
(∣∣

n∑

k=1

λn−kx∗i (k)xj(k)
∣∣ ≥ t

)
≤ 2 exp

(
− t2

4ν2(nλ2ν2 + t/2)

)

where nλ2 := 1−λ2(n+1)

1−λ2 . Assuming that n is large enough

so that nλ2 ≈ 1
1−λ2 , and the choice of nλν2 = 1, we will get

P
(
µ ≥ µ0

)
≤ 2M2 exp

(
− µ2

0

6(1− λ)

)
(30)

which establishes the statement of the lemma.

Note that if λ ≥ 1 − O(1/ log M), then the probability of
µ ≤ µ0 goes to 1 at a polynomial rate in M . Similarly, if
λ ≥ 1−O(1/M2 log M), the probability that the eigen-values
lie in the interval [1 − τ, 1 + τ ] tends to 1 at a polynomial
rate in M . One can take such a choice of λ, and therefore
the coherence of the matrix D1/2(n)X(n) is upper bounded
by µ0 and the minimum singular value is lower bounded by
1 − τ , for some constants µ0 < 1 and τ < 1, with high
probability. By Lemmas A.1 and A.2, and combining Eqs.
(24) and (25), the result of the proposition follows.


